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ABSTRACT 

We weaken the notion of proper to semi-proper, so that the important 
properties (e.g., being preserved by some iterations) are preserved, and it 
includes some forcing which changes the cofinality of a regular cardinal > Sit to 
Si0. So, using the right iterations, we can iterate such forcing without collapsing 
Si~. As a result, we solve the following problems of Friedman, Magidor and 
Avraham, by proving (modulo large cardinals) the consistency of the following 
with G.C.H.: (1) for every S _C Sis, S or )r S contains a closed copy of o~, (2) 
there is a normal precipitous filter D on Sis, {8 < Sis: cf ~ = Sio} E D, (3) for every 
A C_ Si2, {3 < Si2: ef 8 = Sio, 8 is regular in L(8 f't A)} is stationary. The results 
can be improved to equi-consistency; this will be discussed in a future paper. 
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w Introduction and Notation 

H() t ) ,  for  regular  A, is the  set of  sets heredi tar i ly  of cardinal i ty < )t. If  ti is a 

sequence,  i.e., a funct ion f rom an ordinal ,  then  l( t i )  is its length. 

O n  is the  class of  ordinals,  Car  the  class of  cardinals,  ICa r  the  class of  infinite 

cardinals,  U C a r  = I C a r - { N o }  and R C a r  the  class of  infinite regular  cardinals,  

SCar  = R C a r  U {2}, R U C a r  = R C a r  A UCar ,  and we let 

S ~ = { 8  <~qa : c f 8  = N~}. 

Notation on Forcing 

(1) P, Q deno te  forcing not ions  (i.e., part ial  orders)  and p, q, r e l emen t s  of  

forcing notions.  Le t  p =< q m e a n  q gives m o r e  informat ion .  W e  m a k e  the 

conven t ion  that  each P has a, minimal  e l emen t  ~ (which thus gives no  

informat ion) .  T w o  e lements  of  P a re  compa t ib le  if they have  an uppe r  bound .  

A n  ant ichain ! C P is a set  of  pairwise incompat ib le  e lements .  

(2) P C Q means  P is a submode l  of  Q. P < Q means  P c Q, and any maximal  

ant ichain  of  P is a max imal  ant ichain of  Q (hence  compat ib i l i ty  is preserved) .  

R e m e m b e r  that  G C_ P is gener ic  if it is directed,  closed downward  and not  

dis joint  to  any max imal  ant ichain  (of course  G is in a bigger  universe,  e.g., 

V [G] ) .  R e m e m b e r  also that  G has a canonical  P - n a m e :  Q or  Gp. 

w Iterated forcing with RCS (revised countable support) 

I t e r a t ed  forcing with coun tab le  suppor t  is widely used. O n e  of its definit ions is 

that  at the limit s tage with cofinality No we t ake  the inverse limit, and at the limit 

s tage with cofinality > No we t ake  the direct  limit. A n o t h e r  fo rmula t ion  is given 
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below (Definition 1.1). However,  the applications, as far as I remember,  are for 

forcing notions which preserve the property "the cofinality of 8 is uncountable".  

However,  in our case we are interested just in forcing which does change some 

cofinality to Mo. In such cases, we cannot break the iterated forcing into an initial 

segment and the rest (i.e., break (Pi, Q~ :i < a )  into (P~, Q, :i < /3 )  and 

(P,/P~, Q, :/3 __6 < i < a) ,  see Definition 1.1). The reason is that maybe the first 

forcing changes the cofinality of some &/3 < ~ < a to Mo; hence P,/P~ is not the 

inverse limit of (P,/P~, Q, :/3 < i < a). 
Hence we suggest another iteration, RCS (revised countable support), which 

seems the reasonable solution to this dilemma. 

1.1 DEFINmOr~. We call (P, Q~ :i < a )  a CS iteration (CS means countable 

support) if: 

(a) Q~ is a P~-name of a forcing notion, 

(b) the set of elements of P,  is {p : p is a function, whose domain is a countable 

subset of a, such that for every i E Dump,  p(i) is a P~-name of a member  of Q, }, 

(i.e. O I1-~, "p( i )  E Q~"}, 

(c) the partial ordering on P is defined by: p <= q iff for every i in the domain 

of p, q I i II-p, "p( i )  _--< q(i)". 
(3) If P < Q, G C P generic, we let Q/G = {q E Q :  for every p E (3, q is 

compatible with p (in Q)}. 

So it is well known that forcing with Q is equivalent to forcing first with P and 

then with Q/G. Also Q/G has a P-name which we should denote by Q/Gp, but 

denote by Q/P. 
(4) If Q is a P-name of a forcing notion, P * Q is their composition, so 

P.~ P . Q ,  Q =(P*Q)/P.  Remember  P * Q  ={(p,q):pEP, q a P-name of a 

member  of Q}; (Pl,ql)~(P2,q2) iff pl =<p2 and pzlI-pql < q2. 
Now if P~ = Po * Qo, ql a Pt-name, Go C_ Po generic, then in V[Go], q~ can be 

naturally interpreted as a Qo-name, called qdGo, which has a Po-name qdGo or 

qdPo; but usually we do not care to make those fine distinctions. 

(5) Using 0 = {P~, Q~:i < a), P~ will mean R Lim t~ (see Definition 1.2). 

(6) If D is a filter on a set J, D E V, V C_ V' (e.g., V' = V[G])  then in an 

abuse of notation, D will denote also the filter it generates (on J )  in V'. 

(7) 19, is the closed unbounded filter on K. 

1.2 DEFINITION. We define the following notions by simultaneous induction 
on  (~: 

(A) 0 = (P,, Q~ : i < a )  is an RCS iteration (RCS stands for revised countable 

support), 
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q r { ~ } = { q o  if ~=ff ,  

if ~ f f .  

Lastly we let ~'(q) = ~'. 

For 3" > 0 :  We say q is a 0 - n a m e d  [j, a)-condit ion of depth 3' above r, if for 
some 0 - n a m e d  [j, a)-ordinal  of depth 3, above r, ~', defined by/3, {pi : i < io} _C 

P~+I, {3'i :i < i0}, {if, : i  < i0}, we have 0 - n a m e d  [max{/3, j}, a)-condit ion of depth 
3' above r Up~,q~ (i < io) such that ~(q~)= ~, and q is qi if p~. Also if yi =0 ,  

~ =/3 then q~ >p~ and if y~ > 0 ,  3', {p~.j :j  <j0}, 3" define q~, 3"= /3  then pi <p~.j 
or they are contradictory. 

We then let ~(q) = if, and q [~ is defined similarly with q~ [~, and lastly q [{~} 
is defined similarly with q~ [{~}. 

We omit 3' and/or "[j, a ) -"  if this holds for some 3' and/or j. 

(D) We define R Lim 0 as follows: 
if a = 0: R Lim 0 is trivial forcing with just one condition: ~ ;  
if a > 0 :  we call q an atomic condition of R Lim 0 ,  if it is a Q-named  

condition. 
The set of conditions in R Lira 0 is 

{p:p a countable set of atomic conditions; and for every /3 < a ,  

p [/3 =~ '{r  [/3 :r ~ p } E P ~ ,  and p r/3 ii-e~ "p  [{/3} =~~ [{/3}:r E p }  
has an upper bound"}. 

The order is inclusion. 
Now we have to show P~ < R L i m  0 (for/3 < or) which is obvious noting that 

any O-named  [j,/3)-ordinal (or condition) is a 0 - n a m e d  [j, a )-ordinal (or 
condition), and see 1.4(1). 

REMARK. We can obviously define 0 - n a m e d  sets; but for conditions (and 
ordinals for them) we want to avoid the vicious circle of using names which are 
interpreted only after forcing with them. 

Now we point out some properties of RCS iteration. 

1.4 CLAIM. Let 0 = (P,, Q, : i < a)  be an RCS iteration, Pa = R Lim 0.  

(1) If  / 3<a ,  then not only P , '~  P~, but if q E P o ,  p E P s ,  then q,p are 
compatible iff q, p [ fl are compatible. 

(2) If  fl, 31 are O-named [j, l( O ))-ordinals, then Max{/3, 3'} (defined naturally) 
is a Q-named [j, l(O))-ordinal. 

(3) If a =/3o + 1, in Definition 1.2, part (D), in defining the set of elements of Pa 
we can restrict ourselves to [3 =/30. Also in such a case, P~ = P~o * Q~ (essen- 
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tially). More exactly, {p Ll(q}:p EP~o , q a P~-name o[ a member o[ Q~o} is a 

dense subset o[ P,,  pl O {ql} =< p2 O {q2} iff p~ <- p2, p2 IF q~ = q2. 
(4) The following set is dense in P, : {p E Pa : for every [3 < a, i[ r~, r2 ~ p, then 

It-p~ "i[ r, [{/3}~O, r2r{/3}~ 0 then they are equal"}. 

(5) IP~ I_---(~,<~ 2':~) "o, for limit ~. 

(6) I f  IFp, '1 Q~ [ <- K", K a cardinal, then IP~+11 <= 2fe'r + K. 

PROOF. Easy. 

1.5 THE ITERATION LEMMA 
(1) Suppose F is a [unction, then for every ordinal a there is a unique 

RCS-iteration O = (P,, Q~ :i < a'), such that: 

(a) for every i, O~ = F ( Q  r i), 

(b) a'<=a, 

(c) either a ' =  a or F ( Q )  is not a (RLim Q)-name of a forcing notion. 

(2) Suppose fl < a, G, C P~ isgeneric, then in VIGi l ,  O/G~ = (P,/G,,  Q~ :fl <= 

i < a) is an RCS-iteration and RLim 0 = P~ * (RLim O/G~) (essentially). 

(3) The Associative Law 

If  ae (~ <= ~:(0)) is increasing and continuous, ao = O, O = (P,, Q, : i < a~o)) is a 

RCS-iteration Peso) = R Lim Q, then so are (P~r P~e+,/P~r ~ < ~(0)) and 

(P~/P~), O~ :a(r i < a(~: + 1)); and vice versa. 

PROOF. Easy. 

