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Abstract 

A shady of the elementary theory of quotients of symmetric groups is carried out in a similar 
spirit to Shelah (1973). Apart from the trivial and alternating subgroups, the normal subgroups 
of the full symmetric group S(p) on an infinite cardinal LL are all of the form .S,~(/() = the 
subgroup consisting of elements whose support has cardinality i K, for some K < /t A many- 

sorted structure M!,,,, is defined which, it is shown. encapsulates the first order properties of the 

group S, (/c)jS,, ({L). Specifically, these two structures are (uniformly) bi-interpretable. where the 

intcrprctation of ~Jk,il in L?,(/L)/&(/() is in the usual sense, but in the other direction is in a 

weaker sense, which is nevertheless sufficient to transfer elementary equivalence. By considering 

separately the cases cf( K) > 2”“. cf(~) < 2Ni) < K, No < K < 2”“, and K = NC,, we make a further 

analysis of the first order theory of S,(/,L)IS,,(/~). introducing many-sorted second order structures 

i l,\;,,. all of whose sorts have cardinality at most 2”“, and m terms of which WC can complctcly 

characterize the elementary theory of the groups S,(,U)!S,,(/~). @ 1999 Elsevier Science B.V. ,411 

rights resewed. 

Key~vord~: Infinite symmetric group; Quotient; Elementary theory; Many sorted structure 

1. Introduction 

In [S, 6, 10, 1 l] a study was made of the elementary theory of infinite symmet- 

ric groups, and a number of natural questions arising were answered. In this paper 

we examine the quotients of normal subgroups of infinite symmetric groups in the 

light of similar questions. Now the normal subgroups of infinite symmetric groups 

are easily describable in terms of the cardinalities of support sets. More exactly, the 
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support of g E Sym(Q) is the set of elements of Q moved by g. The non-trivial 

normal subgroups of Sym(p) where p is an infinite cardinal are then of the form 

S,(p) = {g E Sym(p) : lsupp g1 <K} for some cardinal K, and the alternating group A(p), 

(see [9] for example), and the objects of study here are the factors SJ@)/&(~) for 

K <j”. 

The problem of which of these groups are isomorphic is mentioned in [9], but we 

concentrate exclusively here on the situation with regard to elementary equivalence. 

We shall find that many of the ideas from [lo] carry through, though with more 

complicated proofs. 

Interpretability results about the groups S;.(p)/&(p) also provide information about 

their outer automorphisms, as was explored for instance for Sym(w)/S,,,(o) in [l], 

and in a related context in [3]. A survey of this aspect is given in [12]. The result 

proved in [l] is that the outer automorphism group of Sym(o)/&(w) is infinite cyclic, 

with a typical outer automorphism being induced by the map n H 12 + 1. The method 

used there incorporates a second order interpretation of the relevant ring of sets in the 

quotient group. One of things we are able to show here is that this can actually be 

done in a first order fashion. The existence of this interpretation is also applied in [12] 

to show that the outer automorphism group of Sym(p)/S&) is infinite cyclic for any 

p, extending the result from [l]. What the outer automorphism group of S;(p)/&(p) 

is in general is still open - it seems conceivable that it is trivial whenever K > Ho. 

The first order interpretation of the ring of sets in the quotient group was carried 

out originally by Rubin in [7] (see also [S]) by a different method. Two of his main 

results are [7] Theorems 4.2 and 4.3 which state: 

{(S~(~)/S,(~),Btii.,,;...):K</Z6~+} 

is interpretable in 

{(~,(~)/s,(~),o):~<~d~+} 

(1) 

where if 6$(~),PK(~) are the rings of subsets of p of cardinality c/2, <K respectively, 

then B,+ is the boolean algebra generated by .?$(p)/PK(p) and . . signifies the ‘natural 

relations and functions’, and 

{NP)/s,(P) : K d I4 4(K) > P” I> 

is bi-interpretable (in a suitable sense) with 

(2) 

where [IC,~] = {v: v is a cardinal and K<v<~}, and (a, b,R) E E ~((a, b) E R E 

~*NO)i((2NoU[IC,~l)2). 
Our corresponding results are Theorems 2.6, 4.3, and Corollaries 3.9, 4.4. Combining 

Rubin’s results (1) and (2) with [lo, 1 I] gives a full classification of the elementary 

types of the groups in the class {S(~)/&(~) : ri<p, cf(~)>2’“} in terms of the two 

cardinals. The case cf( K) d 2N0 which Rubin gives as an open question is treated in 

our final section. 
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The notation used is fairly standard. We use K,& ,u, and v to stand for cardinals 

(usually infinite), and IX/ for the cardinality of the set X. If Q is any set we write 

Sym(Q) for the group of all permutations of Q (l-l maps from 52 onto itself), with 

permutations acting on the right, and we write S(p) for Sym(p) for any cardinal ,u. 

For g E Sym(O) we let supp g be the support of g. If we are working in Sj(/L)/S,\(/L ) 

(where S&_L),&(~) are as introduced above) then we refer to sets of cardinality less 

than K as small. We use overlines such as X to stand for finite sequences (‘tuples’ ) 

(x1 ,x1,. . ,x,,). By a permutation representation or action of a group G we understand 

a homomorphism 19 from G into Sym(X) for some set X. The representation is .f;lit/zfid 

if 0 is l-l, it is transitive if for any X, y EX there is g E G such that x(gO) = y, and 

it is trivial if its image is the trivial group. 

If X is a subset (or sequence of elements) of a group G, we let (X) denote the 

subgroup generated by X. If g, h E G we write gh for the conjugate hK’gh of g by h. 

If g is a sequence of members of G and h E G, we write $’ for the sequence whose 

ith entry is g,“, and if g,h are sequences of members of G of the same length, we 

let S * h be the sequence whose ith entry is g;h,. If 3: = & for some h,?j, and q? 

are said to be conjugate. If N 6 G and ,f = (fl, , ,fi,) E G” we let N .,T = (N,f;, . 

NJ, 1. 
We write Y(X) for the power set of the set X, and 9#) for the set of subsets of 

X of cardinality less than K. Then Y(X) is a boolean algebra, and each YK(X) for K 

infinite is a ring of sets. Moreover, if No d K < i, d 1X1-, ti&Y ) is an ideal of .< (AT), 

so we may study the quotient ring Y~(X)/9$=L), which is a boolean algebra just in 

the case where 1. = IX]+ (that is, where 3$(X) = Y(X)). 

In the remainder of this introductory section we give an outline of the main argu- 

ments of the paper. 

Our analysis of the quotient groups S;(p)/&(p) is carried out using certain many 

sorted structures .A@‘~;,+ and _4$,. (There is also a simpler version AY,“,,~ of K,,,!, 

applicable just in the case c~(K) >2”” .) These structures are devised with the object 

of describing the permutation action of tuples of elements of S,(p), modulo small 

sets. The essential properties of such an n-tuple 3 = (gl , gz, , g,! ) are described by its 

action on the orbits of the subgroup (3). In fact, if 3, and & are n-tuples of elements 

of S,.(p) then g, and & are conjugate if and only if the orbits of (g,) and ($,j can 

be put into l-l correspondence in such a way that the action of S, on each orbit of 

(y,) is isomorphic to that of & on the corresponding orbit of (&). Similar remarks 

apply in the quotient group, except that we have to allow fewer than ti ‘mistakes’ (by 

passing to equivalence classes of a suitable equivalence relation). 

These considerations lead us to observe that what should represent ?j in dlk,,, is a 

list of how many @)-orbits there are of the various possible isomorphism types, where 

by ‘isomorphic’ here we mean ‘under the action of Y’. Included among the sorts of 

.AZK/;l, are therefore, for each positive integer n, the family IS,, of isomorphism types of 

pairs (A,?), where f is an n-tuple of permutations of A acting transitively on A. We 

keep track of the ‘list’ of how many orbits there are of the various types by means of 

a function h from IS, to cardinals, and the family of all these forms a further collection 
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of sorts F,. In F, we have to identify two functions under an equivalence relation 8n 

if they arise from members of Si(p) lying in the same coset of S&L). 

Already it is clear that .L&‘,+ will have second order features (not surprisingly, since 

elements of S).(p) are subsets of p2), but it is still officially construed at this stage as 

a first order structure. The main reason for this is that at present we cannot identify the 

elements of F, as functions from IS,? to Curd ( = the set of cardinals <A), as we would 

like, because, as just remarked, the members of F, are &R-classes, and &B is not in gen- 

eral compatible with application. This point is responsible for many of the complications 

in the paper. In the special case c~(K) >2Nu, we can so identify them, and the analysis 

is considerably simplified. If we do not assume cf(lc) > 2Nu, then the best we can do to 

point the connection between IS, and F, is to consider an ‘application’ function App, 

which acts on F;, x IS, and gives values in Card- = {v E Card : v = 0 V K 6 v <A}. This 

then will be compatible with gn’,, which is why all values <X are replaced by 0. The 

final sort in “&‘xj./l is therefore Card- , and various relations and functions are included 

in its signature to express which of its properties mirror the first order properties of 

S&L)/&@). The most important of these is App,, but we also need relations Eq and 

Prod corresponding to ‘equality’ and ‘product in the group’, and ‘projections’ Proj, 

to handle existential quantification. Here Eq C F2, Prod C F3, and Proj, is a function 

from F;,+I to I$,. Corresponding relations Eq' , Prod’, and Proj,!, are defined on the IS,, 

which in ‘nice’ cases are sufficient to express Eq, Prod, and Proj,. 

The minimum goal in defining the structures J%‘+ is that S;,,(~l)/S,,(~t) 

and S&L~)/&~(,UZ) should be elementarily equivalent if and only if JZX,;.,L1l and i~tiz;.z1L2 

are (Corollary 4.4) and in a sense this ‘solves the problem’ of which of the quotient 

groups are elementarily equivalent. More precise information is however available. In 

particular, J&‘~;_~~ is ‘explicitly interpretable’ in G = S&)/S&); this is ‘interpretabil- 

ity’ in the usual sense, meaning that each sort and relation and function of J%‘,+ can 

be represented by a definable (without parameters, in fact) relation on some power 

of G. In the other direction we cannot hope for explicit interpretability, as one sees 

just by looking at the cardinalities of the structures; a weaker property which we call 

‘semi-interpretability’ (Definition 2.5) is established here, which is still strong enough 

to transfer elementary equivalence. The fact that Sj.(p)/Sx(p) is semi-interpretable in 

J&‘,+~ is shown in Theorem 2.6, and essentially involves making precise the discus- 

sion in the previous paragraph. It goes by induction on formulae of the language of 

group theory. For the basis cases we use Eq and Prod, and for the key induction step 

(existential quantification), Proj,,. 

The method for interpreting JY,(;.~’ in G=S~.(~)/$&) is described in Sections 3 and 4. 

In Section 3 we show how the quotient ring of sets q.(~)/P~il;(p) can be interpreted. 

The ideas behind McKenzie’s corresponding calculations for the symmetric group [5] 

are followed, but with considerably greater complications. The key point is to express 

disjointness of supports (‘almost disjointness’ actually, meaning that they intersect in 

a small set). Now clearly, if two permutations have almost disjoint supports, then they 

commute in G. The converse is very far from true, but we follow this as a first idea, and 

study the configurations of certain commuting elements in sufficient detail to express 
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disjointness. Specifically we consider sequences 3 of length 60 which satisfy the dia- 

gram (which we write alts) of A(5), the alternating group on 5 symbols, in some fixed 

enumeration. This group is chosen because it is simple, and its outer automorphisms 

and transitive permutation representations are easy to describe. Now apart from a small 

set, any 60-tuple satisfying alts is determined up to conjugacy by how many orbits it 

has of the (finitely many) possible transitive permutation representations. Indeed this 

is precisely the information given by the element of F 60 corresponding to such a tuple. 

By means of a (rather technical) analysis of how these interact we can derive a formula 

which holds for two elements satisfying alts if and only if (they have a special form 

and) their supports are almost disjoint. Using this we find another formula which says 

that two involutions have almost disjoint supports, and elements of ,3$.(~)/9~(~) are 

then represented by (cosets of) involutions of G. This gives the interpretation of the 

quotient ring of sets in G, and that of the action of G on ~(~)/PK(~) follows easily. 

Moreover, all the other items of the signature of .&J’~,.~, can be interpreted without much 

further difficulty, though there are some slight complications in special cases, such as 

A= pLi or K = No. It is important that we can distinguish each special case by a first 

order formula. For instance, the structures in which i. = p + may be singled out by a 

formula saying that there is a group element such that the only element disjoint from 

it is the identity (an element which moves every element of p for example). 
Although we generally expect LMxj.1’ to have much smaller cardinality than S;,(p)).; 

S,(p), and it expresses the structure of the group in a more compact form, the IN,,,j, 

still form a proper class, in view of the presence of the sort Card-. In Sections 5 

and 6 we introduce the structures J$,, all of whose sorts have cardinality <22”‘8. in 

order to be able to reduce the problem about elementary equivalence of the groups 

to questions about ordinals of cardinality <2’“. In addition, the fact that I &f,t,li is a 

‘second order structure in disguise’ is brought more out into the open, since f,<;,, 

genuinely is second order (hence the superscript 2). The language used to describe 

I,::,, has first order variables ranging over each of its sorts, and for each ,r-tuplc of 

sorts, n-ary relations whose ith place lies in the ith sort in the list. See Definitions 5.4 

and 6.1. In some cases we have to restrict the cardinality of the relations over which 

the second order variables range. 
Looking first at the more straightforward case, to indicate the main ideas, suppose 

that ctf’( ti) :> 2N0. We show that now App,, can genuinely be construed as ‘application’, 

so that we may fully describe fi, in terms of ZS,, and Card-. What therefore controls 

the structure .J?~,,~, is Card-, and more specifically its order-type c( = r(ti, i., /L). The 

crucial ordinals needed to describe the elementary theory of .&,i,.l, are found by writing 

M in ‘base .Q Cantor normal form’ where Q = (2”(l) ‘-, and the countable list of ordinals 

alnl (the Cantor coefficients) and certain cofinalities c~l”l are what replace Curd in 

lL’il. Theorem 5.5 asserts that _1,‘_/, is (explicitly) interpretable in a reduct -/&r,!, of 

.&,+ (and hence in J&+,). Non-empty subsets of Card-- of cardinality <Q may be 

encoded by members of Fl (we have to use F2 rather than FI since j/S, / = ‘t+ but 

II& / = 2”” ), and it is not hard to express all the individual terms of the base 0 Cantor 

normal form for z. To express facts about cofinalities we have to quantify over binary 
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relations on Card- of cardinality < 52, which may be encoded using members of F2’. 

