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Abstract

For any cardinal: let Z* be the additive group of all integer-valued functiofsu — Z. The
supportoffis[f1={i € u: f(i)=f; # 0}.AlsoletZ,=2Z"/Z~*withZ="={f € Z" : |[f]1| < u}.
If u< y are regular cardinals we analyze the question when onZ,) = 0 and obtain a complete
answer under GCH and independence results in Section 8. These results and some extensions are
applied to a problem on groups: Let the nofi@|| of a groupG be the smallest cardinal with
Hom(Z,, G) # O0—this is an infinite, regular cardinal (ap). As a consequence we characterize
those cardinals which appear as norms of groups. This allows us to analyze another problem on
radicals: The normjR|| of a radicalR is the smallest cardinal for which there is a family{G; :
i € u} of groups such thaR does not commute with the prodtﬁieﬂ G;. Again these norms are
infinite, regular cardinals and we show which cardinals appear as norms of radicals. The results extend
earlier work (Arch. Math. 71 (1998) 341-348; Pacific J. Math. 118 (1985) 79-104; Collog. Math. Soc.
Janos Bolyai 61 (1992) 77-107) and a seminal result.&¥ on slender groups. (His elegant proof
appears here in new light; Proposition 4.5.), see Fuchs [Vol. 2] (Infinite Abelian Groups, vols. | and
Il, Academic Press, New York, 1970 and 1973). An interesting connection to earlier (unpublished)
work on model theory by (unpublished, circulated notes, 1973) is elaborated in Section 3.
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1. Introduction

A subfunctorR of the identity on the class of abelian groups is callethdical if
R(X/RX) =0 for all abelian groupX. An arbitrary abelian grouf gives rise to aroup
radical Rg, defined for all abelian groupsby

Rngﬂ{Kerqo o X — G}

Clearly, this is a radical. In particulaRg = t is the torsion radical. We also mention
the Chase radical, where in the last display is allowed to run over homomorphisms
into arbitrary®X;-free abelian groups. It is well-known that a radi€abf abelian groups
commutes with direct sums. However, we know of many examples which do not commute
with cartesian products. For any radi€abf abelian groups which does not commute with
arbitrary cartesian products we define the n¢jf to be the least cardinal for which there
exists a family, of this size, of groups,, such thatR [[ G, # [[ RG., see[14]. This

norm| R||, if it exist, is always regular, s¢€] and clearly||7|| = X¢. Eda[10] showed that

v satisfiesty <||v|| <2%°. The value||v| otherwise is quite arbitrary but depends on the
underlying set theory. Moreover, Eda showed that edtlis generated by the countable
subgroups of5 with trivial dual, thusv satisfies the cardinal condition (fev;). But v is

not a group radical, (defined also in Section 7), Eelf the radicalR commutes with
arbitrary products, then we writeR || = oco. In fact|| Rz || = oo, if there are no measurable
cardinals. This follows from a quite general theorem (§§kto the effect that every non-
zero slender grou@ satisfie§ R || = Rim, WhereXsy, denotes the first measurable cardinal,

or || Rg || = oo if the universe admits no measurable cardinal. Assuming GCH, Corner and
GO0bel[6] constructed reduced producdsto show that every regular cardinalwhich is

not greater than any weakly compact cardinal is the norm of a suitable group rAdical
Hence, it is very natural to study the case when GCH does not hold or if we are above
the first weakly compact cardinal. An inspection of the prodfehshows that GCH was
needed to overcome a cardinal restriction in a nice result due to[dEldsee also Corollary

6.2. He proved the following two theorerfs7, Theorems A, B]Let k < 8y, be a regular
cardinal.

(i) If xis not weakly compact, then there is a subgroup O C Z,. with |U|<2<* and
trivial dual U*(=Hom(U, 7)) = 0. (If GCH holds, thenx = 2<%, thus|U| < k.)

(ii) If xis weakly compact, and is a group of cardinalitx such that all its subgroups of
cardinality < x are torsionless, thevis torsionless as well.

Recall that a group is named torsionless (by Bass) if every non-trivial element is mapped
to an non-trivial integer by some € A*.

Thus, we will study reduced products in general, will analyze the role of weakly compact
cardinals and try to weaken the restrictiofi’2bove. We will also establish a link between
these group theoretic questions and two set theoretic, model theoretic conditions studied
intensively already in the 1970s, see Shdi8]. Finally, we can look at our problem from
two sides: as the original algebraic question as well as the one translated into model theory.
Thus, we will gain a useful extension of Wald’s result and, on the other hand, settle the
question about radicals commuting with cartesian products pointed out above.
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We will proceed as follows: In the section after the set-theoretic background we will deal
with these two equivalent properties and in the next we will prove that they are equivalent to
this question on reduced product of groups and obtain the desired results with contributions
from either side. Finally, we apply the results to norms of groups (defined in the abstract)
and then to radicals.

Suppose for the moment that the cardinals Xqy, of our universe satisfy the following
condition:

N0 < )7 and 2 is smaller than the first weakly
inaccessible cardinal above (1.0

Here&jﬁ = Ny44- Condition (1.1) follows trivially from GCH.
Assuming (1.1) we will show that is a norm of a group if and only if <Ry (if Rm
exists) and it is not of the form = A with 2 weakly compact oy = oo (if 8y does not
exist); see Corollary 6.3.
Moreover,y is the norm of aradical if < Ry andy is either inaccessible or the successor
of a cardinal that is not weakly compact; see Theorem 7.13 and the remark after the proof.
In the closing section we will prove and discuss various consistency results related to the
above.

2. Set-theoretical preliminaries

By an ultrafilter we will mean an ultrafilter which is not principal. A cardinas weakly
compacif it satisfies the partition property — (i)?, i.e.x is uncountable and if we write
[x]? for the set of all subsets of cardinal 2xnthen any function (‘partition’)f : [k]2 — 2
admits a homogeneous subset of carditialecall that a subsétl of x is homogeneous
if 7([H1?) is a singleton, sef7, p. 325] It is well-known that measurable cardinals are
weakly compact and weakly compact cardinals are strong limit cardinalf] Bep. 325,
327]. We will use the following notations for large cardinals.

Definition 2.1. LetRm, Rwc denote the first measurable, the first weakly compact cardinal
and similarly,Rsi, Nisj denote the first weakly inaccessible, the first strongly inaccessible
cardinal, respectively (if they exist).

Recall that a cardinat is a strong limit cardinalif 2* < « for all A < k. It is weakly
inaccessibldf it is a regular limit cardinal and it istrongly inaccessiblé it is a regular
cardinal which is a strong limit, see alf3,18,19]

3. Model theoretic conditions for pairs of cardinals
We will consider two propertiep,, p3 for pairs(u, 4) of infinite cardinalsu < 2, where

Ais regular, bup: need not be regular. Another propepty, specially important to us in this
connection, will be added in Section 4.
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We will deal with two variants of the;’s, denoted by:. The parametex will be either
s(sfor strong) oru (u for uniform). However, we are mainly interested in the uniform case.
If M is a model with countable vocabulaty; and¢(x,y) is a formula in the language
L+, thenletp(M,a)={b € M: MF@(b, a)} wherea is ann-tuple inM if y is ann-tuple
of variables. For the property, we will apply the following.

Definition 3.1. Let u< 4 be cardinals and/<N be models in a languagk,,, with a
unary predicat® such tha¥, 9V c /. Then we will say thap¥ is x-bounded by some
¢ € QV if the following holds:

(i) c¢ O™ incasex =s.
(i) d<cforalld e QM incasex = u andyu regular.
(i) We assume for any formula(x,y) in the languagelL., with @ < M'9D) and
lp(M, a)| < u, thatc ¢ (N, a) in casex = s andu is singular.

If such an element does not exist, we will say tha? is x-unbounded folQ™ .

Note that, assuming thatis regular, then (iii) is equivalent to (i).
We now express the

Property p5. The pair of infinite cardinalgu, ) with </ satisfiesp; (we also write
(u, 2) € p3) if there is a modeM with countable vocabularyy, and a universe with two
unary predicate®)o, Q1 and a binary predicate representing+£) if x = s and the order
relation< on A if x = u. Moreover,0) = w, Q) = u. Then the following holds:

(B) If M<N is an elementary extension with univers@nd QY = Q¥, then Q! is
x-unbounded foQ?}'.

If (u, w) € p7, wewillwrite u € p;. We denote by3 () the powerset ofi with inclusion.
Recall that a filteD on a boolean algebig C B(w) is uniform if D N [u]<* = @, where
[X]"#={U C X : |U| < u} for any setX. Thus, we also say th&t is s-uniform if D is not
principal andD is u-uniform if D is uniform in the usual sense, thus all element&iare
unbounded in.

We also have the

Property —p3. The pair of infinite cardinalsu, 4) with < 4 satisfies—p3; (the negation
of p3, we write (u, 4) ¢ p3) if the following holds:
For every boolean subalgebBac B(u) with |B| <4 and any sequence

(A new):ael) withA“::ﬂA;‘

new

of countable chains of elemerts, A* € B, there is arx-uniform ultrafilterD on B with
the following property:

(%) If o € 2andA¥% € D foralln € w, then alsoA* € D.

We say thaD is weakly completd D satisfies(x).
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We will use the connection betweetj; and A* at various places. Thugy, 1) € p3
provides a boolean algebEaC P(u) of size|B| <A and a sequencgAy :n € w) : o €
2) with A%, A% e B such that for alk-uniform ultrafiltersD on B there isx € 4 such that
AY e Dforalln € wbutA* ¢ D.

We first state some basic properties ofph& Here itis our aim to determine the following
classt as good as possible in ZFC. We summarize some results from Proposition 3.3.