1.6 CLAIM. I f  K is regular, and I P~ [ < K for every i < K, and O = (P~, Q~ : i < 
K) is an RCS-iteration, then 

(1) every Q-named ordinal is in fact a ( Q [ i)-named ordinal for some i < a, 

(2) like (1) for Q-named conditions, 
(3) P, = I_J,<,p,. 

PROOF. Easy. 

1.7 CLAIM. Suppose 0 = (P~, Q~ :i < 8) is an RCS-iteration, 8 limit and 

p E P~, and ~ is Q-named ordinal. Then there are i < 8, and p' E P~+~, p r i + 1 <= 

p' such that p' IFp, "~" = i". The same holds for O- named condition (if Q~ c_ V). 

PROOF. Easy, by induction on the depth of ft. 

w Proper forcing revisited 

Properness is a property of forcing notions which implies that iq~ is not 
collapsed by forcing with P, and is preserved by countable-support iteration (and 
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also nl-free iteration, see [18]). In [16], [17] it was introduced, and many 

examples of forcing not collapsing N~ were shown to be proper (Nrcomplete, 

C.C.C., Sacks forcing, Laver forcing and more). It was argued that proper 

forcing is essentially the most general property implying nl is not collapsed and 

preserved under iteration. So the forcing of shooting a closed unbounded set 

through a stationary subset S of n~ (see Baumgartner, Harrington and Kleinberg 

[4]), though not collapsing nl, is excluded as if n~ = I,.Jn<,o s,,  s~ pairwise disjoint 

stationary subsets of nl,  and we shoot a closed unbounded subset through each 

to~ - S,, in the limit n~ is collapsed. Of course we can "kill" stationary sets in a 

fixed normal ideal of n~ (see e.g. [10]) and properness really demands somewhat 

more than not destroying stationary subsets of n~ (also stationary subsets of 

S,,o(A ) = {A C_ A :[ At_---n0} should not be destroyed); but those seemed techni- 

cal points. 

However, in [16], [17], [18] we were mainly interested in forcing of power nl, 

so another restriction of properness was ignored; if P is proper, any countable 

set of ordinals in V p is included in a countable set of V. So forcing changing the 

cofinality of some A, cf A > n~, to n0, are not included. In fact, there are such 

forcings which do not collapse n~, and moreover, do not add reals: Prikry forcing 

[15] (which changes the cofinality of a measurable cardinal to no) and Namba [14] 

which change the cofinality of n2 to no. 

We suggest here a property of forcing, called semi-properness, such that the 

theorems proved for proper forcing hold (when we use RCS-iteration) and it 

includes Prikry forcing. We do not know whether there is a forcing changing the 

cofinality of n2 to n0 which is semi-proper (i.e., provably from ZFC), but we shall 
have an approximation to this. (See [19] for an answer.) 

So in this section we introduce the notion, and prove the preservation under 

RCS-iteration. In this we weaken a little the assumptions: for limit 8, Q8 is not 

necessarily semi-proper, only Ps§247 (i < 8) is semi-proper. This change does 

not influence the proof, but is very useful, as we can exploit the fact that 8 was a 

large cardinal in V. Note that the useful result is Corollary 2.8. 

2.1 DEFINITION. A forcing notion P is proper if for any large enough regular 

X, and well ordering < of H(X ), and countable N < (H(x),  E ,  < )  such that 

P E N  and for every p E P f q N  there is q~P,  q>-p such that: for every 

maximal antichain I of P which belongs to N, I tq N is predense above q. 

Equivalently, for every P-name /3 of an ordinal which belongs to N, 

q Ik-p "/3 E N".  
We call q under such circumstances (N, P)-generic. 
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2.2 DEFINITION. A forcing notion P is S-semi-proper (S a P-name of a class 

of cardinals) if for any large enough regular A, and well-ordering < of H(A),  

and countable N < (H(A), E ,  < ), such that P E N, and for every p E P t3 N 

there is q E P such that: for every cardinal K E N and P-name /3 E N of an 

element of r, 

q IFe "if K ~ S then there is A E N, I A I < K,/3 E A "  

(equivalently, if S consists of regular cardinals of V, q tF~ "if K E S then 

Sup N f3 K = Sup N ( G )  tq K "). 
(Note we write A and not A, i.e., A is in V; also when K is regular in V, 

w.l.o.g. A = y for some 1' < K ; this is the main case.) 

We call q, under such circumstances, S-semi (N, P)-generic. If S = {K :in V~ K 

is a cardinal of cofinality > No} then we omit it. 

2.3 CLAIM. (1) I f  P is UCar-semi-proper, or even RUCar-semi-proper then P 

is proper, and vice versa. Moreover q in Definition 2.2 is (N, P)-generic, which 

means: if/3 E N is a P-name of an ordinal then q II-e "/3 ~ N" .  

(2) P is S-semi-proper iff the condition of Definition 2.2 holds for some A > 2 IJ'I, 

and well-ordering <.  
(3) P is S-semi-proper iff (B e -{0}, _->) is, where B e is the complete Boolean 

algebra corresponding to P. 
(4) In Definition 2.2, for r > $1o, and r > I P l, the condition is trivially satisfied 

by any q, so only S f3 {K :I~I0 < K _--< IPI} is relevant. 
(5) P is semi-proper iff P is (RUCar  vp )-semi-proper. 

PROOF. Easy. 

2.4 DEFINITION. (1) A property is preserved by RCS-iteration, if for any 

RCS-iteration 0 = (P,, Qi : i < a), if Q~ has the property (in V ~) for each i, then 

R Lim 0 has the property. 

(2) A property is strongly preserved by RCS-iteration if 0 = (Pi, Q~ :i < or) is 

an RCS-iteration and for every 3' --< fl < or, 3' not a limit ordinal, P~+I/Pv has the 

property then R Lira 0 has the property. 

(3) We can replace RCS-iteration by any other kind of iteration in this 

definition. 

REMARK. In [16] many properties were shown to be preserved by CS 

iteration. In fact the proofs show they are strongly preserved. 

2.5 CLAIM. (1) In Definition 2.4(1), (2) it suffices to consider ot = 2 or a a 
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regular cardinal and 2/</3 < a implies P , /P ,  has the property (where for 2.4(2) 3' 

is zero or successor ordinal). 

(2) I f  a property is strongly preserved by RCS-iteration then the property is 

preserved by RCS-iteration. 

PROOF. Easy; for (1) use 1.5(3). 

2.6 THE SEMI-PROPERNESS ITERATION LEMMA 

(1) Semi-properness is strongly preserved by RCS iteration. 

(2) Suppose Q = (P,, Q~ : i < a) is an RCS iteration, for any j < a for arbitrarily 
large non-limit i < j, Pj/P~ is S~.j-semi-proper (S~.j is a Pj-name). Let S = {A : A an 

uncountable regular cardinal, and II-p, "A E S~.j" for any i < j <= a, as above}. 

Then P~ = R Lim (~ is S-semi-proper provided that: 

for every limit 8 > a there is ~ < 8, such that 

(Cl) 
I1-~, "cf 8 = no or for every ~ <= i < j < 8, S,.j defined ~ cf 8 E S~.j". 

(3) In (2) we can weaken (C1) by replacing ~ by a (Q t 8)-named ordinal, and 

replace S by S = {A : for some i < j <= a, Z is an uncountable regular cardinal in 

V[Gp, ] and belongs to S~.j[Gp, ]. 

REMARK. For i < a non-limit clearly Si.~+~ is defined, so Q~ is S,.~§ 

proper. 

PROOF. (2) We prove the theorem by induction on a, for all (~'s, and even for 

forcing extensions of V. 

Let T = {(i, j ) :  S~.j is defined}. 

Note that for any /3 =< T ------ a, /3 non-limit, 0 1'[/3, T) = (P,/P~, Q, :/3 <= i < 3') 
satisfies the hypothesis on (~. Let A be big enough, < a well-ordering of H(A), 

0 ( E H ( A ) ,  N < ( H ( A ) ,  ~ ,  < )  N countable, P ~ N  hence w.l.o.g. O E N  

[because (H(A), E ,  < )~="there is 0 ,  an RCS-iteration as in 2.4(2) such that 

P, = R Lim 0 " ,  so as P~ E N < (H(A), E ,  < )  there should be such 0 in N]. 

Furthermore, let p E P~ f'/N. 

Case A :  a non-limit. 

The cases a = 0, a = 1 are too trivial to consider. For a > 1 by the induction 

hypothesis on a we can assume a = 2. 

So w.l.o.g. P2 = Qo * Q~, and let p = (po, pl) E P~ I"1 N. As clearly, Qo (E N, 

there is qoE Qo, po<-qo, which is S0.rsemi(N,P)-generic. To help us in 

understanding let Go _C Qo be generic, q0 (E Go. As < is a well-ordering of H(A), 

(H()t)[Go], (E, < ) has defined Skolem functions, and a definable well-ordering 
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(H(A)[Go] is H(A)  of the universe V[Go], we are assuming that any member of 

H(A)[Go] has a name in H(A)). 

Now let N[Go] be the Skolem Hull of N in (H(A)[Go], E ,  < ) .  So as 

QI = PdGo is S1,~-semi-proper, and Q~ E N[Go] < (H(A)[Go], E ,  < ) ,  there is 

q~ E Q~ S,.2-semi" (N[Go], Ql)-proper. Let G1 _C Q1 be generic, q~ E G~. 

So if K E/V, and K E S, then as qo is So,,-semi (N, Qo)-generic, qo~  Qo 

clearly Sup(N Iq K) = Sup(N[Go] tq K); and similarly Sup(N[Go] fq K) = 

Sup(N[G0, G,] n 
As Go, G, were arbitrary except that qo ~ Go, q, ~ G~ clearly (q0, q,) is S-semi 

(N, P2)-generic. 

Case B:  a a limit ordinal and there are /3 < a  and p' ,p  t/3<=p ', p'lt-p~ 

" c f  ot = No". 

As N < (H(A), E ,  < ) ,  0 E N ,  p E N ,  we can assume p ' E N  hence w.l.o.g. 