To express the full second order logic described above we use longer tuples from 

possibly higher 6,s. 

The transfer of properties from J+$, to J&‘,+, (J$+ actually suffices in this case) 

is not even by a semi-interpretation. Theorem 5.9 shows directly how to express an 

arbitrary formula of the first order language of JLZ:~.+ by a second order formula of 

the language of U4$,L. Parameters are transferred using ‘/c-representations’, where this 

means that a tuple of elements of J&‘:~,,~ (of possibly varying sorts) is represented by 

a (longer) tuple of elements of JV$, including partial maps from IS2 to IS2 encoding 

cc[O],..., c(rk-I] and CI[~],...,C~[~-‘~. 

If Cf(K)<2N”, we can additionally interpret in Jz’~;.+ the base Sz Cantor normal 

form coefficients and cofinalities of the least ordinal c(* such that (3y)(p= y + a*) 

where K = N/i, so this information needs to be added to N&. which now includes 

~;o]‘...,~;k_,] and ,*[‘I, . . . , c(*[~- ‘1 (and also cf(lc)) as additional sorts. As remarked 

above, since we do not now automatically know that i >2No, we have to restrict the 

second order variables of .J& to range over relations of cardinality c/1.. There are 

some additional complications in the cases K d 2 No and K = No, though in all cases the 

outline described in the previous two paragraphs provides the basis of our analysis. 

Since the precise definition of JY& depends on which of these cases applies, it is 

important that they can all be distinguished by elementary formulae. 

In summary the main conclusions are as follows. There are first order formulae of the 

language of group theory distinguishing those S&)/S&) for which ;1<~ or ;1= pL+, 

and also the cases c~(K) > 2No, c~(K) < 2N0 < K, No < K < 2’“, and IC = No. In the case 

2 d ~1 and cJ‘(lc) >2N~ the following holds: 

for any given ordinals c(/, E’ <D there is a first order theory T in the language of 

group theory such that 

if K = N/j, ;1= N;., p + CI = y, and c+] = c(,?, ~‘~1 = CI” for each II, 

then the first order theory of the group Si,(~)/S,@) is equal to T, 

with similar statements in the other cases (including reference to the a;,,, E*@] and so 

on corresponding to the exact definition of J$,). 

2. The basic machinery 

Since we are aiming at a two-way interpretation, where the technically most involved 

step is the representation of many notions inside the quotient group S&)/S,&), we 

describe in this section the structure whose bi-interpretability with this group is to 

be shown. In one direction this is interpretability in the usual sense (called ‘explicit 

interpretability’ in [lo]), but in the other only what we may term ‘semi-interpretability’, 
- which is still sufficient for the transfer of elementary properties. We suppose that 

No <IC < ,? < pL+. The interpretation is most straightforward when cf(ti) > 2No, but we 

can handle the general case at the expense of some additional work. In the main 
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presentation we assume K > No, indicate how the argument simplifies when (;f( K) > 2NiN, 

and what extra is required when K = No. We remark that in [7] Rubin showed how to 

interpret the quotient ring q:(p)/P&) in the group, which is also one of our main 

goals, though his methods were very different from those we use. 

Definition 2.1. (i) For a finite sequence .f7=(j”l,f:,. . . ,f,,) of members of S;_(p) wc 

let suppj = lJ:L, supp h 
(ii) For a positive integer n let ZS,, be the family of isomorphism classes of pairs 

(A,Zj) where jZj E (Sym(A))” and (3) acts transitively on A (and if i,bp, then not every 

9, is equal to the identity). 

(iii) Cuvd = {v : $1 a cardinal such that v < ;.}. 

(iv) Curd-={0}U{~~Curd:~<v}. 

(v) If 7 E (S,(p))” let x = Clri be the function from ET,, to Curd given by C/r,((A, 

Yj)?) = the number of orbits B of f) such that (B.f) 2 (A,y). 

(vi) Ch, = { Chi :f E (S;.(p))“}. 

(vii) For cardinals ~1 < ~2 we define K 2 - KI to be the least cardinal ~3 such that 

til + Kj = K?, and We let IK, - Kl( = /Kl - KI 1 = ti? - ICI. 

(viii) We define an equivalence relation &,;, on Ch,, by letting ~1 &,:,,~l if C{ 1x1 (t ) - 

xz(t)( : t t IS,,} <K. 

(ix ) For each n > 1 let F;, be the set of functions h : ZS,, + Curd such that 

~{h(t):tEZ&}<i, and if i.= ,/, c {k(t): t EZS,} = p, 

modulo &,, . 

Remark 2.2. In ‘nice’ cases LJ(K) >2No we may replace Curd by Curd-, and then the 

definition of Chi is modified by replacing all values less than K by 0. Corresponding to 

this, for x E Ch,, we let x-(t) = x(t) if x(t) 2 ti and x-(t) = 0 otherwise. We consider 

this case further in Section 5. If K = NO, the definition of &,,, is modified; here we let 

xIB;,xz. if C {IA,I. Ix,(t) - x*(t)\ : t E I,?$} <No where t = (A,,& (and this says that 

xl(t) = p(t) whenever A, is infinite, and {t : xl(t) # x?(t)} is finite). 

Lemma 2.3. (i) For ~~~J:E(S;.(C~))~‘,C{C~~(~):~EZS,,}<~. 

(ii) For any function k from IS, to Curd such that C {k(t) : t E I&,} < 2, and if 

2 = p- , c {k(t) : t EZ&} = p, there is f E (S;.(p))” with Chf = k. 

(iii) For f,s~(S~.(~l))~,Cki~~Cho if and only if S&).f and S,,(p).S ure 

conjugate. 

Proof. (i) For each t E ZS,, Chi(t) is the number of orbits of (f) on p of that isomor- 

phism type. Hence if ;1 <p, c, Chi(t) is equal to the number of non-trivial orbits of 

(7) on p, which has cardinality at most Jsuppfj. But suppj has cardinality less than 1. 

If A = pL+, C, Chf(t) equals the number of orbits of (J) on 11, which is <p < A. (If 

K=N”, instead we have ~{(A,I.C~~(~):~EZS,,}<L) 
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(ii) First suppose L<p. For each t E IS, choose a representative (A,,g,) of that 

isomorphism type. Identify U {A, x h(t) : t E IS,,} with a subset A of p, and let f act on 

A, x h(t) as gr does and fix all points outside A. Then for each t, (f) has precisely h(t) 

orbits of type t. If ;1= p+ and C {h(t) : t E I&} = p, where now the trivial isomorphism 

type is allowed, we may identify U {A, x h(t) : t E IS,,} with the whole of p. (If K = No, 

h(t) is replaced by JA,(.h(t).) 

(iii) Altering a member of (S;.(n))” on a+set of cardinality <K does not change its 

C&-value (module &), so if S,&).f =S,(,LL).~ it follows that Chfh&nCh,. 

But h furnishes an isomorphism of (A,f) to (Ah,fh) for each orbit A of f), and so 

Chf = Clzt~G;, Ch,. 

Conversely, if ChF&,,Ch,, by altering f on a set of cardinality less than K we may 

suppose that Chj = Ch,. There is therefore a l-l correspondence between the orbits of 

(f) and (9) h’ h w IC preserves the isomorphism type in IS,, and which maps singleton 

orbits to singleton orbits. Moreover this may be chosen having support of size <i 

(since Isuppfl, Jsuppgl <A). Th‘ IS gives rise to the desired conjugacy h. q 

Definition 2.4. Given the cardinals K, L, ~1 we form a many-sorted structure J%’ = J&‘,+ 

with sorts grouped as follows: 

sorts 1: a sort ZS, for each n 3 1 (having cardinality 2NU for ~12 2, ISI of cardinality Ho), 

sort 2: Card-, (in which 0 and K, as the first two elements, are definable, so do not 

need to be explicitly named), 

sorts 3: a sort F, for each ~121. 

The signature taken is as follows: 

unary relations Eq’ on I& and Prod’ on IS3 given by 

Eql={tEISz:t=((A,gl,gz))--)gl =gz}> 

Prod’={tEZS3:t=((A,gl,g2,g3))Nig,g2=g3}, 

for each n a binary relation Proj: C IS,,,, x IS, given by 

Proj~={(tl,t:,)EIS,+l xIS,,:3A,3A239,392...3g,+,(A1 >A2 

AtI =((Al,gl,...,g,+l))rA~2=((~2,9l1~2,...,gnI~2))~)}~ 

< on sort 2, the usual ordering of cardinals, 

for each n a function App,, from F, x IS, to Card- given by App,,(x, y) = v provided 

that for some h with (h)g,, =x, h(y) = v (noting that the value of h(y) is well-defined 

for v > K, and for v <K, all values are replaced by 0, - see the definition of x7 above), 

unary predicates Eq on sort F2 and Prod on sort F3 given by Eq(h), Prod(h) hold if 

C{h(t):tEISZA(t=((A,gi,gz))~--,gl #g2))=0> 

~{h(t):tEISiA(t=((A,gl,g2,g3))--g~g2#gi)}=O, 

respectively, (where as the sorts 3 consist of functions modulo &n, saying that these 

sums are zero means in effect that they are <K), 

and functions Proj, from sort F,,, to sort F, such that if h : IS,+, -+ Card then 
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Proj,,(h) : IS,, 4 Card is given by Proj,(h)(t) = C { lB,(,] .h(t’) : t’ E ZSn+~} where for 

each t’ = ((A, g))= E I&+~, and S of length n + 1, BP, is the set of all orbits of 

(yr,g?, . ,g,:) on A on which (g,,gz,. . ,y,,) has isomorphism type t. (Note that lB,j,i 

is independent of the particular choice of (A,g) corresponding to t’. Note also that 

strictly speaking here and in the definition of Eq, Prod, we should work with the 

B,+lasses determined by h, Proj,,(h).) 

We include Proj,, in order to handle existential quantification in the forthcoming 

induction (Theorem 2.6). The definitions of Eq and Prod apply just in the case 

K > No, and are intended to express equality and products in S; (LL) up to fewer than 

K mistakes. For K= No, instead of summing the relevant h(t) we sum IAil.h(t) where 

t=((A,,,f;,fi)), or((L4,,f~,f?..f3))z andA:={xEA,:xf~#~fi} or{XtA,:rf‘~f,I 

z,f;} respectively. 

In the general case the inclusion of the sorts IS,, and Card- is unnecessary, at any 

rate as far as the proof of Theorem 2.6 is concerned. On the other hand in all cases they 

can be naturally represented within S&)/S,&), and in the special case cf( ti) > 2’:” the 

‘application’ functions App, genuinely identify the members of &;, as functions from 

IS,, to Curd (since here the equivalence relation 8,,, can be dispensed with), meaning 

that App,: : F;, + (Card- )‘sfi given by App,:(h)(t)=App,,(h, t) is l-l. In Section 5 we 

shall also see that Proj,, is definable from Projf, and App,, in this case, and similarly 

for Eq and Prod, easing the analysis of the J&‘,~;.,,. 

The sense in which we can show that S, (~)/A’,&) is interpretable in J~~X,i, is weaker 

than the usual one and is given in the following definition. 

Definition 2.5. For structures .H and L 1 we say that .& is semi-interpretable in I 

if there is a recursive function F from formulae of the language of .N to formulae 

of the language of c 1. and there are functions f,, : .&“’ + ,I such that for all z t N” 

and cp(X) with IZ free variables, .& k cp[C] H L 1 + F(cp)[,f;,(Z)]. If the same F serves 

over a class of pairs of structures then we say that the first of each pair is un{fbrm!\. 

semi-interpretable in the second. 

‘Theorem 2.6. For every first order fbrmula cp(xo, ,x,,.- 1) qf’ the theor), qf’ groups 

there is an qflectively determined$rst order formula $(y) @ the language of’ .,I’/ such 

that for all ti, 2, 1-1, and for every .f E (5’; (p))“, 

Proof. We construct $ by induction. First suppose that cp is atomic. It suffices to 

consider formulae of the form xg =x1 and ,x()xi =x2 for variables .Y~,x~,x~. If cp(_~~,,x, ) 

is x0 = 3~1 we take for $(y) the formula Eq(y ). Then 
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H the union of the orbits of (fi, fz) on which the actions of fi and f2 
are distinct has cardinality <K (since JC> No) 

* C(IArl.c~i(t):fEISzA(t=((A,,g,,g2))~~yl #92))<K 

* A f= Eq( (C$)fl, ) (using K > No again) 

@J& != II/Kqk,l, 

and similarly for the formula x~coxi =x2 (using Prod). 

The propositional induction steps are straightforward. 

Finally suppose that q(X) is 3y(pi (X, JJ). 

It is easily checked that for any f = (fl , f2, . . , fn) and fn+l in S>,(p), 

From this it follows that if h E F,+I, then Proj,(h) = Chf if and only if h = Chf;&+, 

for some fn+l. Continuing the proof we deduce that 

where *I is a formula corresponding to cp1 as given by the induction hypothesis, and 

so we take for $(X) the formula 3y(ll/(y) A Proj,(y) =X). 0 

3. Interpreting PA(~.L)/~&> in ~~.(PYWP) 

In this section we show how it is possible to interpret many ‘set-theoretical’ prop- 

erties inside S&)/S,&), by representing subsets of ,U via supports of suitably chosen 

elements (always up to fewer than ‘K mistakes’), and consequently to interpret the ring 

P~,(~)/P&). The key idea is to use sequences whose entries are transitive representa- 

tions of a specific finite non-abelian group to represent the subsets, which enables us 

to capture disjointness of their supports via a commutativity condition. We introduce 

the necessary formulae one by one, and outline why they represent what is required. 

