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Abstract 

Louveau, A., S. Shelah and B. VeliEkoviC, Bore1 partitions of infinite subtrees of a perfect 

tree, Annals of Pure and Applied Logic 63 (1993) 271-281. 

We define a notion of type of a perfect tree and show that, for any given type t, if the set of 

all subtrees of a given perfect tree T which have type t is partitioned into two Bore1 classes 

then there is a perfect subtree S of T such that all subtrees of S of type r belong to the same 

class. This result simultaneously generalizes the partition theorems of Galvin-Prikry and 

Galvin-Blass. The key ingredient of the proof is the theorem of Halpern-Laiichli on partitions 

of products of perfect trees. 

Introduction 

The starting point of our work is a Ramsey-type theorem of Galvin (unpubl- 
ished) which asserts that if the unordered pairs of reals are partitioned into 
finitely many Bore1 classes (or even classes which have the property of Baire) 
then there is a perfect set P such that all pairs from P lie in the same class. The 
obvious generalization to n-tuples for n ~3 is false. For example, look at the 
coloring of triples where a triple {x, y, z} with x < y < z is colored red provided 
that y -x <z - y and blue otherwise. Then any perfect set will contain triples of 
both colors. Galvin conjectured that this is the only bad thing that can happen. 
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272 A. Louveau et al. 

To state this let us identify the reals with 2” ordered by the lexicographical 
ordering and define for distinct X, y E 2”, A@, y) to be the least n such that 
x(n) #y(n). Let the type of an increasing n-tuple of reals {x,,, . . . , x,_~}< be the 
ordering < on (0, . . . , II - 2) defined by i <j iff A(xi, .x~+~) < A&, x,,,). Galvin 
proved that for any Bore1 coloring of triples of reals there is a perfect set P such 
that the color of any triple from P depends only on its type and conjectured that 
the analogous result is true for any 12. This conjecture has been proved by Blass 
[l]. As a corollary it follows that if the unordered n-tuples of reals are colored 
into finitely many Bore1 classes there is a perfect set P such that the n-tuples from 
P meet at most (n - l)! classes. The key ingredient in the proof is the well-known 
Halpern-Latichli theorem [4] on partitions of products of finitely many perfect 
trees. 

In this paper we consider extensions of this result to partitions of infinite 
increasing sequences of reals. Define the type of an increasing sequence of reals 
as before and say that such a sequence {x,: 12 < o} is strongly increasing if its type 
is the standard ordering on o, i.e., if A@,, x,+,)<A(x,, x,+J whenever 
rz < m. We show, for instance, that for any Bore1 or even analytic partition of all 
increasing sequences of reals there is a perfect set P such that all strongly 
increasing sequences from P lie in the same class. 

In fact our result is more general. We define a notion of type for infinite 
subtrees of 2<” and show that for any analytic/co-analytic coloring of all subtrees 
of a perfect subtree T of 2’” and any type f there is a perfect subtree R of T such 
that all subtrees of R of type f have the same color. There is a natural l-l 
correspondence between strongly increasing sequences of reals and a type of 
infinite trees which we call infinite combs. An infinite comb is simply the tree of 
all initial segments of members of a strongly increasing sequence. We present the 
proof of the main theorem only in the special case of combs but the general case 
is similar. Trivially our theorem implies that for any such partition and for any 
finite set %’ of types there is a perfect subtree R of T such that for any type f in % 
all subtrees of R of type f have the same color. It is interesting to note that the 
same statement is false in the case of infinite %. 

Our result stands in the same relation to Blass’ theorem as the Galvin-Prikry 
theorem [3] to the ordinary Ramsey’s theorem and the proof again relies heavily 
on the Halpern-Latichli theorem. There are known several extensions of the 
Halpern-Latichli theorem that are relevant to this work. Milliken [7] considered 
partitions of nicely embedded infinite subtrees of a perfect tree and obtained a 
partition result in the spirit of Galvin-Prikry however in a different direction 
from ours, and Laver [6] proved a version of the Halpern-Laiichli theorem for 
products of infinitely many perfect trees. Calrson and Simpson [2] in their work 
on the dual Ramsey theorem and the dual Galvin-Prikry theorem gave an 
elegant proof of an infinite-dimensional version of the Halpern-Latichli theorem 
which is however somewhat weaker than the version considered by Laver. 