P F/3 = P'. Moreover  by Case A it suffices to prove that P~/P~ is S-semi-proper. 

By the induction hypothesis, w.l.o.g, cf a = ~ ,  and as 0 E N, a E N, so there 

are a .  < a, a .  < a.+~, a = U . < . a . ,  and w.l.o.g, each a.  is a successor ordinal. 

Now let {(/3., K.): n < to} be a list of the pairs (/3, r ) ,  where I< ~ N, K a cardinal 

in S and /3 a Po-name of an ordinal < K, /3 E N. We define by induction on 
n < to cond i t ions  p . ,  q.  such that: 

(1) p. E N N P ~ ,  po=p, p. <-p.+,, p.+,ra. = p .  t a . ,  

(2) q. E P~., q.§ t a. = q., q. is S~.-semi (N, P~.)-generic, 

(3) p. _--< q., 
(4) p.+l H- " c t r .  = No or/3.  < y . "  where y. is a P~.-name of an ordinal < K., 

.y. E N. 

This is easy and U.<,~q. is as required. 

Case C: a a limit ordinal and for no /3 <a ,  p 'EP~, ,  p t/3 <-P' does 

p '  II-p. "'el a = Xo". 

Let a .  E N, a .  < a.+~, U a .  = Sup N N a (as 0 E N, a E N),  a .  successor; 

and repeat the previous proof. Notice only that we can force any Q-named 

ordinal < a to be < U . < , a .  by 1.7 (like (4) above) and this insures p. = U,<,q~ 

for every n, and also that we are using condition (C1) from the lemma. 

(3) A similar proof. 

(1) Follows. 

In fact we have proved also the following 

2.7 LEMMA. If  O = (P,, Q, : i < a) is an RCS-iteration (of semi-proper forc- 
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ing), ~ a limit ordinal, and O IFe, "cf~  > No", for every i <  a(, a limit then 

OIt-p~ "cf 8 > ~t0.". Moreover I.J~<~Pi is a dense subset of P~. 

Also note that the most useful case of 2.6 is 

2.8 COROLLARY. I f  (P,  Qi :i  < t~) isan RCS iteration, and for every j < a for 

arbitrarily large non-limit i < j +1,  Pj+~/P~ is {N~}-semi-proper, and for every 

successor i <  a, It-p,+, "the power of P~ is N~" for some n < to then P~ is 

{N~}-semi-proper. I f  in addition I P~ I = I ~ [ and P~ satisfies the I P, I-chain 
condition or [P ~ l< l a  I, t~ inaccessible then P~ is semi-proper. 

REMARK. For iteration of proper forcings, there is really no difference 

between CS and RCS iterations. 

w Pseudo-completeness 

A widely used notion on forcing is ~tl-completeness, i.e., if p, _-< p,+l • P, then 

there is p ~ P, p, < p for every n. This is the simplest forcing which does not add 

reals, nor new to-sequences of ordinals. In our perspective we want a condition 

parallel to this, including, e.g., Prikry forcing. 

3.1 DEfinITION. For a forcing P, a P-name S of a set of cardinals of V, an 

e ordinal a and condition p we define a game G s (p, ) (or G~(p,P,S)):  in the 

ith move, player I chooses a A~ and a P-name fli of an ordinal < Ai, and player II 

has to find a condition pi, and a set Ai C_ Ai, I Ai I < A~, (Ai ~ V) such that: 

(A) p~ II-"iSi E A~ or A, ~ S'"_ , and 

(B) p, > p, p~ > pj for j < i. 
The play continues for a moves. 

In a specific play, player II wins iff {p} U {p~ : i < a} has an upper bound (and 

loses otherwise). 

A player wins the game if he has a winning strategy. 

NOTATION. Writing RCar, SCar, etc. for S, we mean: as interpreted in V ~'. 

3.2 CLA1M. (1) At  most one player can win the game G ~. 

(2) I f  for every A, E S and tz E SCar,/z =< hi ~/ -~ ~ S, then in the definition of 
the game, it does not matter if we demand ] Ai [ = 1 (i.e., if one side has a winning 

strategy if] he has a winning strategy in the revised game). 

(3) I f  for every cardinal tz, txl < ix <= txo ~ I~ ~ S then in the definition of the 

game, it does not matter if we demand, when A~ =/-~o, that I A~ [ < lx~ �9 
(4) Also we can replace Ai by any set B E N, [B [ = Ai. I f  A, is regular (even if 

only in V) we can demand A, E A~ (i.e., is an initial segment). 
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(5) I f  for every regular tz <- A,/z E S and there is n E -S, 1 < n < No and for every 

p, player H does not lose in the game G ~ (p, P), then forcing by P does not 

introduce new t~-sequences from A. (Usually n = 2; for n > 2 we have to work 

somewhat more in the proof.) I f  a is > to we can omit the n. 

(6) I f  n E -S, n < to, adding {m : n < m < N0} to S does not change anything ; 

also if cf A E S adding A does not change anything. 

3.3 DEFINITION. The forcing P is (S,a)-complete  if player II wins in the 

game G ~ (p, P)  for every p. 

We define (S, </3)-complete similarly. 

P is pseudo K-complete if it is (Car,/z)-complete for every (cardinal)/z < K. 

3.4 LEMMA. (1) If P is la I~-complete then it is (Car, a)-complete. 

(2) I f  P is (X N SCar, a)-complete, a <= A, and forcing by P does not change the 

cofinality of any Ix, No < tz ~ A, then forcing by P does not add new a-sequences 

from A (remember A = {/3 :/3 < A }). 
(3) In particular if P is ({2}, to)-complete (or even ({n}, to)-complete) then 

forcing by P does not add reals. 
(4) I f  P is (-S, to)-complete then P is S-semi-proper. In fact (RUCar,  to)- 

completeness suffices for semi-properness. 
(5) I f  p is (S~, a~)-complete, then it is ($2, a2)-complete provided that (V T 

$2)(::!/3 @ Sl)cf 3, = cf/3, and or2 <- a~ (for 3' natural number, 3" =/3). 
(6) P is (S, a)-complete implies (B - {0}, --- ) is (-S, a)-complete, B the complete 

Boolean algebra corresponding to P. 

PROOF. Easy. 

3.5 THEOREM. RCS iteration strongly preserves (SCar, to)-completeness, 

(RCar, to )-completeness and (RUCar,  to )-completeness. 

REMARK. We can also imitate 2.6, 2.8, and vice versa. 

PROOF. We use Claim 2.5(1), so have to deal only with iteration 0 = 

(P~, Qi : i < a )  where a = 2 or ~ = A a regular cardinal. 

Let S be any one of those three classes of cardinals, and So, -si.j be the 

corresponding Qo, Pj/PJ name (remember, the meaning of our S depends on 

which forcing it applies to). 

Case A :  a = 2  
Let p = (p0, pl) E Qo * Qa, and let Fo, F1 be the winning strategies of player II 
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in G~(po, Oo), G'~(p,, Q~) resp. By 3.2(4), we can assume F~ gives us an ordinal 

or ~ {0, 1} if the corresponding A is regular or 2 resp. 

Let in the ith move player I choose Ai and a P2-name/3i of an ordinal < L,  

and player II choose (po.,, p~.~ ) E P2, a Pl-name A~.i, and a set Ao, i CAi. Player II 

preserves the following property: 

(*) 

(a) po., II-oo"the following is an initial segment of the play of G'~(pt, Q~) in 

which player II uses the strategy F~: ( . . . ,  (Aj, ~j ), (Pl,j, A~.j) . . .  )j~,". 

(b) p0.~ II-o0"A~.~ is an ordinal ~ <A~ if A, =>No and a singleton {~,}CA~ if 

C A  " A , = 2 a n d A l . i _  0,, �9 

(c) Ao.i is an ordinal < A~ if A~ = No, and a singleton _C 2 if A1 = 2. 

(d) The following is an initial segment of a play of the game G~ o(P0, O0) in 

which player II uses his winning strategy F0: in the j th  move player I chooses Aj, 

qi and player II chooses p0,j, Ao.j. 

It is easy to see that player II can do this and that it is a winning strategy. 

Case B: a = A a regular cardinal and p EP~ and there are /3 <A, p '~Pa ,  
p ]'/3 ---< p', p'll-e, "cfA = No", 

By the previous case, it suffices to prove that P,,/P~+~ is (S, ~o)-complete, so 

w.l.o.g, cfA = ~ ,  and in fact A = No, and there are no problems. We leave the 

details as an exercise to the reader. 

Case C: a = X is regular and for every /3 < a, p r/3 iJ-,.~ "cf A > No". 

We describe the winning strategy of player II. By a hypothesis, for every 

non-limit/3 < % player II has a winning strategy Fu., [r] (a P~-name) for winning 
'~ r the game G s ( ,  P~,/P~ ). In stage n, he has defined not only p,, but 0 = ao < a~ < 

�9 . . < a , < A ,  no one of them a limit ordinal and for each t, 

(pt+~ r [at, a~+~), pt+2 f [a,, at+~), �9 �9 ", p, i' [a,, ot~+~)) is an initial segment of a play of 
the game G~.~.,+,(p~+~ ~[otl, at+~),P~,,+,/P,,,) in which player II uses the strategy 

So this is similar to Case A, using n instead of 2, and even more similar to 

Case B. The difference is that here in the end, maybe for some 0 - n a m e d  

condition q ~p~, ~ ' (q)> I,.J,<.~a~. So from time to time player II "let player I 

wait" and looked at a suitably chosen q U p,, and define p,+~ so that ~'(q) is equal 

to a P.  -name (using 1.7) and (p.+~ [ a.)ll-p. "r an+l". 

3.6 DEFINITIONS. (1) For a forcing P, a P-name S of a set of cardinals, an 

ordinal a and a condition p we define the games E G  ~ (p, P),  R G  ~ (p, P)  (or 

E G " ( p , P ,  S), RG*(p ,P ,  S)). (E stands for essentially, R for really.) 
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(2) In a play of the game E G  ~ (p, P)  in the ith move, player I chooses a 

cardinal A, and a P-name/3,  of an ordinal < As and player II has to find a set 

A, CA,, [A,I<A,,  (A, E V). 
The play continues for oL moves. In the end player II wins if he can find a 

condition p '  E P, p -< p '  such that for every i < a, p '  IF "/3, ~ As or As ~ S".  