Let G be a fixed finite group of order n, and let ?$ = (al,az,. . . , a,) be a fixed 

enumeration of G for which al = id, the identity. In what follows we shall in fact just 

use G = A(5), the alternating group on (0, 1,2,3,4}. This is for three reasons: it is the 

smallest non-abelian simple group; its transitive permutation representations are easy 

to describe; and (a small point needed in the proof) its outer automorphism group is 

also well known (and is just S(5)). 

Let diag(G,,f) be the conjunction over all i, j, k between 1 and n for which a,ai = ak 

of the formulae xixi = Xk . This is intended to say that (xi ,x2,. . . ,x,, ) is a ‘copy’ of G 

Sh:605



S. Shelah, J. K. Truss/ Annals of Pure and Applied Logic 97 (I 999) 47-83 57 

(in the specified enumeration), but actually just says that it is a homomorphic image. 

We write diag(d(5),X) as alt5(X). 

Lemma 3.1. Suppose f- E (S;.(P))~ is such that Sj,(u)/S,(u) t= diag(G,&(u).,fT). Then 

there is a small union X of Cf)-orbits such that if’ x E u - X. and aia, = ak, then 

a.fi.6 = a.fi. 

Proof. Let X,,, = {a E ,U : ufi.fi # ctfk} and let X = U {X,,k : a,a, = ah }. By definition 

of diag, and of S;.(P)/&(P), 1x1 <K. So it suffices to observe that p - X 1s closed 

under the action of (f-). Let CI $X and 1 <Y <n. Suppose that i.j, k are arbitrary 

subject to a,a, = ak. Then there are s, t such that a,.ai = a,s and a,@,. = a,. We find that 

a,a, = araja, = a,-& = a,. Since x $X_ z.fi-,fiJ, = z,f,,f, = c( fr = a.f,..fk. Thus x,f,. @X,,, 

and so cc.f;. 4 X as required. 0 

Lemma 3.2. For any f,S;.(u)/S,(p) b alts(S&).,f) if und only t” there is a small 

union X qf orbits of cf) on p such that for every orbit Y qf (.f) on u-X, the uction of’ 

(.f) on Y is isomorphic to some action of A(5) (so that IYl = 1,5,6,10,12,15.20.30. 

or 60, and then Mze sa)l that ,f acts as A(5) with this degree). 

Proof. This is immediate from Lemma 3.1 on remarking that for orbits Y outside X. 

the action of (F) on Y precisely corresponds to some transitive action of A(5). The 

fact that the possible values of IY 1 are as stated follows from the fact that any transitive 

action of A(5) is isomorphic to its action on a coset space [A(5): N] for some sub- 

group H of A(5), and the possible orders of subgroups of A(5) are 1,2,3,4,5.6.10, 12, 

and 60. J 

With this lemma in mind we may define for any ,[ E S;(p) of length 60 the cardinals 

v,,(,f-) for m E { 1,5,6,10,12,15,20,30.60} by v,,,(,f ) = the number of (f-)-orbits on ~1 

on which f- acts as A(5) with degree m. The significant values (that is, those which 

are preserved under passing to the coset S,(p) .f ) are those vm(.f) which are 2 ti, and 

these provide a ‘profile’ off characterizing it up to conjugacy. 

To make further progress we need to analyse with some care some properties of the 

possible faithful transitive actions of A(5), which we do in the next three lemmas. 

Lemma 3.3. Suppose that H and K are proper subgroups qf A(5). Then ,for .some 

a E A(5), (H na-‘KuiG3. Moreover, if there is a such that lH na-‘Ku1 = 3 but no 

b such that lH n h-‘Kbl<3, then (H( = lKj = 12. 

Proof. As A(5) is simple, IHI, JKI < 12. If H or K has order <3 we just let a = in. 

Assuming without loss of generality that IHI 2 lKI we are left with the following 

possibilities for ( (H 1, IK / ): 

(12,12),(12,10),(12,6),(12,5),(12,4),(10,10)~(~0,6),(~0~5),(~0~4), 

(696) (6.5). (694) (575) (5,4), (474). 
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The subgroups of A(5) of orders 12,10,6,5,4 are determined uniquely up to conju- 

gacy in S(5) (as is easy to check) and so by replacing by a conjugate by a member 

of A(5) may be taken to lie in the following list: 

12 :A(4) (regarded as the stabilizer of 4 in A(5)), 

10 : ((01234),(14)(23)), ((01243), (13)(24)), 

6 : ((012),W)W)), 
5 : ((01234)), ((01243)), 

4: ((01)(23),(02)(13)). 
The following cases can be at once ruled out as IH nKI <3 is already true: (12, lo), 

(12,6),(12,5),(10,6),(10,4),(6,5),(6,4),(5,4). In all the remaining cases, which are 

(12,12), (12,4), (10, lo), (10,5), (6,6), (5,5) and (4,4), the conjugator (234) will serve 

as a, as is easy to check. 

Now for the final part, suppose that JH n aPIKul = 3 for some a and that lH n b-‘Kbl 
>3 for all b. Then lHI and IKI are multiples of 3. If H or K has order 12 or 6, we 

take it as above, and if 3 we take it as ((012)). In all cases except for IHJ = IKl = 12 

we find that for b = (243), IH n bb'Kbl = 1 or 2, and we conclude that H and K must 

both have order 12. 0 

Lemma 3.4. Let D be the diagonal subgroup {(ai,ai): 1 Gi660) of A(5) x A(5). 

Then .for any subgroup H of A(5) x A(5) of order 12 or 36, there is a such that 

lclHanDJ f3. 

Proof. Suppose otherwise. Thus (HI = 12 or 36, and for every a E A(5) x A(5), la-‘Ha 

noI =3. In particular IH nDl=3 so we suppose that H nD= (((012),(012))). Let 

u=((13)(24),id). Since la-‘HanDI =3 there are i<j<k such that ((ijk),(ijk))E 

a-‘Ha. Also ((034),(012))~u-IHa. If I{i,j,k}n{0,3,4}1= 1 then ((ijk),(O34)) con- 

tains an element of order 5, contrary to la-‘Ha/ = 12 or 36. Hence I{i,j, k} n {0,3,4}1 

=2 or 3. Similarly I{i,j,k}n{O,1,2})=2 or 3. Therefore i=O and j= 1 or 2, k=3 

or 4. 
Case 1: (ijk) = (013). Then ((012), (012)) ((031) (013)) E H. But these two ele- 

ments generate a group of order 144 (A(4) x A(4) in fact). 

Case 2: (ijk) = (014). Therefore ((012),(012)), ((032), (014)) E H. Since H has no 

element of order 5, H<A(4) x A({0,1,2,4}). Let b=((014),id). Then bb’Hb< 

A({1,4,2,3}) x A({O, 1,2,4}). If ((i’j’k’),(i’j’k’)) lies in bb’Hb with i’<j’<k’ then 

{i’,j’,k’}~{1,4,2,3}n{O,l,2,4}, so (i’j’k’) = (124). Then ((021) (124)) E H, so that 

(id,(02)(14)) EH, from which it follows that (HI # 12,36. 

Case 3: (ijk)= (023). Then ((012) (012)),((041),(023)) E H, and we argue as in 

Case 2, with b= ((013),id). This time we find that ((021) (123)) E H, so that (id,(02) 

(13))~H, and IHI # 12,36. 

Case 4: (ijk) = (024). Then ((012), (012)),((042), (024)) E H so ((01)(24), (014)) 

EH, and JHJ = 144 as in Case 1. 0 
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Lemma 3.5. Suppose that f,?j are subgroups of Sym(X) isomorphic to A(5) (in the 

specified listings) which centralize each other, and such that (f ,tj) is transitiw on 

X. Then ,j= * ?j has an orbit of length at least 20. Moreover, if’,? * ij hus an orbit of’ 

length 20 then it also has an orbit qf Some other length greater than 1. 

Proof. Let .Y = {X, : i cm} and cy = {Y : j <n} be the families of orbits of ,f and I, 

respectively. Then as f and S commute, f and S each preserve :‘t” and !g (setwise), 

and hence also 3 = {Xl n q : i cm, j <n}. Moreover by transitivity of f. y) on X the 

actions of ,r on its orbits are all isomorphic, as are the actions of 3 on its orbits. Since 

,f.Zj are isomorphic to A(5), these orbits are all non-trivial, and since A(5) is simple, 

they all have at least 5 members. 

Case 1: m = n = 1. Thus f and g are both transitive. 

In this situation it is standard that f and 3 both act regularly (see [ 13, Theorem 

3.2.91). For suppose that x,fr =x. Then for each j, (xgi)fi =s.hg, = xgi and as a is tran- 

sitive, .f; = id. Similarly g is regular. By suitably labelling the elements of X we may 

suppose that X = A(5) and f is the right regular action, in other words (N, )f; = a,a, 
for each i and j. 

Now we appeal essentially to the fact that the centralizer of the right regular ac- 

tion is the left regular action (see [13, Theorem 3.2.101). Let alg, =a,-. Then a,B, = 

aI f;g, = aI g!,f; = a,.,fj = a,a,. Hence gi is multiplication on the left by a,.. Let us write 

a,. as a,8. Thus 8 is l-l since if a;Q = ai@, alg, = alg, and i =j (by regularity). So also 

(I is onto. Moreover it is an anti-homomorphism, since (a,a,J )O = al (gigi!) = ((a,tl)al )g,~ 

=(ai)H)(a,O)al =(altO)(a;O). Thus cp given by a,cp=(cr,‘)() is an automorphism of 

A(5). So for some s~S(5), a,q=sP’a,s for all i, so that a,(,f,g,)=s ‘(17 ‘.~~,a,. 

Now the length of the orbit of ,f,gj containing a, is equal to the index of its stabilizer 

in A(5). But sP’af’sa,a, =a~~aaJ’sai=sa;a~’ @a, E C’,,,,(sa,)=A(5)n Cs(51(.sa,). 
Now sa, either ranges over A(5) or over s(5)-A(5). If A(5) let sa, = (012) or (01234). 

Then IC..~(s,(sa,)l = 3 or 5 and so there are orbits of lengths 20 and 12. If S(5) -A(5) 

let so, = (0123). Then IC,~cs)(su,)1 = 2 and so there is an orbit of length 30. 

Cuse 2: t?i= 1 An > 1 (or similarly m > 1 An = 1). 

Then .f is transitive, so by the same proof as above, 7~ acts semiregularly (that is, 

only the identity has any fixed point). Hence 3 acts regularly on each orbit, and so 

each orbit has size 60. But then (XI >60, contrary to f- transitive on X. 

Case 3: m, n> 1. 

Since (,f . a) is transitive, the actions of ,f on “V and S on .‘Y’ are both transitive, and 

hence faithful. Moreover (7,s) acts transitively on 3 = {X; n 5 : i cm. j <n} (which 

in particular means that all X; n Y are non-empty of equal size). 

We show that some orbit of ,r * g in its action on 2 has length 220, and it will 

follow that the same applies to its action on X. Now the length of the orbit con- 

taining X, r Y is equal to the index of its stabilizer, and as (X, n q ),fkgk = X,gk f~ q,f; . 
(X, n Y).fiyr =X, n I$ @Xgk =X, A I’.fi = Y. Hence {ui : (X, n q).figa =X, n q) = 
{ak :X,gk =Xi} n {aA : q,fk = 5) and all we have to do is to show that for some i.j, 

the right hand side has order <3. Let H = {ak :&ga =XO} and K = {a~ : Yo,fi = y0). 
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Then the stabilizers of the other Xi and I; are just the conjugates of these. For instance 

{Uk :&gigk =&gj} = {& : alu@zi -’ E H} = aJ’Haf and {Q : Yofifk = Yofj} = u~'Ku~. 

For our choice we take i = 0 and select j by using Lemma 3.3. 

Finally we have to show (still in Case 3) that not all orbits off * s can have length 

20 or 1. Suppose otherwise. Since m > 5 and f * 9 acts transitively on {Xi : i cm}, 

none of the orbits can have length 1. Applying the last clause of Lemma 3.3 we find 

that [HI = IKI = 12, and SO m = n = 5. Therefore /XI = 25 1x0 n Ya I and since this is a 

multiple of 20, and 1x01 = 51X0 n Y o tsafactorof60,1XoflYol=40r 12,so lXl=100 1 . 

or 300. 

Pick x E& n Yo and let L = {(u~,u,~) CA(~) x A(5) :xf2gj =x}. Since A(5) x A(5) 

acts transitively on X via (7,s) IL1 = 602/IXI = 12 or 36. By Lemma 3.4 (and with 

D as there), there are i, j such that I(ui,ui)-‘L(u,,u,) n DI # 3. Let y =xf;gi. Then 

yfkgk =Y@xXfifkg,gk =Xfig,j @+~~fk.f-‘gjgkg,” = X H (aiaku,‘,u.jaka,“) E L++ 

(Uk,Uk) E (Uf, Uj)-'L(Ui,Ui). Hence /{Uk : yfkgk = y}l = I(U,,U.i)-‘L(ai, U,j) n DI # 3, and 

so the orbit of y under the action of f- * S does not have length 20 after 

all. 0 

We now move towards the construction of a formula which is intended to say that 

x acts as A(5) on all but a small set of its orbits, and that each such orbit has length 1 

or 5. Actually we stop short of doing this (even though it can be done) and just find 

a formula restricting the range of representations possible - as this provides a quicker 

route to our goal. We require the following auxiliary formulae: 

comm,,.(%7): A l~~~m.l~jSnXiYJ =Yixi, 

where m and n are the lengths of x and 7. This asserts that 

each entry of X commutes with each entry of 7. 

conj,(X, 7) : (32)(X’ = 7). 

In practice we omit the subscripts from comm,,, and conj, (and other similar 

formulae). 

indec(?): uZt&C) A (Vy)(VT)(comm(~,2) A ults(y) A 

ult@) AX = 7 * z -+ (conj(X, 7) v conj(X,Z)). 

Lemma 3.6. For any sequence f of elements of S?,(p) of length 60, So,/& /= 

indec(S&).f) if and only zf Ip - suppf-1 = ,LL, (7) acts us A(5) on all orbits out- 

side a small subset of p,vjg(f), v&)<Ic, and there is at most one m E {5,6,10,12, 

15,20} for which vm(fT) 2 IC. 