Remark 3.2. The classt = {u : u € p3, p <R} of cardinals is quite large. It contains
all cardinalsd,, (x < Rfm) except those that are weakly compact as well as all 2-powers 2
for i < Rsm. Moreover,€ is closed under taking successor and singular limits. Assuming
GCH the sett is the complement of the set of all weakly compact cardinals b&igw

Proposition 3.3. Let (u, 4) be a pair of infinite cardinals witht< 1 and 4 regular. Then
the following holds

() (u,4) € p; <= (1, 4) € p3.
(il) cf u<pu<i, (cfu, A) € p§ = (u, A) € p5.
(i) (.)€ p§= (. 7) € ph.
(V) If p<ia<Az then((p, A1) € p3 = (4, 42) € P3).
(V) If 28 (u, 4) ¢ p5 <= 3 an wi-completec-uniform ultrafilter ong.

In particular, the following holds

(@) (1, 2") ¢ p3 <= 11=>N¥fm.
(b) (u,2%) ¢ p4 <= Fauniformwi-complete ultrafilter onu <= there is a uniform
Rim-complete ultrafilter oy, .

(vi) If (u, 21) € p3, then also2* e p3.
(vii) If (u, 2) € p5, then(u™, A+ u™) € ps.
(viii) Lety; (i € é) be an increasingcontinuous chain of cardinals witly; , 1) € p5 and
0 <SUQcs 1; = . Then alsa(u, 4) € p.
(iX) If p<R¢m then2t e p.
(x) If u =23, <¥m is not weakly compagthenu € ps. (Similarly, if 3, < is smaller
then the first weakly inaccessible cardinal abQ¥g thenyu € p3.)

Remark. From (v) follows that for all

1 9/

I A =228 (u, A) € py = (1, A) € p3.
From Proposition 3.3(i) and Corollary 4.6 followsu( 2") ¢ p5 <= (u, 2) ¢ p1) and
by definition ofp, this is equivalent taZ}, # 0. In this form (v)(b)=" is a well-known
observation due tho§, sed12, Remark, Vol. 2, p. 161For Proposition 3.3(v) we also note
that by the existence of an;-complete ultrafilteD on i follows thaty’ = min{|E|: E C
D, () E ¢ D}< uis a measurable cardinal, s@&, p. 297]

Proof. (i): Suppose thatu, /) € p3. We want to show thatu, 4) € p3.
By propertyps we have a boolean algebBac *B(x) of cardinality </ and a sequence
of elementsA’%, A* € B such that na-uniform ultrafilter is weakly complete. We use this to
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determine a moda¥l for p3 and concentrate on our main case u with 1 regular. LetQ}!
andQQl be as inp, B = {a; : i € 4} be an enumeration ane = {(x,i):i € L, x € q;)
which encode®. We also define a 2-place functigi : u x . — o U {w} by

minfn e w:x ¢ A%} if x ¢ A,

M —
F (x’“)—{w it x e A%

Thus, we can express M that
xeA" <= Vnew F(x,n) #n) < F(x,0)=w

and more: IfM satisfiesps, then the proof is complete. Otherwise, we have an elementary
extensionV <N such thap’ does not hold foN, soN has universé, 0 = 0} but there

iSc e Q11V showing thatQ’lu is x-bounded foerlv. Forx = u andy regular this is case (ii)
whend <cforalld € QY.

LetD ={a; :i € 4, (c,i) € PV} which is a collection of elements i, and we show
thatD is anx-uniform ultrafilter. We check two critical properties:

If a € D, thena=a; forsomei € /andc € a; by PV.If a;,a; € D, then(c, i), (c, j) €
PN, hencer € a;, ¢ € aj and alsa € a; Na; = ay for somek € A. It follows (c, k) € PV
and thereforey, =a; Naj € D.If a € B, thena = a;, a; = p\a for somei, j € / and
eitherc € a; orc € a;. Hence, eithen € D or y\a € D andD is an ultrafilter. Moreover,
0¥ = ; by assumption oM as inp andx < ¢ for all x € Q¥ from above. Hence; € D
impliesa ¢ [u]=* andD is (u-)uniform.

We now show thaD is weakly complete. Itt € A andA” € D for all n € w, then
¢ € A* € B and there is € 4 with ¢; = A*. Hence,(c,i) € PY andA* =a; € D and
D is weakly complete indeed. The existencddotontradicts our hypothesis;, hencep
holds.

Conversely, suppose th@at, ) € p5. Then we have a modéd satisfying propertyp5.
This will be used to define a boolean algelifand a sequenc8A” : n € w) : o € 4)
which satisfyp4. Recall thatM has universe,, Q¥ = » and 0}/ = p.

If o(x,b) with b € M'9D andy = Ixe(x, b), then letFy(, b) be a Skolem function
interpretingy in M such thatM =Vx Qo (Fy (x, b)), henceFlL”(,l_z): M — w; see[4, p.

164] Let § = {FM(, by) : o € 4} be a list of these functions. Tak& to be the boolean
algebra of subsets ¢f definable with parameters jn choose

AZ:{seu:Fojy(e,E“) # n}

forall o € 2andn € w. The sequencg A’ : n € w) : a € A) is defined. Finally, leB be
the weak closure af¥’, the boolean algebra generatedifyand{A* : o« € A}. If x = u it
remains to show that for any uniform ultrafilteron B there isx € A such thatA” € D for
alln €e obutA* ¢ D.

Suppose for contradiction that there is a uniform ultrafieon B which is weakly
complete, hence for alt € 4 with AY € D (n € w) follows A* € D. If p(x,y) is a
formula in the languagé of M anda € M'90), then® =: {¢ € u: MEo(e,a)} is a
member of3 by definition of B’. The following set

IF'={pEa):ox,y)eL,acMIV (¢cpu: MEp(e, @)} € D)
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of formulas is finitely satisfiable iM. If ¢;(¢,a;) € I'fori <n (n € w), then®; =: {¢ €
K ME@;(e,a;)} € Dandalsod =(),_, ?; € D and ife € @, thenMFg; (¢, a;) for all
i <n.Bythe compactness theorem ($¢ep. 33) there are elementary extensiavis- M
andc € N such thatNEg(c, a) for all p(x,a) € I'. We may assume tha&d has Skolem
functions, so we can choogé= H(M U {c}) minimal as the Skolem hull o¥7 U {c}, see
[4, p. 165] Since{e € u: MEQ1(¢)} belongs tdD, we haveQ1(x) € I'andNEQ1(c) by
the choice of. Hence¢ € Qll". If B € u, then the intervalf3, u) ={e € i : f < ¢} belongs
to D. Otherwise, its complemen0, 5] belongs to the ultrafilteD, which is impossible
becaus® is also uniform. Henceg € u : MFf < ¢} € D and thereforealsp<x € I', so
NE < candu<cis an upper bound. Next we show t@@’ = Q64 (which isw). Clearly,
oY < oY andifd e QY then there is a Skolem function with= F (c, b,) becaus&
was the corresponding Skolem hull. We may assumerifatc, b,) : M — QM. Ifthere
isn € wsuchthatA? ¢ D, then{c € p: FM(¢,by) =n} € D and(Fy(x,b,) =n) € I
Hence NEF,(c, by) =n andd = n because,(x, b,) is a function. This showg®{ = 0¥
if A% ¢ D. Otherwise A’ € D foralln € w and(),., Ay € D by hypothesis. But from
the other hypothesi®@}’ = w and the definition of thet?s follows(,.,, A% = ¥ which is
also impossible iD. Hence, such a weakly clos&ldoes not exist angy follows.
The proof forx = s and for singula is similar. O

For the proof of the remaining statements in Proposition 3.3 we first formulate some
preliminary claims.

Claim 3.4. If y is a cardinal then there is a model M with univergeand a countable
vocabulary such that the following hotds

(i) Ifpu<i<yand(u, 2) € p; (x € {u, s}), then we can interpret in M by formulas with
parameters a submod#{, , (depending oriu, /) only) that M, ;=(u, 4) € p3.
(i) If 24 < 2, then there are some formulagx, y, z) with parameters from M such that

{{oepu: MEQ(a, p, 1) 1y € 2}

is the family*3 (w) of all subsets oft.

(iii) There are functions (x, y, z) definable in M with parameters for every< y such
that for everyo e [y, u*) the sequenceéF™ (i, o, u) : i <) is u as the set of all
ordinals without repetition

Proof. (i) Let t be a countable vocabulary with countably many functions and relation
symbols, each in a finite number of variables. For amy/) € p3 we have a modeM;/1

with languagel- ; given by the property(;) (for M). We may assume tha,, <  and
view Mﬁi as ar-model, thus

(M, = (1, ) € po, u<AS ), x € {u, s})

LA

is a well-defined sequence efmodels for any cardingt. We define a modeM = M,
with universey + 1 and vocabulary* derived fromz by replacing any-place functiorF
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(relationR) by ann + 3-place functionF” (relationR’). We interpretR’ by

U {(x,u, )"a:a e PMu, (U, A) € p3, uSALS ), x € {u, s}}.
X, 1, A

Put "™ @) =y if (1. 2) € p% for someu< A<y, @= (x, u, 2)"@ and F*u(@) =y and
puty = 0 otherwise. ThusM is at*-model with universe; + 1 and if (u, 1) € p5, then
for example we can interpraﬂ/’jﬂu by formulas inM in an obvious manner (using strings
(u, u, A, a) witha € (MZA)” for a suitablen € w). Thus, inM we can expres§u, 4) € p;
forx =s,x =u.