(3) In a play of the game R G ~  (t9, P)  in the ith move, player I choose a 

condition q,, q, => p, q, => Ps for every j < i, and a cardinal As and a P-name/3~ of 

an ordinal < A, and player II has to find a condition p~ and a set A, C As, 

I A, I < ,~,, (As ~ V) such that 

(A) p, I1-"/3, E As or As ~ S",  

(B) p, => q~ (hence p, _>- p, pj => Ps for / < i). 

The play continues for ot moves, and player II wins if {p} t.J {p~ : i < a} has an 

upper bound. 

3.7 DEFir~ia-lor~. The forcing P is essentially (S, a)-complete [really (S, or)- 

complete] if player II wins in the game E G  ~ (p, P)  [ R G  ~ (p, P)] for every p ~ P. 

3.8 LEMMn. (1) The parallels o[ 3.2, 3.4 hold. 

(2) Let P be a forcing, B the corresponding Boolean algebra. Then P is 
essentially (S, a)-complete iff (B - {0}, -> ) is (Sj a)-complete. 

PROOF. Easy. 

3.9 TrtEOREM. (1) RCS iteration strongly preserves "essential (S, co)- 
completeness" for S E {SCar, RCar, RUCar}. 

(2) For example, ~I1-RS iteration preserves, e.g., "(S, N~)-completeness and real 
( S, l~lo)-completeness" for S as above (K-RS means in 2.2 we replace "countable" 
by "of  power <- K"). 

PROOF. Similar to previous ones. 

w Specific forcings 

We prove here on various forcings that they are semi-proper and even 

(S, a)-complete;  of course, otherwise our previous framework will be empty. 

Prikry forcing (adding an unbounded co-sequence to a measurable cardinal 

without adding bounded subsets) satisfies all we can expect. But  for our 

purposes, more important are forcings which change the cofinality of 1r to X0, 
without adding reals (or at least not collapsing 1r Namba [14] has found such 

forcing, when CH holds. 

However  we do not know the answer to: 
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PROBLEM. IS Namba forcing {N,}-semi proper? (Not necessarily, see [19].) 

However,  it is not necessarily ({2}, w)-complete; this is equivalent to " D ,  2 is 

Galvin" (see below). 
We deal with a generalization of Namba forcing, Nm(s (/5 a system of filters 

on sets of power 1~2), and prove the relevant assertion (4.7). Then we prove that if 

each filter in 13 has the ({N,,l~12,2},w)-Galvin property, then Nm( / ) )  is 

{1~l~, 1~I0,2}-semi-proper. The point is that when a large cardinal is collapsed to 1<2, 

if D was originally a normal ultrafilter, then after the collapse it may well have 

some largeness property like the one of Galvin. 

4.1 DEFINITION. If D is a complete normal ultrafilter on K, then the D-Prikry 

forcing, PF(D),  is: 

{(f, A ) :  f a function, with domain n < w, f is increasing, 

(Vi < n)f(i) < r, and A belongs to D}, 

(f,, A 0  ---< (f2, A2) ill f~ C_ f2, A~ _D A2, and for i E Domf2 - Dom f~, )t2(i) E A~. 

Prikry defined this notion and proved [15] in fact that: 

4.2 THEOREM. For any normal ultrafilter D over K, PF(D)  is (Car v - { r } ,  A)- 

complete for every A < K, and changes the cofinality of only one cardinal, x 

(to ,o). 

4.3 DEFINITION. (1) A filter-tagged tree is a pair (T, D )  such that: 

(a) T is a non-empty set of fni te  sequences of ordinals, closed under taking 

initial segments, and for some rloC T, v E  T, l(v)<--l(rlo) ~ v = r/or l(v); we 
call r/o the trunk of T. 

(b) D is a function such that for every 7 /~  T, D,  = D(r / )  is a filter and if 

r/0 < 7 /~  T then SucT (r/) = {v E T:  l(v) = l(r/) + 1, v r i(rt) = ,/} # o mod D~. 
(2) We call ( T , D )  normal if for every r/, Dn is a filter over Sucr(r/) .  For 

7/(E T, (T, D ) N  = (Tinl, D )  = ({v E T:  v < 7/ or 7/_~ v}, D).  

4.4 DEFINITION. For filter-tagged trees (Tt, Dr): 

(1) We define: (T1, D1) --- (T2, D2) ill 

(a) T2 C T,, 

(b) for s o m e  'r/o(~ T2, (T2,D2)=(T2,D2)l,lol and for every r/,~o_~ TI~T2 , 

SUCT2(7/)#O modDt(T/) and D,(7/ ) rSuct2( , / )=D2(~)rSucT2(~)  where for 

filter D over L and J C_/, J# O rood D, 

D I J  = { A  N J : A  ED} .  
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(2) We define: (TI, D1) =<* (T2, D2) if in addition {71o [ l : l} = T1 n {v: l(v) <= 

i(no)}. 
(3) We define: (TI, D1) <=, (7"2, Dz) if in addition (to (1)) for 7/of length _-< n, 

4.5 CLAIM. 

(T ,D) .  

4.6 LEMMA. 

For every ( T, D)  for a unique normal ( T, D'), ( T, D)  <-_ ( T, D') <- 

I[ ( T, D)  is a filter-tagged tree, which is A +-complete (i.e., each 
Dr is a A +-complete filter) and H : T --) A, A "~ = A, then there is ( T', D') <= * ( T, D)  
such that H(rl) depend only on l(r/), [or 71 E T'. 

PROOF. For any sequence 6 = (a,  : n < to), a ,  < A, we define a game G~ : 

Let  r/0 be the trunk of T. 

In the first ( = zeroth) move player I chooses A1 _C Suc,~(T), A1 -- ~ mod D~o, 

and player II chooses r/1 ~ SUC~o(T)- A~. 

In the nth move, player I chooses A,+~ C_ Suc~. (T), A,+I = O  m o d D , ,  and 

player II chooses ~/.+1E Suc~. (T)  - A.+I. 

In the end, player II wins the play if H( 'q . )  = a . .  Now we prove 

For some 6 = (a .  : n < w), a .  < A, player II wins the game 
(,) 

(i.e., has a winning strategy). 

Clearly the game is closed, hence it suffices to prove that for some 6, player I 

does not have a winning strategy. So assume for every 6 player I has a winning 

strategy F~, and we shall get a contradiction. A winning strategy is a function 

which, given the previous moves of the opponent  (T/~, �9 �9 ~q. in our case), give a 

move to the player, so that in any play in which he uses the strategy he wins the 

play. 

Now define by induction on n, 7/. ~ T such that 1(7. ) = n, 7.+1 r n = 7/. : 

To=( ), 

~/.+, E Such. ( T ) -  U F~ ( (7 /1 , " ' ,  "q. )). 

Why does 7-+, exist? For every 6, F~ ( (~1 , ' . . ,  7 / . ) ) = ~  mod D. . ,  D. .  is 

A +-complete and the number of 6 ' s  is A",, = A < A +. So U~ F~ ((~,,  �9 �9 ~q. )) = O 

m o d D . . ,  and so ft.+, exists as Suc~. ( T ) ~  m o d D . .  

But let a*  = H(7/.),  6 * = ( a * : n  < w ) ,  so 

~ . ( ) ,  7 , , " ,  F~.( (n , , . . . ,  7. )), 7 .+ , , " "  
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is a play of G~. in which player I uses his strategy F~., but he lost: contradiction, 

hence (*) holds. 

PROOF OF THE LEMMA FROM (*). Let (a, : n < to) be as in (*), and W be the 

winning strategy of player II and ~70 = ( ) for notational simplicity. 

Let To={~?ET: lO?)=n ,  and for some A ~ , . . . , A , ,  for every 0 < / = < n ,  

~7 [ l = W ( ( A , , . . . ,  A, ))}. 

It is clear that To is closed under initial segments. Now if r / ~  To, then 

Sucro(7/) ~ O mod D, ,  for otherwise if n = l(r I), and A t , "  ", A,  are "witnesses 

for r I ~E To", then player I could have chosen A,§ = SUCro(r/), and then by 

definition, W(A~, . .  ", A,+O E To and also W(A1,'" ", A.+,) ~ A.+~ = SUCto0?) 

but W ( A ~ , "  ", A,+~) E SucT (77) and SucTo(r/) = To n Suct  (r/), contradiction. 

So (To, D ) _  -<* (T, D)  is as required. 

4.7 THEOREM. Suppose 2"0 = ~ ,  T* = H <~2 , (T*, D*)  an l, I2-complete filter- 

~ C_Suc~.(n): [SucT.(n)-AI<N2} (e.g. tagged tree, and D * D D ~ - 
~ cb  D .  = D n ), (cb is for co-bounded). 

Let P = Nm(T*, D *) = {(T, D *):(T, D *) >= (T*, D *)} (we write r I E (T, D *)if 

E T, p~ = (Tt, D*) ,  etc.) with the order -<_. 

Then P does not add reals and change the cofinality of ~2 to no. 

REMARK. If we wave CH, P may add reals but it does not collapse X~; 

sometimes it satisfies the N,-c.c. 

NO'rATION. If D o m ( / ) * ) = T  let N m ( / ) * ) = N m ( T , D * ) ,  and if T -  2 , 

/ )* (n )  = {{n^(a): a ~ A}: A E D}, we let Nm(D)  = Nm(/)*) .  

PROOF. If G C P is generic, then U {r/: 7 /E  (T, D )  for every (T, D )  E G} is 

a member  of to;" (in V[G])  and as D~ D D~ b, it is unbounded. 