Proof. We remark that we need to stipulate 1~ - suppf I= ,U in view of the pos- 

sibility that ,I=p+. Let us say that f $! S,(p) is indecomposable if S;.(U)/&(~) /= 

indec(S&)./). 

First observe that if v,, (f ), v,,(f ) B K where 1 <ml <ml then we may write f- 
as 3 * h where S is the restriction off- to the union of its orbits of length ml (that 

is it agrees with f- there and fixes all other points), and h is the restriction of f- 
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to the complement of the union of these orbits. Clearly .r . S commute, S,,(p) .a and 

S,(p).% satisfy aZts@), andf =g*h. But neither S,(p).3 nor S,&).h is conjugate to 

s&&f. 
Next suppose that I” >, K, and let X be the union of all orbits of ,f of length 30 

on which,f acts as A(5). We let g and ,f agree on p-X and x fix p-X pointwise. Let 

Y be a typical orbit off contained in X, (and hence of length 30). Now if H and K 

are subgroups of A(5) of orders 12 and 10, then A(5) has a transitive action of degree 

30 on [A(5):H] x [A(5):K], (since (H nKl=2), which is therefore isomorphic to the 

action of (,I:) on Y. So we may let Y={c((N~,,.K~, j:Ha,~[A(5):H],Ku,~[A(5):K]} 

in such a WV that for each k x(H~,,,K~, j.fh = qHu,aA.hr,.or ). The point is that this expresses 

the action of ,f on Y as a commuting ‘product’ of actions having orbits of sizes 5 

and 6. We let E (Hu,, Ku! ,g~? = ~(flu,n~.Ku,) and Wii,.Kri, I x - ~/~ii,.Ku,ur 1. h -a This therefore de- 

fines the actions of 3 and h on the orbits of ,f having length 30. It is clear that neither 

S&).g nor S&d).% can be conjugate to S&).,f, since v~,I(~),v~o(~~)<K. But S,,(~c).q 

and S,,(p).& fulfil the other requirements on _V and Z in indec, and so we conclude 

that s,(p).,f cannot satisfy in&c. 

If rb~(,fT) 3 K, a similar argument applies, but this time taking lH( = 12 and IK = 5. 

Now suppose that 1~ - supp,[l <p. Let X be a union of orbits of (f) such that 

IX/=lP-Xl=/ L, and let 3 and h be the restrictions of ,f to X and it -X respectively. 

Then S,(p).g and S&).h provide witnesses for J’ and = violating indec(S,i(/l).,/T ). 

Conversely, suppose that 1~ - supp,f 1 = p and for some m t { 5,6,10,12, 15, 20). the 

union X of the orbits of (.f) of length m on which ,f acts as A(5) has cardinality 3 h-, 

and that .f fixes all but a small subset Y of p - X. We verify indec(S,( ~1) .,i ). Sup- 

pose S&).3 and S,,(p).h are witnesses for 7 and Z in indec. If Isup~~~supp/7~ <K 

then g and h are restrictions of ,f (meaning that apart from a small set, their sup- 

ports are contained in supp.7, and on their supports they agree with .f7 ). and so, as 

lsuppg1 + lsupphl = Isupp.fl, either (suppgl = Iszrpp,f:I or lsupphl = Isupp,f/. so that 

one of .S,(~1).g,S,(p).h is conjugate to s,&).,f. 

So we suppose that Isuppg n supphI K and aim for a contradiction, Since 3 and 6 

commute mod S,\ (p), by increasing Y if necessary we may assume they commute out- 

side Y. Let Z be a typical orbit of (3, h) on (supp Zj n supp h) - Y. Then the restrictions 

of g and h to Z fulfil the hypotheses of Lemma 3.5, and so 3 * fi either has an orbit 

on 2 of length greater than 20, or orbits there of length 20 and some other length 

greater than 1. Since this applies to all possible choices of Z, tither them are 3 K Zs 

for which there is an orbit of length greater than 20, or there are 3 ti Zs containing 

an orbit of length 20, and of some other length greater than 1. But each of these is 

contrary to the hypothesis on .f’. C 

We are now able to express disjointness of certain sequences, which is the key to 

recovering the appropriate ring of sets inside S,.(p),iS,(~c). From this WC shall be able to 

express disjointness of involutions (meaning disjointness of their supports), which arc 

actually the elements we shall use to represent sets, and of more general sequences. But 

the first approximation uses elements satisfying indec and acting in the same way. Let 
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us say that two such elements S&).f and S,(,U).~ have the same action if v,(f)> K 

and v,(g) 2 K for the same m > 1. 

disjl (Y, y) : indec(T) A indec(y) A comm(2, 7) A indec(T * 7). 

Lemma 3.7. For any sequences f and 3 of elements of So. - S,(p) of length 60, 

S&)/S,(p) b disjl(S,(p)./,S&).~) if and only iff and S are indecomposable 

with the same action, J,LL-(supp,f U supp S)l = p, and lsuppf n supp TJ< K. 

Proof. It is clear that if two indecomposable sequences in S;,(~)/S&) have the same 

action, and almost disjoint supports (meaning that the intersection of their supports 

has cardinality less than K), then they commute, and their pointwise product also is 

indecomposable (provided that the union of their supports does not have small com- 

plement). Conversely suppose that the given conditions apply. Then as in the previ- 

ous proof, if the supports of ,f and S are not almost disjoint, then indecomposability 

of 7 * s is violated. It also follows that f-,s, and f- * S must all have the same 

action. 0 

It is now possible to find formulae expressing the following concepts inside S;(p)/ 

S&L): 
membership in ~~(~)/~&), 

the boolean operations on 9+(,~)/9&), 

the action of S;.(p)/&(p) on P~.(~)/P&). 

First we represent members of 9~(~)/9’&) by involutions, and let set(x) be the 

formula x2 = 1 (where for present purposes it is easier to count the identity as an 

‘involution’). The idea is that each involution will encode its support (so for example 

the identity represents the empty set). Of course this only makes any sense if we can 

tell when two involutions encode the same set. 

Now let i be such that ai has order 2 in A(5). Then for g E So with lp-supp g) = ,u, 

S&L). g has order 2 if and only if there is some indecomposable 3 with vs(g) B K such 

that S&).g=S,(~).gl. 

disj’(x, y) : set(x) A set(y) A 3237(zi =x A ti = y A disjl (5, t)). 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Here the idea is that disj’ should express disjointness of (sets encoded by) involu- 

tions, and disj should express disjointness of (the supports of) arbitrary permutations. 

Because of the possibility that A = p+ we use products of four elements rather than 

just two, since we need to be able to express an arbitrary group element in terms of 

involutions the complements of whose supports have cardinality p. 

subset(x, y) : set(x) A set(y) A Vz(disj(y,z) ---f disj(x, z)), 

sameset(x, y) : set(x) A set(y) A Vz(disj(y, z) H disj(x, z)), 

union(x, y,z) : set(x) A set(y) A set(z) A \dt(subset(x, t) A subset(y, t) ++ subset(z, t)), 
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intersect(x. y, 2) : set(x) A set(y) A set(z) A Vl(subset( 1.x) A suhset(t, J!) * .suhset( 1.2) 1. 

union,,(Y, y) : (Vz)(disj(z, y) H A:‘, diSj(Z,.Yi)), 

nzup(s, y,z) : set(x) A set(y) A sameset(z -‘.C, y), 

The following result sums up what these formulae express. 

Lemma 3.8. (i) For any .f,g E S;.(p), S,(p),lS,,(p) + clisj’(S,,(~).f,S,,(~~).~) t/’ ml 

onljl tf S,\(k~).,f and S,,(p).g are iizrollitions sirch thut l.wpp,f n.wppgl <h- rml 

1~ - bw~?f‘ (J SUPP g)l = FC. 

(iii) For un_r ,f,gES;_(p),S;,(p)/&(p) + suDset(S,(p).,f,S,,(p).g) ~f’und CM/,I. if 

S,;(p). f und S,,(~).{J me involutions slrch that Isz4pp.f - sl4plqjj <K 

(iv) For uw f,gES;:(y),S,.(l*)IS,(~~) I= sameset(S,,(~().,f.Sh(~O..Ll) if’u/id on/_r, if’ 

S,,(p).,f and S,,(,u).g me involtctions such thut I.wpp.f -szrpp g/. Isupp~] - .wpp /‘I < I<. 

(v) For uny ,f.g,h E S;(P),S;(P)/S,,(P) I== union(S,~(~l).,f,S,~(~).g,S,,(~~).h) if unrf 
ml?> !f S,t(p).,f.S,,(p).g, and S,&l).h uw invollrtions such that supp,f ~suppg trnd 

supp h d@r b.v u set qf cardinalit> < K. 

(vi) Sirnilurl~~ ,for intersections. 

(vii) Fur un_v .f.g E S;(P),~‘;(P)/&(P) k uniun,,(S,, (p ) f , S,, (p ) .g ) if mzri 0/7/J* if 

U:‘_, supp(,f;) and suppg d@eev Hal a set of curdinulity <K. 

(viii) For unj’ .f.g,hES;,(~l).Sj(~j/S,i(~l) /== mup(S,,(,l).,f,S,,(~).8,S,(~).h) {f ml 
0171~. if’S,<(p ) .,f‘ und S&J) .g ure imoltrtions and (supp ,f')h and szrpp g difkr 17~. II SCI 

yf‘ curdinulit!’ < K. 

Proof. (ii) follows from the fact that any permutation may be written as a product of 

two involutions, and any involution may be written as a product of two involutions 

the complement of whose support has cardinality /l. The rest of the proof is straight- 

forward. Cl 

Corollary 3.9. The ring qf sets ~Pj,(~)/Ph(/l) and the nalurul uction of’ S,(,LL)~.S~,( ,b ) 

on this ring are interpretable inside the group S, (p)/S,,( 11 ), 

This result is due to Rubin [7] Theorem 4.3, but using different methods. An altcrna- 

tive route to the same conclusion, avoiding so much detail on permutation rcpresenta- _- 
tions, starts by interpreting .“P,QL)/Y~-(I.L) in S;(U)/&(U) using parameters ,j‘-. f' ' The 

first of these acts as A(5) with orbits of degree 5 and 1 only, and with the aid of the 

second, disjointness can be expressed more rapidly. The parameters are then eliminated 

at a later stage. 

4. Interpreting ,sV~;.~, in S;.(,u)/S,&) 

This is carried out as follows: 

members of IS,, are represented by ‘pure’ n-tuples, being those for which almost all 

orbits are isomorphic, modulo isomorphism of this action. 
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members of Card- are represented by group elements which encode sets, (that is, 

involutions), modulo the relation of having equal cardinality, 

members of F,, are represented by n-tuples of group elements, modulo conjugacy. 

In addition we have to show definability of the relations and functions in the 

signature. 

First we show how to distinguish the case 2 = pL+ (which has already required special 

treatment in the previous section). We use the formula 

max : (Zlx)(Vy)(disj(x, y) 4 y = 1) 

(expressing that R has its maximum value). 

Remark 4.1. 3, = p+ if and only S&)/S,(~) b max. 

To carry out the interpretation more formally we require the following formulae: 

compat,(Z, 7) : 323t(2 # 1 A restr,(Z,X) A restr,(Z’,u)), 
_- 

pure,(T):V~VZ(y# 1 AZ# 1 Arestr,,(y,x)Arestr,,(l,Z) 

-+ compat,(y, 2)) A (Imax + X # 1 ), 

iso,(X,y): pure,@) A pure,(~) A (cornpat,@, 7) VX= 7 = 1). 

Lemma 4.2. (i) For any jinite sequence ,f of members of S~(/L),Sj_(~)/S~(~) k 

pure,(S&).J) if and only if the non-trivial actions off on all but a small union 

of the orbits of (f) are isomorphic or, if 2 = y+, almost all orbits have size 1. 

(ii) For any sequences f-,3 in S;,(,u),S~(p)/&(,u) b ison(S&).f-,&(,u).S) if and 

only if the actions off and S on all but a small union of orbits of v-), (9) have the 

same isomorphism type in IS,. 

Note that it is not enough to talk of the actions of (f) on its orbits; we need to 

distinguish the generating tuple f- in order to capture LS’,,. Observe that the final parts 

of the formulae pure,, and iso, cover the case L = ,u”+, and correspond to the remark 

in parentheses in Definition 2.l(ii). Similar remarks apply to the treatment of F,,. 

As mentioned above, for sort 2 we just use involutions, this time modulo the equiv- 

alence relation given by 

samecard(x, y) :set(x) Aset A 3~,3~23y,3y2(disj(x,,x2) Adisj(yl,yz) A 

~=~Ix~AY=YIY~~c~I?I’(~I,YI)~~~~J’(~~,~~)). 

This is slightly more complicated than the expected ‘set(x) A set( y) A conj(x, y)’ in 

view of the case )U = ,LL+. And the sorts 3 have already been remarked on. 

It remains to show that the relations and mnctions of J&‘,+ are definable. 

First the ordering < (and hence <) on Card is definable by 

Zesseq(x, y) : set(x) A set(y) A (%)(subset(z, y) A samecard(x, z)). 
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To define Eq' , Eq, Prod’ and Prod we use 
eq’(xl,xl): purel(xl,xz)A XI =x2,eq(xI,x?):xl =x2, 

prod’(xl,xz.x3) : pure3(xl,xz,n3) Axlxr =x3 

and 

prod(x,,x2,x3):xIx2 =x3 
respectively. Note that there is a slight difference between Eq’ and Eq (and between 

Prod’ and Prod), since in the former case (x1,x2) is meant to represent a member of 

IS?, but in the latter, of F2. 

