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ABSTRACT 
We study the isomorphism types of Aronszajn  trees of height ~o 1 and give 
diverse results on this question (mainly consistency results). 
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Introduction 

The question of isomorphism of Aronszajn trees was dealt with by H. 
Gaifman and E. Specker [11] who proved that there are 2", non-isomorphic 
Aronszajn trees. It can be seen, however, that every two of their non-isomorphic 
trees are isomorphic on a closed unbounded set, i.e. there is a closed unbounded 
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(club) set C C 0)1 such that restriction of the trees to the levels in C gives two 

isomorphic trees. So we are led to the question about isomorphism of trees on a 

closed unbounded set. Saying that two trees are really different if they do not 

contain isomorphic restrictions to closed unbounded set of levels, the question is 

whether really different Aronszajn trees exist. It turned out that this question is 

interesting from a Set-Theoretical point of view. There are consistency results 

requiring new models, and different possible answers exist. Very roughly the 

situation is this: The continuum hypothesis (CH) implies that there are many 

really different Aronszajn trees, while on the other hand it is consistent that 

every two Aronszajn trees are isomorphic on a closed unbounded set. (When we 

say that q~ is consistent we mean of course that if ZFC is consistent then ZFC + ~p 

is consistent.) Following are some notations and then a detailed description of 

our results. 

An Aronszajn tree is always a tree of height 0)1 without cofinal branches and 

with the usual normality properties. (Every point has extensions to every higher 

level, two points with the same predecessors are equal.) (See [13] or [9] or [18] 

for basic information on Aronszajn trees.) If T is a tree then T, designates the 

a ' s  level of T, and for C _C 0)1, T I C = U~EcT~ is a tree under the restriction of 

the partial ordering of T. A function f : T1--~ T 2 is an embedding of the tree T 1 

into the tree T 2 iff f is one-to-one and order  preserving 

x < y ¢~ f ( x ) < f ( y ) .  

f is an isomorphism if it is an embedding of T 1 onto T z. 

For C C o91, two trees T 1 and T 2 are said to be isomorphic on C iff T 1 ] C is 

isomorphic to TZ[ C It follows that if C C 0)1 is unbounded and T 1, T 2 are 

isomorphic on C then they are isomorphic also on the closure of C (C with all its 

limit points). 

We say T 1 is embeddable into T 2 on a club set if[ for some (closed) unbounded 

C C_ o)1 there is an embedding of T 1 ]C into T 2 ]C. We say that two trees are 

isomorphic on a club set iff for some (closed) unbounded set C C 0)1 these trees 

are isomorphic on C. We say two trees are near each other if some tree is 

embeddable on a club set into both of them. From now on, embeddability for 

Aronszajn trees always means embeddability on a club set. 

In order to understand our work it may be helpful to compare questions on 

Aronszajn trees to an apparently similar problem - -  the isomorphism questions 

of ~l-dense real order. Say K is the class of Nl-dense real orders. (A real order is 

Nl-dense iff it has no first nor last element and between any two points there are 

N1 many points.) 
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As any order preserving function from Ml to M2 (M1, M2 E K)  is determined 

by its restriction to a countable set, it is easy to find, assuming CH, M, E K, 

i < 2",, such that no M E K is embeddable to two of them, i.e., every two orders 

in this family do not contain isomorphic subsets in K. Also, one can see that 

(assuming CH) there is no prime order in K (one which is embeddable in each 

other). 

For Aronszajn trees (with embeddability always on a closed unbounded set) 

we can easily get similar results assuming O0~,. But what can we say if CH alone is 

assumed? Now, by Devlin and Shelah [10] there is a weak form of the diamond 

which follows from CH (and in fact is equivalent to 2 .0 < 2",) and which partially 

substitutes ~ .  Using a combinatorial principle we derive from this weak 

diamond, we get 2", Aronszajn trees no one embeddable into another and even 

the only embedding of each tree into itself is the identity. It also follows from this 

principle that for every Aronszajn T ~ there is Aronszajn T 2 such that T ~ is not 

embeddable into T 2 (i.e. there is no prime Aronszajn tree). Now note that 

(unlike the Nl-dense real order case) the results we get assuming 2"o = ~1 are not 

as strong as those we can get with O. This is not incidental. We can prove the 

consistency with GCH of: There is a universal Aronszajn tree and for any two 

trees there is one embeddable into both. 

What about the other direction - -  consistency results which negate the 

consequences of CH? J. Baumgartner proved the consistency of "Every  two 

members of K are isomorphic" [7]. He starts with V ~ GCH and uses a c.c.c. 

forcing. The main lemma he needs is: if V ~ CH, M ,  M2 E K, then for some 
forcing poset ~ satisfying the c.c.c, with I ,1 = N,, " M , - - M ; ' .  Now the 

parallel assertion for Aronszajn trees is open, but we can find an ~-comple te  

forcing poset ~ and a c.c.c, poset ~ E V ~ such that IF ~×a " T  ~ and T ~ are 

isomorphic (on a club set)". At the time we found the proof it was not clear how 

to iterate these posets, and we had quite an involved argument and construction 

for doing it; but with the invention of proper forcing (see [16]) this becomes easy. 

However,  if we want 2 .0 > ~2, we still have to use some of the involved methods. 

Our results can be divided into three parts: 

1. Consequences of 2*°<2 *~ (§1, §2) 

If CH or even if 2 .0 < 2*, holds then: 

(a) There are 2", pairwise really different Aronszajn trees. Not one of these 

tree is embeddable on a club set into the other. 

(b) There is an Aronszajn tree T such that for every closed unbounded 
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C c_ ~ol, T I C is rigid (i.e., the only embedding of T I C into T I C  is the identity, 

so T is a really rigid tree). We can combine (b) with (a). 

(c) For every Aronszajn tree T ~ there is an Aronszajn tree T 2 such that T ~ is 

not embeddable into T 2 on a club set, i.e., there is no prime Aronszajn tree. 

(d) We formulate a combinatorial principle that follows from the weak 

diamond (of [10] which itself is equivalent to 2 "° < 2 "') and hopefully will serve to 

obtain results like (a)-(c). 

2. Consistency results with CH (§3, §4) 

(a) GCH + (a~) + (a2) is consistent: 

(a~) There is a universal Aronszajn tree T, i.e., a tree T such that for every 

Aronszajn tree T*, T* I C is order embeddable into T I C for some C _C o9~. The 

universal tree T is a special Aronszajn tree. Hence in this model there are no 

Souslin trees. Thus (a~) is a strengthening of Jensen's theorem ([9]) which says 

that CH is consistent with Souslin's hypothesis. 

(a2) Every two Aronszajn trees contain subtrees which are isomorphic on a 

club set. (We say two such trees are near.) 

(b) We have some consistency result with CH concerning Souslin trees. For 

example, "CH + there is a Souslin tree" does not imply that there are 2 "1 really 

different Souslin trees. 

PROBLEM. Does the existence of two really different Souslin trees follow the 

existence of a Souslin tree? 

3. Consistency results with 2*~>Nj (§5, §6, §7) 

(a) Martin's Axiom + 2 -° = 1,12 + "Every two Aronszajn trees are isomorphic 

on a closed unbounded set" is consistent (in §3). 

(b) Martin's Axiom + 2 -0 > 1~1 does not imply that every two Aronszajn trees 

are isomorphic on a closed unbounded set (in §4). 
(c) Martin's Axiom + 2"0 = r + "Every two Aronszajn trees are isomorphic on 

a closed unbounded set" is consistent (in §5). K here is "any"  regular cardinal 

such that K -~ = K. (The difference between this item and (a) is that in (a) we get 

2"0 = ~z and here 2 ~o is as big as we want; moreover the proofs are different: in 

(a) we use proper forcing and in (c) a technique of using generic reals.) 

Chart 1 summarizes the situation. In this chart, bold type is for implication and 

italic type for consistency results. Embeddability and isomorphism in the 

Aronszajn tree case always mean on a closed unbounded set. 
A related subject which can be treated similarly is Specker order (see e.g. 

Galvin and Shelah [12]). A Speeker order is an uncountable order with no 
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Chart  t 

Continuum Hypothesis 2"o < 2NI MA + 2"0 > ~a 

Aronszajn 
trees 

~-dense 
real 
orders 
(K) 

There are 2"1 Every two trees There are 2 'fl trees Every two trees are 

Aronszajn trees, no have isomorphic no one embeddable isomorphic: §3 for 

two have isomorphic subtrees, into the other, and 2 x0 = N2 and 

subtrees. There is a universal every one embeddable §5 for 2'% > ~2. 
There is no universal Aronsza]n tree (§2). into itseff only by M A  does not imply 

tree. the identity, that every two trees 

There is no prime are isomorphic (§4). 
tree (§1). 

There are 2"1 Like above, replace Every two orders 

orders no two have tree by order [15]. are isomorphic: 

isomorphic suborders. Every two orders [7] for 2"0 = ~2 and [2] 
R is a have isomorphic for 2"0 > M 2. 
universal order, suborders. MA does not imply 

There is no There is a universal that every two orders 

prime order, order [2]. are isomorphic [5]. 

uncountable real sub-order nor uncountable well-order or anti-well-order sub- 
set. We call a Specker order I normal if 1 = U . . . .  L, (L : a < wl) increasing 
and continuous, ]L ] = No, I is dense with no first or last element, and for every a 
and x E I -  I~, 

L,~ ={y E l - I s  "(Va EI~)(a < x ~ a  < y)} 

has no first or last element. By [14] there are 2", pairwise non-isomorphic normal 
Specker orders. Let I be an order, C _C I × 1 is a chain iff for (x, y), (x', y') E C 
either x =< x' and y ~ y'  or x _-> x' and y => y'  hold. Say 

K ; =  ] I : I i s a n o r m a l S p e c k e r o r d e r a n d / x / =  U C, each C, a c h a i n / ,  
t J 

i.e., K~ is the family of normal Specker order whose square is the union of 
countably many chains. 

We can represent every Specker order by an Aronszajn tree of sequences of 
non-zero rationals ordered lexicographically (where we identify ~/ with 
7/^ (0 . . . .  )) and then prove similar results for K;.  For example: Con (Any two 
members of K '  s are isomorphic or antiisomorphic). This cannot be improved to 
"Any two members of K~ are isomorphic" (see [14]). 

PROBLEM. It is not clear whether we can get the consistency of: 
(*) Any Specker order contains a suborder in K;.  
This is equivalent to the following consistency question. 
(**) If T is an Aronszajn tree, T = A1 tO Ao, then there is an unbounded 

B C_ T and l E {0, 1} such that x, y E B ~ g.l.b.{x, y} E A~. 
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To the reader who wants to get some of the main ideas without too much work 
we suggest reading §1, where we prove that 2"° < 2 "~ implies that there are two 
really different Aronszajn trees. §5 can be read quite easily and gives the main 
result. §6 is an example of a method, which can be studied also in [5], in [2] and 
in [1] and gives some limitations to Martin's Axiom. Some of the ideas of §7 
appear in [4] in a simpler context. 

Although this paper can be read independently of other material, at some 
places the use of Devlin and Johansbr~ten's book [9] is necessary for a full 
understanding of some details. 

Historically, this paper owes much to the proof of Jensen [9]; §4 in particular 
resembles his work. The study began by Avraham, who showed the consistency 
with CH of the existence of a universal Aronszajn tree. Shelah proved the 
consistency of "Martin's Axiom for stable posets + Every two Aronszajn trees 
are isomorphic on a club set" (see [6] for the definition of stable posets). 
Afterward Avraham used the generic reals to get the consistency of the full 
Martin's Axiom with the isomorphism of any two Aronszajn trees (§7). For the 
notion of proper forcing see [16]. The construction of a proper poset forcing two 
Aronszajn trees to be isomorphic on a closed unbounded set (§5) is due to 
Shelah. J. Baumgartner was the first to use finite conditions to force a closed 
unbounded set. The proof that Martin's Axiom + 2 "0 > I~1 does not imply that 
every two Aronszajn trees are isomorphic on a club set is due to Avraham and is 
based on a method of Shelah (exposed in [5]). Shelah proved the consistency of 
"CH+Every  two Aronszajn trees are near" (item (a2) in 2). The result on 
Souslin trees in §4 is due to Avraham. In §1 we use the weak diamond of Devlin 
and Shelah ([10]). Shelah used the weak diamond to obtain non-isomorphic 
structures ([15]). Avraham applied this method to prove that 2 -° < 2 "1 implies the 
existence of two really different Aronszajn trees and of a "really rigid" 
Aronszajn tree. (Rigid Aronszajn trees were constructed in ZFC by Baumgart- 
ner, Avraham and Todorcevic independently; [3] and [17].) The general 
combinatorial principle of §2, the definition and use of the "small sets" to obtain 
2 "1 really different Aronszajn trees, are due to Shelah. After this study was done 
it was brought to our knowledge that the question whether "every two trees are 
isomorphic in a closed unbounded set" is consistent was asked by J. 
Baumgartner. 