The paper is organized as follows. In Section 1 we introduce some notation and 
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Bore1 partitions 273 

present some results on perfect trees which we will need later. In Section 2 we 
reduce the main theorem to two lemmas which are then proved in Sections 3 and 
4. In Section 5 we make some remarks about the proof and present some 
consequences of the main theorem. We shall present our result using the 
terminology of forcing. If P? is a forcing notion we let, as usual, RO(P) denote 
the regular open algebra of 9, i.e., the unique complete Boolean algebra in 
which 9’ is densely embedded. If b is a Boolean value in RO(9) and p E 9 we 
shall say that p decides b if either p s b or p sz 1-b. For all undefined 
terminology of forcing see, for example, [5]. 

1. Basic properties of perfect trees 

Perfect trees. 2”” denote the set of all finite (0, 1}-sequences ordered by 
extension. A tree is a subset T of 2’” which is closed under initial segment. A 
tree T is called perfect if every element of T has two incomparable extensions in 
T. Let 9 denote the poset of all perfect trees partially ordered by inclusion. Thus 
B is the well-known Sacks forcing [8]. For a subset C of T let TC be the set of all 
nodes in T which are comparable to an element of C. If {s} is a singleton we shall 
simply write T, instead of T{S,. For a tree T let T(n) denote the nth level of T, 
i.e., the set of all s E T which have exactly n predecessors. The height of a tree T 
is the least ordinal y such that T has no nodes on level y. Thus y is either a 
natural number or o. We call a tree T well-pruned if for every s E T the height of 
T, is the same as the height of T. In this paper we only consider trees which are 
well-pruned. A node s in T is splitting if it has two immediate extensions. We say 
that a tree T is skewed provided on every level of T there is at most one splitting 
node. Clearly every perfect tree has a perfect skewed subtree. 

Given integers m s k let us say that a set D is (m, k)-dense in T provided D is 
contained in T(k) and every node in T(m) has an extension in D. Given trees 
T,, . . . Td_, and a subset A of w let 

If A is o we usually omit it. We now are ready to state a version of the 
Halpern-Lauchli theorem [4]. 

Theorem 1 (Halpern and Laiichli [4]). F or every integer d < cr) given perfect trees 
r, for i < d, and a partition 

for every infinite subset A of w there are (x0, . . . , xd_,) E @;+, 7; and E E (0, l} 
such that for every m there is k E A and sets Dj, for i < d, such that Di is 
(m, k)-dense in q and ~i<d 0, c K,. 
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274 A. Louueau et al. 

The amoeba forcing .&(~‘).To the poset 5P we associate the amoeba poset a(??). 
Elements of a( 6%‘) are pairs (T, n), where T E 9’ and n E w. Say that (T, n) < 
(S, m) iff T s S, nam, and T r(m+l)=S r(m+l). If in addition n=m we 
shall say that (T, n) is a pure extension of (S, m). If G is an d(P)-generic filter 
over a model of set theory let 

T(G) = LJ {T r (n + 1): (T, n) E G}. 

Then, by genericity, T(G) is a perfect tree and is called the d(8)-generic tree 
derived from G. 

Types of infinite trees. Let T be a skewed and well-pruned infinite tree. We 
define the type of T to be a (possibly partial) function f : co+ co where f(n) is 
defined as follows. Let m be the least such that T(m) has n + 1 nodes. Let 

{SO, . . . , s,-~}~ be the increasing enumeration of T(m - 1) in the lexicographical 
ordering. Then f(n) = k if Sk is the unique splitting node of T(m - 1). 