We may define Projf, and Proj, by 

proj,‘((n~,...,x,,+~),(y~,...,y,)): pureri+l(X~,...,xII+~)A pure,,(,vi.....y,,) 

A I’so,,(xI.. . ,x,, YI, . . , yll>, and 

proj,,((xl,...,x,,+I),(yl,...,y,)):conj,((xl,...,x,,),(y~,....y,,)), 

and APP,, by 
_- 

upp,I(x, y.z) : pure,(y) A [((3t)(pure,(t) A compat,(y,i) A restr,,(i,T) 
A (VZ)(restrn(t,5) A restr,(G,F) A pure,(U) -5 i = U) A (3a)(union,(t. c) 

/\samecard(u,z))) V ((Y’t)(compat,(~,~) --$lrestr,(t,T)) AZ = l)], 

which we may paraphrase as ‘either there is a maximal pure restriction i of X compatible 

with 7 and of cardinality (coded by) z, or X has no restriction compatible with 1: and 
= = 1 (that is, codes 0)‘. If A= pLf, app,, is modified to cover the case v = 1, and if 

K = No we have to count orbits rather than their union, and the statement about c is 

modified to express ‘there is a set having the same cardinality as z which intersects 

each orbit of i and is minimal subject to this’. To justify this we further note that the 

case K = No can be distinguished by the sentence 

(?lx)(V.v)(restrl(y,x) + (y = 1 V y=n)). 

We have proved the following: 

Theorem 4.3. ,/&‘xj.,, is interpretable in the group S;(p)/S&). 

We remark that ‘interpretability’ here is taken in the usual sense (called ‘explicit in- 

terpretability’ in [lo]). This means for instance that, rather than just transferring the first 

order properties, we are able to deduce that whenever S,., (~1 )/S,, , (~1) g S;., (k )/S,(, (~2 ) 

then .kl,, L, ,!, ” ~/.@ti2j.2~~2, and hence to try to distinguish the groups S&)/S,(LL) up to 

isomorphism as well as up to elementary equivalence. But for us here the following is 

the point. 

Proof. This follows from Theorems 2.6 and 4.3. z 

In the next sections we give more details about the circumstances under which 

IflIt , 2, 1’ , = ‘JCL i.2 pz 
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5. Refinements and the case cf(~) > 2No 

We now make some remarks about distinguishing the elementary theories of S&)/ 

S,(p) for different values of K,A,~, which by Corollary 4.4 is equivalent to distin- 

guishing the AK;.+. In the first place, according to Remark 4.1, the case 1= ,u+ can 

be singled out in Sj.(p)/Sx(p) by means of the sentence rnax of the language of group 

theory, and hence also by a suitable sentence in J&+. So we may treat the cases 

3, <p, 3, = p+ separately. Now when A <p the cardinal p actually plays no part at all 

in the structure &G+‘k-;.,l, so we at once see that for fixed K ,< /2, all the JH~;.,’ with ,u 3 1 

are elementarily equivalent. More is even true at this stage, since many of the J&+ are 

in fact isomorphic. For instance if c~(KI),(:~(K?)~((~~I))I then I&X,X,-IL, % ~&KzK:P(2 (for 

~1 3 ICY, ~2 3 K:) since in this case Curd- = (0, ICI}, (0, ~2) respectively, and similarly 

JJ~,, %: +/!, ” J&_,~:++~~~ etc. 

We know of course that T~(J&;.+) can only take at most 2N0 values, and so there 

will be many pairs of distinct triples giving elementarily equivalent models. In [ 1 l] this 

was however illustrated more explicitly, and we carry out a similar analysis here. There 

a characterization of elementary equivalence was provided based on the second order 

theory of certain many-sorted ordinal structures, whose sorts all had cardinality 62No, 

and we give a parallel treatment. While doing so we give a few more details about the 

material from [ 1 l] (which in its turn is related to [4]). First we show how a suitable 

second order logic can be represented in the structures .I&~;.,. Small modifications are 

made in the case K = No (distinguishable in the language of group theory), which we 

do not spell out explicitly. 

To represent subsets of IS,, in J?,+ is rather straightforward, but subsets of ZS, x ZS, 

are harder to deal with. We use ‘products’ (similar to the method of Section 3) to help 

us to do this. We say that t E I&+,, is a product of tl EL& and t2 E IS,, if t has the form 

((A,?)), where A = {L+ :x EX, y E Y}, the (f,, . . . , &)-orbits of A are {c(\.,. : y E Y} 

for x E X, all of type tl , the (&I,. . . , fn2+n)-orbits of A are {cI.~~ :x E X} for y E Y, 

all of type t2, and the actions of f, and fi on A for 1 6 i <m <j dm + n commute. 

We say that h E Fnltn is a product if whenever h = (h/)6,,+,,, C{h’(t) : t E lSP,+n A t not 

a product} < K. 

The idea here is that if f acts as a product on almost all of its orbits, then we can 

uniquely recover its actions on the first m and last n co-ordinates, so that products 

provide a way of encoding sets of ordered pairs. As illustrated in Section 3 however, 

the actions of tuples may commute without their being a product, and so the natural 

condition to try to capture expressibility as a product, namely commutativity, does not 

work. This time however this does not matter; the point being that when two actions 

commute, and together generate a transitive action, the projections onto the two sets of 

co-ordinates are uniquely determined. Let us therefore say that h E Fm+,, is a product 

if whenever h = (h’)R,,,+,, , 
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We now represent subsets of IS, of cardinality <A by h E F;, such that (Yl E ZS,,)h(t) 

< ti, and subsets of IS,,, x IS, of cardinality <I. by k E fi,!,,,,] which are products and 

such that (YJ~ ~ZS,+,)k(t)dlc. The subset of IS, encoded by h is then {I: h(t) = ti} 

and the subset of IS,,, x IS, encoded by k is {(tr , tz) E IS,, x IS,, : (3 t IS,,,+,,)(k(t) = K 

and tl , t2 are the members of IS,,,IS,, determined on co-ordinates 1 to m and nz + I 

to m + n, respectively)}. (The definition of ‘product’ ensures that these are uniquely 

determined from t, since if the actions off, and fZ on the f-orbit A commute then 

they each preserve the set of orbits of the other, and all actions of ,$ on its orbits are 

isomorphic, and similary for f?.) 

Lemma 5.1. There are formulae of the language of Jh,,, expressing the ,follo~~~iny: 

(i) h encodes a subset of IS,, 

(ii) k encodes u subset of IS,,, x ZS,, 

(iii) mem,,(t, h): t lies in the set encoded bJ9 h, mem, ,.,, (tl, t?, k): (tl, tz) lies in the set 

encoded hq’ k, 

(iv) equal,,(h, h’) : h, h’ encode the same subset qf IS,,, equal,,,,(k,k’) : k, k’ encode the 

same subset of IS, x IS,, 

(v) Jim,,,,,,(k): k encodes a function (from a subset of IS,, into IS,,), 

(vi) one-onefun,,,,, : k encodes a l-l function. 

Proof. (i) iz encodes a subset of ZS,, if and only if (Vt E IS,,)App,,(h. t) < K. 

(ii) By appeal to Theorem 2.6 we may express projections of h E IL,, to co-ordinates 

1 to m and m + 1 to m + n, and then use the formula comm,,,,,. 

(iii) mem,,(t, h) is taken as App,(h, t) = JC. 

For mem,,,,,,(tl, t2.k) we take (3 E Z&,+,)(App,,+,(h, t) = ti A tl. t? are the projections 

of t onto co-ordinates 1 to m and m + 1 to m + n respectively). (The fact that we can 

express these more generalized projections here follows by appeal to Theorem 2.6, 

though they could also have been included in the signature of the .4’,+, if desired.) 

(iv), (v). and (vi) follow from (iii). 7 

For the remainder of this section we specialize to the case cf(ti) > 2”0, to avoid 

complications. We return to the general case in Section 6. One of the benefits of 

assuming cf (K) > 2”O is that we can dispense altogether with the equivalence relations 

6,,. This is because any function from E;;, to Card is &,-equivalent to a unique function 

from F, into Card- (obtained by replacing all values below K by 0). Various other 

simplifications and interdefinabilities in this case are described in the following theorem. 

Theorem 5.2. Suppose that K < 1. <,LL+ und cj’(lc) > 2’“. Then 

(i) fbr each h E fi, there is a unique G,-representatiue bvhich is a junction ,frorn 

IS,, to Card- (so that from nokv on in this section +ve dispense bvith t”,, und regard E, 

as u subset qf’ (Cardd)‘stt), 

(ii),fbr each n,Sum,, : F, + Card- given by Sum,,(h) = C{h(t): t E IS,,} is definable 

in ~ &,+, , 
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(iii) Eq,Prod, and Proj, are all dc$inable in 

4& = (US, ),I 2 I ? Card-~,(F,),~l;Eq’,Prodl,(Proj,l)),~I, <,(-+P,),~~I), 

and converse@ Eq] , Prod’, and Proj,‘, are ail de$kable in 

((&I )n 2 13 Card-, (6 h1 2 I ; <, (4v,, >,, 2 I, Eq, Prod, Woj,, In a I 1. 

Proof. (ii) This is because Sum,(h) may also be written as sup{h(t): t E ZSn} (since 

1c>2~0), so that 

Sum,(h) = CI e (V’t)&&(h, t) d x A (‘JB < aWt)(B <&J,,(k t)>. 

(iii) Eq={hEF~:(VtEZS~)(App,(h,t)#O+Eq’(t))}, 

Prod = {h E F3 : (Vt EI&)(App3(h, t) # 0 + Prod’(t))}. 

For Proj, we remark that B,t, # v) w Proji(t’, t), and SO 

Proj,(h)(t) = C{h(t’) : ProjL(t’, t)} = sup{h(t’) : ProjA(t’, t)}. 

As in (ii) we see that 

Proj,(h)(t) = cI H (Vt’)(ProjA(t’, t) + Appn+, (h, t’) < N) 

r\(~~<a)(~t’EIS,+~)(P~-oj~(t’,t) AP<@p,,+,(kt’)). 

Conversely we have 

Eq’ = {t E IS2 : (31 E Fz)(Eq(h) A App,(h, t) # 0)}, 

Prod’={t~ZS~:(3h~F~)(Prod(h)AApp3(h,t)#O)}, 

and 

ProjA(t,,tz) * (~~‘hE+~)(App,+,(h,tl)#O + ProjAh)(t2)#0). R 

This theorem tells us that when cf(rc) > 2 N0 it suffices to consider the structures 

J%?;.,, 3 and here, since the members of F, are now viewed as functions from IS,, to 

Card-, this amounts to a version of second order logic on the sorts 1 and 2, together 

with Eq’,Prod’,ProjJ, and < The sorts IS, are independent of K, /2,~, and so the 

main point is to analyse Card-. We give an analysis of this situation similar to that in 

[ 11 J which involves defining suitable ‘small’ ordinals (meaning of cardinality <2N0), 

sufficient to capture the elementary theory. 

In what follows we extend the definition of ‘cofinality’ to zero or successor ordinals 

by letting cf(0) =0 and cj”(a + 1) = 1. Let sZ= (2No)+. Then any ordinal c( may be 

written uniquely in the form 

z = V9.a,, + . . + SZn.q,] + . . + Q.c([l] + “[O], 

where 52”’ is the ordinal power, acn]< 52 for n E o, and {n : a[,,] # 0} is finite. We write 

cc[n] = 52”‘. CI,,, + . . + lY+‘. q,,, 11 and let 

,L~I _ 1 + cf(cOl) if cf(+l> <Q - 
C 0 otherwise. 
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For ordinals x, fl, and k E CO, let tl -k [j if a[/) = pt,l and CC~/] = ,!I[‘] for all 1 <k, and 

CI - fl if SI +-i /I for all k. For a set of ordinals {a} UA let y(cc,A) be the order-type 

of {p6a:(ti;JEA)()‘<r -+ y <b)}. Note that this set is the final segment of c( u { CX} 

consisting of all (strict) upper bounds of A n CL. 

The following lemma is stated in [lo] and a proof outlined. The result is also related 

to [4]. We give fuller details here for the reader’s benefit. 

Lemma 5.3. (i) -k is an equicalence relation. For each r there is PcL?~” with 

u. hi [i; and if a -l, fl then 2 <ski’ (f and only if [j < Qkl’, and each qf these implies 

2 = /r. 

(ii) rf’a351 ‘* ’ then for any 0, z ok fi + 2. 

(iii) Ij’ LX;. “A [j; fbu each y < 6, then &<$ G!;. NL cT,IJ & 

(iv) !f 2 -k-C i fi, and A C LX with IAl < 52, there is an order-preseroing map F : A - /j 

such that for each a E A U {cc}, y(a,A) NL y(F(a). F(A)) (where F(a) is taken to 

equal fl). 

Proof. (i) Let j?= P’ ./3[k+r] + Qk .xlk] + . + ,R.qlj + cqj] where /j[h+,] is given as 

follows: 

aIt1l if x[,~] # 0 for some least n > k, 

plk+ll = 

i 

OJ if at,,] = 0 for all n > k and c(,,, is a successor, 

cf (a,.,) if atn] = 0 for all n > k, x,., a limit ordinal and cf (a,,, ) < 52. 

0 otherwise. 

Then ~111 = fir,] for 1 <k is immediate. If c( < ,Q ‘+ ’ the final clause applies. so /? = Y < 

Q”‘. Also if p < Qk+’ then c( < Qk+’ so the last part also follows. 

Now suppose the first clause applies. Then if 16 k, 

cc[l] = 51”‘. CI,,, + + Q”. cqn] + c?. XIX] + + CP ‘. 2[/_ 1,. 

~[l]=a~-‘.a~n]+S2~.cl,~]+“‘+~‘+‘.r,,-,~ 

which have equal cofinalities as IX[,~I # 0. If the second or third clause applies, then 

cc[l] = CY. M,., + CP. cC,k, + . + !A ‘+I. q/cl]> 

If rl’l # fit’1 then x[k] = I = al/+11 = 0 so %([I] = !P.a,,, and p[l] =Rk+‘.plkiII. But 

if clause 2 applies, ~f(~[l]) = o = cf(fl[l]), and if clause 3 applies, cj’(cc[l]) = cf’(x,,,) = 

/Itk+.~] = cf(fl[I]) after all. 