Part I: Theorems in ZFC 

§1. Consequences of 2"° < 2"1: non-isomorphic trees 

In this section we prove that 2 "o< 2", implies that there are 2 "1 pairwise 
non-isomorphic on a club Aronszajn trees of height o,1. We then present a 
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combinatorial axiom that follows from 2 *o < 2*,, implies the above result, and 
hopefully will have other consequences as well. In order to present the ideas 
more slowly we first construct directly from the weak diamond two Aronszajn 
trees non-isomorphic on a club (below), then follows the axiom (§2) and finally 
we show how to use the axiom to get 2", pairwise non-isomorphic rigid trees. 

Devlin and Shelah [10] proved that 2"~<2 "~ implies the weak diamond 
principle: For each F : ~'(2~0)o 2 there is g ~ ~.2 such that for every f E °',(2"o), 
{a < ca~" g(a)  = F(f  r a)} is stationary. 

We remind the reader that in order to construct an Aronszajn tree one 
constructs it together with an order preserving embedding of the tree into the 
rationals (a special tree). At limit stages of the construction, one uses, and 
therefore has to keep, the following property: for every point x in the tree and 
rational e > 0 there is a point above x, at every higher level, such that the 
rational numbers assigned to these two points differ by less than e. As this is 
standard we will not mention it further. 

Now to the construction of two Aronszajn trees not isomorphic on a club set. 
By induction on a we will attach to every 7/E ~2(r/:  a --->2, a < ca~) a tree T(r/) 
of height w • a (together with its order preserving embedding into the rationals). 
The elements of our trees are chosen to be ordinals: the /z  level consists of the 
ordinal interval [ca •/.t, ca • (~ + 1)). If r/' _D r/ then T(-q') is an end extension of 

T(n).  
For limit a and r /E~2 ,  T( r / )=  U,<~ T(, /[3 ') .  
Suppose T(r/), r/@ 52, is constructed, define T('r/n (0)) and T(r/n (1)) to be 

two trees extending T(r/) such that: 

(a) The height of T(~/n (i) is ca • a + w for i = 0, 1. 
(b) The set of cofinal branches of T(r/) determined by points of T(r/n (0)) and 

the set of cofinal branches of T(~/) determined by points of T(r /n (1)) are 
disjoint. 

(The set of cofinal branches of T(~7) determined by T(r/n (0)) are all branches of 
T(r/) of the form {x E T(r/) : x < a} where a E T(r/n (0)) and a is of level ca • a 
there.) 

Now for every r / E  '°12, T(r/) = U,<,o, T(r/[  T) is a special Aronszajn tree. 
Let o E ~'12 be defined by o-(a) = 0 for a < cal. We will find h E ~',2 such that 

T(h)  and T(~r) are not isomorphic on a club set. The trees T(r/), 7/E ~'2, were 
constructed in such a way that the points of T(r/) for "O : a ~ 2 consist of ordinals 
in ca • c~. 

Now let 7 /E~2 and CC_ ca . a  be closed unbounded in ca.o~, and let 
i :  T(~r I a ) t  c o  T(r/) be an embedding on the levels in C of T((r I a )  into 
T(~)t  C (i is the beginning of an order preserving isomorphism on C which is a 
beginning of a closed unbounded set). Define F(~, i, C ) E  {0, 1} as follows: 
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F0 / ,  i, C)  = 0 if[ i can be extended to an embedding  of 

T(o-) I C tO {o). (a  + 1)} into T(7/~' (0)). 

Note  that as the ~o • a ' s  levels in T ( r  t n (0)) and T ( r / n  (1)) define disjoint sets 
of branches it cannot  be the case that such i can be extended both into T ( r / n  (0)) 
and into T(~/n (1)). 

Now, in case o) • a = a, under  suitable encoding,  F can be viewed as a funct ion 
f rom ~' (2 N°) into 2. So, by the weak d iamond principle there  is g E ~,2 such that 
for  every 7 / ~ , 2 ,  C C  wl, and i :  T(~r)[ C---> T( 'q) t  C, 

{a < ~o, : g(a  ) = F(*I I a, i [ a, C n a)} is stationary. 

Let  g* = 1 - g  (for every  a, g ( a ) + g * ( a ) =  1). 

CLA1M T ( g )  and T(g*)  are not isomorphic on a club set. 

PROOF. Suppose on the contrary  that C C w, is closed unbounded  and 
i : T( t r ) I  C---> T(g*) [  C is order  preserving. There  is some a, ~o . a  = a, a E C, 
such that 

g ( a ) = F ( g * [ a ,  i t a ,  COa). 

If g ( a ) = l  then g * ( a ) = O ,  hence i l a  is extended by i to an embedding  of 

T(o-) I a + w into T((g* I a )  n (0)), so, by the definition of F, F(g* [ a, i I a, C n 
a )  = 0. A contradict ion.  

If g ( a )  = 0 then g*(a)  = 1 and it follows that i t a can be ex tended  on T ( g )  
both  to the left and to the right of T ( g * I a )  which is impossible as was 

ment ioned  above.  

§2. A combinatorial principle about the small sets 

2.1. DEFINITION. (1) L e t F : ~ ' c - - ~ 2 b e g i v e n ( ¢ i s 2 % ) . A  is a subset of col. We 
say that a function g : col--> 2 is an A-d iamond  for F iff, for any 77 E ~,c, 

{a E g : F (~  I a )  = g(a)}  is a s tat ionary subset of wl. 

(2) A C_ ~ol is called a small subset of oil iff for  some F :-~,c~ 2 no function is 

an A - d i a m o n d  for F. 
(3) I = {A _C wl : A  is a small subset of o)1}. 

In [10] the following is proved.  

2.2. TRZOR~M. I is a countably complete normal ideal on o)1 (which includes 
all non-stationary sets) which is a proper ideal (wl if_ I)  if 2 "° < 2 "~. 

Our  aim in this section is to prove.  

2.3. THEOREM. Suppose 2 ~° < 2 "', then there are 2 ~, pairwise non-isomorphic 
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on a club-set Aronsza]n trees ; each of these trees is club-set rigid (any embedding 
on a club-set of the tree into itself is the identity). 

First, observe the following facts: 
(1) Let S be a tree of height a (a limit countable ordinal) and let S °, S' be end 

extensions of S of height a + 1 such that the set of cofinal branches of S that are 

determined by the members 
determined by the a-level of 
(where T is a tree of height Wl) 
an isomorphism of T I C* into 
S t" 

of the o~-level of S ° is disjoint from the one 

S ~. Then for any club CC_a and f ' T ] a ~ S  
there is l = 0, 1 such that f cannot be extended to 
S* I C* whenever C* extends C and S* extends 

(2) If S is again of height a and a ,b  E S~, /3 < a, and if S °, S' are end 
extensions of S of height a + 1 which determine disjoint sets of branches cofinal 
in S and containing a, but determine the same set of branches which contain b, 
then for any f : S ~ S (such that f(b) = a) and club C _C a, there is l = 0, 1 such 
that f cannot be extended to an embedding of S ~ on C U {a} into S t. 

Let us now define a relation: R°(S, T,f, C) iff f is an embedding on the club 
C_C~o~ of the Aronszajn tree S into the Aronszajn tree T. Also, for any 

E ~o,- 1 define: Re(S, T,f, C) iff f is an embedding on the club C C~o~ of the 
Aronszajn tree T into itself, such that the ~: member, a, of T is in the range of f 
and f - ' ( a ) f i  a (so S is here a dummy variable). 

Quite naturally we can view a function 7/: a --~ t as a countable tree of height 
a with an embedding into the rationals (having those properties that are 
required when a rational embedded tree is constructed). If 6 is limit, then 
r/:  6 --~ c, as a tree, is the union of r/[  a, a E & Now Re(S, T,f, C) is meaningful 
when S, T E ~'¢ and f, C are as before. 

Using facts (1) and (2), the relation R e (for ~ E w,) satisfies this: 

2.4. For any limit ordinal a and ( r : a - -~  c, there are extensions of o-, (r °'e, 
~r"e:a + 1-->¢ such that the following holds: 

For any o~, r : c~ --~ c and f and club C _C a, there is l = 0, 1 such that, whenever 

f*_D f and C* end-extends C, for any S, T:w,-->c extending ~r °'~ and ~.t.e, 
respectively, Re(S, T,f*, C*) does not hold. 

To proye Theorem 2.3 we need ti : (Ol --~ c for i < 2",, such that, for any £ E to,, 
club C and function f and i~ j, Re(t, tj, f, C) does not hold (because then the ti's 
give the desired trees). 

2.5. THEOREM. Assume 2 "o < 2 ~l. Let R e, ~ E ~o,, be relations satisfying 2.4. 

Then there are t~ : to~--~ ¢, for i < 2 '~', such that, for i / j and for any f and club C, 
Re(t~, tj, f, C) does not hold. 

PROOF. As I is a non-trivial countably complete ideal on (Ol (Theorem 

2.2), Ulam's theorem say that I is not saturated and so there are S~(/3, ~: E ~o,) 
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pairwise disjoint non-small subsets of to~. We assume that for every a there are 
unique /3 and s c with a E S~. 

2.6. DEFINmON The function F(tr, %f, C) is defined for every o-, 7 : a - - *  ¢ 
and f and club C C_ a. F(tr, z,f, C ) =  l iff l = 0 , 1  is that given in 2.4 for the 
relation R e where ~ is given by a E S~. 

Since S~ is non-small, there is a function g~: ~o1~ 2 which is an S~-diamond 
for F;  in some natural way we can view F as defined on -~,c. 

Now, for any I C o~ we define t~ : ~o~--0 ¢. b I a is defined by induction on limit 
a. If 6 is limit of limit ordinals, then tt I ~ = [.-J ~<~ t~ I a. If a is limit and t~ [ a is 
defined, we first find ~ and /3 such that a E S~. And then, if/3 E I, 

t~ I a + 1 = (b [ a )  ~ ) '~  (see 2.4). 

If /3Z L then 

t, t o~ + 1 = ( t, t a ) °'~. 

t'~Ia + 1 is now extended to t1[a + oo in some arbitrary way. ( t t l w  is also 

arbitrarily chosen.) 
It is easy to find 2"' many subsets of to, no one included in the other. Hence all 

we need is 

2.7. CLAIM. l f  J ~  L f ~ ' ¢  and C C_to~ is a club set, then R~(tr, tj, f, C) does 
not hold. 

PROOF. Pick/3 ~ J - / .  By Definition 2.1, and since g~ is an S~ diamond for 
F, there is a E S~ such that a E C' (a limit point of C) and 

(2.8) F(t,  t a, t, t a, f r a, C n a)=  g$(a), 

as /3~  L t~ r a + 1 = (tl I a )  °'e. As/3 E J, putting g~(a) = l, tj r a + 1 = (tj r a)  t'¢. By 
(2.8) and the definition of F (2.6) we conclude (from f __D f I a, C ~xtends C fq a 
and t~, b extending (t~ I a )  °'~ and (t) [ a )  t'~, respectively) that R¢(t~, b,f ,  C)  does 
not hold. 

Part H. Consistency Results with CH 

§3. Preliminaries 

We recall that embedding and isomorphism means on a club set. 

In the previous section we saw that 2 "o < 2"' implies that there are many 

Aronszajn trees which are not isomorphic on a club set. Similar arguments show 

that for any Aronszajn tree T the "weak diamond" can be used to construct an 
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Aronszajn tree T*; such T is not embeddable into T*. So 2 "0 < 2"' implies there 

is no prime Aronszajn tree. How about universal Aronszajn trees? (where U is a 

universal Aronszajn tree if any Aronszajn tree A can be embedded into U). 

It is not difficult to show that O implies: 

(a) There are 2 "1 many Aronszajn trees such that no two are near and 

embedding of each one into itself can only be the identity. 

(b) There is no universal Aronszajn tree. 

Could one replace O above by the weaker CH? No, since the following is 

consistent. 

(a*) Every two Aronszajn trees are near each other (i.e. contain isomorphic 

copies). 

(b*) There exists a universal Aronszajn tree (which is a special Aronszajn 

tree). 
We shall not prove this consistency result here, only a hint is given in 4.23. 

However, this hint should be sufficient to the reader of §3.4. In §4 we do give the 

details for the proof of the consistency of: 

C H + T h e r e  exists a Souslin tree +There  exists a special Aronszajn tree 

which is universal among all the Aronszajn trees which do not contain a 

Souslin subtree. 

In this model the dichotomy of Souslin trees and special Aronszajn trees is 

sharp: There exists a Souslin tree and every Aronszajn tree either contains a 

Souslin tree or is already a special Aronszajn tree. (A tree embeddable on a club 

into the rationals is already a special tree. See [9], first page.) In contrast, in L, 

there is a non-special Aronszajn tree which is embeddable into the reals (and 

thus contains no Souslin subtree). See [8] for this. A further property of this 

model is that there are, up to a club set, only N1 many Souslin trees. 

We do not know how to obtain a model with a unique Souslin tree. 

3.1. DEFINITION. (i) Let T',  T 2 be trees, the product T' x T 2 is the set of pairs 

{(a, b) : a E TI~ and b E T~ for some 7 < wl} partially ordered by: (a, b) < (ti,/~) 

iff a < ~ i  and b</~.  

(ii) If T is a tree and a E T t h e n  T , = { x E T : x = a } .  

(iii) Let R be a tree, a l , . . . ,  ak E R,  for some 3' < wl are different, then 

Ra, x R~ x • • • x R,~ is called a derived tree of R and k is the dimension of that 

derived tree. 