(i) Let {U, : y < 2"} be an enumeration of all subsets;oWithout repetition. For each
7 <2 choose amap = ¢, , : © — U, which is onto. Henceyp., ,(2) = ¢(o, y, p) are
the formulas for all subsets afwheny runs through 2. The subsets of are obtained as
i e w: MEQG, p, W}

(iii) This is similar to (ii). If u is as above and € [u, u™), then|a| = 1 and we can
choose a bijectio™ (, o, i) : « — pfrom u ontoo. For everyy e u there is exactly one
i <asuch thay = FM (i, «, u). The claim is then immediate.]

We apply Claim 3.4(ii) to derive the next claim. Claim 3.5(ii) is only needed for singular
cardinals, a case which we only mention for completeness.

Claim 3.5. (i) If 2 < A, M<N andc € N\M, then
(NEc <2 = 3d € N\M and NEd < p).

(i) Letu < A< yandu < yandletM be a model thatinterprets a modélthat exemplifies
(1, 2) € p4% and includes(u, <). Suppose thaD)! = w, RM = {(a, ) : a < f <y} is the
order relation< ony, M<N and Q) = QJ'. If c € N and NEc < p, then the following
holds for some formula(x, @), (@ € '9@ M).

NEg@(c,a) and |p(M,a)| < p.

Proof. (i) Let o(a, 7, ) : v € 2* be the list of formulas given by Claim 3.4(ii) and consider
the setU related toc in the elementary extensidy, that is

U={ieu: NFop(,c, n} < pu.

Sothereis @ € 2* suchthat/ = {i € u: MFe(,y, w)}. SinceM=<N, this also holds in
N, we havelU = {i € p: NE@(i, y, w}. This set is a subset afby Claim 3.4(ii).

Now suppose that (3.5) does not hold, so for eveey N with N=d € ufollowsd € M.
Thus,

NEVYx € p [(o(x, 7, ) <= o(x, ¢, W],

but using again tha? < N, this holds inM, hencer = y by the unique representation of the
subsets. Howevet,¢ M andy € M is a contradiction.
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(i) If M’, M<N are as above, then |18t' be the interpretation a7’ in N, henceN <N’
with 0 = 0} ande e N’ satisfiesN'Fc < p. But because oM’ (which is a model
for (u, 2) € py) in N’ the set{a : o< u} is unbounded (fo). There is somer € u
such thatN’Fc < o, hence also foiVEc < a. Now let o = {x : x € o} be the required
formula. O

Proof of Proposition 3.3 (continuation).

(ii) Suppose(cf u, 4) € p5. Letcfu =y and M, be given by propertyps. We must
find a suitable moded’ showing(u, 4) € p4 and suggest two ways. Either consider the
modelM given by Claim 3.4(i) and choos®’'<M such thaiM’| =/ andi + 1 C M/,
moreover, expando, 01, Q2 such thatQ¥ = o, 0¥ = u, 0¥ = J and show thats’
is as required fotu, 4) € p4, or constructy/’ directly.

Take M, as above witthl “* = w but Q4™+ = i and lew“””‘ = p. ExpandM,;
by adding functions from Claim 3.4. (This is all what is needed from the first suggested
proof.)

F': u' — u strictly increasing continuous and unbounded,
F':iu— pf (a0 — F'(@)=min{i € u: F'()>a}).

Now we show thads’ is a model fory, /) € ps. Clearly, QY =w, Q' = . If M'isnotas
required, thenthere is an elementary extens#dg N with universe, Qé\’ = andQ{”' =u

is u-bounded forQ’l\’, hence there is an upper boune Qllv such thatVE(x < ¢ Yo € p).

Now apply F”, henceM,,;F(« € F"(c) Yo < F"(u) = i) which contradicts that/,, ; is

a model exemplifyingy/, 1) € p5.

(iii) is trivial.

(iv) By Proposition 3.3(i) we can replagg by p3. Now the proof is easy.

(v) (=) Again we can replacg; by p3, choosel =P (u) and let((A) : n € w) : « € 4)
all possible sequences with*, AY < B because 2< /. By p3 there is anx-uniform,
w1-complete ultrafilter oru, because weakly complete and complete are now the same
notions.

(V) (& (x =s)) Suppose that is measurable and< u, e.g.x = Xfyy. Then choose a
k-complete non-principal ultrafilted on k (see[17, p. 297) and letM be a model with
universe 2, Qé‘f =w and Qﬁl = 2" as in the definition of3. Hence, there is a canonical
elementary embeddirjgof M into the modelV = M*/ D andj mapsQ{)” onto Q]é])v because
Q{‘f is expressed by the sentenge= (Vx Qp(x) = 3In, x = n), butj mapsQ;" properly
into Q) asc = (a: o € k)/D € QY \j(QY). We may assume thais the identity andN
has universe/2(as|M*/D| = 2"). Hence M<N, O} = w andc € 0} \ 0¥ violates the
implication ofp3 and it follows(p, 2+) ¢ p3.

(V) (& (x=u)) By Proposition 3.3(i) we must show th@t, 1) ¢ p5. There is a uniform
wi-complete ultrafilteD anu. We can enumerate its elementdas- {A, : « € A} because
2t < Jandlet{A% : n € w) be all countable sequencedinThenD is also weakly complete
for any boolean algebrig C *B(u) and(x) of Propertyps holds.

(vi) Let A = 2* and B(u) = {Ay : o € 24} without repetitions. IfM is a model for
(1, ) € p5, then we get a new modef’ with Skolem functions (w.l.0.g.) and I& be a
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binary relation such thak (8, «) holds if § € A,. Moreover,0Y = Q¥ = w as usual, but
we replaceQ; by 0/, so Q’lM/ =pand IetQﬁW = 4. We claim thatV" exemplifiesi. € p,.

If M'<N, QY = 0)), then byQ’; we haveu= (o : M'Fo € u} = {o : NFo € p}. Suppose
M’ is sbounded by some € M'\N.If A={f € u: R(f,¢c)} C u, then there it € 2
with A = A,. Hence,x € 2# = J (the universe of\’), butc € N\M’, andNFo # c.
FromA = A, follows R(f3, «) = R(f, ¢) for all § € u, but this is a contradiction because
(by enumeration of thd s without repetition) it follows fromx £ ¢ that for at least one
z € O = uwe haveR(z, o) # R(z, c).

(vii) Let M be a model for(u, 1) € p$ andM’ a model with universé + u* where we
can interpreM. We add functions?y (x, y) such that F1(f, «), f < «) for all o € [, u™)
lists all functions oru without repetition, and(x) is the function withF>(F1(f5, o)) = f
if B<aelu,u™).

Claim. M’ is a model exemplifyinqu™, 2 + u*) € p3.

Proof. If M'XN andQSl/ = Q{)V =w andN has universe™, then{b € N : MFb € u}=p

by Q¥ = u. Suppose for contradiction thate N\ M’ is ans-upper bound and € u*,

then we distinguish two cases. Either for ale u™ follows NEo < ¢ or for somex > u

(W.0.l.g.) NEc < o. In the first caséF}¥ (o, ¢) : o € u™) is a sequence of elementsyirof

lengthu™ which is impossible for cardinals. In the other case F»(Fi(c, o), ) belongs
to M becausé (¢, «) € M which is also a contradiction.

(viii) Let p; (i € 9) be an increasing, continuous chain of cardinals with 1) € p3
ando < sups = u. We claim that(u, 1) € p3.

By Claim 3.4(i) we find a modé¥l with universel such that for eache 6 we caninterpret
a modelM; showing that(y;, 1) € p5. Let F': 0 — u (i — ;) andF : p — 0 be
given by F (o) =min{i € 6 : F'(i)>a} foranya € p.

If i <9, theanlw" =u; andM<N. We have{c : NFc <} ={c: MEFc<y}=p.
Suppose thal is s-bounded. Then there is € N\M. We may assume thaic € g,
but thenNEF(c) =i € ¢ as cfu<cfo<d < p and by F’ follows ¢ € yu,\M, soM; is
s-bounded, a contradiction.

(iX) If i < Rem, then(u, 2) € p3 by Proposition 3.3(v)(a), hencé Z p’ by Proposition
3.3(vi).

(X) The proof follows by induction o < Rfy,. Foro = 0 there is nothing to show. If
x=p+1,thend, =2% andd, € 3 by Proposition 3.3(ix). Ift = 3, is a singular limit
cardinal, then we can choose an increasing sequentee 6 =: cf u < w) of cardinals
which are 2-powers at successor stages, hence memberg? by (ix). Now 3, € p5
follows by Proposition 3.3(viii). We may assume that 3, is a strongly inaccessible
cardinal, but not weakly compact (the hypothesis in (x)). So therqisreeT = (u, <)
(with the tree orderingz, having nou-branches, segd7, p. 326](on Aronszajnu-trees).
We choose a 2-place functidn: T x T —> T such thatF'(c, f) =d if ¢ € T has level
I(c) = p andd is an element of level(d) = . Otherwise, putF(c, f) = ¢ (which is an
arbitrary and uninteresting choice). Moreover,Bt=1 : T — u (c — F'(c) =1(c))
be the map assigning the level to each tree elemenMLie a model with universg such
that foro < u (then3,, < p) we can interpred/,, (the model telling us thal, € p}) using
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only 3, as a parameter. M does not exemplify. € p3, there isM <N with Q{‘f = Q{)V =
and if « < i, then againc : NFc € 3, ={c : MFc € J,} =3,; letc € N\M be an
s-bound fora < i, henceNEF’(c) > o. It follows that(Fi(c, §) : f < ) is au-branch ofT
which is too long, a contradiction.[]

Lemma 3.6. If Ais a weakly compact cardinghen the following holds

(i) A¢p3.
(ii) If < p <R, andp is a not weakly compact limit cardinghenp e p3.