(ii) As c(>,Qxc’ ,x,,, #O, or XI,~] # 0 for some n> k. Write x = !22.V.a[,2’l + + xIoI 

where N > k, CC[V~ # 0 (and where N = w, xt,v] = r(,, is allowed). Writing j5’ in a similar 

way, if n <N, P.&l + 52’.at,~l = s2*‘. CC[,C), and so /I + x = Q”‘.b,,, + . + Qy.(fil l , + 
q,y) + lP -’ .cq~~_~~+~~~+a[ol. For l<k we have 

r[l] = !2”Q+\ll + ” + !22”‘.cl[/+II 

and (Pi r)[l]=P./I,, + ..’ + L?“.(lj,,~~, + ale,) + ... + Q’f’.r,i+,i. 
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The only way in which cf(~~[Zl) can be unequal to cf((p+ a)[l]) is for cc[l] = 52”.a[~] 

#a”‘.&+. . .-tQN.(/J~~]+~[~]) = (P+N)[~]. But if $v] is a limit ordinal, cf(@‘.c~[~)) = 

c?(at,vl) = cf(s2”.(/?1,~1 + a[~])), and if it is a successor, both cofinalities are equal to 

cf(QN ), so we deduce that CI [‘I = p[‘], and hence that a -k /?. 

(iii) If 6 = 0 or 1 the result is immediate. Next suppose 6 = 2. If al &Qk+’ then 

by (i) also PI >CJk+’ (and vice versa), so by (ii) aa + cI1 Nk CII +.‘k PI Nk /CIO + PI. 

Otherwise if m is greatest such that ~lll~] # 0 then m <k and also m is the greatest 

such that Pl[ml # 0, and 

Lx0 + aI = QW.LxOru + ” + d+‘.aO[k+,] + ” ’ + ~m.(@o[m] + M,,,]) 

+fy-I 
.=l[m-l] + . ‘. + al[o], 

PO + p, = @‘.fiOw + ” ’ + Qk+‘.PO,k+,] 

+ “. + Qrn.(BOpn] + Bl[m]) + Q”-‘.Pl[m-,] + . . + Pl[O]. 

From CC!” =/I/“‘, fo r i = 0, 1, I d k it follows that (~(0 + al )[/I = (PO + PI )[‘I. 

We now prove the general case by transfinite induction. The successor case follows 

easily from the case 6 = 2. Suppose therefore that 6 is a limit ordinal. Since c(~ ok & for 

y < 6,~~ = 0 H & = 0, so we ignore any zero terms. Thus cf( cYC6 a?) = cf(&,,,, &) 

(=cf(6)). Also by (i), a,,>@+’ ~&>a~+‘, and so {y<6:c~>S2~+‘} is unbounded 

H {y t6 : p7 >Qk+‘} is unbounded. If each of these is unbounded, CYCij c+ = @+‘.a*, 

cY<6 p, = !P+Q?* f or some LY*,~*. Otherwise for some yo <6,(~‘y3~o)(a,,,p,<SL~+‘) 

and as a7 Nk & by (i) (vj~>ya)(cc, =&). In each case it follows that c7i6 a, “k 

Xi’<6 P;‘. 
(iv) Given a -k+l p and A C: CC, IA 1 <Q we write a = a’ + 5, p = p’ + 5 where a’, B’ 

are divisible by Qk+2, and cf(a’) = cf(/?‘) or cf(a’), cf(/?‘) > Q. First suppose 4 = 0. 

If cf(cx),cf(/?)>Q we define F :A U {a} -pU (8) by F(c()=P and otherwise 

inductively so that for each a E A, y(a,A) Nk y(F(a), F(A)) and y(F(a), F(A)) < ii?‘+*. 

Suppose that F(a’) has been defined for a’<a having these properties. Then y(a,A) 

is known and F(a) has to be chosen. This is possible by (i), and as JAI < 52 and Q is 

regular, F(a) < Qk+’ <p. Moreover y(a,A) -k y(/?, F(A)) is clear (since each of these 

order-types is cofinal with a positive multiple of Qk+‘). 

Next if cf(a) = cf(p) < 52 we may write c( = C_,, j. LX?. /I = CYc). /3;, where each c(?, ,!$ 

has cofinality 852 and is divisible by Q ki-2. By the first case we define F : A fl { < : 

Ccj<.,~~<4< C,,;,xd}+{t: Ca<;,Ps<5< C,,,Pa} for each Y<A and put the 
pieces together. 

Finally for the case 5 # 0 we define F : A n d + /?’ as above and let F(a'+ y) = p’+ y 
for y<r and cc’+y~A. q 

Now we can prove the required bi-interpretability result. First we define the relevant 

structures. 

Definition 5.4. If CI = a(~, ;1, /L) is the order-type of Card- in J&‘,+, we let 

~~.~~=((~Sn)n~l,(~[n~)n~o,(~‘~‘)n~o;~q’,P~od’,(~~o~~),~,,(<,),~o,(<“)n~o) 
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be the structure whose sorts are viewed as being pairwise disjoint (and all but finitely 

many XI,,] are empty), and -c,~, <” are the usual (well-) orderings on atill. ,xtfii. The 

superscript 2 indicates that _l’& is viewed as a second order structure in a very 

strong sense. This means that the language used to describe it, as well as including 

first order variables corresponding to each sort, also contains, for each tuple of sorts. 

variables ranging over relations whose ith entry lies in the ith sort of the tuple for 

each i. (Alternatively we can introduce sorts corresponding to each such tuple, adjoin 

all the natural relations, and work in first order logic.) 

In one direction the interpretability is ‘explicit’. 

Theorem 5.5. [f’ cf (K) >2No then i l”,k?,.,l is interpretable in A@,:,,,,“,,, 

Proof. The main point is to show how each xI,,I,c&“] may be represented in -14t,&r. 

Then we sketch how second order variables as described above are ‘simulated’ within 

the first order language of C~&$,. 

First we represent non-empty subsets of Curd- of cardinality < 52 using members of 

F2, the idea being that h E F2 represents its range. Since 2”” < ~f( ti) < ti < lb, all such 

subsets of Curd- can be represented. The following can then be expressed: 

the set encoded by hl is a subset of that encoded by h?: 

incl(hl,hz): (Vtl )(%>(hl(tl> = h(t2)), 
(where as App,, is just ‘application’ we write hl(tl) instead of App,(hl, tl) etc). 

hl and hl encode the same set: incl(h,,hZ)Aincl(h,,h,), 

h encodes a final segment of 1: 

,fina4h) : tv’tl WINS )(h(tl> <B + h(b) = Ph 
cx is divisible by CL’ ( z UIOI = 0), 

div(a, 52) : (Vh)-final(h). 

/I E 8x is divisible by CJ, s2”“: 

div([LQ):(Vh)(tjy</?)(ZG)(y<6<P/\(Vt)(h(t)#6)), 

dic(p.sr”-‘):div(B,SZ~)/\(~h)(~~<B)(~6)(yd(5<Bndiu(6.S2”)A 

W)(h(t) # 8)). 
x is divisible by @-‘: 

dic(a,~2’;“):div(cc,0”)A(~h)(~‘B<r)(~y)(Bd”y<r/\ditl(~,SZk)A 

(vt)(h(t 1 f ~1). 
cllc,l is now represented by h such that 

.final(h) A (Vh’)(incl(h, h’) A,final(h’) i h = h’), 

if such exists (and otherwise is 0). Similarly ‘x[~I is represented by h such that 

(Vt)(div(h(t). a”)) A (Vh’)((Vt)(div(h’(t), Q’)) A incl(h, h’) + h = h’) if such exists (and 

otherwise is 0). 

To encode facts about cofinalities we quantify over non-empty binary relations on 

Card- of cardinality <Q using pairs (hl, h?) in Fz. Observe that if 0 #R i (Curd-)‘. 

IRI<Q, then for some hl,h~EF2,R={(h~(t),h?(t)):ttLS}. We can describe when 
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R is an order-isomorphism thus 

~5~(~1,~2):(~~l)(~~2)(~l(~l)~~l(~2) * h2(t1)<h2(t2)). 

The set coded by h is then cofinal in c1 if 

co$n4h) : O”BW)(B <h(t)), 

and h codes the cofinality of a, which is <D if 

co$nal(h) A (Vh’)(cojinal(h’) + (3hl)(3h2)(iso(hl, h2) A incl(h, h, ) 

A incl(h,, h) A incl(h2, h’)). 

We may express cf(cx) 2 52 by (Vh)TcofinaZ(h), and in a similar way for each ,6 E u 

we may express ‘h codes a cofinal subset of 8’ and ‘h codes cf(/?)‘. From this it should 

be clear that each ~~1~1, ~“~1 can be represented (though presumably not uniformly). 

Finally we show how to represent non-empty n-ary relations of cardinal&y ~52 on 

the sorts of the original structure according to sort provisos of the kind described above. 

Since the sorts of N&, all have cardinality <sZ, this translates into full second order 

logic in this structure. 

Without loss of generality consider a tuple of sorts in &:iP of the form (IS,, , . . . , 

ISi,,,,Card-,..., Card-) (where Curd- occurs n times). We represent corresponding 

non-empty relations of cardinal&y <D by m+n-tuples of the form (hl,, . . , h,, hi,. . . , h;) 

where h/ ~Fi,+2 satisfies f~n~,~,(hj) and h: E F2. Such an m + n-tuple represents 

B=B(h) = {(H,(t),. . . ,Hm(t),h:(t),. . . ,h;(t)): t EL%}, 

where Hj is the function from IS2 to ISi, determined by hi. 

Clearly B(h) is a non-empty relation of the required kind of cardinality <sZ, and 

conversely every such relation can be written as B(h) for some m + n-tuple h. 

As in the proof of Lemma 5.1, 7 E B(h) can be expressed in A:l.P. 

If R is a non-empty n-ary relation on M&, with specified sorts, then as each indi- 

vidual sort is definable as indicated above, R may be represented by a corresponding 

n-ary relation of the kind just discussed, in J&‘,&. 0 

In the other direction we have a weaker notion than ‘semi-interpretability’, which is 

nevertheless sufficient to transfer elementary equivalence. The weakening just consists 

in having a whole family of representatives of a tuple rather than a single one. Let 

us say that for k E N a k-representation of a tuple (7,/j, h) in J&!&, where each ti 

lies in some IS’,/?i E Curd-, and each hi lies in some Fj, is any tuple of the form 

(A, <*,&2,&g) where 

< * is a well-ordering of I&, 

A cIs,,biEA, 

if hiEFj then H, :I5li*A, 

S=(go ,..., gk_l,gO ,..., Sk-‘) where gi,g’:AU{~}+Z&, 
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for some order-preserving l-l map 8: A -+ Curd-, O(b,) = pi, (Vt E IS;)e(ff;(t)) = 

h,(t), and for every a E AU {CO} the order-type of {t E IS> : t < *g/(U)} equals 1/(()(a). 

U(A)),.il and the order-type of {t EZ& : t<*gi(a)} equals y(Q(u), B(A))“’ (where we 

take @CC)=;. (>fi for all JECurd-)). 

We remark that all entries in this tuple except for the g,, g’ lie in l;fjj,: 

<* CIS;, AcI&, t,EIS,, b;EI&, H,CISi xl&. 

Moreover gJA,g’IA &IS’; lie in X,,?,, so by making an easy modification to their 

‘official’ definition, so do g;,g’. But 0 does not (which is why it does not form part 

of the representation). 

Lemma 5.6. Any (7, j,h) has a k-representation. 

Proof. Let A’ be the union of the set of entries of p and the ranges of the h,. A’ 2 

Curd-. Then (A’( <2N(1. Also y(u,A’),,,, y(u,A’)[i) each has order-type at most that of 

A’. We choose A 2 IS* of cardinality IA’\, a bijection 0 : A + A’, and a well-ordering < * 

of IS: extending Q-‘( < ). For a E A let g,(u) equal the ?(&a), 8(A)), jlth element of IS? 

under <*, g,(s)=& and similarly for g’(u). Let b; =g-‘(bi) and H;(t)=g-‘h,(t) 

for each t. 7 

Lemma 5.7. In the language of “6’“,,2+ .for each k there is a formula cpk such that 

I”$,, + cpk[A, < *, g, b] if and only if 

A ‘C IS, < * is a well-ordering of I&, b E IS,, 

9=(g0,...,gk-l,g”,...,g k-‘) where the g,,g’ are functions from AU {x} into IS,, 

and ij’A and IS2 are enumerated in < *-increasing order as {ali : fl </?o}. {h,. : ;: < yo}, 

and b = b;., , and for each /? </?o, x/i is an ordinal ,for which b(,,,,,,, = gt(up), b,,,, ,I,, = 

g’(ati).for l<k, then ~p<BO”/~ -h “/I. 

Proof. The proof of this is obtained by formalizing a transfinite induction similar to 

that used in the proof of Lemma 5.3(iii). 0 

Lemma 5.8. For each tuple of sorts and each k, 

(i) there is a ,formulu rep, of the language of ,1$,, which holds in ,I “. h/j, for a 

tuple having the right sequence of sorts if and only if it is a k-representation (of 

some tuple), 

(ii) there is a formula isorep, of the language of j V,‘,,, which holds in . Z ;:,,, ,for 

a pair of tuples each having the right sequence of sorts if and onl)! if there is some 

triple of JT,*,.,, of which they are both k-representations. 

Proof. (i) To tell whether a tuple is a k-representation we first verify lines 1 to 4 

of the definition, which can all be expressed in the language of V,$, (where we 

have second order logic). If they hold then the main point is to check whether (1 can 

be defined to give the correct y-values. For this we appeal to the previous lemma, 
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and we also need to refer to the sorts alil, c( I/l for j <k to ensure that the right 

Y(@W)> K4)),il, Y(Q(co), KQ)‘” values can be achieved. Then we may define p,h 

by pi = O(b;),h;(t) = &Hi(t)). 

(ii) Similar remarks apply except that we should now work with ‘minimal’ A, that 

is, those which are equal to the union of the {bi} and runge(ZY,). 0 

Theorem 5.9. For every (jirst order) formula cp(xo, . . ,x,_ 1) qf the language of A,,$, 

there is an effectively deterrnined integer k and (second order) formula $( ~0,. . . , 

_y?k+n+l ) of the language of _Af,?;,, such that for all IC. 2. p with cf (rc) >2No, for 

every a~, . . . , a,- 1 in J?‘,$, (having the correct sorts) and every k-representation CO,. . . , 

cZk+n+ I of a in -“‘,‘j.,, , 

Proof. We construct 11/ by induction. The k is just the ‘quantifier depth’ of cp (for 

quantifications over Fj), as emerges from what follows. 