The rigid Souslin tree constructed in L ([9] p. 46) has the property that each of 

its derived trees is also a Souslin tree. 
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3.2. LEMMA. Assume R and all its derived trees are Souslin. Let A be an 

Aronszajn tree and R '  a derived tree of R such that, in the Boolean universe of R' ,  

A becomes non-Aronszajn; moreover the dimension of R '  is minimal with respect 

to that property. Then R'  is embeddable on a club set into A. 

PROOF. Let (a, . . . . .  a , )  be an n-tuple of distinct elements of R~ (for some 

3' < w~) such that R '  is R~, x • • • x Roo. By the premise of the lemma there is a 

name b which is forced by every element of R '  to be a cofinal branch of A. Now, 

for every a < ~o~, each e E R '  has some extension e ' E  R '  such that for some 

a EA~,  e'lt- R' " the intersection of b with A~ is a". Let D~ _C R '  be a maximal 

subset of incompatible members  of R '  which thus determine the value of the 

member  of b at the a ' s  level of A. D~ is countable as R '  is Souslin. It follows 

that there exists a closed unbounded E _C wj such that for c~ E E and e E R"  

there is a ~ A~ such that e It- a is in b. Denote  this unique a by f(e).  Now this 

function f is clearly an order preserving function from R '  I E into a subtree of 

A I E. We shall find closed unbounded D _C E such that the restriction of f to 

R ' I  D is one-to-one. Observe first that, as A is Aronszajn,  every e E R '  ] E has 

two extensions e '  and e" such that f (e ')  ~ f(e"). A stronger property holds by the 

minimality of the dimension of R ' .  

CLA1M. For every e ~ R ' I E ,  e =(e~ . . . . .  e,), and for every h ~ { l  . . . . .  n}, 

there are two extensions e '=  ( e l , . . . ,  e') and e"= (e'~ . . . . .  e") of e such that 

f ( e ' ) ~ f ( e " )  and e'i=e'[ f o r i E h .  

PROOF. If not, if for some h = {h(1) . . . . .  h(k)}~{1 . . . . .  n}, k < n, every two 

extensions of e with the same restriction to h have the same value by f, then 

Re~l~ x • • • x R , ~  contradicts the minimality of the dimension n. 

Suppose now d _C R~, tz ~ E ,  is such that we can write d = el U e2 where 

el, e2 G R ~ are distinct (but not necessarily disjoint), then there is an extension d '  

of d such that if we let e[ and e~' be the resulting extensions of el and e2 (i.e., 

e~ U e~' = d'),  then f (e~)~f(e~) .  

It follows that the set of d '  in R 2" which satisfies [ (e '~ ) / f ( e ' )  whenever 

d '  D e~ U el is a dense open set. Since R 2" is also Souslin, there is a club D C w~ 

such that any tuple in R 2" I D is in that dense set. This means that for el / e2 in 

R'[ O, f(el)  ~ f(e2). 
We state now without proof a simple fact. 

3.3. LEMMA. Let T be a Souslin tree and R a tree. R is Souslin in V Tiff T x R 

is a Souslin tree. 
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Next  we review some definitions and lemmas f rom [9]. 

If T is a Souslin tree then for every  dense open  subset D C_ T there  is ~ < Wl 

such that T~ C_ D. It follows that every cofinal branch of T is a generic branch.  

(See [9] p. 19.) 

3.4. DEFINITION. (i) Let  T, S be trees, C_C w~ a club set, 7 r : S ~  T I C  is 

called a projection iff: 

(1) 7r is order  preserving (s < s' ~ 7r(s) < ~'(s')) and Range  (Tr) = T ] C. 

(2) If t E T ] C, t > 7r(s) for some s E S then there  exists s ' >  s such that 

7r(s') = t. 

(ii) We say S is a refinement of  T i f f  there  exists a closed unbounded  set C and 

a project ion 7r : S ~ T t C. (See [9] p. 85.) 

3.5. LEMMA. Let T i, i < o9~, be Souslin trees and S a tree which is a refinement 

of every T ~ with ~i " S ~ T ~ [ C~ as projections. Let  D C_ S be a dense open set, then 

there is a closed unbounded set C C_ o9~ such that [or every a E C, i < ~ and 

a E T~,, there exists s E S [ ~, s E D with 7ri(s) < a. (See [9] p. 107, L e m m a  7.) 

PROOF. Let  H~, be the collection of all sets hereditar i ly of cardinali ty < o93. 

C _C o9, is chosen such that for every  a E C, there is an e lementa ry  countable  

submodel  N~ < H~, such that N~ fq o91 = O~, D E N,  and, for i < a, T', 7r~ E N~. 

Every  a E T~, defines a cofinal branch of T ~ [a  and hence an N~ generic 

branch and the lemma follows. 

3.6. DEFINmON. The closed-set poset and its propert ies .  ([9] p. 97) The  aim 

of this poset  is to add a generic  club subset of ogt such that each old club set 

contains the generic one - -  except  for  a countable  set of ordinals 

= {(v, A ) "  u < to, and A is a club subset of w~}, 

partially o rde red  by (u',  A ') _-> (~,, A ) iff u' => v and A '  C_ A and u f-1 A '  = v n A. 

c¢ is o--closed and satisfies the 1~2-c.c. (assuming 2". = 1~,). 

Let  M be a model  of Z F C  and @ be an M-gener ic  filter on the closed set poset  

D e f n e  C = U {~, n A ' ( v , A ) E  @}, then C is called an M-generic  closed 

unbounded subset of  tOl. 

( u , A )  is said to be compatible with C if A D ~, = C n u and A D C. It is not  

difficult to see that @ = {(v, A )  : (v, A ) is compat ible  with C}. So @ is recon- 

s tructed from C. 

C has the desired proper ty :  for  any club subset D E M of to,, for  some 

o~ <o91, C - a C _ D .  
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NOTATIONS. Let N <  Ho~ be a countable elementary submodel of H~. /~ 

denotes the transitive collapse of N and rrN • N--~ N is the collapsing function. 

: to, n N : # (to3 = 1.  

3.7. LEMMA. Let M be a model of ZFC + GCH. In M, let U be a ]:unction such 

that, for each countable N < H,o~, UN is a countable transitive model of Z F -  with 

1~I E U. Let C be an M-generic club subset of to1 (over c~M). Let X E H ~ .  Then 

there is a countable N < H,oM, such that X E N and such that in M[ C ] we have : 

(i) C C3 aN is a UN-generic closed unbounded subset of aN over 7rN(~gM). 
(ii) 7rh', the inverse map of TrN, can be extended to 7r-~ : I~[C n ~ ] ~  H ~  tcj, an 

elementary embedding. 

PROOF in [9] p. 99, Lemma 3. We give here a short sketch. Given any N as 

above and (v, A ) ~ N, we can construct in w-many steps an extension (u', A ') E 

M which is UN generic over FIN(R). For ( v ' , A ' ) E  ~, the conclusion of the 

lemma follows. 

3.8. About  the diamond. O is the diamond on to1 and O* is the stronger 

property saying there is a sequence (W~ l a ~ tod with W~ C_ P(a) ,  countable, 
such that for any XC_ to,, {a I x n  a E We} contains a club set. 

There are some theorems which assure that the diamond propery is preserved 

is certain generic extensions. 

(a) If 0* holds then, in any generic extension via (¢, O* still holds (Lemma 4, 

p. 79 in [9]). We will use the fact that O* holds in L [ A ]  for A C_ to~. 

(b) If O* holds and T ~ (i < too are Souslin trees, then a O* sequence can be 

found which retains its O* property in any generic extension via any one of the 

r~'s (Lemma 5, p. 101 in [9]). 
(c) Assume ~ is o)rclosed, then any O sequence retains its property after 

forcing with ~ (Lemma 6, p. 81 in [9]). 

(d) Assume <) and let T ~, i E co~, be Souslin trees. Then there is a diamond 

sequence which stays a diamond sequence in any generic extension over T ~. 

Let us sketch a proof for this last result (for one tree). So assume (S, • a E to~} 

is a given O sequence, and let T be a Souslin tree. Now CH holds, so countable 

ordinals can encode a lot of information and we can look at S~ _C a as giving us a 

name in T and some x E T la. Then we just pick any y E T~ extending x and 

interpret the name given by S~ using the branch determined by y. The outcome 

is called S.. Now (S, "a  C tol) is the required diamond sequence. To see this, 

remark that T is a c.c.c, poset and hence any club subset of to, in the extension 

contains an old club set. Now let A be a name in T-forcing of a subset of to,; let 
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C be a club set; and let x U T be a condition. For some a ~ C, S~ encodes A I a 

and x (and to develop A f3 a we need to know only the generic branch through 

T la  ). At that stage ~ was defined so that some extension of x forces 

3.9. On Aronszajn trees. (See [9] p. 63) Let T be an Aronszajn tree. The fact 

that any uncountable subtree of T contains an infinite level can be generalized as 

follows. 

DEFINITIONS. (1) Let d = ( a i  . . . . .  a , )ETT,  (i.e., Vi (a, ETo));  for f l < a  

define 7r~(d)=(b~ . . . . .  b,) iff / ~= (b~ , . . . . bn ) E  T~ and Vi (b,<a~). Try(d) is 

called the projection of the n-tuple d on the/3-level of T. The a~'s and b~'s are 

not necessarily distinct. 

(2) A set of n-tuples, S, of T will always be such that d E S ~ d E T~ for 

some a (and we then write d E S,). 

(3) A set, S, of n-tuples as above is downward closed iff ti ~ S~ and/3 < a 

imply Try(d) E S. 

(4) A set, Y, of n-tuples, all from the same level T, is said to be well- 

distributed iff, for every finite F _C To, there is d ~ Y disjoint from F. Equival- 

ently: There is in Y an infinite, pairwise-disjoint subset. 

3.10. LEMMA. ([9] Lemma 7, p. 63) Let S be a downward closed set of n-tuples 

from an Aronsza]n tree T. There is a club set C C_ to~ such that, for all a, fl E C 

with a </3, if d E S~ and if the set of b ~ S~ such that 7r, (b) = ~ is non-empty, 

then this set is well-distributed. 

§4. A model of CH with few Souslin trees in which every Aronszajn tree is 

either special or contains a Souslin tree 

4.1. THEOREM. ZFC + GCH and the following is consistent: There exists a 

Souslin tree R and a special Aronszajn tree U such that for every Aronsza]n tree A 

one of the following holds: 
(1) Either A is embeddable on a closed unbounded set into U (and in this case 

A is special), or 

(2) A contains a Souslin tree (which is actually a derived tree of R ). 

PROOF. First we construct, in L, a tree R such that every derived tree of R is 

a Souslin tree. (See [9], p. 46 for construction of a rigid Souslin tree.) Next we 

pick any special Aronszajn tree U which will finally become our universal 

special tree. 
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The structure of the proof is like that of Jensen's ([9]); we firstly add ~o2 many 

generic closed unbounded subsets of wl and then we iterate ~o2 Souslin trees with 

the aim to embed every possible Aronszajn tree into U, while keeping R and its 

derived trees Souslin. Of course, we cannot embed R itself into the special tree 

U and at the same time keep R Souslin. We will be able, however, to embed 

into U any Aronszajn tree A which remains Aronszajn in every generic 

extension by a derived tree of R. 

The following theorem is the key step in the iteration of Souslin trees. 

4.2. THEOREM. Denote our universe by V and assume ©* holds in V. Let U be 

a special Aronsza]n tree. Let R and T be Souslin trees such that every derived tree 

of R is Souslin and remains Souslin in V T (i.e. in every generic extension via T). 

Let A be a name of an Aronszajn tree in V T which remains an Aronszajn tree in 

• V r×R' for every derived tree R '  of R. Let ~ be the closed unbounded set forcing 

poset and let ~ be a V generic filter over ~. Then in V[@] there is a Souslin tree 

which is a refinement of T such that: 

(1) T x R '  is Souslin for every derived tree R '  of R. 

(2) In V[C~] ~, A is embedded on a club set into U. 

PROOF. For any y < o~, there is a dense subset of T consisting of conditions 

which describe A I Y- Since T is Souslin we can find in V a club set F C_ o91 such 

that for every y E F and x E Tv there is a countable tree A ( x )  of height y + 1 

such that 

(i) x l F T " A  ly  = A ( x ) l y  '' and 

(ii) for any branch b of A (x)l  y, b is determined by some element of A (x) of 

level y itI there exists z E T, z = x, such that z IF b is determined by some 

element of A~. 

(A point in a tree determines the branch of all its predecessors.) Thus the last 

level, % of A (x) consists of those points which some extension of x forces to be 

in Ay. Since T is a c.c.c, poset, this last level is countable too. 

Observe that if g is a generic branch of T then 

A = U { A ( x ) I v : x E T ,  and x E g } .  

Let C be the generic closed unbounded subset of to1 we get from c~ and let %, 

a < w~, be the monotonic and continuous enumeration of C. We assume that 

y o = 0 a n d  y ~ E F f o r  i > 0 .  