Proof. (i) If 4is weakly compact then any expansiomét= (H (1), €) by countably many
relations and functions haspgoperelementaryendextension\, i.e. there isM < N and
(a € H(A), NFb € a) = b € M; see[7, p. 184, 185] ConsiderQ}f = w, 0¥ =i as
in the definition ofp3, then Q? is sbounded becaudd is an end extension. Hence, (i)
follows.

(i) Choose a chain of suitable cardinals and apply Proposition 3.3(X).

We also note

Observation 3.7. (i) If 4 € p3, then(u, A) € p3.
(i) (ZFC+GCH)If u < 4 < Ry, are cardinals and. is not weakly compagcthen(u, 1) €
p3.

Proof. (i) If 4 € p3, then(4, 1) € p3 by definition ofp? and trivially (u, ) € p3 for all
U< A

(i) If u<2, then 2 = u* <A by GCH. If 2 <1 and (u, 4) ¢ p}, then u>Rm by
Proposition 3.3(v)(a), a contradiction. So= 2, then4 € p5 by Proposition 3.3(ix).
Hence, Observation 3.7(i) applies and the lemma follows.

We summarize results from Lemma 3.6, Observation 3.7 and Proposition 3.3 as a

Corollary 3.8 (ZFC+GCH). Let/ < Ry, be a cardinal. Then

. € p5 < Ais not weakly compact.

Recall thatN;fﬁ =: R, for all ordinals . Corollary 3.8 shows Remark 3.2 and we
wonder if GCH can be replaced by a weaker hypothesis. Inspection of the proof shows that
the following two assumption are sufficient to characterize cardinatg, with property
p5 (in €):

Remark 3.9. If all cardinals/ < Ry, satisfy the conditions:

I8 < )+ and 2 is smaller than the first weakly inaccessible cardinal aboteen a
cardinal smaller thatm has the property?, (belongs tat) if and only if it is not weakly
compact.
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4. An equivalent group theoretic condition for pairs of cardinals

Itis convenient to introduce at this point a notation for reduced products. Given a family
of groupsG,, (x € p) indexed by a cardinal, we shall write

red

[16.=]] 6 ﬁG

oep oep oep

Where]_[;e”p G, is the subgroup of all elements ]ﬁuep G, of support< p. In particular,
the standard notation for powers and reduced powersticome

<p red
77=[]z. z=*=]]z and z,=]]Z
aEp uep aEp

The canonical epimorphism from product to reduced product will be denoteddroften
simply a bar. We follow the tradition and abbreviate H@m7Z) = G*.
ForI C p, write e; € Z” for the characteristic function

ey = Z é;.
iel
Note thatinZ,
e #0 = || =p.

The first part of the following lemma is obvious and the second part is the Wadd—
lemma, se¢26] or for examplg1l, Proposition 3.4, p. 3@r [15]. The proof uses that for
regular uncountable cardinatshe filter §* = {X C 1 : |x\ X| < k} is k-complete.

Lemma 4.1. (i) |Z| = |Z¥| = 2.

(ii) If x is regular, uncountableG < ]_[;eedk G, is a reduced product for some family of
groupsG, and|G| <k = 3G’ C [],., G+ and a homomorphism : G — G’ such that
on=Iidg .

Observation 4.2. Supposeg: = cf x < . Then there is an embeddi#, < Zj.

Proof. Letk; (i € u) be anincreasing sequence of cardinals convergirgdod letco=0.
We define a homomorphism

Q. 7" — 7" ZxaeaﬁZyﬁeﬁ

oaep Pex

with yg = x, for all f € [xy, Ky11). It follows thatZ=#¢ € 7=*, and the induced homo-
morphismZ,, — Z, is injective. [

Note thatZ, for cardinalsk with cf k > Rg is R1-free (by Lemma 4.1(ii)), so there are
many even free subgrou@s< Z; with non-trivial dual. Nevertheless there are also many
subgroups with trivial dual; they are related to the propeity
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Property p;. The pair of infinite cardinaléu, 4) with 1< 4 satisfiedp; (we write (i, 4) €
py) ifforany J C pwith |J|=uthereisagrous =G withZ=# C G € Z*ande; € G
such thalG/Z=#|<Zand(G/Z=")* = 0. Again. € p, stands for(4, 1) € p;.

Example 4.3. w € p;.

Proof. Choose an infinite subsétof @ and findG < Z® with ¢; € G and G/Z®
~0Q. O

Proposition 4.4. For (i, A) a pair of cardinals withu < A the following holds

(i) If (u, A) ¢ p4, then for any group GwitZ =# € G € 7" and1 # |G/Z~"| < A follows
(G/Z<My* £ 0.
(i) (u, ) € pp= (1, 4) € p3.

Proof. (i) Suppose thatu, 4) ¢ p%. If G is a group satisfying the hypothesis of (i), then we
want to show thatG/Z=*)* #£ 0.
If z € Z, we shall consider thesupport of anyy = Zaeﬂ gx¢y € G 1o be the set

[gl;={oeeu:gy=2}

hence(g] = UO7éZEz [g], is the usual support. Fix a bijection Z — w with 0 =0 and
renamelg], = A; if z1 = n. We also consider the boolean algebra@enerated by these
Ay (n € w, g € G) as a subalgebra @B(u). If g € Z=*, then let[g] = ¥ and using cosets
we can choosgg] = [¢] for anyg = g’'modZ=*. Thus,|B| < |G/Z~"| < A. We also have
sequences

(AS:new):gei)

(which we could label by. becauseG/Z<*| < 1). Moreover, we add the elememt$ =:
Mrew Ay (g € G) as generators tB. The assumptions opk; are satisfied. Byu, 4) ¢ p4
there is a uniform ultrafilteD on B such that(x) in propertyp3 holds, thusD is weakly
complete. Now we define a homomorphism G — Z and let

gp=z¢=> A’ eD.

The map is well-defined: I185,, A5 € D andm # n, thenAj, N Ay = @ by definition of
support, but thers, N A5 =@ e D is a contradiction. Igp =z andg’¢ =z, then we must
showthaig+¢")p=z+z". However|[gl,,-1, [g'],,-1 € DandY =[g],,-1N[g'],,-1 € D
as well, but therig + ¢’) |'Y is the constant function with valuet 7/, the linearity follows.

There isg € G\Z~*, which has suppoiftg] of size . We may replace by G4, the
restriction of all elements @& to those of suppofiz]. This new group, an epimorphic image
of the old one, is also calle@. Now g has supporfg] = 1 € D and[glo=9. If g =0,
theng = [g] € D, which is impossible. Hence, # 0. On the other hand, anye Z<* has
[x]o = p up to a set of sizex u. We haveu\[x]o ¢ D becaus® is uniform and[x]g € D
becaus® is an ultrafilter, hence ¢ = 0. So¢ induces a non-trivial homomorphism from
G/Z=* and(G/Z=")* #£ 0, and (i) is shown.
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(i) If (u, 4) ¢ p5 andG = G is a group satisfying the hypothesisigf, then (i) applies
and(G/Z~*)* # 0, hence(u, 1) ¢ p;. O

In Section 7 we require a stronger form of the converse of the last proposition, which we
show next. Recall from the last proof that], ={i € u: fi=z} C uforanyf € 7",z € Z.
Also recall that a pure subgrouf of the group of bounded, integer-valued functions on
w is a Specker group if with any € K andz € Z also the characteristic functiany).
belongs toK; see[12, Vol. 2, p. 172] This notion extends naturally to subgroupszsf,
thusk C 7" is aSpecker grouff againe(s), € K forall f € K, z € Z. Moreover, we say
thatK is closed under stretched copies of the Baer—Specker group if fof @y follows
Pr =: [l.czer1.Z < U. Note thatf € Py=~7* for somea<w. The latter condition
clearly implies Specker.

Proposition 4.5. Let(u, 4) be a pair of infinite cardinals with < .= /*° and suppose that
(1, 4) € p4holds. Foreach set C pofsizelJ|=uthereisatestgroup;=G,/Z~" € Z,
with Z<# € G; C 7" closed under stretched Baer—Specker grofipparticular T is a
Specker groupcontaining the element; and with the following additional properties

) 1#IT/1<A
(i) Hom(T;, H) = 0for any slender group Hin particular (i, 1) € pq).
(i) Hom(7;, X) =0 (vJ < p) = Hom(Z,, X) = 0 for any reduced torsion-free
group X

Proof. (i) will be obvious by construction, and the addition in (ii) is immediate from (ii)
because is slender. We fixJ € u, may assumé/| = u and suppress the indéxn the
proof.

(i) (The construction oT.) By p5 there are a boolean algeti#ac B (u) with |B| <A and
asequencé(A’ i n € w) : o € A) with A% € B andA* =: (),,, A% As . = 2"° we can
assume thaB is closed under countable intersections, in particdlar B for all « € /.
For any uniform ultrafilteD on B there iso € 4 with A* € D foralln € @ but A*¢ D.
(There is no weakly complet®.) We also may assume thate B and must find (fron)
7=t c G Z!suchthae; € G, T=T;=G/Z~",|T|<.and HomT, H) = 0 for all
slender groupsl.

If BY =), <, Ay thenalsaB) € BandB* =: (., By =(),c0 Ay = A% Hence, if
A} e Dforalln € w, then alsoB € D for all n € w and we can assume thag = u
and(A}, : n € w) is a descending chain converging4é. Now letCy =: AJ\A} , for
alln € wandC* =, C7. It follows that

new
AleDforalnew«= C,¢Dforalneow

usingA; ;= A N (C;) and induction om. Moreover,A* = p\C*, thus
A" e D < C*¢D.