Now suppose 3 is a name of an to-sequence from to~, and let (T, D )  E P. We 
define by induction (T,, D) such that: 

(a) (To, D )  = (T, D),  

(b) (T., D )  _=. (T.+~, D )  (hence (T., D )  <* = (T.+,,  D)) ,  

(c) for every 7 /E  T,+,, l(r/) = n + 1, for some 5~ and 1 -< n 

(T.+~, D)t,] IFp "Z [ ! = &, ", and I is maximal. 

Clearly ( N , < ~ T , , D ) E P ,  (T.,D)<--_-(N,<~.T,,D). 

Now use Lemma 4.6 on (n ,< ,~  T., D) ,  and H, H( 'O)=  tin and get (T', D') ,  

(T, D )  _-<* (T', D') ,  H('O) = 5" for r / ~  T, l('o) = n + 1. Now for each l, there is 

(T", D"), (T', D') <= (T", D") and ti such that (T", D")IF, "3  I l = a " ,  and let 
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7/0 E T" be the trunk of T"; w.l.o.g. ! + 1 < l(r/0). By the construction ! =< l(&~), 

hence t~ = ti ~ r ! for k = l(,lo), hence we can take k = l + 1 (use (T',  D ' )  itself), 

so (T', D')II-"~ = (t~mt")(n): n < to)", for re(n)  large enough. 

4.8 PROBLEM. IS the forcing semi-proper? (See [19].) 

4.9 DEFINITION. A filter D on a set /, S a set of cardinals, we call D an 

(S, a)-Galvin filter (and the dual ideal a Galvin ideal) if player II has a winning 

strategy in the following game, for every J _C/, J #  O mod D :  (we call the game 

the (S, a)-Galvin game for D, J).  

In the i th move player I defines a function F~ from I to some A E S and player 

II chooses A, -C J A I"li<,A j such that I F~(A,)I < A. Player II wins if f '),<, A , #  O 

rood D. For simplicity we can say J was chosen by player I in his first move. 

Galvin suggests this game cb for D ~ = the co-bounded subset of A for a cardinal 

A, a = to and S ={2}. So for ot =to,  S = {2} we omit (S, t~). Note that only 

S A (I I I + 1) has any importance. 
Galvin, Jech and Magidor [6] and Laver [11] independently proved the 

following (really in [6] a slightly weaker version is proved but the difference is 

immaterial for us). 

4.10 THEOREM. I f  we start with a universe V, V ~ " G . C . H . + K  is measur- 

able" and use Levi collapsing of x to ~2 (i.e., every A, 1,I~ <= A < K now will have 

cardinality I~I~) then in the new universe V[G],  D ~  is a Galvin filter, in fact 

(Car - {X2}, to + 1)-Galvin filter. Moreover if D E V was a normal ultrafilter on K, 

then in V[ G ] there is a family W of subsets of K, A ~ W ~ A # 0 mod D, W is 

dense [(i.e. V A  C_ K) A #  f~ m o d D  ~ (3 B  E W ) ( B _ C A ) ]  and W is closed 

under intersection of countable descending chains. [ We identify here D with the 

filter it generates in V[G] which is normal.] We call this the NrLaver  property 

(omitting 1~I1 usually). 

The relevance of this is: 

4.11 THEOREM. Let S C_ SCar. 

(1) Let D be an (S, a)-Galvin filter on I, which is l~I2-complete and P = 

PP(D)  = {A -C I : A # O mod D}, order by inverse inclusion. Then P is (S, a)-  

complete. 

(2) We can replace the hypothesis in (1) above by " D  is l a I+-Laver '' and get 

even "real ( S, a )-complete ". 
(3) I f  P is Nm(T*,  D*)  (see 4.9), each D*  is an (S, to)-Galvin, l~I2-complete 

filter then P is (S, to )-complete ; and if S ~_ {~}, then P is semi-proper (as we can 

add all A, cf A > N2 to S). (Note we are not assuming CH.) 
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PROOF. (1), (2) obvious. 

(3) Also easy, but we shall do it. For simplicity let S = SCar - {•2}. By 3.4(4) it 

suffices to prove (S, to)-completeness. For every ~ E T*, let H ,  be a winning 

strategy for player II in the (S, o)-Galvin game for D *. Now let us describe the 

winning strategy of player II in G~(p, P). For notational simplicity 2 ~ $. 

Let p = ( T o , D * ) ;  w.l.o.g, the trunk of To is ( ) .  

In the first move player I chooses Ao E S and a P-name/3o of an ordinal < A. 

Player II chooses poEP, p <=*po, p0 U-~. "/30 =< /30 '' (possible by the proof 

of 4.7). 

However  if player II continues to play like this, he will lose as maybe N . T .  

(p. = (T,, D*))  will be {( )}. 

So he is thinking how to make SUCnT. (( )) ~ O rood D ]' >. If he, on the other 

hand, will demand p0 --<1 p,+l, he will have Sucnr. (( )) ~ ~ mod D *, but it will 

be hard (and in fact impossible) to do what is required when, e.g., A~ = N1. So 

what he will do is to decrease SucT, (( )), but do it using his winning strategy 

H< > for the (S, to)-Galvin game for D~ >. So in the second move player I 

chooses a cardinal A, E S and P-name/3,  of an ordinal < A,. Player II, first for 

each ~/Ep0,  l (~l)= 1, chooses p]', (p0)tn]_-<* p] ', p~lh. "/31 </3~". This defines a 

function from SucT0(( )) to A1, so player II consults the winning strategy H< >, 

gets A~ >C_A~, IA~ >l<x, and lets T1 = [-J{T'~:/3n EA~ )}. 
In the third move, player II tries also to insure that also {a~ E 1"), T, : l(ag) = 2} 

will be as required. Now player I chooses Az E S and P-name /32. Player II 

chooses for every r / E  T,, l(a~) = 2 a condition p~', (Pl)~ <* p~, p~lI-p "/32 --</3n" 

So for every 7 /~  T1, l ( r / )=  1, we have a function from Suc, (T~) to A2, so 
consulting the strategy H~, player II chooses A ~ C A, [A ~[ < A. We can assume 

A ~ is an initial segment, and for A < 1% the number of possible A ~ is finite. So 

now the function 7 / ~  A~ (7 E Sucr,(( ))) is a function whose domain is in 

{7/~ T~ : l(r/) = 1} (remember, by 3.2(6), if n ~ S, n < to then w.l.o.g. {m : n _-< 

m < ~I0} E S). So player II can consult again the strategy H< >, and find A ~ >, and 
1 1 2 let T2= U { T ~ :  1(-0)=2, t / E  T~, /3. ~ A ~ , ,  A, t l  EAnm = A~ >}. 

The rest is very clear. 

w Chain conditions and Avraham's problem 

Chain conditions are very essential for iterated forcing. In Solovay and 

Tenenbaum [20] this is the point, but even when other conditions are involved, 

we have to finish the iteration and exhaust all possibilities, so some chain 

condition is necessary to "catch our tail." In our main line we want to collapse 
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some large cardinal K to N2, in an iterated forcing of length (and power) K, each 

Pi of power < r. So we want that r is not collapsed, and the obvious way to do 

this is by the K-chain condition. We prove it by the traditional method of the 

A-system. For general RCS iteration, we have to assume x is Mahlo (i.e., {A < r 

strongly inaccessible} is stationary) and for iteration of semi-proper forcings we 

ask for less. 

Now we are able to answer the following problem of U. Abraham: 

PROBLEM. Suppose G.C.H. holds in V. Is there a set A _C N~ so that every 

to-sequence from N2 belongs to L [ A ] ?  (See [1] for partial positive results.) 

For this we collapse some inaccessible r which is the limit of measurable 

cardinals, to Nz, changing the cofinalities of arbitrarily large measurables < K 

to No. 

5.1 DEFINmON. (1) For any iteration ( ~ = ( P ~ , O i : i < a ) .  We call /5= 

(p~ :i E S) a A-system if, for i < j  in S, p~ [" i = Ps rj and p~ E Pj. We call p~ r i the 

heart of the A-system, hr([3). 

(2) For a forcing P, we call/~ = (p~ :i E S) a/x-weak A-system if pi E P, I,.J,~si 

is a regular cardinal r, and there is a condition q -- hr(/~) (the heart of p) such 

that for every r, q _-< r ~E P there is t~ < r satisfying: if a < or, E S for i </x~ < / z  

then {r} U {p~, : i < p.i} has an upper hound in P. 

5.2 CLAIM. An y  A-system in an RCS iteration as in Definition 5.1, is a 

Nl-weak A-system. 

5.3 THE CHAIN CONDITIONS LEMMA. (1) Suppose Q = (P~, Q~:i < r )  is an 

RCS iteration, r regular, I P~I < K  [or i < r  and let A = { A < K : A  strongly 

inaccessible}. Then for every sequence ~ = (pj : j E B C_ A ), we can find a closed 

unbounded C C_ K and a pressing down [unction h on C tq B (i.e., h ( j ) < j )  such 

that[or any or, (pj :j  ~ B  N C ,  h ( j ) = a )  is a A-system. 

(2) I[ every Q~ is semi-proper we can replace A by A ' =  {i :Oil-e, c f i >  No}, 

provided that r is regular. 

Before we prove the lemma note 

5.4 COROLLARY. (1) I[ in 5.3, A is stationary, then P, = R Lim t~ satisfies the 

K-chain condition. 

(2) I f  D is a normal ultrafilter on r, B E D, B G A then (in 5.3) [or some 

B'  ~ D, (pj : j E B')  is a A-system. 

PROOF OF 5.3. (1) If B is not stationary, the conclusion is trival, so suppose B 

Sh:119



VOI. 40, 1981 ITERATED FORCING 21 

is stationary. So necessarily K is strongly inaccessible (as every member  of A is 

and BC_A) ,  hence by 1.6, P, = a ~ R L i m 0  = U,<,P~. As I/gi[<K for every 

i < K, there is a one to one function H from P, onto K. Again as I P~ I < K for 

i < K, clearly 

C = {i : H maps U PJ onto i and for j < i, j E B implies p~ ~ P~ } 
j< i  

is a closed unbounded subset of K. We now define the function h with domain B: 

h( i )= H(p~ ~ i). 
We first prove that h is pressing down. Clearly p~ t i ~ P~, and if i E B Cl C 

then i is strongly inaccessible and (Vj < i)lPj[< i, hence by 1.6, Pi = Uj<,Pj,  

hence p~ �91 E U~<,Pj. So if i E B  M C, p~ [ i  E Uj<~Pj hence H(p~ ri)< i. 