Let  W = (W~ : a < wt) be a O* sequence in V that remains a ©* sequence in 

V T×R' for every derived tree R '  of R. Let R', i < to~, be an enumeration in V of 

all derived trees of R. Let  W* = (W*~ D W, : a E Wl) be a O* sequence in V[C] 

that remains a O* sequence in any V[C] generic extension over Ri, i < tOl. 
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The elements of T consist of pairs (x, [) where x ~ T and / is a function. In 

fact, (x, f) ~ 7"~ implies x E T,o and f : A (x) [ C + U I C is a level preserving, 

one-to-one order preserving embedding. (So f is defined also on the last level of 

A(x).)  
For the partial order of T we let ( x , f ) <  (2, f )  iff x < 2 in T and f extends 

[ r A  (2). (Some of the members of the last level of A (x) might be not in A (2); 

that is why we cannot ask f D f.) 

The construction of T is described in §4.5, but it is clear now that in V[Cff,  A 
is embedded into u (on the club C). 

4.3. DEFINITION. (i) Let Z be a tree. /3 _-< c~. For a, . . . . .  a, ~ Zo the projec- 
tion of (al . . . . .  a ,)  on Z~ is the n-tuple a'1 . . . . .  a' .CZ~ such that a'i<-a, 

(ii) Let ~ = 41, . . . ,  a, E A~, ~ = u~ . . . . .  u, E U, where a~¢ aj and u ~  uj for 

i¢ j ,  so that (& t~) can be viewed as a one-to-one function p (p(a~)= u~). Let 

f :  A --+ U be a partial function defined on some levels of A. Suppose flo--< a is 

the last level such that f is defined on A~o. We say (& a) (or the function p) is 

compatible with the function [ iff: 

(1) a '~ / a ~ an d u '~ / u ~ for i ~ .L whenever (a '~ . . . . .  a ',) and (u ~ . . . .  , u ',) are the 

projections of d and t~ on Ao and Uo for /3o</3 --< a (/3 E C). 

(2) /(a'~) = u', where a'~ . . . .  ,a ' ,  and u'~ . . . . .  u" are the projections of ~ and fi 

on A~ and Ueo respectively. 

T~ is constructed by induction on a < w~. The following property of T will be 

needed and therefore ensured inductively to hold: 

(*) For every/3 < a, (x, f)  ~ T~, x' > x, x' E T~o, and d = a , . . . ,  a, E A (x')~o 

(the last level of A(x')), and every t~ = u, . . . .  , u, E U~. where (d, 8) is compati- 

ble with f, there is f '  D f with (x', f ')  ~ T~ such that f'(a~) = u, for i _-< n. 

At every step of the construction we have to take care of countably many 

missions; these are succinctly described by saying that we take N~ generic filters 

where No, a < to1, are defined as follows: 

N.--L~[7"l ,~,  O l e o  + L  T[~,o +1,  A [~,o +1,  

(4.4) {R' l a + l ' i < a } ,  Ct ')y, ,  W* [ y,+~] 

where 6 < to~ is such that N~ is a model of ZF- (ZF minus the power set axiom). 

4.5. Construction of 7" in V[C] 

Successor stages. Assume T~ is constructed. For every (x, f )  G T~ and x' > x, 

x ' ~  T,..,, define the following poset: 
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~ .~  = {p : p is a finite one-to-one function, p : A (x')~o÷, ~ U~.+, 

and p is compatible with f}. 

Observe that ~x'.t E N~.I. 
Now for every (x, f )  ~ To, x' > x, x' E T~+, and po E ~x',t pick some/~ which is 

N~+I generic over ~,',t such that po ~ i0. Let g = f [ A (x') and put (x', g U Ui0) 
into T,+I. Obviously ]~,+~ is countable and (*) continues to hold. 

Limit stages. Assume T I a is constructed, a < oJ~ a limit ordinal. We define 

T,. For x' ~ T~ define the poset: 

~, ,={([ ,p): (x , f )E T l a  for some x < x ' ,  p : a(x')~o---~ U~, 

p is a finite one-to-one function compatible with f}. 

( [ ,p )<([ ' , p ' ) i f f f [A(x ' )C f '  and p C  p'. 

Now for every ( f , p ) ~  ~x, pick some N~ generic filter ~ ,  over ~ ,  such that 
(/, p ) ~  ~ , .  Using (*) it is seen that 

[ ' =  O{f* [ A ( x ' ) U  p* : ( [*,p*)  E ~ ,}  

is an order-preserving one-to-one function extending f rA(x')  defined on 

A(x')l c ,  put (x',f ') into i",. 7", is thus countable and (*) holds. 

This ends the definition of 7". We show that ]P, is Souslin and even. 

4.6. LEMMA. R ~ X T is Souslin ]:or i < oJ~. (This holds in V[C].) 

PROOF. Suppose on the contrary R '  x 2P is not Souslin for some i < ~o~. This 
is equivalent to: T is not Souslin in some generic extension V[C][/~ ~] w h e r e / ~  
is V[C] generic over R ~. cg and R ' are posets in V so we can change the order of 
forcing V[C][/~ ~] = V[/~'][C]. Moreover, as in a c.c.c, forcing extension every 

uncountable club set contains an old club set and as a Souslin tree is a c.c.c, poset 

which adds no new countable subsets to o~1, we see that C is a generic closed 

unbounded set over the closed set forcing poset as defined in V[/~ ~ ]. Let X be a 

maximal, uncountable pairwise-incompatible subset of T and let X be some 

name of X in V[/~'] ~. 
/_/v[Rq Now in V[/~'], for every N <  . . . . .  put a = N O  o~ and let UN be some 

transitive countable model of ZF-  such that ~r, U~, T,, ~ R~, {A(x) .  x E T~}E UN. 

(N is the collapse of N.) By Lemma 3.7 (applied in V[/~']) there is some 
N < --m3~-~V[Ri] such that X,_ {R* I i < Ol}, T, A, U and the diamond sequence W are 

in N and such that C f3 a is UN generic over 7rN(c¢) where a = aN and 7r?v ~ (the 

inverse of the collapsing function) can be extended to 
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~r2 

T [ a E / Q [ C N a ]  is a tree 
maximal subset of pairwise 

4.7. CLAIM. X ] a E W* 

:/v [C n a ] ~  14 vI~'IIq 
~ a j  3 

constructed as above and X t a E N [ C  N a]  is a 
incompatible members of T [ a .  

and hence X I a E N~. 

PROOF. There is a club set D C to~ in V[I~'][C] such that /3 E D 

X 1~3 E W*~. So there is such a set D in Range(7?~). But D [a is then unbounded 

in a, hence a E D  and X ta E W*. As W* is an element of N~ we get that 

X l a ~ N , , .  
We want to prove that every (fo, po)E ~ ,  ( x ' E  T~o) has an extension 

(f, p)  E ~ ,  such that (x, f)  is above an element of X [ a (where x E T, x < x' is 

such that ( x , f ) E  7"). If we will prove that, then as T~ consists of elements 

obtained generically on N~ and as X ] a E No, we will get that every (x'f ' )  @ T~ 

is above some element of X [ a  and hence X [ a  is maximal in ]P and X = X [ a  
is countable, proving Lemma 4.5 

4.8. Suppose on the contrary that for some x' ~ Ty~ and (fo, po) E ~x,, for every 
extension ( f , p ) E  ~',, (x , / )  is not above an element of XIa .  

We will get a contradiction. Say (Xo,/o) E TT, z < a, Xo < x' and let k be the 

cardinality of po. 

T is a Souslin tree in V[/~ ~] hence T Ia is a Souslin tree in IV and remains so 

in N [ C  n a ]  (a ~r-closed extension). ~' = {x E T[ a : x < x'} is cofinal and hence 

an /V[C n a ]  generic branch of the Souslin tree T]a. In /V[C n ~][~'1, A [a is 

an Aronszajn tree which is in fact A (x') [ a. (It is Aronszajn because A is the 
name of a tree which remains Aronszajn in V~'×~.) 

4.9. DEFINITION. Let q : A (x')o ~ Us, 7, -</3 < a, be a finite one-to-one 

partial function. We say q is like po iff 
(1) The cardinality of q is k (that of po), and the projection of q on yT equals 

the projection of Po on 3'~- 

(2) For every extension (x, f )  E i[" of (xo, fo), where x < x', and fl > y~voz ~x.f~, if 

f is compatible with q, then (x,f)  is not above an element of X ta. 
Obviously, the projection of po on any 1', </3  < a is like po; and if q is like po 

then any projection of q (above 1',) is like po. Note that the definition of "q is 

like po" does not mention po; the only parameters are T t a, A(x ' ) ]  a, U I a, 
(Xo, fo), 

Remember  that C n a  is U~ generic over 1rN(~). x',poEUN. So in 

UN[C N a]  it is true that for every/3, 1', --< fl < a, the projection of po on/3 is like 
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p0. This truth is forced by some c E ~-~(~) which belongs to the generic filter 

generated by C 71 a. So, for every q which is a projection of po on/3, y~ =/3 < a, 

we get that in UN 

c IF ~ q is like p0. 

Observe that this forcing sentence is meaningful in /V[k'] because all the 

parameters are (names) in/~[~].  Moreover, an absoluteness argument gives us 

that 

(4.10) For every q as above, in N[~'] it is true that c IF ~#~ q is like p0 

(i.e. N[~'] has replaced UN). 

Now we define in N[~'] the following set: 

So = {q : c IF q is like po}. 

So can be viewed as a subtree of ( ( A ( x ' ) l a ) x ( U  l a))  k, and by 4.8, So is 

uncountable in N[k']. In NI l ' I ,  A ( x ' ) l a  is an Aronszajn tree, as mentioned 

before. U la  is a special Aronszajn tree so (A(x ' ) la )  x ( U l a )  is an Aronszajn 

tree. Let S be the subset of So consisting of all those tuples which have 

extensions in So at every upper level. Then any tuple in S has extensions is X at 

every higher level below a. By Lemma 3.10 we have in N[2'] a closed 

unbounded B _C a such that for all r/,/3 E B with r t </3 and q E S~ the set S~ 

(of all extensions of q in S of level /3) is well-distributed. As W remains a 
diamond sequence in/Q[~'], there is a closed unbounded B'  C_ B such that, for 

rl ~ B', S [ 7/E W,. It is known that in a generic extension made with a c.c.c. 

poset every club set contains an old club set, so we can assume that B '  ~ N. We 

work in ~r[~'][C f3 a].  Pick some r/=> r such that y~ = ~ and C - rl C_ B'. 

4.11. REMARK. S[yt3~Nt3 for all /3=>r t. 

PROOF. Yt3 E C - r/_C B'  so S [ 78 E Wr,, but W~o E N~ hence S [ 78 ~ N~. 

Fix now qo E S, and some (x,f)  E T, extending (Xo, fo) with x C ~' such that 

[__D qo. 

4.12.  LEMMA. For any (z,g)ET~, a>/3>-_r~, with z <x' ,  if (z,g)_~(x,f), 
then there is some q ~ Sr~ such that q C g. 

PROOF. By induction on/3 - -  the level of (z, g). If/3 = rl then g = f extends 

qo. Assume the claim is true for some/3 > 7- For a given (z, g) E T~+~ above (x,f)  

with z < x', let (z', g') E T~, (z', g') < (z, g). As the claim is true for/3, there is 
q some q E S~ such that g'_D q. S~+, is well distributed as y~, y~+~ E B, and 
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sqo+, E N~+~ by 4.11. g was constructed to be N~+~ generic over ~z.,, and a density 
(Here we argument shows that g is compatible with some member of S,o+,. use 

q the fact that S,,+, is well distributed.) 
Now to the limit case. Assume the claim is true for all /3 '</3,/3 is limit, and 

( z , g ) E  7"~ is above (x , f )  with z < x ' .  We want to show that g extends some 

member of S,~. Recall that g was constructed generically over the poset ~ ,  so 

we need a density argument. Take any ( f * , p * ) E ~  where ( z * , f * ) E  7"~. is 

above (x, f),/3 * </3, z * < z. Then f* contains some q from S,~. (by the induction 

assumption). Now pick some q* > q, q* ~ S~ .... q* disjoint from the projection 
q of p* on 3'~.+~ (this is possible as S~o.+, is well distributed). Let z ** > z *, z ** < z 

with z * * ~  T,o.~ ,. Then by (*) there is f** _Dr* such that (z** , f**)>=(z* , f  *) 

and f** is compatible both with q* and p*. Take some q**Esq~;  then 

(f**,p* U q**)~  N~ is as required. 

Now that the claim has been proved, the contradiction to 4.8 follows: Take 

(z, g) E T t o~ extending (x, f)  with z E ./' and (z, g) above an element of X l o~ 

(possible by Lemma 3.5). By Lemma 4.12, g extends some q E S,~ where /3 is 

the level of (z, g). But q is like po, a contradiction to (2) in Definition 4.9. 

This ends the proof of Theorem 4.2. 

4.13. Now we describe the last item of the proof, the Souslin iteration 

machinery that permits us to iterate Souslin trees 092 times. What we need is a 

reworking of Jensen's iteration theorem ([9] Ch. 8) while keeping R and all its 

derived trees Souslin. 

4.14. THEOREM. Assume ~ and [] hold in our universe W. Let R be a Souslin 

tree such that all its derived trees are Souslin. Suppose t~ is a function defined on 

sequences of length < 092 of Souslin trees, such that if (T  ~ : "r <= u) (u < 092) is a 

sequence of Souslin trees, and in the Boolean universe of T ~ every derived tree of R 

is Souslin, then o-((T" : ~- < v)) is a Souslin tree which is a refinement of T ~ and 

such that in the Boolean universe of that tree every derived tree of R is Souslin. 