Combs. An infinite comb is a well-pruned tree of type f, where f(n) = n - 1, for 
all n < w. Clearly there is a l-l correspondence between infinite combs and 
strongly increasing sequences of reals. To each strongly increasing sequence 
assign the tree of all finite initial segments of members of this sequence. An 
n-comb C is a (finite) tree such that there is some strongly increasing sequence of 
reals {xi: i < n} and m > A(x,_*, x,-~) such that C is the set of all initial segments 
of length <m of members of this sequence. 

For concreteness we state and prove our theorem for infinite combs, but the 
reader will not have any difficulty converting this to a proof for any given type f. 
For a tree T if n < w is such that T 1 (n + 1) is a comb let ‘?&,(T, n) denote the set 
of all infinite combs contained in T and extending T 1 (n + 1). Let V&,,(T) = 
%&(T, 0). Note that Q&,(T) has a natural topology as a subspace of the power set 
of T with the Tychonoff topology. Thus we can speak about Borel, analytic, etc. 
subsets of %&(T). 

The comb forcing %. Let % be the subposet of d(P) consisting of all pairs (T, n) 
such that T r (n + 1) is a comb, with the induced ordering. Let us say that (T, n) 
has width d if T 1 (n + 1) is a d-comb. The notion of pure extension is defined as 
in the case of d(P). If (R, m) d (T, n) and if these two conditions have the same 
width then we say that (R, m) is a width preserving extension of (T, n). Note that 
in this case (R, n) is a pure extension of (T, n) which is equivalent in terms of 
forcing with (R, m). Clearly, if G is a %-generic filter over some model of set 
theory the set 

C(G) = lJ {T 1 (n + 1): (T, n) E G} 

is an infinite comb; we call it the generic comb derived from G. 
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The main result of this paper is the following partition theorem. 

Theorem 2. For every partition 

%‘J2’“) = & U K, 

where K0 is analytic and K, co-analytic there is a perfect tree T and i E (0, l} such 

that VU(T) G Ki. 

The proof of the theorem will consist of two lemmas which combined yield the 
desired result. 

Lemma 1. Let b be a Boolean value in RO(%) and let (S, n) E %‘. Then there is a 
pure extension (T, n) of (S, n) which decides b. 

Lemma 2. Let T be an &(B)-generic tree over a model of set theory M. Then 
every infinite comb contained in T is %-generic over M. 

Given these two lemmas it is quite easy to prove the theorem. Take a 
countable transitive model M of ZFC- containing the codes of K. and K,. 

Consider forcing with %’ as defined in M. Note that if C is a generic comb the 
statement whether C belongs to K0 is absolute between M[C] and V. Let b be 
the Boolean value that this statement is true in M[C]. Then it follows from 
Lemma 1 that there is a pure extension (S, 0) of the maximal condition which 
decides b, let us say, for concreteness, that it forces b. Now consider forcing over 
M with a(P) and take a generic filter G over M which contains (S, 0). Let T be 
the generic tree derived from G. Then by Lemma 2 every infinite comb contained 
in T is %-generic over M and, since it is contained in S as well, it follows that it is 
in KO. Thus T is the homogeneous tree we seek. In the next two sections we 
prove Lemmas 1 and 2 and thus complete the proof. 

3. Proof of Lemma 1 

Unless otherwise stated in this section we work with the forcing notion (e 
introduced in Section 1. Given a Boolean value b in the completion algebra 
RO( %) let us say that a condition (T, n) accepts b if (T, n) G b and that it rejects b 

if (T, n) G 1 - b. We shall need the following auxiliary lemma. 