First consider the case of atomic formulae, where we take k = 0. If &x0) is Eq’(x0) 

we let ti(yo) also be Eq’( yz), (since sort I& is the same in the two structures). 

Similarly for Prod’(xo),Proj~(xo,xl), and xa =.x1 where x0,x1 lie in the same IS,. If 

cp(xo,xi) is xa =x1 or x0 <XI where x0,x1 E Card- we let y?(yo,yi, ~2, ~3) be y2 = y3 

or (~2, y3) E yI respectively. Consider < for instance, and let (A, < *,bo,bi), a 

k-representation of (PO, pi ), and 8, be given by the definition of what this means. Then 

B(b,)=P,, so bo<*h HPO<PI and A&I ~=~Bo,BII@Po<BI *b~<*h *J$ 

+ (bo,bl) E <* w A’$,, k $[A, <*,bo,bl]. For the remainder it suffices to consider 

c~(xo,x~,x~)-x~ = App,,(x~,xo) (since the other atomic formulae may be written in 

terms of this and the ones above). Here we let $(y~, yl,yz, y3,y4) be (~2, y3) E y4. 

For the induction step the case of negation is immediate (we take the same k 

and the negation of the corresponding formula). For conjunction suppose that cp is 

401(x0 ,..., x/-l,x/,...,~,-l)A~2(~O~...,n/~l,x,,.. . ,x,*_ I), where the xi are distinct 

variables, and that kl , $1 (y& . . . , yik, +, ,x& , XI_, ) corresponding to cpi and k2, 

$2(Yi ,..., y&+,4 >...‘4_,>4 . . . . >4_,) corresponding to 92 have been chosen. Let 

k=max(kI,k2) and $(yo ,..., y2k+l,zO ,..,, Z,__1,Z, ,..., &_[,Z, ,..., zJzP1) be the formula 

4h(YO>...> ~2k,+,~~O,...,~,-l)~IC/2(~O,...,~2k:2+l~~O,...,~/-l,~,,...,~~-I~. 

If ao,. . . , a,_, in A%!‘:~,+ have the correct sorts, and (A, < *, go,. , g&-l, go,. . . , g”-‘, 

bo,. . . ,b,_,) is a k-representation in y/lr&l, then (A, < *, go,. . . , gk, -1, go,. . , gkl-‘, 

bo,..., bm-l),(A, <*,go, . . . . gk2_,,g0 ,..., gk2-‘,bo ,..., b,_j,b,,, ,..., b,_j) are kl-,k2- 

representations of (a~,. . . , a,_ I ), (a~, . . , a~_ I, a,, . . , urr_l) respectively, and so the re- 

sult goes through with this k. 

Now consider the existential quantifier. Suppose cp(xa, . . ,x,_ 1) is (3x,)$(x0,. . . , 

x,_~,x,), and that k’, I+V corresponding to cp’ have been chosen. 

Case 1: s, E ISj. Let k = k’ and $6~0,. . . , Y2k+n+l ) be (3Y2k+n+2 >$'(Yo, . . . , Y2k+n+2) 

(where y2k+n+2 E 1Si too). 
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Suppose 00,. .a,,-1 E JzZ,& have the correct sorts, and (A, <*,g,C) is a k- 

representation of Z. Then for any a, E IS/, (A, < *,2j. C. a,,) is a k-representation of 

(ao.. . . , a,,). Hence 

Case 2: x,? E Curd-. Any existential quantifiers over Curd- may be eliminated in 

favour of quantifiers over I& and F2, since (3x, E Curd- )cp’(xo, ,x,, ) e (3 E F2 ) 

(3t E IS?)(p’(XO,. ,x,_,,h(t)). 

Case 3: x,, E F,. Let k = k’ + 1 and $(ya.. . , y2~ +,?+ 1) be the formula 

(~z~)...W:k+,~.-i) (3z)(rep~(z0,...,22/,+,I+~.z)A 

isoq~(.Yo . . . . . .Y2k+n+l,Zo >... ,Z2k+,r+l)A$“(~o ?...> a-,1+1>~))> 

where rep,, isovepx are the appropriate instances of the formulae provided by Lemma 5.X 

(that is for the correct sequence of sorts), and $“(zo,. . ,z~~_+_,,+~,z) is $‘(z&. . 

z$~+~--, ,z) where G$,, . . . ,z;~+,,-,, z) is obtained from (~0,. . .z~/;_,,+I ,z) by deleting the 

two variables corresponding to gk and g”. For ease assume the variables in UIS, come 

first, then those in Curd-, then those in U F,. 

Let (A, < ‘,!y.t, b,p) be a k-representation of (7. p,h). Then 

*for some A’,c1,9/,t,g,F,H’, where H’:IS,iA’, 

~1.2 brep,[A’,< .g h/j, ’ 7,t,h’,H’,H’] A 

-- 
isorep,[A’,<‘,g’,i,Jj7,~,A, <*,9,t,h,H]r\IC/“[A’,<‘,g’,i,h’,H’.H’] 

The first and last steps are immediate. It is the intermediate equivalence which we 

have to justify. 
-- 

Suppose then that &?$I1 k cp’[t, b,h,h], and let (A’. <‘,q’,t,b’,H’,H’) be a 

k-representation of (t,p,h, h) (which exists by Lemma 5.6). We get a corresponding k’- 

representation by omitting g;, (g”)‘, so by the induction hypothesis, ll?,, + $“[A’, <‘. 
-- 

g’,t.b’,H’,H’]. Also ._4~$+~rep,[A’, <‘.$,t,b’,H’,H’]r\isorep,[A’, <‘.y’.i.h’,H’.A. 

<*,y,t,b,R]. 
- -- 

Conversely if I 4;$,,l /= $[A, < *, jJ,i, b, H] there are A’, < ‘, g’, 7, b’, H’, H’ which form a 

k-representation of t,P,%, h for some h, and such that .,1 i: I, k rep, [A’, < ‘, I’, 
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-- 
t, g’, H’, H’] A isorep, [A’, < ‘, T, 7, b’, H’, A, < *, Tj, t, b, ??I. By Lemma 5.3(iv) there is 

some H :ZS~ -+A such that (A, <*,jj,t,b. H, H) is a k/-representation of (2,p,h,h). 

By the induction hypothesis again, J&‘:~_,~ /= cp’[ t,P, h, h] as required. 0 

Corollary 5.10. Zf cf (Icl), cf (Ic2) > 2N~ then the following are equivalent: 
(i) JZK,iiPl =.A!- h2/.2/L? 9 

(ii) Jc~~A,P, = X2. h:i.#Q* 
(iii) S;,(PI )/&,(PI )-~;.,(P~Y&~(P~). 

Proof. This follows from Theorems 5.2, 5.5, and 5.9. 0 

So in a certain sense, for cofinalities above 2Na, only a rather modest amount of 

information about the cardinals ti, A, and p is needed to distinguish the quotient groups, 

and in particular, whenever a( 1ct,2 1, p 1) N a( ~2,/22, ,LQ ) they are elementarily equivalent. 

6. The case cf (rc) d 2N0 and conclusions 

In this section we begin by treating the rather more complicated case in which 

cf (K)&“, and then summarize the conclusions in all cases. The first remark is that 

there is a first order sentence of the language of JJ&‘~~.~ which distinguishes this case, 

namely 

So from now on we assume that cf (x) < 2Nn. 

We now describe the modification of A$, appropriate in this case, which varies 

slightly according as K <2N0 or not, and K = Na or not (cases which we shall see 

below can be distinguished by formulae of the language of group theory). Let CI* be 

the least ordinal >O such that (3y)(fi = y + a*) where K = Np. The definition of A;:/, 

is modified to include as additional sorts cf (Ic), and ET,,, CC*[~] for n 20. Since cx* is 

by definition additively indecomposable, only at most one ai, can be non-zero, so the 

representation is somewhat redundant, and we have just w + 1 possible cases. We also 

include (distinct) individual constants CO, c, E ZS, in the structure. These may be chosen 

arbitrarily or, better, as definable elements (to ensure that the interpretation is without 

parameters). 

Definition 6.1. If a = a(~, A, p) is the order-type of Card- in ~~~~~ and U* is the least 

ordinal >0 such that (3y)(/?= y + IX*) where K=N~, we let 

J& = ((&7)n~l, (Cl,n,)n~O,(a’n’)n~O,(dl;~,),~“,(a*’”’),~o;Eq’,Prod’, 

(Pro_; ),I 3 13 ~~n~n~O,~~“~n~O~~~n*~n~O,(~*n~n~O,~o,~,,~~P,fi~~ 

be the structure whose sorts are viewed as being pairwise disjoint (and all but finitely 

many gtnl and all but at most one c$, are empty), and cn, < “, ~1, =C *n are the usual 
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(well-) orderings on %[,,I, c&“], c$,, CY *InI As in Definition 5.4 the superscript 2 indicates 

that c I$ is a second order structure, and the same restrictions are made as before on 

the second order variables which are allowed (where the new sorts are now allowed as 

entries in the tuples of sorts), except that since we no longer know for sure that 2 > 2N”. 

we have to restrict to quantification over relations of cardinality <i.. The constants c,) 

and c’,, are distinct elements of I&, and kap and ,fin are unary relations on IS?. k~rp 

picking out a subset of I$ of cardinality ti and fin the set of isomorphism types of 

finite sets, which are only included if K < 2”“) K = No respectively. 

The case ti < 2’” has to be treated separately because it is precisely here that Sum,, 

(summation of h E F,,) cannot be identified with supremum. As we saw above. subsets 

of I& can be represented in ./&Kj,,i, and by various tricks (which we do not go into, 

but which are similar to ones described below for other purposes) one can express 

the property of having cardinality K. In general there will be no dqfinahle such set 

however, so the interpretation of .I ,5,, in &‘,,,,( in this case requires a parameter. If 

also K = No, we include a predicate fin picking out the members of I& corresponding 

to isomorphism types of finite sets. (This predicate is definable in k’,,,il.) 

The fact that kap is not definable does not affect our main results however. We shall 

show that (in the relevant case), kap can be interpreted, and that we can express when 

the representations of members of our structure using two possible interpretations of 

kap represent the same object. 

One main difference in this section is that we can no longer work with .,&I~,i,. Instead 

we refine the methods of Section 5 to show how the second order logic just mentioned 

can be represented in .J&‘,,; /,. We recall that in Lemma 5.1( ii) we saw how to say that 

two members of E;, or F,+,, encode the same subsets of IS,, or IS,,, x IS,,. In fact if 

L.f’( K) > 2”” they encode the same set if and only if they are equal. But this is not true 

if c~‘(K) <2N’i (as was essentially exploited above in devising a sentence to characterize 

this case). Life is easier if we use h which ‘minimally encode’ sets or relations. All 

this means is that the cumulative effect of values below K is negligible, in other words 

C {h(t) : h(t) < ti} < JC, but we have to see how this can be formally expressed. 

For h,,h?~F;, we write vestr,,(hr.hz) for x{hl(t) -Ih?(t):t~ZS,,}<r;. In S,(l[),, 

S,,(p ) this corresponds to a tuple representing hl being conjugate to a restriction of a 

tuple representing 1~ (expressed in Section 4 by a corresponding formula restr,, ), and 

so by Theorem 2.6 is first order expressible in the language of J?‘~~,,~. Saying that k 

minimally encodes a set (or relation) then is expressed by min(h): 

(b%’ E E;,)((v’t E &)(x‘lpp,,(h,t)= K ++ &,,(h',t)= K) - WStr,,(h,h')). 

Now we show how to capture the behaviour of cardinals below K in //,\,,,. Let us 

write Card,, ,, for {V E Card : v < K}. We can only hope to capture the ‘tail’ of Card, ,\ 

We encode (the tail of) a subset X of Card,,\ by any k E F2 having X as range. (Of 

course subsets of Card,. of cardinality < min(Q,i) can be so encoded.) We can 

express ‘k encodes some set’ by (Vf E I&)(App,(k, t) = 0), and we say that such a k 

is &most zero. In the sense of the previous paragraph k encodes the empty subset 
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of IS,. As we wish to exclude 0 (that is, any k such that C {k(t) : t E I&} <K) we 

identify 0 as any k E F2 which minimally encodes the empty set. 

In order to express when two almost zero members of FL encode the same subset 

of Card,. it is easier to pass to those which are ‘almost l-l ‘, meaning that 

(3v<K)(Vt,,t2EIS2)(k(t,)=k(tz)>v--tt, =tz). 

This requires a further technical trick. 

Now if h E FZ minimally encodes a subset X of I&, and k,, k2 are almost zero, we 

can express ‘k, encodes the restriction of k2 to X’ by the formula 

restr2(k,, k2)ArYestr2(k,, h)r\(Vk’ ~F2)(res&(k’, kz )Arestrz(k’, h)+res&(k’, k, )). 

If f E F4 and one-onefun,,, we can express ‘the function F coded by f carries 

k, to kz’ (meaning that F carries {t: k,(t)>O} to {t: kz(t)>O}, and for each t with 

k,(t) >O, kl(F(t)) = k,(t)), via S&)/S&) and Theorem 2.6 as follows: 

‘a tuple representing f has a restriction which projects to a conjugate of a tuple 

representing k, on co-ordinates 1,2, and to a conjugate of a tuple representing kz on 

co-ordinates 5,6’. 

Using this we can now express ‘k is almost l-l’ thus: 

one-one(k) : k is almost zero and Vk, Vk2Vf (k,, k2 non-zero restrictions of k to disjoint 

subsets of ZS, A one-onefun( f) -+ -(f carries k, to k2)). 
For if k is not almost 1-l there are cofinally many V<K such that Ik-‘(v)l32 and 

we can find non-zero restrictions of k to disjoint subsets of IS’2 and a permutation 

taking one to the other. 