The setC? (n € w) are pairwise disjoint and therefore the following elemepise Z*
are well-defined. Lek : @ — Z be any function and defing,;, = Zieu gon(i)e; € 7
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componentwise by

N Jh(m) ifieC)(new),
g“h(’)—{o it i e A”.

If h: @ — Z runs over all maps, we obtain a ‘stretched’ copy of the Baer—Specker
groupZ? insideZ* and let

G={(gun,ea:hec®Z,aecli AcB) 7"

It is obvious by the definition thas is closed under stretched Baer—Specker groups; in
particularG is a Specker subgroup @¥ and trivially 2% < |G].

(ii) Suppose for contradiction that there are a slender gitdignd a homomorphism
0 # ¢ € Hom(G, H) with (G N Z=*)¢p = 0. Consider the set

I={AeB:VXCA XeB=exp=0}

so ¢ is ‘hereditarily’ 0 onAand/ € B C B(w). Clearly,| by definition is downwards
closed.IfA1, A2 € I andX € A=A1UA», thenwe partitiorX =X1UXowith X1=XNA1

and X, = X\ X1. Henceex = ex, + ex, andex ¢ = 0 is immediate, s¢ is also closed
under finite unions. Next we show thas also closed under the relevant countable unions:

If CY eI forall n € w then alsoC* € I. (4.1)

If X € C*andX € B, thenletX,,=XNC%*and define the homomorphism 7% — 7
foranyv =73, ., vnen by

. Jv, ifieX, for somen e w,

va() = {o if i € p\X.

Note thatve=)", ., vnex, € G.If e, =), ., en € Z”, thene,c =ex, ande, o =ex.
SinceX € BandX, € C € I alsoX, € I and therefore,cp =ex,¢=0.Thus,cp=0
sinceH is slender. In particular, & e,o9p = ex for any X € C* with X € B, hence
C* e I and (4.1) is shown.

Next we show that

B/I is a finite boolean algebra. 4.2)

Otherwise, there ar€, € B\I/ (n € w) which are pairwise disjoint modulh i.e.
C,NCy, € I forall n # m. We can choose new representatizas= Cn\Uzgn C € B,
hence these nea,’s (calledC, again) are pairwise disjoint. Lét=|J,,.,, C,» and choose
o € 4 such thatCy = C, for all n € w. This is possible, because w.l.0.g. we can add all
corresponding sequences, < 1), to the listgiven byp%. Only here we use thato=.

We have thaec:, ec: € G andecx¢ # 0 for alln € w. Next we define a homomorphism
0. 7% — 7" (v — vo) as above with

. L if i € C? for somen € w,
10 ifieu\C*
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By definition of G it follows thatve € G, hencesp: 7 — H is a well-defined
homomorphism, ané, (cp) = ecz¢ # 0 for alln € w. This contradicts slendernesstf
SoB/1 is finite.

If B=1,theneczp =0 forallo € Aandn € w, hencegy, ¢ =0 foralla € 4 and
h € ®Z. Hence,G o = 0 contrary to our choice # 0.

If B # I, then we can choose an atof/ € B/I with A € u from the finite non-
trivial boolean algebra and we also choose an ultrafiltesn B disjoint to | such that
A € D. From(G N Z<*)¢p = 0 it follows that|X| = u for all X € D, soD is uniform.
Finally, we want to show thdD is weakly complete, which then will contradict the as-
sumptionps: If AY € D foralln € w, thenA* e D. Interms ofC*, C7 this is equivalent
to say

(%) If C* € D, thenC? € D for somen € w.

If CX N Ag¢l for somen € w, thenCY € D and(x) holds. OtherwiseC? N A € I

for all n € w and w.l.o.g. we can fing € 4 such thatc? = CrnAforaln e o

Hence,Cf e I foralln € . Butthen alsaC? =, C,/f € I becausd is countably
closed by (4.1). Henc&* N A = CF € I and fromA e D follows C*\A ¢ D, asD is an
ultrafilter. SoC* = (C*\ A) U (C* N A) is a partition withC* N A € I,soC*N A ¢ D and
C*\A ¢ D. Hence,C* ¢ D and(x) holds trivially. SoD is weakly complete, this is a final
contradiction.

(i) We prove the contrapositive. Suppose that Haip, X) # 0, whereXis reduced and
torsion-free. This means that there exists a non-zero homomorghisff — X which
vanishes orZ <#. Consider the N&ébeling subgroloof Z* of all bounded, integer-valued
functions onu, which is generated by ad; (I < u); see[22]. SinceZ"/B is divisible,
the restrictionp | B cannot vanish, so there exists a subse&t u such that ;¢ # 0. This
requirese; ¢ Z=*, in other wordgJ| = u. Butthene; € Gy ande; € T) =G, /Z~"isa
test group. Letp be the map induced by. Thene; ¢ = e¢;¢ # 0, and we conclude that
0 # @[Ty € Hom(T;, X), which contradicts the assumption of (iii) [

The last two propositions give an immediate corollary.

Corollary 4.6. Let (u, /) be a pair of infinite cardinals withi<</. = A™°. Then(u, 1) €
p3 = (1, 4) € py.

Lemma 4.7. If (1, 4) € p, andA = ™ < y wherey is regular, thenHom(Z,,, Z,) = 0.

Proof. Suppose for contradiction that8 ¢ € Hom(Z,, Z,) = 0. We viewg as
¢p: 7" — 7, with Z=F¢p =0.

By the same argument as above (using the Nobeling subgro#ify)afie findJ € u such
thate; ¢ # 0. Hence|J|=pand choos& =: G;withe; € G € Z* byp, andZ=* C G.
Thus,Go=T¢ #0withT =G/Z<*, T* =0 and|T| <4 < z. By Lemma 4.1(ii) follows
that the group G# T ¢ is isomorphic to a subgroup @ and there are obvious non-trivial
homomorphisms (projections froft)  : T¢p — Z,hence 0% ¢n: T —> Z contradicts
T*=0. O
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Remark. From the proof of Proposition 4.5 follows that condition (iii) can be (virtually)
strengthened:

0+# ¢ € Hom(Z,, X) = (VT C Z,,, |T|<. 3T C T' C 7y,
|IT'|</and@|T # 0).

This applies in particular t& = Z. If this is the case we say that, 1) € p] which is
equivalent ta(y, 4) € pq by the remark.

5. Embedding reduced products into reduced products

In this section we want to sharpen the condition H@m Z,.) # 0 from the last section
replacing non-trivial homomorphisms by monomorphisms.

Recall that a grouss is torsionlessif for any 0 # g € G there isp € G* such that
g # 0. This is equivalent to say thétis isomorphic to the subgroup of some produtt
In a similar way we say

Definition 5.1. If Gis a group and is a cardinal, the@ is 2™ -torsionless, if all subgroups
T C G with |T| < A are torsionless.

This definition is also parallel to the notion &f -free groups. We also express a new
properties for pairg < 4 of cardinals.

Property p"f. The pair of infinite cardinal&u, 4) with u <A satisﬁespir (we write(u, 4) €
p1)if Z, is notZ*-torsionless. Agairi € p; stands for(4, 1) € p;.

We have an immediate
Lemma 5.2. If 1 is weakly compacthen/ ¢ pj.

Proof. If /is weakly compact, then ¢ p5 which is equivalent tol ¢ p; by Propositions
3.3 and 4.4. Hencé, ¢ p7 is immediate. [J

Lemma 5.2 also follows from Wal27, Theorem B]see introduction. He argues differ-
ently and uses the weak compactness theorem for langliaggese€17, Section 32]The
main theorem of this section is now the following.

Theorem 5.3. If u</ are cardinals such tha2* = 2 and (u, 2) ¢ p], then there is an
embeddingZ, = Z;+.

Proof. By |Z#|=2"=," thereis a continuous, increasing chain of subgrdups Z, (e
24 of cardinality|T;| < 2*. Hence|T;| < A by =", and thel}'s constitute & " filtration
of Z*. We also may assume thdt| = A foralli € A,

The set.™ x 4 ordered lexicographically has order type. Let: : A7 — AT x /i be the
related order isomorphism and enumerBtg{0} = {¢; : j € A} without repetition. From
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(1, 2) ¢ p7 follows thatZ* is A" -torsionless, hencg is torsionless and for any e /4 there
is@;; € T;* withO # tj¢;; € Z. Now we replacei, j) by k = (, ot and¢,; becomes
;. Conversely, ik € A, thenki = (i, j) € A% x Zandf¢;; # 0.

We will use the following notation: Iff = 3", fie; € Z" thenf = f + Z~* and if
fr=2 )+ fiei € v thenf’ = f' + Z=*" . We will also replacé by g below.

If0 # f e Z,, then we want to defingyy = f' € Z,+. If f € T;, then there is
exactly onej € / such thatf = f;, hencek: = (i, j) holds for exactly oné e /7t and
for=fjo; #0is aninteger. Put

e for i f=f;eTforki=, ),
L ) otherwise

We note that for any € Z,, follows f e T; for almost alli € " (i.e. with possibly/
exceptions). Hence, the (second) 0-case in the displayed equation appears/atimest
and moduloZ=<*" it can be ignored. Otherwisg; # 0, hencefy = f’ #+ 0. Soy is
well-defined and injective provided it is an homomorphism.