Lemma 3. Let (S, n) be a condition in % of width d and let b E RO(%) be a 
Boolean value. Then there is a pure extension (T, n) of (S, n) such that either 
(T, n) accepts b or no extension of (T, n) of width d + 1 accepts b. 
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Proof. Let {to, . . . , td_l}c be the increasing enumeration of S(n) in the 
lexicographical ordering. We first find an infinite set A and a perfect subtree S* of 
S such that for any m E A and zo, . . . , zd E S*(m) such that Zi ?= fi for i < d and 

zd a ld-1, letting Z = {zi: i c d}, if there is a pure extension of (Sz, m) deciding b 

then already (Sg, m) decides b. This can be done by a standard fusion argument. 
Moreover, we can arrange that between any two consecutive levels in A there is 
at most one splitting node. We now define a coloring: 

@S,T=&,UK&lK* 
i<d 

as follows. Given (x0, . . . , x&l) E @‘<d sz let m E A be the least such that x&l 
has two extensions z&1 and zd in s*(m). For i < d - 1 let zi be the lexicographi- 
tally least extension of Xi in S*(m). Let Z = {zi: i 6 d} and put (x0, . . . , xd-,) in 
K0 if (S;, m) accepts b, in K1 if it rejects b, and in Kz otherwise. By the 
Halpern-Latichli theorem we can find (x0, . . . , x&_l) E @&, ST and E E 
(0, 1,2} such that for every m there is k E A and sets D,, for i < d, such that Di is 
(m, k)-dense in s:i and @;<d 0; s K,. We may assume that (x0, . . . , xd-_l) E K, , 
as well. 

We now build an increasing sequence (b&<,, of elements of A and a perfect 
subtree T of S* which will have one splitting node on levels between bk and bk+,. 
To begin let b. be the level of the Xi and let T(b,) = {Xi: i cd}. This uniquely 
determines T r (b. + 1) as the set of all initial segments of elements of T(b,). 
Suppose now we have defined b, and T 1 (bk + 1). We choose one node y in 
T(b,) and we will arrange so that the only splitting node of T on levels between 

bk and &+I is above y. Let m be the least level which is in A and such that y has 
two extensions, say y ’ and y” in S*(m). Now find some b E A and sets Q, for 
i < d, such that Di is (m, b)-dense in S: and such that @iCd Di c_ K,. Set b,,, = b 
and let D = IJicd Di. For each element in T(b,) U {y’, y”} pick a lexicographi- 
tally least point in D above it. Let T(bk+,) be the set of points thus chosen. This 

uniquely defines T 1 (bk+, + 1). During our construction we arrange the choice of 
the points y in such a way that the final tree T is perfect. Let B = {bk: k < o}. It 
follows that @ ;<d K, c K,. 

We now show that (T, n) is the required condition. First note that if (R, I) is 
any extension of (T, n) then there is m E A such that R has no splitting nodes on 
levels between 1 and m and hence (R, 1) and (R, m) are equivalent conditions. 
Suppose now that some condition of width d + 1 below (T, n) accepts b and let 
(R, m) be such a condition with m minimal such that m E A. Let Z = R(m) = 

{Z”, . . . 9 zd}< be the increasing enumeration in the lexicographical order and let 
k be the largest such that bk < m. Then since on levels between bk and bk+l there 
is at most one splitting node it follows that R(b,) has size d. Let R(b,) = 

{Y”, . . . , y,_,}, be the increasing enumeration. By the construction of T it 
follows that y,_, was the point chosen at stage k, that zd-_1 and zd are the only 
extensions of yd_-l in T on level m, and that Zi is the lexicographically least 
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extension of yj in S*(m), for i < d - 1. Thus (yO, . . . , yd_,) is colored according to 

whether (SE m) accepts b, rejects b, or cannot decide. Since (R, m) is a pure 
extension of (Sg, m) which accepts b and m E A by the property of S* it follows 
that (S& m) also accepts b and thus (yo, . . . , yd-i) E K,,. Hence we must have 
E = 0. 