Then there is a sequence ( T" : ~- < 092} of Souslin trees and projections of T" on T ~ 

for 3, < .r such that: 

(i) Every derived tree of R remains Souslin in the Boolean universe of T ~ for 

every "c < 092. 

(ii) T ~+~ = o-(<T ~ : u _-< r)) for every • < 092. 

(iii) T ~ is a refinement of T ~ for 3' < r, and the projections commute. 

PROOF. Let S~ _Ca, a <091, be a ~ sequence that remains a diamond 

sequence in W R' for every derived tree R '  of R. Let (A~ ] A E lira 092) be the [] 
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sequence.  For  A E lim oJ2 we deno te  by (A(v)  I v < otp(AA)) the increasing and 

cont inuous  e n u m e r a t i o n  of the club AA C_ A. 

We define by induct ion on ~- < oJ2 the trees T" as well as pro jec t ions  h~.~ and 

club sets C~.~ where  h,,T " T" ---> T ~ I C~,, is the pro jec t ion  funct ion (y  < r ) .  

In o rder  to be  able to use the d i a m o n d  we assume the set of points  of every  

tree is the set of countab le  ordinals.  

4.15. Construction of the trees. At successors,  r + 1 < ~o2, we s imply use the 

funct ion o- to get T T+~ = o-((T" ] v _-< r)).  T O is any tree satisfying (i). 

At  limit stages Z when  the trees { T i I i < A } have  been  cons t ruc ted  we cook  up 

T A out  of the trees T A("~, v < o t p ( A A ) .  T o  use the d i amond  we look at 
,.,J I T  A(v) ,<o,p~a,) t - -  × {V}), which is a subset  of wl × Wl, and e m b e d  it into w~, using a 

fixed co r r e spondence  be tween  wj and w~× wl. So now the set  S~ can be  

in te rpre ted  as a subset  of the disjoint  unions of the Souslin t rees  a long the club 

set A, .  This is an impor tan t  but  somewha t  technical way of decoding  the 

d i amond  and we will ove r look  it f rom now on. 

For  limit A < w2, we have two cases: 4.16 and 4.20. 

4.16. Case L cf(A) = oJ. For  a club C, let C* denote  the set of fixed points  of 

C. Say 0 = o tp (A , ) ,  so 0 < Wl. Let  

C* = ( ~9<oC*,o).,,~)) - O tA {O}. 

C a _C oJ1 is a club set and we set C,(~)., = C A. Let  (c~ : v < w~) e n u m e r a t e  C A in 

an increasing and cont inuous  way. 

T* is defined to be  the inverse limit of T*(~)ICA, i.e., T* consists of all 

sequences  (x, I v < 0) = £ such that,  for  some  a E C A, x~ E T~ C"~ for  all v < 0; 

and,  for  r < v, x, = hA~,).A~)(x~). 
T* is o rde red  naturally:  :~ < )7 iff x~ < y, for  all v < 0. 7r(£) = x, is a na tura l  

p ro jec t ion  of T* on T*~)[C ~. 
T h e  Souslin t ree T A will be  an initial sub t ree  of T*,  cons t ruc ted  with the aid of 

the O, such that  the fol lowing holds: 

(*) For  any £ E T A, y E T*(") I C A with y _-> x, there  is £ '  E T A, ~ '  => ~, such 

that  ' - x ~ - y .  

So condi t ion (*) says that  T A can be p ro jec ted  on to  T~")  I C ~, and hence  on to  

T ~, tz < A. 

T h e  cons t ruc t ion  of T A is done  inductively as follows: 

Successors steps. Suppose  T* I r / +  1 is defined, ~ / >  0. For  every  ~ E T~ and 

y E T ~ C ~ , y > x ,  p i c k s o m e ~ ' E  * 2 '  A T,+~, > 2, with ' - x ,  - y ,  and put  ~ '  @ T , ~ + ~ .  
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In case 7/ = 0 we use the ~ to define T~ if the fol lowing special p rope r ty  holds: 

(4.17) O=Ch So C_ U~<oT~")x {v}, and for  any y E T o  (n, i<O,  there  are 

j < 0, j > i, and y '  E T*o (n such that  y = h,,),,u~(y' ) and y '  is above  an 

e l emen t  of So. 

In that  case,  we const ruct  T~ such that,  for  every  ~ E T~, there  is j < 0 with zj 

above  an e l emen t  of So. 

Limit steps. Suppose  T* I a is def ined and a is limit. T~ _C T* is defined such 

that  (*) holds,  as follows. 

We  show at first that ,  for  every  Y E T ~ l a and y E T *(~~ co , y > x ,  there  is 

)7 E T*~, )7 > y such that  y, = y, and,  for  every  £ E T*, if ~ < )7, then  £ E T* I a.  

Le t  (a~ : i  < to) be  an increasing sequence  cofinal in a,  and (0~ : i  < w) an 

increasing sequence  cofinal in 0 with 0o=  u. Def ine  now, inductively,  an 

increasing sequence  £ ~ E T * I a  above  ~ , Y i < ~ J  for  i <  j, and a sequence  
yx (e  ) 

y, E _ ~  - ,  y o =  y, such that  

y, = h~(o,).,(o.+,)(y,+l) and y, > Xo,. 

(*) is used in this construct ion.  

Next ,  to obta in  T~, for  every  ~ E T* l a,  y E T *(") ~, , y > x,, we pick g E T * ,  

y,, = y, as was shown above  to exist, and put 37 E T].  In the fol lowing case we use 

the £>: Suppose  S, _C T* I a is a dense set with the following addi t ional  proper ty :  

(4.18) For  e v e r y X E T  ~ ] a  a n d y E T * " ~ o  , y > x , . , t h e r e i s ~ E T  A l a,~_>-Y, 

z~ < y, such that  ~ is above  some  e lemen t  of S,. 

In that  case we const ruct  T*, such that  every  ~ E T*~ is above  an e l emen t  of S,. 

4.19. CLAIM. R '  × T ~ is Souslin for every derived tree R '  of R. 

PROOF. We  will show that,  in every  generic  extension with a der ived tree R ' ,  

T * is a Souslin tree.  Le t  W[/~ ' ]  be such a generic  extension of the g round  mode l  

W and X E W[/~ ' ] ,  X C_ T *, be a maximal  pairwise incompat ib le  subset  of T *. 

( S  a :O~ ~ O1) is a d i amond  sequence  in W[/~ ' ]  too,  so {a : X M a = S,,} = S is a 

s ta t ionary  subset  of w~. The  trees T *t'~, u < 0, are Souslin t rees  in W[/~ ' ] ,  

because  R '  × T ~ is a Souslin t ree for  7 < ,~ (by the induct ion hypothesis) .  By 

L e m m a  3.5 we have  a closed u n b o u n d e d  set B _C oJ~ such that  for  a E B 71 S the 

addi t ional  p rope r ty  (4.18) above  holds. It  follows by the usual a rgumen t  given in 

the cons t ruc t ion  of a Souslin t ree that  X is countable .  

4.20. Case II.  cf(,~)=oJ~. 

In this case we must  have o t p ( A ~ ) =  oJ~. Let  (A(u) :  u < ~o~) e n u m e r a t e  A ,  in 

an increasing and cont inuous  manne r .  The  tree T* is defined using the t rees  
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T *C~), v < ~o~, as follows. We will define a sequence of indexes L < o)1 for a < 0) 1 

and then set T~ = T~J ~). T ~ is partially ordered, thus, for a ~ T~, b G T~, 

a < b i f f a < / 3  and a<ha<~),,~e)(b). 

L are defined inductively. If a =/3 + 1 then L is the first i greater than all i~, 

r/--</3, which is a fixed point of C,~,).At~) for all r / <  3' </3 + 1. If c~ is limit 

put i * =  U~<~&, then i * E ( ( " l  . . . . .  C*~,).,~))-a, hence i*=c~ C~ for some 

r _-> 1 (where (c,al~) : r < o~1) enumerates CaC~). Set now i~ = r. We leave it to the 

reader to check that T* is indeed a tree and that the projections can be defined. 

4.21 CLAIM. If R'  is a derived tree of R then R'  x T ~ is a Souslin tree. 

PROOF. Let X C_ T* be a dense open set in W[/~'] (a W-generic extension 

over the derived tree R').  We know, by the induction hypothesis, that T *t"), 

u < to1, are Souslin trees in W[/~']. (& : a < oJ1) continues to be a diamond 

sequence in W[/~'], so S = {a : X N a = &} is a stationary subset of w,. We can 

get a club set, B C o~1, such that for a ~ B there is a countable elementary 
H w[.~'l submodel N < . . ~ 3  with a = aN and everything we spoke about is in N. 

(T~'"' 1 a :  v E a )  is a sequence of Souslin trees in N and T ~ l a is their limit as 

was defined before. For a E B N S ,  & = X N ( T *  l a ) E I V  is a dense open 

subset of T ~ {c~. Say ) t ( a ) =  A, then A~ = a ~  t a  = { ) t ( i ) : i  <~x}. 

By the arguments of Lemma 3.5 for every y E T~ t°, i < a, there is j < a, j > i, 

and y '  ~ T~ tj~ such that y = h, tn.,o)(y') and y' is above some element of &. As 

L = 1, it turns out that the special property in the successor case definition of T~ 

holds and hence that every element of T~ is above some point in X. So T ~ is a 

Souslin tree. 

4.22. PROOF OF THEOREM 4.1. Now that all parts of the proof are presented, 

we assemble them and give a general description of the proof of Theorem 4.1. 

Recall that R is a Souslin tree constructed in L such that all the derived trees of 

R are Souslin, U is some special Aronszajn tree which will become the universal 

special Aronszajn tree. To prepare the ground we iterate with countable support 

to2 many generic club subsets of wl, (Co l a < ta2) such that W = L[(Co : a ~ w2)] 

is a generic extension of L made with a tr-closed, ~2-c.c. poset. W and L have 

the same cardinals, GCH holds in W, the diamond and the [] sequences of L still 

work in W. R as any other Souslin tree in L remains Souslin in W. Every subset 

of ~ in W is already in some intermediate extension V = L[(C~ : a  E y)], 

y < w2, and C~ is a V-generic closed unbounded subset of o~. As V = L[G] for 

some G C_ oJ~, it follows that O* holds in V. (See [9] p. 113 for details.) 
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Now in W, we construct inductively an iteration sequence of Souslin trees T' ,  

~- < w2, using Theorem 4.14 for limit stages and Theorem 4.2 at successor stages. 

The induction hypothesis for T% ~" < w2, is that R and its derived trees are 

Souslin in W ~'. We take care, in turn, of all Aronszajn trees in every W r'. At 

successor stages, when T T is already constructed, we are presented with a name 

of an Aronszajn tree, A, in W r ' ;  we pick some intermediate universe V = 

L[(C~ : a E y)] such that T% A E V. There are then two possibilities: 

(1) A is an Aronszajn tree in V T~×~' for every derived tree R '  of R. In this 

case we use Theorem 4.2 to get in V[C~] the Souslin tree T ~+1 which is a 

refinement of T ~ such that (in V[C~] and hence in W) T ~÷' x R '  is a Souslin tree 

for any derived trees R '  and, in W r'*', A is embedded on a club set into U. 

(2) (1) does not hold. Then we simply set T "* '=  T" and pass to the next 

Aronszajn tree. 

Finally, let T be the direct limit (union) of (T" I~- E w2) and then W[ 7"] is the 

model promised by Theorem 4.1. Indeed I T I = ~2 and T satisfies that the c.c.c. 

GC H holds in W[ J']; R and its derived trees are Souslin trees there. For every 

Aronszajn tree A in W[J'],  if A is Aronszajn in the Boolean universe of every 

derived tree of R, then at some stage A was embedded on a club set into U. On 

the other hand, if A is non-Aronszajn in some derived tree R' ,  then, by Lemma 

3.2, A contains an isomorphic image, on a club set, of a derived tree of R. It 

follows also that if A is Souslin in W[J  ~] then, modulus a club set, A is the union 

countable many derived trees of R. 

4.23. Hints to further results. To get the consistency of " G C H  + there is a 

universal Aronszajn t ree"  is obviously simpler than Theorem 4.1, since there is 

no Souslin tree we wish to keep Souslin. 

Let us remark now why the proof of Theorem 4.1 fails to give the consistency 

with G C H  of "Every  two Aronszajn trees are isomorphic on a club set". Of 

course, we proved that CH implies the negation of that statement, but where 

exactly does the consistency proof break? Well, suppose we are given a Souslin 

tree T (an intermediate stage of the iteration) and names in T-forcing of 

Aronszajn trees AI and A2. For a club set of a ' s ,  x @ T~ "knows" what A1 l a 

and A21a are (A~(x)[a and A2(x)]c~). But x E T~ cannot guess what the a 

level of A, and A2 is. Yet, any isomorphism of A~ ]a  onto A21 a must take into 

consideration the branches defined by the a level. Hence we cannot refine T to a 

tree which makes A1 and A2 isomorphic. The proof of Theorem 4.1 (modeled 

after Jensen's proof) worked because T is a c.c.c, forcing which adds no reals, 

hence there are only countably many possible a-levels of A~ and A2 and we took 

care of all of them. 
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On the other hand, it is possible to get the consistency of CH + "any two trees 

have isomorphic subtrees". When we want to find a subtree of both Aa(x) ta  
and A2(x)la, which is the beginning of a common tree, we enumerate all 

possible a-levels of A1 and A2. Splitting each possible a-level  into countably 

many sets, we obtain {B~ l i E to} such that: 

(i) Bi is a set of branches through Al(X)J a and A2(x)l a whose union is 

(AI(x) U A2(x))ia. 
(ii) B, 13 Bj = ;~ for i # ]. 