Now clearly i < j E B N C ,  h ( i ) = h ( j )  implies pj[ j=p~r i ,  and by C's  

definition p~ ~ P~, so we finish. 

(2) The proof is similar, using 2.7. 

5.5 THEOREM. Suppose CON(ZFC +"there is an inaccessible cardinal K 

which is the limit of measurable cardinals"). 
Then the following theory is consistent: ZFC + G.C.H. + (VA C_ ~)(::l&)(& an 

to-sequence of ordinals < ~2, & if- L [A I)- 

PROOF. We start with a model V of Z F C + " K  is inaccessible, and limit of 

measurables." W.l.o.g. V satisfies G.C.H. (see [8]), and we define an iterated 

forcing (P~, Q~ : i < K), such that l P~ ! < K. We do it by induction on i, and clearly 

(see 1.4(5) for i limit) the induction hypothesis I P~l < K continues to hold. If 

O~ =(P~,Qj : j  < i) is defined, let K~ be the first measurable cardinal >IP, 1, 
where P~ = R Lim (~,. It is known (see e.g. [8]) that K, is measurable in V P,, and 

any normal ultrafilter on it from V is an ultrafilter (and normal) in V"  too. By a 
hypothesis K, < K. SO let Q~.0 be PF(D~), D~ E V any normal ultrafilter on Ki, and 

Q~.I be the Levi collapse of K + to N1 (i.e. 0~.~ = {f : Dom(f)  is an ordinal < ~l~, and 

Range(f)  C Ki~}, with inclusion as order). We let Q~ = Q~.0* Q~.~. 
Now by 4.2, Q~.0=PF(D~) is (CarV-{K},to)-complete,  Q~.~ is (CardV, to) - 

complete trivially (by 3.4(1)) hence by 3.5 Q~ is (Card v -{K}, to)-complete. 

Hence by 3.5, 2.7, P, = RLim(P~, Q~ : i E K) does not change the cofinality of 

Nj and is ({2, n0, N~}, to)-complete, hence it does not add reals. By 3.4(1) each Q~ 

is semi-proper, so by 3.5 PK is semi-proper. By 5.3(2) P, have the K-chain 

condition, so clearly if (3;, C P, is generic, ~vl~j = ~,~, ~[~.~ = K, V, V[G,] have 

the same reals, and V[G,] satisfies G.C.H. 

Now if A C to~, then as P, satisfies the K-chain condition, A is determined by 
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Gi =ae, G, f'l Pi for some i < r. By 1.2, G, is generic for P~, so L[A] C V[G~], 
but in V[Gi] an oJ-sequence from $1~,t,~.l is missing: the Prikry sequence we shoot 

through K,+I, which was measurable in V[G~]. 

w Reflection properties of 502: refining Avraham's problem and precipitous 
ideals 

In the previous section we have collapsed a large cardinal K to N2, such that to 

"many"  measurable cardinals < K we add an unbounded oJ-sequence. How- 

ever, "many"  was interpreted as "unbounded set". This is very weak, and, it 

seemed, will not usually suffice. 

Notice that it is known that if we collapse a large cardinal by Nl-complete 

forcing then S~ _def {8 < $12 : cf 8 = MI} has reflection and bigness properties, e.g., 

those from Theorem 4.10. However,  for S~, we get nothing as it is equal to 

{8 < $12: in the universe before the collapse, cf 8 = No} and it is known, e.g., that 

on such a set there was no normal ultrafilter. 

So we can ask whether S~ can have some "large cardinal properties".  The 

natural property to consider is precipitous filters D on $12 such that S~ E D. Such 

ultrafilters were introduced in Jech and Prikry [9]. 

Their important property is that if we force by PP(D)  (see 4.11), G is generic, 

the domain of E is I, and in V[G], E D_ D is the ultrafilter G generates (on old 

sets), then VI/E (taking only old f:I---~ V) is well-founded. Jech, Magidor, 

Mitchell and Prikry [10] proved that the existence of a precipitous filter on $11 is 
equieonsistent with the existence of a measurable cardinal, and also proved the 

consistency of "D,,, ( =  the filter of closed unbounded sets) is precipitous". 
(Notice that the Laver property is stronger.) Magidor asked whether " Z F C  + 

G.C.H. + there is a normal precipitous filter D on $12, S~ E D "  is consistent. 

We answer positively, by collapsing suitably some K to $12, letting D = 
D,~ + A, A = {A < r : in the old universe A is measurable}. This works if A is 

stationary. This was proved previously and independently, using much larger 

cardinals, by Gitik. 

We can also consider the following strengthening of Avraham's problem: 

PROBLEM. If V satisfies G.C.H., does there exist A _C $12 such that, for every 

8 < $12, every to-sequence from 8 belongs to L ( A  Iq 8)? 

Again we have to change the cofinality on a stationary set, and to iterate 
forcing such that stationarily often we change the cofinality of $12. 

The first time, the collapse of some A to $12 is Levi's collapse so by 4.11, 4.10 

we have a (Card v, to)-complete forcing Q~ doing this; but later the collapse is not 
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even Mrcomplete. However,  looking again at 2.7 and Theorem 3.5 on iterated 

(Car, to)-complete forcing, we see that less is needed. If 0 = (P~, Q~ :i < A )  

collapses a to N~, it suffices that (RLim O/P~§ Q~ is (Card v~'+', to)-complete. 
So this is what we shall do. But for clarity of exposition, we first prove a weaker 

lemma. 

6.1 LEMMA. Suppose D is a normal ultrafilter on A, 0 = (P~, Q, : i < A )  an 
RCS iteration, [ P~ I < A. Suppose further P, = R Lim 0 is ({2, N0, N~}, to )-complete 
and collapse A to N2. Consider the following game G(po, .4o), for po E P~, A o a 

P~-name of a subset of A, polFp~ " A o ~ O  mod D " .  

Player I chooses P~-names [3, (of an ordinal < N~) and F~ (a function from A 

to N~). 
Player H has to choose p, E PA, po <= p~ and 3,, < to~ (and/3~ < to~) such that 

p, II-p, "A,  = A o fq F~-' ({3',}) ~ O mod D, and/3, =/3,". 
In the n-th move, player I chooses Px-names /3,, F,, and player H chooses p,, 

p._~ <= p. and 3", < to, and/3, < to, such that p, Ibp~ " A ,  = A._~ tq F~ ~ ({3'. }) ~ O 

mod D, and/3, =/3, ". 
In the end,  player H wins if U . < , p ,  E P ,  and U . < ~ p ,  It-p~ " I - I , < o , A , ~ O  

mod D " .  
Our conclusion is that player H wins the game. 

PROOF. So let po E P,, .4o a P,-name, p0 IFp~ ".4o # O mod D "  and we shall 

describe the winning strategy of player II in the game G(po, A0). Let the winning 

strategy of player II in G(~.~o.,,,~(P, P~ ) be H[p]. By 3.2(2), we can assume that 
player II really determined the value of the ordinals given to him. We can also 
assume player II is given by player I a pair of names of ordinals (instead of one). 

Let B o = { i < A :  there is p_->po, p lFp~"iEAo"} .  Now B o E D  because 

otherwise, as D is an ultrafilter in V, B0 = O mod D, since p0 tt-p, ".4o C_ Bo" Coy 
B's  definition) we have po II-p~ ".4o = O mod D ", contradiction. 

Now for every i E B ,  there is po.i EP~, po<=po.i such that po.i II-p~ "i  E Bo". 
So let player I first move in G(po, .4o) by choosing/3~ a P~-name of an ordinal 

< N~, and F, : A ~ N~, F, a PA-name. Now for each i E Bo, player II simulates a 

play of the game (7,- = G(~,,~,N,)(po.,, PA). He plays (/3~, F( i))  (i.e., a pair of names 

of ordinals < N,) for player I,, and by the strategy F/[po,] gets a move for player 

IL : pL~ E P^, po.i < p , . ,  and a,.i < 1~I,, e,,~ <N~ such that pLi I~-e, "/3, = a~.~ and 

F~(i) = e,.~ ". Now for some B, C Bo, B, ~ D, and (p~.i : i E B~) is a A-system with 

heart p~ (see 5.1), and we can also make (a~.~,e~.~:i E B , )  constant (a~, e~) (for 

i E B,). 
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Now player II can make his move in G:  he chooses p~, al and e~. It is easy to 

check this is a legitimate move. 

So player II continues to play such that after the nth move: 

(*), there are B, C B,-1 C_ . . -  _C B1 C B0 all in D, pt.~ E P~ for 0 =< I =< n, 

i ~ B , ,  po., <=p,.~ <= "'" <=p,~, (p~. ,: iEB,)  is a A-system with heart pt (for 1, 

0 < 1 < n), po = pl =< "'" < p . ,  and at the lth move player I chooses fit, E ,  and 

player II chooses pl, al, el and (for 1 = 1, n and i E BI) pl.~ It-"al =/31 and 

E ( i )  = e,". Also for each 1 < n, i ~ B,, the following is an initial segment of a 

play of the game G~.,,o.,,o~(Po.,, P~), in which player II uses the winning strategy 

H[po.,]: 

(fl,,F,(i)), (pl,i, oe,,el), (flz,F2(i)), (p2.,,ot2,e2), " " ,  (pl,,,al, el). 

It is easy to check that player II can use this strategy; moreover, by the choice 

of H[po,~], for every such play, p~ = U~<~,p~.t EP~, for every i E f"I .B.  ; as 

B~ E D, f"I.<~,B. E D and clearly (p, : i E O.<,~B. ) is a A-system with heart 

p = U,pl,  and so by 5.2 p It-e, "the set of i ~ ("1~ B. such that p, is in the generic 

set, i s # 0  m o d D " .  Also p II-j., "for every i E f ' ) .B . ,  F~(i)=el".  So clearly 

player II has won the play, hence the game. 