Now since then @F r<4 r, c Ko, a similar analysis shows that any other 
extension of (T, n) of width d + 1 accepts b. But then it follows that (T, n) also 
accepts b. 0 

Proof of Lemma 1. Let (S, n) be a condition in (e and let b be a Boolean value. 
Assume that there is no pure extension of (S, n) which accepts b. We find a pure 
extension (T, n) of (S, n) which rejects b. We shall build the tree T be a fusion 
argument. Along the way we shall construct a decreasing sequence (T(“), a,,) 2 
(T”‘, a,) a . . . of conditions in d(P). 

To begin let (T’“‘, a,)) = (S, n). Suppose now (Tck’, ak), has been defined. Let 
(2,: i < 1} be an enumeration of all subsets 2 of Tck)(ak) which generate a comb 
extending S 1 (n + 1). The inductive assumption is that for each such 2 the 
condition (Tg’, uk) does not have a pure extension accepting b. To avoid 
excessive notation let R be a variable denoting a perfect subtree of T(“). We 
initially set R to be equal T(“) and then trim it down in I steps as follows. At step i 
consider Zj. Since (R,, ak) is a pure extension of (TF’, uk) from the inductive 
assumption it follows that it does not have a pure extension accepting b. If the 
size of Z; is d; then by Lemma 3 there is a pure extension (Q, u,J of (R,, uk) such 
that no extension of (Q, uk) of width di + 1 accepts b. We now shrink R as 
follows. For every s E Z, replace R, by Q, and for s E T(“)(ak) \Z, keep R, the 
same. After all the I steps have been completed pick a node y in Tck)(uk). Let 
uk+, be the least a such that y has two extensions in R(u). Keep those two 
extensions of y and for every other node in Tck)(uk) pick exactly one extension 
on level uk+i. Let then Tcktl) be the set of all nodes of R comparable to one of 
these nodes. If now Z is any subset of T(“+‘) (uk+,) which generates a comb 
extending S 1 (n + 1) we claim that there is no pure extension of (T(&+‘), CQ+~) 

accepting b. Notice that the set of all predecessors of members of Z on level uk is 
listed as one of the Z,. Since between levels ak and uk+, there is at most one 
splitting of T (k+‘) it follows that card(Z) 6 d, + 1. If the size of Z is dj then every 
pure extension of (Tck+‘), ak+,) is equivalent to a pure extenson of (Tck’, uk), but 
by the inductive hypothesis such a condition cannot accept b. On the other hand 
if the size of Z is d, + 1 at stage i of the construction of Tck+‘) we have ensured 
that no such condition accepts b. This shows that the inductive hypothesis is 
preserved. 

Finally let T = nkco Tck) Throughout the construction we make the choice of , 

the points y above which we keep a splitting node carefully to ensure that the 
final tree T is perfect. It follows that no condition (R, m) extending (T, n) 

accepts b and hence (T, n) rejects b, as desired. q 
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4. Proof of Lemma 2 

In the proof of Lemma 2 we need the following lemma whose proof is almost 
identical to the proof of Lemma 3 and is thus omitted. 

Lemma 4. Let (S, n) E Ce be a condition of width d and let U be a set of infinite 
combs. Then there is pure extension (T, n) of (S, n) such that either %&( T, n) is 
contained in U or there is no extension (R, m) of (T, n) of width d + 1 such that 

+$,,(R, m) is contained in U. 

Now note that to complete the proof of Lemma 2 and Theorem 2 it suffices to 
prove the following. 

Lemma 5. Let (S, n) be a condition in a(P) and let D be a dense open subset of 
%‘. Then there is a pure extension (T, n) of (S, n such that for every infinite comb ) 
C in VW(T) there is m such that (T,,,,, m) E D. 