If £,g € Z,, thenthere is < A" such thatf, g € 7/ for all i > j and consider théth
coordinatesf;, g, of the corresponding image&), gy for large enouglk. We have

fi+si=rfor+30r =+

becausep, is a homomorphism. The right-hand side, however, isktheoordinate of the
image of f + g, hencey is also additive. [J

The propertiep, andpf are in most cases the same. To see this we repeat some natural
notations used in Section 4:

If f=2icufiei € 7", then as above we writ¢ = f + Z=* and will consider the
zsupport{ f1. ={i € u: fi =z} S u. Let f* = e[y} z be thezcomponent of based on
the characteristic functios s1_. Hence,f € Py =[]..7 e[, Z € Z" is isomorphic taZ*
for some ordinab < w. Recall thaty € 7" is a Specker groups if it is closed under those
characteristic function. Moreover, recall the stronger condition whea closed under
stretched copies of the Baer—Specker groupg: & U, then alsoPy C U.

Lemma 5.4. Let u< / be infinite cardinals

(i) If 2% < and®o <cf u, then((i, 1) € p] = (1, 2) € py).
(i) (. 7) €pp= (ul)epy.

Proof. (ii) is obvious. It remains to show(x, 1) € p] = (1, 4) € py).

(i) Assume for contradictioiiy, 1) € pf, (1, 2) ¢ pq.

By (u, 4) € pf the groupZ,, is not A" -torsionless and there is a subgrodps Z, of
size/ which is not torsionless. Hence, there isf0f e T such thatfp =0forall ¢ e T*.
For a pair of setd, K € pwith |J| = |K| = uwe also fix a bijectiory =7, : / — K.
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This map induces an isomorphism

F=vi 28— 7 (h:Z eihi — " =3 ef’“v>-

ieK ieJ

Also consider the canonical projection

ng: 72— 7K [g=) " giei — gk =) gie
iepn iek

From (u, 4) ¢ p, follows (u, 4) ¢ p4 (Proposition 4.4¢(ii)) and by Proposition 4.4(i) fol-
lows that any group G4 G < Z, with |G|<Z has a non-trivial dua&G* # 0. We want
to use a non-trivial homomorphism froG* to map f to a non-trivial integer which will
be a contradiction. Thus, we choose a very homogeneous extgagibm which allows
enough endomorphisms. We can choGsebitrarily only taking care of its size. Thus, pick
G C 7, subject to the following conditions:

() |G| = 4, then (automatically) there is£ y € G*.
(i) T CG.
(i) f#0=foforall p e G* (becausep|T € T* andf € T).
(v) Z=* C G' < 7" andG'/Z~" = G.
(v) G’ is closed under stretched Baer—Specker groups.
(Vi) If e; € G',n € Z, then clearlyn;f1,77 2 — 7’ and require that(r 1, |G")
Vik’[f]n € EndG',i.e.ifg= Zieu giei € G, theng[f]ny’}[f]n eG.

We note that this choice is possible but needs<.. Letz € G’ with hyy # 0 from (i).
By the above notations we have= ", .7 epn),n andep,;, € G’ by (v). Moreover, let
F ={n € Z\{0} : en),y # O}.

We now distinguish two cases. ffis infinite, then define® : 77 —s [],.7 e, Z by
e, 0 =h"foralln € Z (which extends naturally as required). But th¢h, .7 e, 2)0 <
G, 0Oy e Hom(Z%, 7) ande, @y # 0 for infinitely manyn € Z, contradicts tha? is
slender.

Thus,F is finite. If F = ¢, then 0# hyy = Y, . ey, ¥ = 0 is a contradiction. Hence,
there is 0# n € F with |[h],| = u. Let J = [h],,. From (v) followse; € G’. We can
assume thak = e;, hencee; iy # 0. Now we composén; 7}, rG’)y*}[fln € EndG’ and

11V, ¥ € G It follows that

I Vo, ¥ = e, ¥ =emy #0
and this contradicts (iii). [J

It follows the
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Corollary 5.5 (ZFC+GCH). Let u<y be infinite cardinals such that is a successor
cardinal. TherHom(Z,,, 7)) # 0 <= Z,, < Z,.

Proof. « is trivial. Conversely, from HortZ,,, Z;) # 0 follows u* = y and(y, ) ¢ pj
or the trivial case: = y, thus Theorem 5.3 applies[]

6. The norm of a group

Thenormsof a radical and of a group as defined in Golddl] provide a tool for inves-
tigating commutation of radicals with cartesian products. Recall thahdhe |G || of a
non-zero grouyss is defined to be

|G|l = min{k : kK = ¥y Or Kk is a cardinal with HonZ,., G) # 0}

if this cardinal (equivalently iRsy,) exists, or|| G| = oo otherwise; here agaiRsy, is the
least measurable cardinal. It is an easy exercise, using a result of Balcerzyk and Hulanicki
(se€[12, Vol. 1, p. 176, 177) to prove that

G is cotorsion-free<= |G| > Ro. (6.1)

In this context we may remark th& is strongly cotorsion-freéf and only if |G| €
{Rim, oo} (see[9)]).

Observation 6.1. The norm||G|| of a group G is always a regular cardinéivhereg is
allowed.

Proof. If 0 # ¢ € Hom(Z,, G), then by Observation 4.2 we can find an embedding
Zt = Z, such that the composite of the two maps is not 0 as well, hgGdemust be
regular. O

Recall from Remark 3.2 that the cla€sis large, and ifu = ™ € €, thenu € p4.
This is reflected in our next main result of this section, which will follow from previous
considerations, mainly from Section 4.

Corollary 6.2. Letybe aregular cardinak Rty.Then||Z, || =y (or equivalentlyHom(Z,,,
Z,) = Ofor all infinite cardinalsu < ) if one of the following conditions holds

() Hom(Z,, Z,) = Ofor all regularcardinalsu < .
(ii) Foreach regular cardinali there is a cardinal. such thaf < A=2A% < yand(u, 1) €
P2
(iiiy y= A" is asuccessor and for all reqular< / follows (i, 1) € p5.
(iv) x=7"and/ € ps.
(v) x =35 with 6 a limit ordinal.
(vi) y =27 for some ordinab such thatd; is not weakly compact
(vii) (Assuming GCHMy is not a successor of a weakly compact cardinal
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Remarks. Cardinalsu with cf =8¢ (includingu=Rg) also belong to the list of cardinals
as in the corollary, but for more trivial reasons: The grayy is algebraically compact
(see[12, Vol. 1, p. 176, 177} Similarly, Z,, is algebraically compact for ¢f = Xqg by
Balcerzyk[2, Theorem 3] Moreover, epimorphic images of these groups are cotorsion
(see[12, Proposition 54.1, Vol. 1, p. 234]SinceZ, is cotorsion-free by Lemma 4.1(ii)
(x is regular), in these cases it follows automatically that Kiém Z,) = 0. The same
argument but using that algebraically compact groups are pure injective also shows that
Hom(Z,, Z,) # 0 if cf y = Ro. The assumption thatin the corollary is regular could be
removed, but the assumptionct- Ko is necessary as just seen.

While Corollary 6.2 deals with the problem H@#y,, Z,) =0 for cardinalg: < y, also the
guestion foru > y is interesting (but not needed in our context): Assuming L, Donder
[8] showed that for any uncountable cardinalthe onlyw:-complete u*-saturated ideal
on u containing all subsets of cardinality u is B(u). (An ideal E on u is p-saturated for
some cardingp if and only if any setS € P)\Ewith X NY e Eforall X #Y € S has
size< p.) Again assumind’ = L, Wald[26] applied this and a result from Gébel et[d6]
to show for cotorsion-free grou@with |G| < u follows Hom(Z,,, G) =0. Finally, observe
thatanyZ, (x regular uncountable) is cotorsion-free by Lemma 4. 1(ii) jahyd=2%. Hence,
Hom(Z,, Z,) =0if u>2%.

Proof. (i) Follows from Observation 6.1 which shows that norms of groups are always
regular.

(ii) Follows from Lemma 4.7.

(iif) We want to apply Proposition 4.5 directly and replage 4) € pj by (u, 1) € pj
(Proposition 3.3(i)). If 0#£ ¢ : Z,, — Z, for y = /7, then by Proposition 4.5(iii) there
isT C Z, with |[T|<Aand|T # 0. Hence, 0# Ty € Z;+ and alsoT¢|< 4. The
non-trivial groupT ¢ is isomorphic to a subgroup a by Lemma 4.1 andT ¢)* # O,
thusT* # 0 contradicts Proposition 4.5(ii).

(iv) From Z € p5 follows (i, 4) € p3 for all regular cardinalg < A (Observation 3.7(j)).
Thus,(u, 4) € p5 by Proposition 3.3(iii) and (iv) follows from (iii).

(V) If i < x, then puti=2* which satisfieg: < 2= < yand(u, 1) € p5 by Proposition
3.3(v). Hence, (ii) applies.

(vi) If k=215 is not weakly compact, then € p?, by Proposition 3.3(x) and the corollary
follows for k™ from (iv).

(vii) If y is a limit cardinal then (vii) follows from (v). Ify = k™ is a successor, then
K # Rp andx is not weakly compact, so (vii) follows from (vi).

Corollary 6.2 strengthens a theorem by WEd]. He uses that cardinajs that have
partitionsf : [p]® — 2 which admit homogeneous subset of cardinalitpust be weakly
compact. Ifp is not weakly compact, there is a famify (j < p) of functionsf;: j — 2
where f;(i) = f({i, j}) and ifx € P72 setN, = {j < p|f; 2 o}. For anyo € 2 the set
Ny)y has cardinality< p for all large enoughy < p. This sequence of sets is then used to
construct test subgroups 4f, that correspond to our smaller test grodpsin Proposition
4.5. Wald’s method was also usedj.

Assuming GCH we can characterize those cardinals which are group norms.
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Corollary 6.3 (ZFC+GCH). The following conditions for a cardinalor y=oc are equiv-
alent

(i) Thereis agroup G with G| = y.
(i) {me does not exist y=oc or y=/", A is not a weakly compact.