REMARK. We could have used any S, S _C {2, rio, tt~} instead of {2, ~0, l~12} and 

get a parallel result. 

6.2 LEMMA. Suppose A is measurable, D a normal ultrafilter over A, Q = 
(P~, Q, : i < A) an RCS iteration, P~ is ({2, ago, N~}, to)-complete and I P~ i < A for 
i < A .  

Then P~ * Nm(D)  is ({2, N0, NI}, to )-complete. 

PROOF. Just combine the proofs of 6.1 and 4.11(3). 

6.3 DEFINITION. A filter D on a set I (in a universe V) is called precipitous if 

the following holds: 

It-prto~ "there are no [. :I--~ ordinals, f,  E V, 

such that [,§ < ~ f ,  for each n"  
where 

(i) PP(D)  = {A C_ I : A # O mod D} ordered by reverse inclusion, 

(ii) E is the filter generated by the generic set of PP(D),  

(iii) f < s  means {a E I : f ( a )  < g(ot)} E E. 

REMARK. The following is an equivalent definition A: filter D over I is 

precipitous if player I does not have a winning strategy in the following game 

PrGm(D) .  
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First move player I chooses A~ C / ,  A~ ~ O mod D, 

player II chooses BI C A~, Bt ~ O mod D ; 

nth move player I chooses A,  C B,.~, A,  J ~ mod D, 

player II chooses B, C A,,  B, ~ O mod D. 

Player II wins if n , < ~  A,  (which is = n ,<~ B,)  is non-empty (not necessarily 

~ O  rood D). 

See Jech and Prikry [9], and Jech, Magidor, Mitchell and Prikry [10]. 

6.4 THEOREM. Suppose "ZFC + G.C.H. + K is strongly inaccessible and A = 

{A < K :A measurable } is stationary" is consistent. Then: 

(1) The [ollowing statement is consistent with ZFC + G.C.H.: 

[or every B C_ •2 [or some 8 (in [act 8 E A ), cf 8 = ~0, but in L [ B n 6 ], 8 is a 

regular cardinal > 1~. 

(2) I[ in the hypothesis A ~ D, D is a normal ultrafilter on K, then there is a 

normal precipitous ideal on X2 to which S~, belongs. 

PROOF. So let V be a model of Z F C + G . C . H . ,  and let K be a strongly 

inaccessible cardinal, such that A = {A < r : A measurable} is stationary. 

We now define by induction on i < K forcing notions P~ E V, Q, E v~  such 

that IP~]< K, (Ps, Qs :J < i) is an RCS iteration. So by 1.5(1) it suffices to define 

Q, for a given (Pj, Qj :j  < i). 

Case I. i = A is a measurable cardinal, such that for every j < ;t, I Ps I < )t. 

In this case let D, be a normal ultrafilter over ;t, and Q~ = Nm(D~). 

Case 2. Not case 1. 

In this case let Q~ be the Levi collapse of (21e, I) v to N~, i.e., { / ~  V ~ : f  a 

countable function from oJ~ to 21e, I}. 

Now by 3.5 and 6.2 it is easy to see that P K = R L i m ( P ~ , Q ~ : i < K )  is 

({2, ~o, 1~I~ }, (o)-complete, and by 5.4 it satisfies the K-chain condition. 

So clearly in V e* G.C.H. holds, every real is from V, and I~ = I<~, ~z = K. Also 

if )t E A, then (Vi < )t)lP~ t < )t (prove by induction on i for each A). Let G C P~ 

be generic, and we shall prove that V[G] satisfies the requirements: 

Part 1. So let B C ~12, and let B E V be a P~-name for it. Then C~ = {8 < 

K : G n P8 determine B n 8} contains Co = {6 :(Vi < 8), B N {i} has a P~-name 

for some j < 8} which is closed unbounded in K, and Co E V, because PK satisfies 

the r-chain condition. 

Now if )t E Co n A, then we know I P~ I < )t for i < )t, so Q~ = Nm(DA), hence 

in V[G],  cf )t = 1'to. On the other hand, clearly G n P~ is a generic subset of P,, 
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by 5.4 P~ satisfies the h -chain condition, so II-p, "cf )t = A ". Hence in V[G tq P~], 

A tq A is present, but h is a regular cardinal > N~. So also in L [A tq )t ], h is a 

regular cardinal >N~. 

Part 2. The following is essentially the same proof as [10] who do it for the 

Levi collapse; and it suffices for (2) of the theorem. It follows from Magidor [12] 

theorem 2.1, and is included for completeness only. 

6.4 LEMMA. Suppose K is measurable, D a normal ultrafilter over r, O = 

(P,, Q~ :i < K) an RCS iteration, [P , [<  r for i < K, P = P, = R L i m  0.  

Then in V p, D is a precipitous filter. 

PROOF. If not, in V p there is A o E P P ( D ) ,  Aol~-~p(o)"(f.:n<to) is an 

to-sequence of functions from r to ordinals which belong to V" which is 

decreasing rood E, ./. E V " ' ' .  

So there is p E P a P-name A~, and P * PP(D)-names ['o of the f .  such that 

p Ib~ ",40, f ' ,  are as above". 

Let Bo = {A < r : A is strongly inaccessible and for some p'  -> p, p '  E P, and 

p'  II~e, "h  E A o"}. 
Because D is normal, X measurable, {A < K : A strongly inaccessible} E D, 

hence Bo ~ D. For each A ~ B choose p~.o, p < p~,o E P, p~.o IF "A E A o". By 5.3 

there is BA_C Bo, B~ E D such that (px.o: A E B[,) is a A-system with heart po. 

Now we define by induction on n < to, p~.., p,, p',, B,, B ' ,  A,,  g,, ct,,, such 

that 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

(p~.. : A ~ B'.) is a A-system of members of P with heart p ' ,  

B.+,C_B'C_B., B . §  
p.+j>=p'.>-p, all in P, 

p~..+~_->p~., both in P, g. a P-name of a function from K to On, 

p... Ibp "A ~ .4. and g. (h) = a~..", a~.. < a~,._t for n > 0, 

A ' = { A  EB'o:p~.. is in the generic set of P}, 

p.§247 and A.+,C_A'. and [A.+,ll-pp~o)"f.=g. ''] and 

A..1C_{i < K : g.(i)<g._~(i)}",  

(8) B.+~={A E B . :  there is p'>=p~,., p'>=p.+~, such that for some a, 

p'J~-"h EA.§ and go(A)= a"}. 

The definition is easy. 
Now as B ' . E  D, I").<,oB" ~ O, and if A belongs to the intersection, (a~,. : n < 

to) is a strictly decreasing sequence of ordinals, contradiction. 

REMARK. Really precipitousness of ideals on x is preserved by K-C.C. forcing. 
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w Strong preservation and properness 

In this section we list various properties which are preserved under RCS 

iteration. The most important one is the weakest strengthening of "not adding a 

real" which is preserved by RCS iteration. As the proofs are as in [18], we do not 

repeat them. 

7.1 DEFINITION. (1) For a--< to,, forcing notion P, and a P-name set S of 

cardinals we say that P is S-semi a-proper if for any large enough regular A and 

well ordering < of H(A), and increasing continuous sequence N~ (i < a )  of 

elementary countable submodels of (H(A), E ,  < )  such that (N~ :j  _-_ i)~/V~+, 

for i < a  and for any p ~ N 0 f q P  there is q E P ,  q=>p, which is S-semi 

(N~, P)-generic for each i < a. 

(2) We call P S-semi ( < to~)-proper if it is S-semi a-proper  for every a < to~. 

7.2 DEFINITION. (1) The forcing notion P has the to ' -bounding property, if 

for every generic G C_ P and function f : to --~ to from V[G], for some g : to --~ to 

from V (Vn) f(n) <- g(n). 
(2) The forcing notion P has the Sacks property, if for every generic G C P 

and function f : to ~ to from V[G], and function h : to ---* to which diverges to 

infinity [i.e. (Vn)(3m)(Vk)(k >-_ m ---* h(k)>-_ n)] there is g E V a function from 

to to finite subsets of to, s.t. (Vn)lg(n)l <-h(n), and (Vn)f(n)E g(n). 
(3) The forcing notion P has the Laver property ii for every generic G C_ P 

and f : to ---* to from V[G] and h : to --~ to from V which diverge to infinity, and 

function f ' :  to -o to from V such that (Vn) f(n) <-<_ f'(n), there is a function g E V 

from to to finite subsets of ~o such that (Vn) Ig(n)l<=h(n), and (Vn) 

f(n) E g(n). 

REMARK. The classical example of a P with the to~ property is 

adding a random real. Of course a forcing which is l~ll-complete, or even just 

does not add reals, has all those properties. 

The Sacks property is satisfied by Sacks forcing and also by Silver's forcing. 

The Laver property is satisfied by Laver forcing, and has a role in his proof of 

the consistency of the Borel Conjecture: Every set of strong measure zero is 
countable. 

7.3 THEOREM. In 2.6 we can replace S-semi proper by each of the following 
properties (retaining the original S in all substitutions): 

(1) S-semi a-proper (a < to,), 

(2) S-semi to-proper and to~ 
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(3) S-semi w-proper and Sacks property, 

(4) S-semi w-proper and Laver property, 

(5) S-semi to-proper and P-property. 

PROOF. Like [16], [19]. 

REMARK. We can define suitable games; the property will be the existence of 

a winning strategy of the favorite player. But the preservation theorem is 

weaker. For example, the Sacks game for p, f, P (p E P , . /E  ~to) is as follows; in 

the n th move player I choose a P-name ~', of a natural number and player II a 

set W, Cto. In the end player II wins if ]W.  1=< f(n) and there is q,p  <=q ~ P ,  

q II-e " r .  E W."  

REMARK. Also the theorems from [16] on iterated forcing not adding reals, 

holds, provided that the sequence of completeness filters is in the ground model 

and each filter is generated by =< 2 *~ sets. 

w Friedman's problem 

Friedman [5] asked the following 

PROBLEM. IS there for every S C_ S~ a closed set of order type to1, included in 

S or S ~ - S ?  We call this statement Fr(N~). 