The point of doing this is that we can now express ‘almost zero k, and k2 code the 

same (tail of a) subset of Card,.‘, and compare order-types of such subsets. For kl 
and k2 code the same subset of Card,. if and only if one can be carried to the other 

by a l-l function from a subset of IS2 to IS,. 

We can now express cf (K) ~2~~ A K is a successor by 

cf (K) 62N” (already expressed) A (Vk)(one-one(k) + k = 0), 

if desired (though it corresponds to the special case c(* = 1). 

Now suppose that cf (ti) < 2N0 A K is a limit. We wish to represent cf (Jc) and each 

$, and CX*I~] in .~&‘~i,. We represent cf(lc) by any k such that 

one-one(k) A k # 0 A (Vk’)(one-one(k’) A k’ # 0 + (3g)(g a l-l map from a subset 

of IS2 into ZS2 A (Vt)(k(t)dk’(gt))). 
For this we need to express (W)(k(t)<k’(gt)) in J&‘~;.+, and we use the same idea 

as above, going via Sj_(p)/SJp), and say that the projection to co-ordinates 1,2 of a 

tuple representing g has as a restriction a conjugate of k,. 
Now moving towards representing the CC;,, and CI*[“], we find a formula subset*(k,, k2 ) 

which expresses ‘k,, k2 are almost l-l, and the set encoded by k, is a subset of the 
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set encoded by kl’ thus 

(~,~)(3h)(one-onefun~fjofl(,~) A h codes a subset of IS, A 

kl is the restriction of kzg to the set encoded by h). 

To represent $, in ~J?‘,~,~~, the main point is to find inductively a formula di~“(h. Q” ) 

analogous to the diu formulae considered earlier, expressing ‘h encodes a function 

from IS? to Card,,, such that for every I, h(t) is divisible by 52”‘. For the basis case 

div*(h, QO) just says that h encodes a function from IS? to Curd<,,, in other words, 

h is ‘almost zero’. We also need similar almost zero functions from ISi to Curd. /\. 

Assuming inductively that ditl”(h,Q”) has been found, we take for dir*(h. IT” ’ ) the 

formula 

div*(h.P)A(Vh’)[(h’ codes a function from IS: to Cm~,,x)A 

(Vt. t’ E I&)(h’(t, t’) < h(t)) ---) (3h”)(h” codes a function from IS, to 

Curu’,, r\(~‘t,t’EISz)(h’(t.t’)<h”(t)<h(t))]. 

We illustrated how to handle inequalities in this context above, so such a formula 

exists, and is clearly as required. 

We can therefore represent each x;~, in -&‘sijrl. Moreover, if a(;;,, #O for some n, 

xc = C?“.aF,,, and all cofinalities are at once represented (equal to either 0 or 

c~f(Q”.x;l,,)), and if rcl, = 0 for all n, x* = R”‘.cc,?,, so the cofinalities are all equal 

to <f(ti). Thus all the sorts of i 1 i’,,, are represented. The method for representing the 

second order logic on 1 ,$ described above is as in the proof of Theorem 5.5. 

Next we show how to handle the case K<~~~I. Let us say that h E F;, takes [It most 

tlvo txlues if for some h’ : IS, - Card,, , (h’),r,, = h and ~runge h’l <2. This notion is 

captured in H,,,,, by the formula 

(VX C 1&)(3Y cX)(all permutations of X fixing Y setwise also fix It). 

Observe that we need the E! quantification because WC can only quantify over subsets 

of I& of cardinality < I., and we have not insisted that i > 2”“. 

We can now characterize ti<2*” by means of the formula 

(3h)(h # 0 oh is almost zero A h takes at most two values), 

which justifies defining _,t$,, by the cases K >2Nt8 or ti 62”“. All the ingredients of 

this structure have been represented in .&Zk;.,! in the cast c:f( K) <2NC1 <K, and when 

ti <2NC’ we interpret kup as a subset of IS, of cardinality K. We remark that in this 

case, /Cu~d,,~/ <2”“, and so this is an instance where the $, and ~*l”l really arc 

mostly redundant, since CX,$, = x*, and all other x;,, are zero. If K=N~, we also have 

to represent ,fin, as mentioned earlier, and this is done as follows. Amplifying the 

remarks just before Theorem 4.3, let us say that an n-tuple .? t Sj(p )/S,,(/L ) is irw- 

ducihle if x# 1 and ~‘y~‘z(disjl,(y.;‘)r\.u=, * ? + (7 = 1 \/ 5 = 1)). Then one easily 

checks that S;(,l)/S,(p) + (X?)(X irreducible) u K = No, and so, by Theorem 2.6. this 
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can also be expressed in &Kj.ll. Moreover, the same argument shows that irreducibil- 

ity too can be expressed in JZ%‘~;.~,, and we note that t ~Jin H (WI E Fz)(h irreducible 

-)App,(H, t)=O). For if S&).g is irreducible and App,(Ch~, t)# 0, where t l jn, 

then (3) must have infinitely many orbits of type t, so can be written as a non-trivial 

product of disjoint elements. On the other hand, if t $!jifin, then there is S,(p).g# 1 

such that (9) has a single non-trivial orbit of type t. 

This describes the essential steps in the proof of the following theorem. 

Theorem 6.2. For all K, J$$:~ is interpretable in JYxj./,. If K >2No the interpretation 

is without parameters, and if uz~2~” a parameter for kap is used. 

Proof. The case cf(~)>2~” follows from Theorems 5.2 and 5.5, and the case 

Cf(K)<2N0 is covered by the above discussion. As remarked above, although the pa- 

rameter kap is needed in the case K <2’O, since ‘having cardinality K’ is expressible, 

we can define when a subset of IS,, is a possible choice for its interpretation. q 

To complete our analysis of the case cf (K) ~$2~” we show how J?~;.~ is (weakly) 

interpretable in JV,$ in this case in the sense of Theorem 5.9. This will suffice to 

show that the structures JV& completely capture the first order theory of the groups 

S&)/S,@), which is our goal. Here we use a modification of the definition of 

a k-representation of a ruple (7, p, Z) in dlxj,/l. Recall that without the assumption 

cf( K) > 2N0 we only know that z is a tuple of gn-classes of functions, which is one 

reason for the altered definition. Another point is that we need to capture the eventual 

behaviour of two well-order-types, namely Card above and below K. If K = Nb and 

y is least such that B = y + u’, we let Card*={vECard:v=OVN,<v<L}. Then a 

k-representation of (7, p,h) is defined to be any tuple of the form (A, < *, S, 2,&H) 

such that 

<* well-orders I&, 

ALL‘& b, EA, co,c, EA, 

if h; E Fj then Hi : ISi -+ A, 

s is a tuple of the form (go,. . ,gk_l,g’, . . . , &‘,gi,. . . ,gz_,,g*‘, . . . ,g* k-‘) where 

gi,g’:A’U{~}+ZS2, gT,g*‘:A” +I&, where A’={aEA:a<*c,} andA”={aEA: 

c, <a), 
and for some l-l order-preserving map 0 : A -+ Card*, 

tl takes cc to 0, cK to IC, and bi to /Ii for each i, 

if hi E FJ then for some hi : IS, -+ Card*, (hi)& = hi and (Vt E Is,)O(Hi(t)) = hi(t), 

the order-types of {t E IS, : t < *gj(a)} and {t EIS~ : t < *g’(a)} are equal to y(&a), 

&A’))I,J and ?(&a), B(A’))[jl respectively, for each a E A’, 

and the order-types of {tEI&:t<*g~(a)} and {tEI&:t<*g*j(a)} are equal to 

?(&a), O(A”))[jl and ~(&a), Q(A”))[jl respectively, for each a E A”. 

Theorem 6.3. For every (jirst order)formula cp(xo, . . . ,x,_ 1) of the language of JlKj+ 

there is an eflectively determined integer k and (second order) formula $(yo,. , 
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_y~k+,,+l) oj‘ the language of _4$ such that for all ti, ;1,p with cf (K)~2~ll, ,fiw 
every ag,. . , a,,_, in A?‘:~,+ (having the correct sorts) and every k-representation 

c[), . ,c&, +,z_~l oJ’ 5 in I i$li, 

Proof. We have to indicate the appropriate modifications in the proof of Theorem 5.9. 

We first remark on the analogues of Lemmas 5.7 and 5.8, which are required here 

too. Finding a formula to express the existence of a k-representation is much as be- 

fore. Some modification is needed in Lemma 5.8, since we have to allow for the 

possibility that the H, may be gj-equivalent, so that the lack of an order-isomorphism 

between the corresponding As need not determine whether or not the k-representations 

are isomorphic. This is handled using an additional existential quantifier. 

Proceeding to the main proof, since we now have to work with JV~;.~, rather than 

C&‘ITi,L, there are some extra atomic cases in the induction to consider. We concentrate 

on the formula Eq(xo), as this serves to illustrate the idea. 

Since the structure K? _ hn~~, and the notion of ‘k-representation’, are different in the 

cases K>L?J~I) and IC<~~O, we treat the two separately, starting with the former, in 

which ctf(ti)<2NC1 <K. Let (A, <*,H) be a O-representation of h. Then 

where (h’)hz = h is as in the definition of k-representation, corresponding to H, and 

this is equivalent to 

Forif(t/tEZ.S~)(t=((B,gl,g2))~~ h’(t)dv)then~{h’(t):t~&r\(t=((B,g,,g~))~ 

+g1 #g2)}<2%v<IC as 2"1,v<~. And if {h’(t):t~ISzA(t=((B,gl,g~))--+ 
g1 # 92)) is unbounded in Card, X, then~{h’(t):t~I&~(t=((B,gl,g2))~~gl #g?)} 

3 sup{h’(t):tEI&A(t=((B,g,,g2))z+gl #g?)}aK. 
Therefore 

A&~.;./, b Eq[h] @ (3 < K)(b E Z&)(Eq’(t) + h’(t) d v) 

~~-,1r,2;,,~(3yEIS::)(~z’zES~)(yEAAy<*c,~A(Eq’(~) 

+H(t)<*y)), 

and this provides the desired formula $( yo, ye , y_ ). 

Now turning to the case where K <2N0 we find that 

:/~~ir,I~=q[h]~((3v<K)(tltE/S2)(t=((B,g,,g2))-ik’(t)dv) 

A\{tE&:k’(t)#0}<K 

( A (Vt EZ& -.fin)(k’(t) = 0) when K = No). 
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The second clause can be expressed by using kap; one says that there is a 1-l function 

from {t : H(t) # CO} into kap, and that no such function is onto. Similarly, when K = No, 

the final clause is expressed by (V,t EI& -Jn)(H(t)#co). 

In conclusion we note that although kap is used here, for any two possible choices 

for it, we can define when the representation of some object (for instance an ordinal) 

under the two values really represents the same object, and so the apparent arbitrariness 

is inessential. 

Further Remarks. We first remark here that if K is a successor cardinal, then the 

analysis at once becomes much easier. For if cf(lc) > 2NU then we may apply the re- 

sults of Section 5, and if cJ’(K) <2 No then a* = 1 and the extra sorts of the struc- 

ture J4$I play no essential part. Note however that although we can distinguish 

these two cases (C~(K) >2No, cf(~) d 2No), we cannot distinguish when K is a suc- 

cessor. For as remarked at the beginning of Section 5, if cf(tir),Cf(~2)~(2’~)+ then 

J&,K;Jl, e ‘4&Q’ but cf(lc) >2”0 is compatible both with K a successor and ti 

singular. 

Arising out of this, we further note that in the general case, (if /Z>K+), AY~J+ and 

the disjoint sum of J?~;+j.,l and ~~~~~~~ are bi-interpretable, and so we can separate our 

problem into two parts, the first as in the previous paragraph, and the second of which 

is the true content of Section 6. 

Conclusions. In studying the elementary theory of the groups G = Sj.(p)/&(/L) where 

No < rc < /z <IL+ we distinguish the following eight cases (by first order sentences of 

the language of group theory): 

First we distinguish the cases i <,LL and 1. = ,u+. In each of these, the elementary 

theory of G is determined just by the values of K and 1”. Then we consider the cases 

In each case we form a many-sorted second order structure _4$, whose sorts all have 

cardinality < 2N(1, which captures the first order theory of G, meaning that 

For cf(~)>2n” we just require information about Card-; in the other cases, informa- 

tion about the (large enough) cardinals below ti is also represented, and when lc d 2N” 

we also require extra unary predicate(s) on ZS,. We summarize this by the general 

form of Corollary 5.10: 
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For the case where i. <p and cf( K) > 2 NCi the following holds: For any given ordinals 

CC/, xl -CL? there is a first order theory T in the language of group theory such that 

if 2N~N < c;f’(x) <p, A <p, K = N,i, L = N:., p + K = 7, and xl,,1 = CC,!, al”] = Y” 

for each n, then the first order theory of the group S,(/A)/&(LL ) is equal to T. 

with similar statements in the other cases (including reference to the xi,,,,c(*l”l and 

kup,fin as appropriate). 

Finally we remark on quotients by alternating and trivial groups. The class {S,(/L ): 

A(p) : No d i <p+} of quotients by alternating groups is definable in the class of all 

quotients of symmetric groups, being precisely those with non-trivial centre. Moreover 

since the centre of S;.(p)/A(p) is just S&)/A(p), which has order ~,S,(,LL),/S,,,(~ ) 

can be easily interpreted in S;.@)/A(p). It follows that if S,.,(pr )/A@,) =S;,(/!~)/A(/L~) 

then S,, (p, ),!S,,,(pl ) z 5’;.,(p~)/S,!,(p~), but whether the converse is true is not at present 

clear, (though, as we have seen, the class {S;,(~)/S&n) : T_. p} is definable in {S,(ji). 

S,,(p) : ti. A, p}). The quotients by trivial groups are just the normal subgroups of S, (p ), 

which were studied in [lo] and [l I]. These may be distinguished from the other 

‘genuine’ quotient groups we have studied (as in [12]) by means of the scntencc 

3x(x # 1 Ax’ = 1 A (Vy)((xx”)z = I v (xx-“)3 = 1)) 

(which says that there is a transposition). 
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