Rfm exists: L =Rfm O y = T < Rgm, 4 is not a weakly compact.
(i) x=1Zyl # oo or y=||Z]| = oc.

Proof. If Xqy does not exist ang= oo, then|| Z|| = oo follows by definition of the norm and
Lo§’s theorem on slender groups, $&2, Theorem 94.1, Vol. 2, p. 16&nd the corollary
holds in this case. IRy, exists, then|Z| = Ry follows by the same theorem ada$’s
observation thatZy,,,)* # 0 (see[12, Remark, Vol. 2, p. 161¢r Proposition 3.3. Now
suppose that # Xqy is a cardinal (and nato).

Then(ii) = (iii) follows from Corollary 6.2(vii) andiii) = (i) is trivial.

We want to derive (ii) from (i). We may assume that 8. ThenG in (i) must be
cotorsion-free (see beginning of this section) and in particGlas torsion-free. From
(Zynyy)* # 0 also follows HomiZy;,,, G) # 0 and||G || < Rfm. If x = 2T is a successor of a
weakly compact cardinal < X¢m, then ¢ p5 by Corollary 3.8 and alsé ¢ pi“ by Lemma
5.4, Proposition 4.4 and Proposition 3.3. Fr¢ai|| = y follows that there is a non-trivial
homomorphismp: Z;,+ — G and by Theorem 5.3 there is an embeddifjg— Z;+.
The automorphism group At;+ acts transitive on the pure elements/gf. . We compose
the embedding by a suitable automorphism and obtain a new embefdidy — Z;+
which does not map into the kernel@f Thus,y¢ # 0 and|G|| </ < y is a contradiction.
Hence,. cannot be a weakly compact cardinall

7. Radicals of groups and their norms

The norm of a group is defined in Section 6. Now we add the notion of the norm of
a radical from[14], and we will relate the two notions. The norfR| of a radicalR is
the least cardinak for which there exists a cartesian product= [, ., X, such that
RX # [l,ex RX 4, OF |R|| = oo if no such cardinak exists. ClearlyRX € [[,.. RX4
and alwaysc > Rg. Here is an obvious

Example 7.1. The torsion radical is = Rg and||¢|| = Ro.
We shall make crucial use of the following elementary result.

Lemma 7.2. For a regular uncountable cardinat, let G := ;’id,{ G, be the reduced

product of a family ofc groupsG,, and let H be any group of cardinality x. Then

Hom(H, G) =0 <= Hom(H, G,) # 0 for fewer thanx values ofx € k.

Proof. By Lemma 4.1(ii), any homomorphisith : H — G lifts to a homomorphism
0': H— [],. G and every such’ will map H into [ ;5. G, if, and only if, fewer than
x of the Hom H, G,) are non-zero. [
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In order to relate the group norm to the radical norm it becomes important that the
factors of these reduced products are semi-rigid. This is an extra condition added to the next
examples. In order to find lower bounds for norms of suitable radic®|swe calculate
the norms of radicals defined by certain reduced prodachis is possible in two cases,
which suffice for our needs.

Theradical Rg associated with a group @& defined by

RGX =("){Kerplp € Hom(X, G)} i.e. R X is therejectof G in X.

Definition 7.3. A family {G,, : « < p} of groups is semi-rigid if HorG,, G 3) = 0 for all
a<f<p.

Corollary 7.4. Foraregular uncountable cardinal, letG := ;ee‘fc Gy, whereG, (o € k)

is a family of non-zero groups of cardingl, | < k which is semi-rigid. Then

<K
R[] G2 [] GoS]] Gu=]] RaGa.

oEeK U<K oLEK oaEeK

Proof. By Lemma 7.2 each Hotw,,, G)=0, in otherwordR G, =G 5. ButRG[ [, G«
is contained in the kernel of the natural epimorphipfy., G, — G, and this kernel
]_[EL‘K Gy is already a proper subgrouppf,.,. Go. U

Observation 7.5. The norm|| R|| of a radical R is always a regular cardindvhereXg is
allowed.

Proof. If k is a singular cardinal thex = Ua<p 1, wherep = cf k is the cofinality ofx;
herep < x and|l,| < k for all = < p. Any product ovenc can be written as a product over
p of products over thé,, hence|| R|| must be regular. [J

Our next Proposition 7.6 extends part of Corollary 6.2 to groups different #psee
also Lemma 4.7.

Proposition 7.6. Let u< 4 < p be cardinals withp regular. Moreoverlet (u, 4) € p5 and

G= ]_[;‘fédp G, be areduced product of a semi-rigid fam{l§z,, : o« € p} of slender groups

of cardinality < p. ThenHom(Z,,, G) = 0.

Proof. Suppose for contradiction that there is a homomorphisgn®: 7, — G. Con-
dition p5 is equivalentps (Proposition 3.3(i)). BY(u, 4) € p3 and Proposition 4.5 there
is a subgrougl’" € Z, such that|T|</4<p and @[T # 0. The homomorphisnp [T
lifts to a non-trivial homomorphisnp’ : T —> erp G, by Lemma 4.1. It also follows
Hom(T, G,) = 0 from Proposition 4.5(ii) and slenderness, thgé = 0 is a
contradiction. [J
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Lemma 7.7. Let 1 < p be cardinals p regular and suppose théf:, 1) € p5 for all u</.

If G = ]‘[;eedp G, is a reduced product of a semi-rigid famifG,, : « € p} of non-trivial

slender groups of cardinality: p, then the following holds

(i) AT <IGI<p.
(i) If p=7t,then| G| = p.

Proof. Clearly, (ii) follows from (i) and it remains to show (i).

By Observation 6.1 we can restrict ourself to regular cardipasad apply Proposition
7.6. Hence, HortZ,,, G) =0 for all regularnu < /. By definition of norm followsl < |G
There is an obvious embeddidg — G, thus alsq|G||<p. [

The case of strongly inaccessible cardinals is particularly easy. Here we determine the
group, its inaccessible norm and the additional algebraic properties explicitly.

Proposition 7.8. If k < Ry, is strongly inaccessible, then there is a reduced product
19 7, of norm||G|| = .

Proof. Sincex is a regular strong limit cardinal, there is an increasing sequence

p3 (o € k) of regular cardinals with syp , k=, see Proposition 3.3(ix). The correspond-
ing family of cotorsion-free group&,, of reduced products is semi-rigid by Corollary 6.2.
We take the reduced produGt= ]'[;eed,{ Zy,.AgainZ, < G,sou := |G| <« and consider

p < k which is regular and lep : Z,, — G be any homomorphism. Therf 2 x and by
Lemma 4.1(ii) we also have : Z, — [],c, Z«, which induces) (modulo[];, Z,).
Thereis alsog € x such that 2 < «,, for all « > 09, hence HomZ,,, Z,.,) =0 for all o« > o9
andy = 0 follows. This shows thatG| =«x. [

The other case comes from our work in the last sections on the norm of a group.

Proposition 7.9. Letp = A be cardinals. Then there is a reduced product of a semi-rigid
family {G,, : o € p} of slender groups of cardinality such thatG = ]_[Leedp G, and the
group G has normiG|| = p if one the following holds

(@) /e ps.

(b) 1= 2" < R, for some cardinalt and A is not weakly compact
() A< Ry is not weakly compact antd= 1, for some ordinak.
(d) ZFC+GCHA < Ry, is not weakly compact

Proof. Here we apply an old result about the existence of rigid sets of slender abelian
groups from Corner and Gobgs], which utilizes Shelah’s black box. There is a rigid
system{G,, : o € 2*} of slender abelian groups,, of cardinality /., see[5, Theorem 7.4

(b), p. 466] We choose a subsystem of sjze- /.

(a) From/ € p3 follows (u, 4) € p3 (Observation 3.7(i)). Hence, Lemma 7.7(ii) applies.
(b) By Proposition 3.3(ix) and (x) follows € p3, thus (a) applies.
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(c) Apply (b).
(d) Apply (c). O

Assuming GCH we have a characterization of those cardiaats, which are norms
of reduced products of semi-rigid families of groups; this stronger form of Corollary 6.3 is
needed for norms of radicals immediately.

Corollary 7.10 (ZFC+GCH). An infinite cardinalp is the norm of a group if and only if

it is the norm of a reduced product of a semi-rigid family of groups. This is the case if and
only if p is inaccessible op < Ry, is a successor cardinal but not the successor of a weakly
compact cardinal.

Proof. The existence of groups for these two kinds of norms follows from Proposition
7.9(d) and Proposition 7.8. Conversely, from Corollary 6.3fifii) follows that successors
of weakly compact cardinals are not norms of groupsl

If the radicalR is associated with a grou®, then the group norm and the radical norm
are related by

Lemma 7.11. If G is an abelian groupthen||G|| < | Rg ||

Proof (See also GobdlL4]). We writex = ||Rg||. If kK = 0o, we have nothing to do. As-
suming thatc < oo, by definition we may consider a cartesian prod¥iet [ [, X« Such
that Rg X # [[,e R6Xa, thusRG X C[ ], .. RcXx. This means that there exist a homo-
morphismg : X — G and an element =), xx € [ [, Rc X suchthatce # 0. By
the minimality ofx, R commutes witf [, ,so¢ vanishes on the subgrolip; . Rc X,
and therefore also of[ ;. x.Z. Hencep induces a non-trivial homomorphis#), — G,

and this implies thatG|| <x. O

Observation 7.12. For any regular uncountable cardinat, letG,, (« < k) be a semi-rigid
family of non-zero groups of cardinal x, and letG = [["%_G,. Then||R¢ | < k.