(iii) For any y E T describing the a-level  of A1 and A2, there is i such that 

y IF B~ is included in the set of branches determined by the a-level  of the trees. 

Part III: Consistency Results  with -1 CH 

§5. Every  two Aronszajn  trees are i somorphic  on a club set + 2 ~o = ~2 

5.1. THEOREM. The following is consistent with ZFC; 

Every two Aronszajn trees are isomorphic + Martin's Axiom + 2 No = N2. 

PROOF. Given two Aronszajn trees T x, T 2 we define a proper  forcing notion 

= ~ ( T  1, T 2) which makes the two trees isomorphic on a club set. For proper  

forcing look at [16]. At the present state of knowledge we do not know how to go 

with proper forcing beyond 2 ~0 = Xz, so the approach of §7 is of value. 

5.2. DEFINITION OF ~. p = (C, f )  ~ ~ iff C C_ 0) 1 is a finite set (called the set o f  

levels of p), and, if ? denotes max c, f = (ti,/~), ti = ( a l , . . . ,  a,),/~ = ( b l  . . . .  , b . )  

where a~ E T~, bi E T~, for i =< n, is a pair of n-tuples such that for i,] <- n and 

a E c  

3x ~ T~(x <= ai&x =< at) ¢¢, ::ly E T~(y _-< b~&y <- bj). 

In other words, the function ai ~ b~ can be extended to an isomorphism of 

{x E T l l x  ~ T~and x-_< a, for some a E c and i < n} onto {y E T2ly  ~ T~ and 

y -<_ b~ for some a E c and i -  < _ n}. In this case there is only one such isomorphism 

and we call it the isomorphism determined by p. 

We partially order ~ in a natural way: (c, f)<= (c',f') iff c C c'  and the 

isomorphism determined by (c',f') extends the isomorphism determifled by 

(c,f).  

5.3. DEFINITION. If (ti,/~) is a pair of n-tuples: ~i =(am . . . . .  a,), b=  
(bx, b,), a~ E T 1 b~ E T~ (T is then called the level of (~i,/~)) and if a < % 
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then the projection, ¢r~(~i,/~), of (~i,/~) to a is the pair (~i*,/~*) where aT E T~., 

b* E T~and a* < a~, b* < b~ for i < n. I f p  = (c,f)E ~, a <= ~ = Uc,  then ~r~ (p) 

is the condition given by (c n a ) U  {a} and the projection of f to a, if such a 

condition exists, i.e., zr~((c,f)) = (c O a U {a}, 7r~ (~i,/7)) if this is a condition in 

and the projection is undefined otherwise. If a E c, then zro ((c, f)) is always 

defined. If a '  < a then 7r~,(zr~ (p)) = 7r~,(p). If p is a condition, p = (c,f), and g is 

a pair of n-tuples of level/3 > ~ such that (c U {/3}, g) is a condition extending p, 

then we say p and g are compatible and denote (c U {/3}, g) by p U g. 

It is quite clear that if ~ is a generic filter over ~ then C = U{c t(c,f)E 
for some f} is an unbounded subset of oJ1 and F = U{fl(c , f )  E ~ for some c} is 

the desired isomorphism between Tll C and T: I C. (We assume that our trees 

are normal and that every point has No successors.) 

We prove now that ~ is proper in order to show that oJl is not collapsed and 

that we can iterate this forcing. What have we to prove in order to show that ~ is 

proper? Given a countable elementary substructure N < H .  2 (the collection of 

all sets of cardinality hereditarily less than ~t2) such that ~, T 1, T 2 E N and given 

po E ~ n N, we must find q* > p0, q* U ~, such that for any D U N, a dense 

subset of ~, any q ~ q* is compatible with some member of D N N. 

So let N be as above, let a = N n oJ1, then a C N. Given po = (Co,/Co), define 

c* = Co U {a} and let f* be any pair (d*,/~*) of level a such that the projection of 

(d*,/7") on Uc0 is fo. (c*,f*) = q* E ~ is as required: Let D E N be a dense 

subset of ~ and q =>q* be given. First find q'>q, q'ED. 7r~(q')=(c',f') is a 

condition extending q*. Pick a ' <  a, a ' >  U ( c ' n  a )  such that f '  and the 

projection of f '  on a '  have the same cardinality, i.e. the elements of f '  do not 

meet above a ' .  Let p = Ir~,(q'), p E N A ~ .  What we need is an extension 

p * >  p, p * E  D N N, p* compatible with ( c ' , f ' ) =  7r~ (q') for then p* will be 

compatible with q', hence with q. In order that p* will be compatible with (c', f ')  

it has to "respect" f ' ,  i.e. if f '  = (d',/~'), d '  = (a~ . . . . .  at), /~' = (b~,. . . ,  b,), then 
p* must take points below a~ which are in the levels of p* to points below b~. For 

any a ' <  y < a, ~ ' , ( f ' )=  f~ is compatible with p, we denote by p U f~ the 

projection 7r,(q'). As N <  H.~, p U f~ has the following property: there is 

p ' >  p U f~,, p ' U  D n N, such that p'  has no levels between a '  and 3, and 

7r~(p') = p  U f~. (The point is that q' gives such a condition and hence there is 

one in N.) 

Now we define in N the following set H of pairs of l-tuples, g E H iff the level 

of g is % a ' < y < a ,  g is compatible with p and p U g  has an extension 

g ' E  D N N such that ~r , (g ' )=p  U g. H is uncountable in N (as f~G H for all 

a ' <  y < to~). 
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By Lemma 3.10 there is a '  < y < a such that H has Mo members of level y 

with pairwise disjoint domain. Pick one g E H of level y such that g has a 

domain disjoint from f~. Now p U g has an extension g ' E  D M N such that 

~r~(g') = p  U g; it follows that g'  is compatible with (c ' , f ' )  as required. 

This has taken care of a single step in the iteration. Now an iteration of length 

to2 of proper  forcing of size ~ gives the desired model. 

§6. Martin's Axiom is not enough 

We are going to prove the following theorem. 

6.1. THEOREM. Martin's Axiom & 2 ' ">~0  do not imply that every two 

Aronszajn trees are isomorphic on a club set. 

Let us give first a general and simplified description of the proof. We start with 

two Aronszajn trees T t, T 2 which are not isomorphic, and  proceed with an 

iteration of c.c.c, posets in order to get MA, while trying to keep the two trees 

non-isomorphic. What happens if a c.c.c, poset ~ appears in some intermediate 

stage of the iteration and in V ~ the two trees are isomorphic? We must destroy 

the c.c.c.-ness of ~ if we want to get MA. This is the way to do it: Let f be a 

name in V ~ of an isomorphism on a club C of T ~ and T 2. Pick conditions p~ E 

and ai E TI, b, ~ T~ for i < 6ol such that 

p, IFf(a , )= b,. 

It follows that if i < j and the level of C where a~ and aj meet is different from 

the level of C where b~ and bj meet, then p~ and pj are incompatible. (We say 

then that (a,, b,) and (aj, bj) are conflicting on (7.) 

So define a poset ~ = ~ ((a~, b~}: i E wl) by q @ ~ if q is a finite set of pairs and 

any two such pairs are conflicting on C (and hence their respective conditions 

are incompatible in ~) .  Now, in V ~, ~ is no longer c.c.c. To show that ~. itself is 

a c.c.c.-poset and, moreover,  is not dangerous, we need a special property of the 

trees T l, T ~-. 

6.2. NOTATIONS AND DEFINITIONS. T is an Aronszajn tree, d E T~ means that 

~i = {al . . . . .  a , )  and for i _-< n, a~ E T~ (the a ' t h  level of T), a is called the level 

of d. We write ~ / E T  if d E T ~  for some ~ < t o l .  If ~/~T~, /3_-<or, then 

~ro(ti) E T~ - -  the projection of t/ on T~ - -  is defined naturally, in particular if 

a @ T~,/3 -<_ a, then ~r0 (a)_-  < a. Let  C C_ tol be a club set; we say a, b E Tmee t  at 

level v C C on C if a, b are incompatible in T and v is the maximal ordinal in C 

such that w , ( a ) =  ~ ( b ) .  
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We shall deal with sequences  of n- tuples  (~/; E T : ( ff w,) such that: 

(6.3) For  some a and ~/C T~, t/ is an n- tuple  of distinct e lements  such that 

~i = ~r~(~/;) for  all ~ E ~o~. T h e  level of ~i c is => ~. 

6.4. DEFINITION. C/,/7 ~ T are said to be conflicting on C n-tuples if, for  all 

i,j <-_ n with i ~  .L a~ and b~ are incompatible  and the level where a~ and b~ meet  

on C is different than the level where  a~ and bi meet  on C. 

If C '  _C C, ~/ and /~ are conflicting on C ~, then they are conflicting on C. 

CLAIM. The Soulin tree T built by Jensen in [9, p. 46] is readily seen to satisfy 

the following: 

(6.5) For any ( ~  ~ T : ( ~ w~) satisfying (6.3) and club C there are a, fl ~ tot 

such that g~ and ~ are conflicting on C 

To remind the reader:  at limit levels in the construct ion of T we add i~o 

branches "gener ica l ly"  (over the diamond);  a condit ion is a bounded  informa- 

tion of finitely many branches.  So for some " e l e m e n t a r y "  & the d iamond guesses 

( t i e : ~  6) and c n  6. T~ is defined so that any n tuple above 6 there  is 

conflicting with some t/e below 6. 

6.6. LEMMA. Assume T satisfies (6.5). Let C be a club set and, for ~ ~ oJ~, l~ is 

a finite set of m-tuples of T such that any two n-tuples in l~ are conflicting on C 

and, for any n-tuple b C l~, the elements of b meet below ~ on C. Then  there are ~, 

~' such that any two n-tuples in l¢ tO l~. are conflicting. 

PROOF. For  any limit ~: < ~o, take all the tuples in le of level => ~ and look at 

their project ion on Te. We thus get a finite subset of T e which we enumera te  as 

de. Now define a pressing down function,  g(~),  giving 

(i) the informat ion on the tuples of 1¢ of level below ~:, 

(ii) where  the elements  of de meet  on C (below ~), and 

(iii) the finite information on the order  type of the e lements  of de and the 

tuples of le. 

g has a constant  value on an uncountable  subset I _C ~o~. We get c~ and d E T~ 

such that d = ~'~ (~i¢) and no e lements  of tie meet  on C above a for s c ~ I. But as 

T satisfies (6.5), we get ~:, ~ ' E  I with ~i~ and tTe, conflicting on C. It is long to 

write,  but easy to see that le and le, are as required.  

6.7. DEFNTION. (i) A poset  ~ is dangerous (for T)  if there  is a club C C_ ~o, 

and a sequence  ((q, ~/~): i < w~) such that (di : i  < o)~) satisfies (6.3), qi E ~ and, 

for  i / j ,  if q~ are compatible  in 03, then ~/~ and dj are not conflicting on C. 
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(ii) £2 is a non-dangerous poset if £2 satisfies the  c.c.c, and £2 is not dangerous,  

i.e. for  any club C _C ool and any sequence ((q~, d~) : i E ca,) as above,  for  some 

i5 ~ j, q, and qi are compat ible  and ci~ and ar are conflicting on C. 

6.8. LEMMA. I f  T satisfies (6.5) in V and £2 is a non-dangerous poset in V, then 

in V ~, T still satisfies (6.5): 

PROOF. As £2 satisfies the c.c.c, any club C in V ~ contains a club C* in V. If 

T does not  satisfy (6.5) in V ~ then we have a club C, which we assume to be in 

V, and a sequence  of n-tuples.  For  any ce we can find a condi t ion q~ which forces 

ti~ to be the ce ' th m e m b e r  in the sequence.  Now (q~, ci~), ce E ~ol, shows that £2 is 

dangerous.  

6.9. COROLLARY. I f  £2 is non-dangerous then, in V ~, T is Aronszajn. 

PROOF. If a, ,  c~ < ~o,, is a branch of T then clearly a~, a~ are never  in conflict. 

Hence  (6.5) implies T is Aronszajn .  

6.10. LEMMA. It is possible to iterate non-dangerous posets: 

(a) I f  £2 is non-dangerous and ~ C V ~a is non-dangerous then the composition 

#2 * ~ is non-dangerous. 

(b) The direct limit (iteration with finite support) of non-dangerous posets is 

non -dangerous. 

PROOF. Like Solovay and Tennenbaum.  

6.11. DEFINITION. Let  T be a tree satisfying (6.5) and D C_ co~ be a club and 

(/7, E T :T /  E to~) be a sequence  of n- tuples  of T satisfying (6.3). We define 

£2 ((/7~ : r / E  ~o1), D )  = £2 to be the poset  of all finite sets of pairwise conflicting On 

D n-tuples  f rom {/7~ : 7 /E  w~}. 