Van Liere proved that Fr(N2) implies N2 is a Mahlo strongly inaccessible 

cardinal in L ;  and Fr(l%)+ not Fr(N2) (N~ regular > N2) implies 0" exists. We 

prove the consistency of Fr(N2)+ G.C.H. with ZFC, modulo the consistency of 

some measurable cardinal (of order 1). 

8.1 DEFXNmON. We define by induction on n what are a measurable cardinal 

of order n and a normal ultrafilter of order n. For n = 0 those are the usual 

notions. For n + 1, D is a normal ultrafilter of order n + 1 on r if {A < K : A is 

measurable of order n } U D and it is a normal ultrafilter. We call K measurable 

of order n + 1 if there is an ultrafilter of order n + 1 on it. 

8.2 LEMMA. Suppose D is a normal ultrafilter on r, 0 = (P,, Q~ :i < K> an 

RCS iteration and I P~ I < K for every i < K, and A = {A < r : II-p. "cf A = No"} 

belongs to D. 

Suppose [urther that G C_ P, is generic, S C_ r, S ~ V[ G ], S ~ 0 mod D, and (in 

V[G]) let 

Q. = {f : the domain of [ is some successor ordinal a < N1, 

f is into S and it is increasing and continuous}. 
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So let S, Q. be P.-names for them and w.l.o.g. IFp. " S ~ O  m o d D " .  We then 
conclude : 

(1) if P. is {N~}-semi-proper, then so is P, * Q,, 
(2) if PK is essentially ({2, No, M,}, ~o)-complete, then so is P, * Q,. 

PROOF. (1) The problem is that Q. destroys a stationary set, so it is not 

proper, though it obviously does not add to-sequences. So let S, Q, be P,-names 

for S, O.. 
Let A be regular, big enough, Q, Q., S E H(A), let < be a well ordering of 

H(A) and let N < ( H ( A ) ,  E ,  < )  be countable, p,q, Q, S, Q,, EN ,  ( p , q ) E  

P. * Q~, and we shall prove the existence of an {Nl}-semi (N,P, * Q, )-generic 

condition _-> (p, q). In V (hence in H()t)), we let 

So = {)t E A : there is p'  E P,,  p _-__ p', p '  IF "A ~ S"}. 

As in previous cases So ~ D, and for each )t E So let px.o ~ P,, p~.o II-";t E S"  

and for some S~ C_ So, S~ ~ D, and (p~.o: ;t ~ $1) is a A-system (see 5.3). As N was 

an elementary submodel we can assume So, S~, (p~.o:)t E $I) and its heart po 

belongs to N (but of course not all included in N). Let $2 = ~ {S ' :S 'E  D and 
S' ~ N}, so clearly $2 = {a, : i < K} C_ S~ is an indiscernible sequence over N U ~o, 

and it belongs to D. Clearly, p =< po. 

Let N f3 P, C P, ,  $3 = $2 - (/x + 1) (p. < r, of course). 

Let X ~ $3, and let N* be the Skolem Hull (in (H(A), E ,  < ) )  of INI U{X}, as 

{a, : i E $2} is indiscernible over I N I U ~o,. Clearly 

N* f3 00, = N CI ~ol. 

Clearly P~ ~ N* (as (P,, Q, : i < r )  E N*, X E N*) and P~ is {M~}-semi proper 
(as P~ "~ P.), and po~N*.  Hence there is p, EPx,  p~>=po, which is {M~}-semi 
(N*, Px)-generic. As IN*[ n co, = I N l n  o~,, p, is also {M,}-semi (N, Px)-generic, 
hence {M~}-semi (N, P.)-generic. 

As po.~ r X = po---- p,,  Po,x U p, E PK ; and for simplifying the thinking, let 
G C P, be generic, Po.x U p, E G. Clearly Q. [ G ] E N* [ G ] < (H()t) [ G ], E ,  < ), 
we can choose f, E Q , [G]  (n < to) increasing, fo = q[G], so that for every dense 

D C_ O,[G] N N*[G]  some f, belongs to it. Now f ~ I..J,<,,f, u {(,5, x)} E Q.[G] 

(8 = IN* I N I N~I) as po,~ E G. So clearly 

(po.~ U p , , f ) E P .  . Q .  

is as required. 

(2) By 3.8(2) w.Lo.g. P is (S, to)-complete, where S will be {2,~,M~}; let 

P = P . , Q = Q . .  
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Let (p, q ) E  P *  Q and we shall describe the winning strategy of player II in 

EO (p, P �9 Q). 
Suppose in the nth move, player I chooses the P * Q-name/3 .  of an ordinal 

< N~, and player II will choose/3. .  Player II will do the following: after the nth 

move he will have (p., q . ) E  P * Q for every increasing sequence , / o f  ordinals 

< K of length _-__ n such that: 

(1) (p< ,, q())  = (p, q), 

(2) (p.,,, q., ,)  -<_ (p., ), 
(3) (p., q. )IF "/3.., --/3. ", 
(4) for some A. E D, for every increasing 7/C A, /3. =/3.,  

(5) p. II-e "Sup Rang q. > Max, r/(l)", 

(6) let/3(n, r/) be the P-name of the first/3 < X, such that some q : q. = q E O 

force (in Q)  /3. =/3, 

then/3(0, ( ) ) ,  p . . , / 3 ( 1 ,  r/r 1), P.r2,"" ",/3(! - 1, r / r ( !  - 1), p..,  is a beginning 
of a pray of G~(p,f) in which player II uses his winning strategy. 

Clearly player II can do the above and it gives him a strategy. We have to 

prove that he wins by it. So let A = r"l. A. ,  and for r / E  ~A increasing, we know 

that {p. . :  l < ca} has an upper bound (by 6) so let it be p..  

Let P be ( B -  {0}, _->), B a complete Boolean algebra. 

Let K = { T :  T a tree of increasing sequences from A, closed under initial 

segments, ( ) E T  and for every *lET, {iEA'~I^(i)ET}ED} (we can 
replace D by D. + A or D~ ~ + A in this context). Let Lim T = {rl : l(r/) = ca, 

r/I k E T for every k < o2}. So K is closed under intersection of < K elements. 
7 For each T E K ,  T/ET,  let a .  be Sup{p.:  u E L i m T ,  r / = u I l ( ~ ) }  (in the 

Boolean sense). Clearly a r decreases with T, so as B satisfies the K-chain 

condition, for some T, a~ ) is minimal (i.e., T'C_ T, T' E K implies a[ '  ) = a{  )), 

and similarly for every r / E  T. 

Obviously, 
(1) r r a . -  Sup.^.)era.-<o (hold for any tree), 

(2) 0 < b < a r implies {i : b N a ~^.) / 0} / O rood D (by T's minimality). 

Let T*_ = {7/: a.T belong to the generic set of P}. Hence 

(3) a [  >ll-~"for any rl E T* for K,i, "o^(i)E T*". 

Now if G C P is generic, a [  )E G, S[G]  is a stationary subset of S~,, and 

C = { 8 : i f  rl E~>8, then Rangeq .  [G]_CS} is closed unbounded. Hence for 

some r/, 8, the following holds: 8 E S[G]  f'l C, (Vk)rl I k E T*, and U,<~ rl(l) = 
8, and let q* = U,<~ q . ,  o {(Sup Dora q, 8}} E Q. Let q* be the P-name of q *. It 

is easy to check (a~ r ),q*) is as required. 
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8.3 THEOREM. If  " Z F C  + G.C.H. + there is a measurable of order 1" is 

consistent, then so is " Z F C +  G.C.H. + every stationary subset of 1,12, or its 

complement, contains a closed copy of to~". 

REMARK. We do not try to get the weakest (it is enough that {A < K: A 

measurable of order 0} is weakly compact). It will be interesting to find an 

equi-consistency result. 

PROOF. So let V satisfy G.C.H., B _C r the set of measurables of order 0, not 

1, and for every/~ E B, let D ,  be a normal ultrafilter on tx and <>a holds, and 

(S~ : S~ C_ H(/x), ~ U B) exemplifies it. Moreover, if S C_ H(K), q~ a 1r~ sentence, 

(H( r ) ,  E ,  S ) ~  q~ then {/x E B : S O H(/z)  = S,, (H(/~), E ,  S,,)~ q~}~O. 

We define an RCS iterated forcing (Pi, Q~ : i < r )  by induction on i, such that 

I P~ [ < K, and for every measurable /x < r, i < tx ~ I P~ [ < p.. 

If we have defined Qj for j < i then Pj (j =< i) is defined. If i E r - B, Q~ is {.f: 

f a countable function from 1~I~ to [P, I++ 1~2}. 

If i E B, Si = (p, S), p E Pi, S a P~-name, p IFp, "S is a subset of S~, and S is 

stationary". Then we let Q, be as in 8.2 if p is in the generic set, and trivial 

otherwise. 

We leave the checking, that the forcing works, to the reader. In fact we get 

every stationary S _C So 2 contains a closed copy of to1. 

8.4 THEOREM. Suppose " Z F C  + there are two supercompact cardinals" is 

consistent. Then so is ZFC + G.C.H. + "Fr(Na) for every regular I~I," (or > 1). 

PROOF. Let V ~ G.C.H. + r < A + K, A are supercompact. 

By a theorem of Laver [11] we can assume no K-complete forcing will destroy 

the supercompactness of K. The following is known: 

FACT. If I~L ----> A is regular, S _C S~ is stationary, then for some IX, r < ~ < A, 

< ~L, cf ~ =/~ and S O 8 is stationary. 

Let P be the Levi collapse of A to i< +. By Baumgartner [2], in V P, for every 

stationary S _C A n s~, for some 8 < X, cf 8 = r (in VP), S O 8 is stationary. 

Even more easily, if in V, r < N~ =< A, X~ regular, S C_ So ~ stationary, it remains 

stationary in V ~. Let Q be the forcing from 6.3, V P'~ is as required. 
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