<K

Proof. This is an immediate consequence of Corollary 7.4l

Theorem 7.13. (i) If H is a cotorsion-free group an{lH| < R¢y then |Ry || <Ry is a
regular cardinal

(@ If Nim exists, then ||Rz| = Rm.
(i) § (b) If Rim does not exist, then ||Rz| = occ.
© lRall = lit]l = Ro.
(i) ZFC+GCH. If p = R or p < Xy and p is either inaccessible or the successor of
a cardinal that is not weakly compadhen there is a group G such that| < Xqm, and
IRclI =Gl = p-

Proof. (i) If H = H™/H®D then Hon(H, H) = 0 H because is cotorsion-free (and
N1 < Rfm). It follows thatRy H = H, hence alsgRy H)¥m = H'™ On the other hand,
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there is an epimorphism: H¥™ — H using the measure ¥y, seet.o’s observation
[12, Remark, Vol. 2, p. 161Write H®m as(H®1)™m and note thaHf &™) ¢ = 0. Thus,o

induces an epimorphis® ™ —> H and clearlyRy (H'™) # H ™ thus| Ry || < Rm.
Moreover,||Ry| is regular by Observation 6.1.

(i) From Lemma 7.11 followd|Z|| < ||Rz||. Moreover, || Z|| = Rim of ||Z| = oo (see
the proof of Corollary 6.3), hence (ii) holds¥, does not exist. Otherwise, apply (i) for
H = 7. (c) is well-known.

(iif) ChooseG from Proposition 7.6 or Proposition 7.8, thl& | = p < X¥y. Moreover,
G| <|IRg| < p from Lemma 7.11 and Observation 7.12, hence equality holds.

We note that GCH in Theorem 7.13 can be replaced by the weaker condition on cardinals
in Remark 3.9 as is immediate by inspection of the proof.

7.1. Rigid families of with prescribed norms

Propositions 7.8, 7.9, and thus Corollary 7.10 can be extended to fully rigid families of
groups. IfZ is a cardinal, then the famil{Gx : X C A} of groupsG x of cardinality A is
fully rigid if the following holds.

7 if XCX,
Homg (Gx, Gx) = {o if XZX'.
We consider the case corresponding to Proposition 7.9 apcHet™. Replace the fully
rigid family of slender groups of cardinalityin [5, Theorem 7.4 (b), p. 46@]y a family
{Gx, : X € 4, a € p} such that the following holds:

|z ifae=pXccX,
Homg (G, Gx) = {o if o0 for XZX'.

The putGy = ;‘idp Gy,. Then by the above and Proposition 7.9 follows the
Observation 7.14.1f Z € p5 andp = 2T, then there is a fully rigid family of groups x
with |Gx||=p forall X C /.

The case corresponding to Proposition 7.8 is very similar. Observation 7.14 can be trans-
ferred to radicals. We obtain a rigid family of radicats’ = Ry (X C A):If X € X/,
then there is an injective ma@ix < Gy’ corresponding to k Z for example. Thus,
RXGy =0.1f XZX', then HomG x, G x) =0 and therefor&* G x» = Gy follows. Thus,
the family RX of radicals has normiRX || = p (by Theorem 7.13) and is rigid in the sense
that for all X, X’ C / the following holds.

0 if X C X/,

XG o —
R GX/_{GX/ if XZX'.
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8. Consistency results

We will use Fodor's lemm§l7, p. 59] but in a form often more useful (but also known).
For convenience we include the short proof.

Lemma 8.1. Let x be a regular uncountable cardinal andl7; : i € x} be an increasing
continuous chain of sets of cardinalityx. If S C « is stationary andf (i) € T; for all
i € S,thenthereisj € S such that

ieS: fi)eT;} Tk

is stationary

Proof. Inductively choose bijection; : 7; —> o; for ordinalse; such that the following
holds:

(i) If i <j,thenh; C h;.
(i) If jis alimit ordinal, ther:; = Ui<j hi.
(iii) The sequence of ordinalg € x (i € k) is increasing continuously.

If j =0, then choose any bijectioy : To — og = |To|. If j =i + 1, then let
aj = o + |T;\T;| be the ordinal sum and choosg = h; U &, with a bijection/’; :
T\T; — [0y, ;). Thus,o; € k andh;(f(j)) <o; from f(j) € T;, j € S. Finally,
leth = chiand f =ho f : § — k; againh(f(j)) <a«; forall j € S. The set
C={0€k:0almit o5=0}isacubink, thusS’= SN C is stationary inc. If i € 5,
theno; =i andh(f(j)) < jforall j € . ThemapS’ — k (i — f/(i)) isregressive. By
the usual Lemma of Fod¢t7, p. 59]this map is constant on a stationary sukset: §'.
Thereisj € §” such thatf’(i) = j foralli € S”. Thenf(i) e T; foralli € §”. [

We first note the following.

Lemma 8.2. If V = L[D] and D is a normal measure ot thenk is the only measurable
cardinal.

See[17, p. 361]for a proof. Moreover, we apply several known consistency results.
Recall the following.

Definition 8.3. A transversalof a setA of sets is a one to one map: A — [ J A with
T(A) e Aforall A € A.

Theorem 8.4. (i) Itis consistent with GCH and the existenceigf, that Ry, is (strongly)
compact.
(i) AssuméGCH+¢y, is compack

(a) For all regular cardinalsy the following holds
U E Py < U e P) <= (< Vm and u is not weakly compagt
(b) For all regular cardinalsy > R follows u ¢ p5 (thusu ¢ p3).
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(ii) LetV be a model of set theory ance V be aregular cardinal> R If u™ <A < 2#
and A C /, then there is a modeV’ € V with GCH such thatA € V' and V'Fu is
measurable

(iv) If R << ut <A < 24, then there is a model of set theory wjttmeasurable and

VEu, 2) ¢ p5 andp, 4) € p5.

Proof. (i) is due to Magidoff21] which shows that the first measurable cardinal can be
compact. If one forces over a ground model containing a compact cardinal that satisfies
GCH, the generic extension satisfies GCH as well. A different proof was given recently by
Apter and Cummings ifd].

(i(a) If u<Rm is not weakly compact and GCH holds, thegne p3, thusu € p4
follows by Proposition 3.3(i), (iii) and (ix), (x), see also Observation 3.7 and Lemma
3.7. Conversely, ifu e pj5 thenpu e p5 by GCH (Remark 3.2) angh <R from
case (b).

(ii)(b) If u>Rim, then there is a uniform-complete ultrafilteD on B (u) becaus&sm
is compact, sefl7]. Thus,u ¢ p5 and by Proposition 3.3(i), (iii) follows (b). O

(iii) is well-known, sed17].

(iv) We apply (iii), henceu above is measurable. We havwg, < 1 regular, then there is
anwi-complete ultrafilter onc andu ¢ p5 follows from Proposition 3.3(v).

By GCH andu > R there is a stationary non-reflecting §e€ u° =: {6 € y, cf o=w},
see[25]. Let A; be a ladder oi for eacho € S andAg={A;s: 0 € S}. The setA g has no
transversal as follows immediately from the version of Fodor's Lemma 8.1 above. On the
other hand, for every regular cardinathe setA, = {X C u : |X| < u} has a transversal
as follows from the proof iffi24, p. 1271] (The proof is an induction on < u for all sets
ﬁﬁﬁ:){A,; € A, : B e an S} for any fixed stationary subsé&of p and enumeration
of A\.

Now choose a modeM = (u, P, Qo, Q1, R, F, G) for propertyp5 with PM = § the
stationary set abovedy! = w, 0V =, RM = {(o, f) : € Ag, f € S} codingAg,
FM:§ xS — [JA a 2-adic function such that(x, B) € A, for all « < B € S which
is one to one in the first coordinate, i.eaik <y anda, € S, thenF(a, y) # F(f,7)
andGY : w x S — « another 2-adic function such that for eacte S the sequence
(G(n,a) : n € w) = A, lists a ladder atc (without repetition). ThusR(G (n, o), ) for
alln € w. These functions exist becau8g, has a transversal. Suppose for contradiction
thatu ¢ p4. ThenM has an elementary extensidfix N withQ) = 0} = w and there is
¢ € N\M which is an upper bound, i.e.df € u, thenMFo < c.

NotethatA,=F (o, c)isaladderat € S.If o #£ f € S,thenF(a, ¢) # F(f, ¢)andfrom
R(F(a, ¢), a) follows « € F(a, c). We haveME(Vx, y(P(x),x <y — R(F(x,y),x)))
from above, thus als&vE(Vx, y(P(x),x <y — R(F(x,y),x))). In particular, from
MEa < ¢ follows NER(F(a, c), o) forall & € S. FromG and(NFR(b, x) — b € Ay)
follows that (F (o, ¢) : o € S) is a transversal, a contradiction. Hengee p4 and (iv)
holds. [

Finally, we add without proof the following claim which is similar to Theorem 8.4(iv)
but even stronger. The remark uses partially ordered Cohen sets (reals) and well-known
properties on Cohen forcing; here are references for pedesfBi2g.
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Remark 8.5. (i) There are models dfy of set theory such thafyFx < 1 < y are cardinals
with u super compaat = k=¥,

(i) Let P =Cohen, , andG < P be generic oveVy = Vp[G]. Then the following holds
in V.

(8) No cardinals collapse.

(b) The cofinalities remain unchanged.

(c) x<2".

(d) If u<i<yandA C 4, theninVy there is ac-complete ultrafilteD on B(w) such that
forall X C A, X € Vp[A] eitherX € D oru\X € D.

(iii) In V1 follows from (ii)(d) that(u, ) ¢ p5.
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