6.12. LEMMA. £2 as above is non-dangerous. 

PROOF. That  £2 satisfy the c.c.c, is just L e m m a  6.6. 

If C is a club and (q~, ci~) are as in Defini t ion 6.7, then q~ t3 {ci~} is a finite set of 

tuples. Applying the proof  of Lemma  6.6 we get q~ and qi compat ible  such that t~ 

and cij are conflicting on C. 

6.13. For  c~ < co, we define £2~ like the definition of £2, only now our  

condit ions are conflicting n-tuples f rom {/~ : ~ /E  oa~- ce}. 

6.14. CLMM. For some ~ < o31, £2~ satisfies the following: 

For any ~ E o31, {e ~ £2 ~ : e contains an n-tuple of level above ¢3} is dense in £2 ~ 

PROOF. Otherwise  we will contradict  the c.c.c, of £2. 
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6.15. PROOF OF THEOREM 6.1. We iterate ~2 times (for example) non- 

dangerous posers and get 2 '% = l~z + Martin's Axiom for non-dangerous posers, 

i.e. we find a non-dangerous poset ~ such that in V~: for every non-dangerous 

poser ~ and every collection of 1,11 dense subsets of ~ there is a filter on 

intersecting all the dense subsets of the collection. Now we claim that actually 

the full Martin's Axiom holds in V~: Let  ~ be a dangerous poset; we want to 

show that it does not satisfy the c.c.c. As ~ is dangerous we have a club C C_ ~ol 

and a sequence (r~, d~) such that (d~ : i ~ ~ol) satisfies (6.3) and if d~ and 8j are 

conflicting, then r~ and rj are incompatible in ~.  As ~ is non-dangerous T 

satisfies (6.5) in V ~. Hence by 6.12, ~((8, : i < ~ol), C) = ~ is non-dangerous. By 

Claim 6.14, for some a, ~ satisfies the claim and hence, as Martin's Axiom 

holds for non-dangerous posers in V ~, we have a filter on ~"  which gives us 1~ 

pairwise conflicting d~, hence 1~1 pairwise incompatible members of ~.  

In order  to prove our theorem, that in V ~ there are two Aronszajn trees not 

isomorphic on a club, we need the following lemma. Pick a, b E T incompatible; 

T~ is defined to be the subtree of all points in T above a, similarly T0. 

6.16. LEMMA. I f  ~ is non-dangerous then, in V "~, T~ and To are not isomorphic 

on a club set. 

PROOF. Suppose, on the contrary, that for some club C (which we assume to 

be in V) there is an isomorphism f :  T, [ C ~  T0 I C. Then in V one can find 

p~ ~ ~, a~ E T, I C, b~ E T0 I C; a~, b~ of level a, such that po IF "f(a~)  = b~ ", for 

c~ < to1. But then (p~,(a~, b~)), o~ < to~, clearly show that ~ is dangerous, because 

if p~, p~ are compatible by p, then p forces f(a~) = b~, f(a~) = b~ and p forces 

that f is an isomorphism on C; hence (a,, b~) and (a~, b~) must agree on C. 

§7. Making the continuum above 8z 

7.1. THEOREM. Assume V satisfies ZFC + GCH. K > 82 is a regular cardinal. 

Then there is a generic extension of V in which 

Martin's Ax iom + 2 Mo = K + 

Any  two Aronszajn trees are isomorphic on a club set 

holds. 

PROOF. The generic extension has two parts: we do first a preparatory 

extension, and then iterate c.c.c, posets to get Martin's Axiom and the 

isomorphisms. The preparatory extension, like Jensen's adding closed un- 

bounded sets, gives us a universe where it is possible to construct c.c.c, posets 
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forcing an isomorphism on a club set for two given Aronszajn trees. We describe 

first the preparatory extension. 

7.2. DEFINITION. ~ denotes the poset for adding I~ many Cohen reals: 

= {[ : I l l  < n0 & Dom(f)  C_ oJ~ & Range(J) c {0, 1}}. 

E V ~ is the name of the countably closed poset for adding a closed 

unbounded subset of oJ~, i.e. ~ is in V ~, the family of closed countable subsets of 

oJ1 ordered by end extension, g' is not the closed-set poset of §3, but it serves a 

similar purpose. 

Define ~ = ~ * ~, i.e. 3 ~ is the set of all pairs (f, c) where f E ~ and 4' I I-~ c is a 

closed countable subset of oJl. The name c can be chosen as a function defined 

on a countable subset of Wl such that, for a E Dora(c), c ( a )  is a (countable) set 

of pairwise incompatible members of ~ - -  a maximal incompatible subset of 

those forcing a @ c. 

is partially ordered as follows: 

(f,c)<=(f*,c*)ifff<=f * and f* lFc=c*NSup(c) .  

We define the projection of ~ on ~ by 7rz (f, c) = f. We also define ~'r (j, c) = c 

7.3. DEFINITION OF ~ FOR T ~ K. ~ is the set of all countable partial 

functions h : 3,---> ~ such that 7 r~(h(a ) )#O only for finitely many ~'s.  ~ is 

partially ordered component-wise, i.e. h <= h' iff Dora(h)  C Dom(h ' )  and h(a) <= 
h'(a) for a @ Dora h. 

So ~ is a mixed multiplication, with finite support on the left side and 

countable support on the right side. 

7.4. DEFINITIONS. 
(i) Denote  ~ ,  = I I~<~,  the multiplication with finite support of 3' many 

copies of ~. ~ ,  is naturally embedded into ~ and we can define a natural 

projection 1rt : Y', ---> ~r (by 7rt(h)(a)  = ~t(h(a))) .  
(ii) For e E ~ r  and p E ~ we say e and p are compatible if e and Try(p) are 

compatible in ~ .  In case e and p are compatible e U p E ~ is defined naturally. 

e U p = > p .  I f p * = > p , p *  and e are compatible, then e U p _ - < e U p * .  

7.5. LEMMA. ~ satisfies the l~z-c.c. 

PROOF. Using 2 ~° = 1~ the cardinality of ~ is I~. Now the proof is standard 

using a ~-system. 
For any 6 < 3', ~ = ~ x 3 ~,  where ~ is the set of countable functions in ~ 

defined on 6, and ~ is the set of those functions defined on 3 ' -  & 
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7.6. LEMMA. ~ satisfy the l~I2-c.c, in v e%. 

PROOF. Although in V ~ the continuum hypothesis does not necessarily 

hold, we can form a A-system using the fact that the elements of ~ are 

functions in V and the 1,12-c.c. of 3%. 

7.7. LEMMA. I f  p. <= p,+l, p, E ~v, and ~rt(p.) = ~r,(po), for n < w, then p = 

U .<~ p ,  ~ ~ .  

PROOF. Actually we have to define U,<~p, .  Well, for a ~ U.<~Dom(p , ) ,  

p , ( a )  is an increasing sequence in ~. 7rt(p.)(a)= 7r~(po)(a) is some fixed 

condition in 2, which forces 7r,(p,(a)) to be an increasing sequence of closed 

countable subsets of w~. Now pick a name for the closure of the union of that 

sequence and thus define p(a) .  It is clear that p is the least upper bound of 

(p. In Ew). 
7.8. LEMMA. Let g : o~ ~ On be a [unction in V% ; then g E V a,. 

PROOF. Using the projection m, we know that forcing with ~ can be viewed 

as a two stage extension: the first with ~ ,  and then with the remainder. The 

lemma says that in forcing with 3 ~, no new o2-sequences are added to the middle 

world obtained with !~,. As ~ ,  satisfies the c.c.c, the lemma shows that ~ is not 

collapsed in V%. 

We give a density argument for ~ ,  ; given p E N, we have to find p* _-> p such 

that p* IF g E V a,. So let p E ~ ,  p IF g : ~0 ~ On, be given. We will define an 

increasing sequence p, E ~ ,  n < ~o, po = p, and a maximal set, E,, of pairwise 

incompatible elements of ~ above ~r~(p), for n => 0, such that: 

(a) m ( p , ) =  re(p),  
(b) for every e E E , ,  e and p, are compatible and e Up ,  U-%g(n)---a(n,e),  

for some a ( n , e ) E O n .  
Later (in 7.10) we will show how to define p, and E,  ; first let us end the proof. 

Define I,.J,<~p, = p* (using Lemma 7.7). Now define a name G in V a, of a 

function on o) such that for every n and e E E , ,  e I t -G(n)=  c~(n,e). 

CLAIM. p * I1-% G = g. Hence p * IF g E V ~,. 

PROOF OF THZ CLAIM. E,  is a maximal set of pairwise incompatible elements 

above 7rt(p*) = 7rt(p), hence p* II- G is a function. Suppose for some a E On and 

p**>=p*, p * * l t - g ( n ) = a .  Then 7rt(p**) is compatible with some e E E , ,  so 

e U p * * l F g ( n ) = a ( n , e ) ,  hence a = a ( n , e )  and e U p * * l ~ - G ( n ) = a .  So 

p* I~-g C_ G. Hence p* It-g = G. It remains to show how to get p,+~ from p, and 

how to define E,. For this we need the following. 
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7.9. LEMMA. If pl, p2 E ~v, pl ~ p2, then there is p* E ~ such that pl <= p*, 

#,(p*) = #,(pl) and ~',(p2) u p~ = p2. 

PROOF. For every ~ E D o m p 2  we define p*(r/)  as follows. We know that 

pl(r/) -< p2(r/). Let  pl(r/) = (/1, cl), p2(r/) = (f2, c2). Then we define p*(77) = 

(fl, c*), where c~ is the name of the subset which is c2 if f2 holds and cl 

otherwise. 

Now we turn to the construction of p, and E,  by induction on n < to. Assume 

p.-1 is constructed. We will define inductively p~ E ~ and q~ E ~t r for a E to~ 

such that a </3 implies 

p~<p~,, 7r~(p~)= 7rt(p,~), q, and qo are incompatible 

or q ~ = ~ ;  p ] = p , - l o r p ° = p .  

For limit ~ we let p~ = U~<sp~, by Lemma 7.7. Suppose p~ is defined: 

If  there is r E ~ ,  r >= p ~ such that r It- g(n ) = r/, for some ~/, and, for any/3 < a, 

7r~(r) and q~ are incompatible, then using Lemma 7.9 pick such r and find 

p~+~ _->p~ with zr~(p~ +~) = vrt(p~) and 7r~(r) U p~ +1= r. Set q~ = 7r~(r). 

I f  there is no such r, let p:+l = p :  and q~ = O. As ~ satisfies the c.c.c., for 

some a < ¢o~, p :  = p:+~, q~ = O; then we define p. = p :  and E,  = {q~ : ~ < ¢t}. E ,  

is a maximal anti-chain above 7rt(p). This ends the proof of Lemma 7.8 

7.10. LEMMA. Let M < H,+ be a countable elementary submodel of H~+ (the 

[amilly of all sets of cardinality hereditarily less than r +) such that ~ ~ M for 
some 7 <= K. Let p ~ M fq ~ be given, then there is p* >= p such that, for every 
D ~ M predense in ~ ,  D fq M is predense in ~ above p* (i.e., ~ is proper). 

PROOF. Let  (D,  : n ~ to ) be an enumeration of all predense subsets of ~ 

which are elements of M. We will construct an increasing sequence p, ~ ~v tq M 

with 7r~(p) = ~r~(p,), po = p, and define E,  U M, a maximal above ~r~(p) pairwise 

incompatible subset of ~ ,  such that, for e ~ E , ,  e U p , - > d  for some 

d ~ D,  fq M. This suffices, for we can define p* = I..J,<,~p,. p* is as required: let 

p'>=p* and D 6 M  predense in ~ ,  then D = / 9 ,  for some n, and 7r~(p') is 

compatible with some e U E , ;  but then 

eUp'>=eUp*>=eUp.>=d f o r s o m e d ~ D ,  n M .  

The construction of p,, E, is as follows. Suppose p,-1 is constructed. Define - -  

in M - -  an ~ncreasing sequence, p :  ~ ~+, a < ¢o~, pO = p,-1, 7r~(p:) = rr~(p) and 

define also ho ~ ~ such that a </3 ~ h~ and ha are incompatible or h~ = ~ .  

The definition is done as follows: p,~ = I..J~<~p: for limit 8. If p :  is constructed 
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and {he :/3 < or} is not maximal above zrt(p), then using Lemma 7.9 find h~ E ~ 
incompatible with any he,/3 < or, and p U  1 = p~ such that ~r~(p~ +1) = zr~(p~) and 

he U p~+l _-> d for some d E D,  n M. As ~ satisfies the c.c.c, we stop a t /z  < wl 

(in M) and get p, = U~<~p~ in M. We set E,  = {he "/3 E/z}. 

This ends the proof of Lemma 7.10, and the first part of our generic extension 

is V ~. In V *-, 2"o = 2-* = K and cardinals are not collapsed. The second part is an 

iteration of length K, with finite support, of c.c.c, posets of cardinality < K, which 

finally gives a model of Martin's Axiom + 2 "0 = K + Every two Aronszajn trees 

are isomorphic on a club set. 

So we place ourselves in V[gb, ], where 9b~ is a V-generic filter over ~ and 

assume ~ ~ V[~ , ]  is a c.c.c, poset of cardinality < K. Moreover, in V[gb~][~] 

(~  is a V [ ~ , ]  generic filter over ~ ) ,  we are faced with two Aronszajn trees A~ 

and A2 and we want to find a c.c.c, poser which forces the two trees to be 

isomorphic on a club set. 

Since ~ ,  satisfies the N2-c.c., there is 3' < K such that (1) ~ G V [ ~ ] ,  where 

3b~ = ~ ,  n ~ ,  (2) A1, A2 are Aronszajn trees in V [ ~ ] [ ~ ] .  

If we let ~ ( ~ ) = { h E ~ ' y ~ D o m h } ,  and ~b(~)=~N~(~) ,  then ~ =  

{h(3,): h E ~ ,  and y EDom(h)}  is V[~  ~')] generic over ~, and V [ ~ ] [ ~ ]  = 

V[gb~]. Since ~ and ~ are in V[~(~)], a well-known lemma about product of 

forcing says that V [ ~ , ] [ ~ ]  = V[~(~)][~][~] and ~ is V[~(~][~l-generic over 

~. Let W = V[~(~)][~], then what we need is just 

7.11. ThEOreM. Suppose V C_ W are transitive models of ZFC. V satisfies CH 

(but W might not). Let A~, A:  be Aronszajn trees in W which stay Aronszajn trees 

in W[~ b] (where ~ is a W-generic filter over ~).  Then there is in W[~]  a c.c.c. 

poser 5~ which forces A~ and A2 to be isomorphic on a club set. 

P~oov. To describe our poset we need a few definitions. 

7.12. DEFINITIONS. (i) Let T be a tree; we write ~ = (a~, . . . ,  a~) ~ T to mean 

that Vi (ai E T~), for some a. This a is called the level of ~ and we write ~ E T~ 

(the a~ are not necessarily distinct). 

(ii) If ti ~ T~ is a k-tuple and/3 =< a, then 7r~(~) - -  the projection of ~i in T~ 

- -  is the k-tuple /~ E T~ such that b~ < a, for all 1 =< i < k. 

(iii) If ~i ~ T then 

T a = { x E T : f o r s o m e i ,  x_---a,}. 

Thus, T ~ is a subtree of T, an initial segment in fact. Similarly, for C C o~, 

(T I C) a = {x E T I C : for some i, x =< a~}; we do not require that the level of ~ is 

in C. 
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(iv) We write (~i,/7) E A1 × A2 if for some y (the level of (~i,/7)) ~i E A1 and 
~TEA2 are  of level y and both are k-tuples for some k. For/3 < y, 7r~(~i,/7) is 

(v) Let E _C 0o~ be a club set. Let (ti,/7) ~ A1 × A2. If there is an epimorphism 

f :(A,  II~)"~(A~IE) ~ such that for any x E A ~ I E  and any i, 

x < a, <::> [(x) <= b, 

then there is a unique such isomorphism. We denote this fact by f = (d,/7) and 

we call f "the isomorphism determined by (~i,/7) on E" .  

7.13. DEFINITION of the forcing poset fi(E, A1, A2). Let E be a club subset of 

001 and At, Az Aronszajn trees. 

9' = fi(E,  A 1, Az) 

= {((~,/7) E Am X A2 : (({,/7) determines an isomorphism f(~i,/7) on E}. 

f i  is partially ordered by (&/7) < (~i', b') iff f = (~i,/7) _C f '  = (~i',/7'). 

Thus the conditions are really those isomorphisms determined by tuples, but 
we found it more convenient - -  from a notational point of view - -  to use this 
definition. 

Note that if (~i,/7) ~ fi, then 7to (~i,/7) E fi. Observe also that if o- and o-* are in 

f i  of level y and 3'* (with y < 3'*, say), then ~r and o* are compatible iff o- and 
Try (o'*) are. 

It is easy to see that in any generic extension via fi, A~ and A2 are isomorphic 

on E (we can assume that any point in our trees has infinitely many successors). 
Which club set should we choose to define 9°? Recall that ~ = ~ .  

(Definition 7.2) and so W[~ b] = W[~] [~ ]  where ~ is a W-generic filter over ~, 

and ~ is a W[~]-generic filter over ~ ( = countable closed subsets of 0o~ which 
are in V[~]).  Let C = I,J ~. We define fi = fi(C, A1, A2). The proof of Theorem 
7.1 now depends only on the following. 

7.14. MAIN LEMMA. In W[~][~] ,  f i  satisfies the c.c.c. 

PaOOF. Let D E W[~, ~] be a maximal antichain of fi. Assume, by way of 

contradiction, that D is uncountable. Let D E W[~]  be a name in ~ forcing of 
D. 

In W[~] ,  for each countable N < HK+, let u(N) be a countable transitive 
model of ZF-  (i.e., minus the power-set axiom) such that /V ~ u(N) (where 
7rN : N--> N, N is transitive). 
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7.15. SUBLEMMA. There is, in W[~], a countable N < H~+ such that A1, Az, 

D, etc. are in IV, and: 

(1) ~ M 9 is a u(N)-generie filter over zrN(g). 

(2) The elementary embedding, zr~l :9---~H~ # j ,  can be extended to an 

elementary embedding 

Ir <"  N[~  M 91----> H I #  ltel. 

PROOF. (2) is a standard consequence of (1): Given any x C N[~  M N] let 

x ~ 9 be a name of x. ~-~(x) is a name in g-forcing. Let 1r ~ be defined as the 

interpretation of ~-~(x) in W[~.][~]. ~'-1 is well-defined and the range of 1r : is 

an elementary substructure of H~#J[~]  = H : I  ~,ej, which we call N[~] .  

To prove (1) we use a density argument in W[~] for g forcing. Let c ~ g be 

any condition. Pick some countable N < HK+ such that A,, A2, D, c, etc. are in N. 

As u ( N ) E  W[~] is a countable transitive set, for some t~ < w~: 

u ( N ) E  W[~ lit],  where ~ lit : { f E Z  :Dom(f)=it}. 

Let q ' =  U{f  flit, It + w ) : f  ~ ~}. Then q' is defined on the interval [/~, It + 

to). Let q(n)  = q' (It + n), then q • w ~ ~o is a W[~ l/t] Cohen generic real. 

~rN " N---> ]V is the collapsing function. It is easy to see that 1rN(g) = g M 9. So 

~'N(g) is a countable set in V. (To see this, let ~ : w~ ~ g, ~ E V, be onto. We 

can assume ~ E N, and then ~-N(~) = ~ I ~N (aN = ~-N(t<)). So zrN(g) = ~"aN.) 

Let {x, : n E o~} = g M 9 be an enumeration in V. 

We define inductively, in V[q], an increasing sequence, (c~" i E ¢o), in g. 

co = c is the given condition. Suppose c, is defined by 

I xq~.~ if xq~.) >= c., 
Cn+l [ 

c, otherwise. 

Let c* be the closure of [ . J , ~ c ,  (i.e, U , ~ c ,  together with its supremum). As 

the sequence is defined in V[~], c* is in g 

7.16. CLAIM. The set {x ~ zrN(g) : x <= c, for some n } is a u (N)  generic filter 

over zrN (g). 

PROOF. Let F E u(N)  be a dense open subset of ~N(g). We want n such that 

c, E F. As q is a W[~ [ it ]-generic real, it is enough to find a dense set of 

conditions in -% which force the above. Well, given any condition f : k  ~ to, 

there is b E ~'n(g) such that f I~- c~ = b. Now pick d G F which extends b and 

find i G ¢o such that d = x~. Define f* = f U {(k, i)}, then f* II-d = c~+, 
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Claim 7.16 implies that 

c * II- ~ fq N = {x ~ ~-(~q) : x =< c, for some n}. 

Indeed it is easy to see that c* forces the D inclusion, and since the right side is a 
maximal filter and the left side is a filter, we get equality. 

Returning to the proof of Lemma 7.14, let N < HK+ be as in Sublemma 7.15. 
Denote by N [ ~ ] < H ~  t~ the image of /V[~ A/V] under ~.-1. As D E N, 

D E N[~] .  Letting aN = ~-(w,), ~(A, )  = A~ l aN, i = 1, 2. 7r(50) = 
be(C A aN, A l l a n ,  A2 l a N ) i s  the subset of conditions in 5 0 of level < an. 
7r(D) = D A ~-(50) is a maximal antichain in 7r(50). 

Since D is uncountable, there is (do,/~o) E D of level => an. Let (~L,/~l) = 
7r~(do,/~o). Note that (d~,/~) E u(N).  

7.17. DEFINITION. Let q~(£,)7) have the meaning: 

(£,)7) E 50 and V~: < level (£,)7), if (t/, iS) E D is of level ~:, then (£,)7) and (a, 15) 
are incompatible in 50. (When appropriate, 50 and D are replaced by 7r(50) and 
~'(D).) 

Not only does q~(~il,/~1) hold, but, for any /x < an, q~(Tr~(dl,/~1)). This truth 

about u (N)  is forced by some c ~ ~ A/V. Hence for every /z < an, in u(N), 
letting (~i,/7) = rr, (~i~,/~1), 

(7.18) c tk ,p(a, 6). 

An analysis of the forcing relation and absoluteness arguments show that (7.18) 
holds also in /V. Define, in N, the following subset of 50: 

500= {(a, 50:c Ik,p(a, 

By (7.18) 500 is uncountable in/V. 500 is an initial segment of 50. Let 501 be the set 
of all (d,/~) E 50o such that uncountably many members of b°o are projected to 
(d,/7). Again, 501 is an uncountable initial segment of 5e and every (d,/~) ~ 501 has 

uncountably many members of 501 projected to (d,/~). This holds in/V of course. 

Lemma 3.10 and a density argument (~ fq N is an N-generic filter) give two 

ordinals/30,/31 ~ C (q au such that/31 is the successor of/30 in C and for some 
(~i,/~) ~ 501 of level/3o there is an infinite well-distributed set of (a',/~') ~ 501 of 
level /31 which are projected to (~i,/~). 

As 7r(D) is a maximal antichain of 7r(50) in N [ ~  fq N], there is d ~ D which is 
compatible with (d,/~); so let d ' ~  ~r(50) extend both d and (~,/~). Let d * =  

7ro,(d'), then we can find (~i',/~',) @ 501 of level/31 which is disjoint from d* and is 
projected to (8,/~). It follows that d* and (~',/7') are compatible in 50. Hence any 
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(ti*,/~*)Eow which is projected to (d',/~') (by 7r~,) is compatible with d* and 
hence with d' and with d. This is a contradiction to q~(d*,/~*) when the level of 
(d*,/~*) is above that of d. 

REFERENCES 

1. U. Abraham and S. Todor6evi6, Martin's Axiom and first-countable S- and L-spaces, in 
Handbook of Set-Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North-Holland, 
Amsterdam, 1984, pp. 327-346. 

2. U. Abraham, M. Rubin and S. Shelah, On the consistency of some partition theorems for 
continuous coloring, and the structure of l,l~-dense real order types, Ann. Pure Appl. Logic, to appear. 

3. U. Avraham, Construction of a rigid Aronszain tree, Proc. Am. Math. Soc. 77 (1979), 136-137. 
4. U. Avraham, On forcing without the continuum hypothesis, J. Sym. Logic 48 (1983), 33-36. 
5. U. Avraham and S. Shelah, Martin's Axiom does not imply that every two I,l~-dense sets of 

reals are isomorphic, Isr. J. Math. 38 (1981), 161-176. 
6. U. Avraham and S. Shelah, Forcing with stable posets, J. Sym. Logic 47 (1982), 37-42. 
7. J. E. Baumgartner, All lll-dense sets of reals can be isomorphic, Fund. Math. 79 (1973), 

101-106. 
8. J. E. baumgartner, Notices Am. Math. Soc. 17 (1970), 967. 
9. K. J. Devlin and H. Johnsbrhten, The Souslin Problem, Lecture Notes in Math. 405, 

Springer-Verlag, New York, 1974. 
10. K. J. Devlin and S. Shelah, A weak version of 0 which follows 2"0 < 2",, Isr. J. Math. 29 

(1978), 239-247. 
11. H. Gaifman and E. P. Specker, Isomorphism types of trees, Proc. Am. Math. Soc. 15 (1964), 

1-7. 
12. F. Galvin and S. Shelah, Some counterexamples in the partition calculus, J. Comb. Theory 15 

(1973), 167-174. 
13. T. J. Jech, Set Theory, Academic Press, New York, San Francisco, London, 1978. 
14. S. Shelah, Decomposing uncountable squares to countably many chains, J. Comb. Theory 2 

(1976), 110-114. 
15. S. Shetah, Classification Theory, Studies in Logic Vol. 92, North-Holland, Amsterdam, 1978. 
16. S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer-Verlag, Berlin, Heidelberg, 

New York, 1982. 
17. S. Todor~evi6, Rigid Aronszajn trees, Publication de l'Inst. Math. Nouvelle Sdrie, tome 

27(41), pp. 259-265. 
18. S. Todor6evi6, Trees and linearly ordered sets, in Handbook of Set-Theoretic Topology 

(K. Kunen and J. E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 235-293. 

Sh:114