Proof. We first show that if (S, n) E % there is a pure extension (T, n) of (S, n) 
such that for every C E V&,,(T, n) there is m 2 n such that (T,,,,, m) E D . To 
begin find an infinite subset A of o and a pure extension (S*, n) of (S, n) such 
that for every m E A and every subset Z of S*(m) which generates a comb 
extending S 1 (n + 1) if there is a pure extension of (SC, m) which is in D then 
already (S;, m) is in D. Let then 

U = {C E gU(S*, n): there is m such that (S&,, m) E D} 

Assume now towards contradiction that there is no pure extension (T, n) of 
(S*, n) such that V&(T, n) is contained in U. As in the proof of Lemma 1 we 
build a decreasing sequence (T(O), ao) 2 (T”‘, a,) 2 - . . of conditions in a(P). 
To begin set (T(O), a”) = (S*, n). Suppose now (T@), a,J has been defined. Our 
inductive assumption is that for any subset Z of Tck)(ak) which generates a comb 
extending S r (n + 1) 
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T(“+‘) is obtained from R by keeping those two successors of y and by keeping for 
every other node in Tck)(ak) one successors and throwing away the remaining 
ones. Then T(“+‘) is set to be the set of all nodes of the final R comparable to one 
of the chosen points. Note that in this way we arrange that for every subset 2 of 
T(“+‘)(a,+J which g enerates a comb extending S 1 (n + 1) the set of all 
predecessors of members of Z on level & is listed as one of the Zi and since 
between ak and ak+i there is at most one splitting node it follows that 
card(Z) G di + 1. Thus it follows that if (Q, ak+,) is a pure extension of 

(k+l) (Tz , uk+,) then %o(Q, uk+l)\Uffl- 

In the end we let T = n kc0 T,. We make the choice of the nodes y above we 
choose a splitting at each stage judiciously so that the final tree T is perfect. It 
follows that if (R, m) is any extension of (T, n) in (e then ‘e,(R, m)\ U # 0. Now 
since D is dense open we can find k and a condition (R, ak) E D extending (T, n). 
Let Z = R(a,). By the property of S* it follows that (Sg, ak) is also in D. But 
then %c0(s2, ak) z I/, a contradiction. 

Now to deal with the general case assume that only (S, n) E a(P). We then 
proceed as in the successor stage of the previous case. We enumerate all subsets 
Z of s(n) which generate a comb as {Zj: i cl}. Let, as before, R be a variable 
denoting a perfect subtree of S. To begin set R to be equal to S. We then trim 
down R successively in I stages. At stage i look at Z, and apply the special case of 
the lemma to find a pure extension (Q, n) of (R,, n) such that for every infinite 
comb C extending Q 1 (n + 1) there is m 2 n such that (Q,-,,,, m) E D. Trim 
down R by replacing R, by QS for every node s E Zj and keeping R, the same for 
every s E S(n)\Z,. We let T be equal to R after all the stages have been 
completed. It follows that (T, n) 6 (S, n) and for every comb C E G?&,(T) there is 
m such that (T,,,,, m) E D. This finishes the proof of Lemma 5 and Theorem 
2. 0 

5. Remarks and consequences 

In this paper we have only considered partitions of infinite combs contained in 
a perfect tree T and have shown that for every such partition into an analytic and 
a co-analytic piece there is a perfect subtree R of T such that all infinite combs 
contained in R have the same color. The reader will have no difficulty adapting 
the proof for any other type f of infinite well-pruned subtrees of T. All we have 
to do is modify the forcing notion %? so that the generic tree produced has type f. 
Consequently, if 9 is a finite set of types of infinite well-pruned trees, for every 
analytic partition of infinite subtrees of a perfect tree T we can find a perfect 
subtree R of T such that for every f in 4 all well-pruned subtrees of R which have 
type f have the same color. On the other hand it is easy to see that if 4 is any 
infinite set of types there is a Bore1 partition such that no perfect tree is 
homogeneous for all types in 9 simultaneously. Namely, choose for each s E 2<” 
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a type fs in $ such that the function which maps s to fs is l-l. Now given a 
well-pruned tree S of type fr color it red if the least splitting node of S is s and 
blue otherwise. Let now R be a perfect tree. Then for any splitting node s of R 
there are well-pruned subtrees of R to type fs of either color. 

One direct consequences of our result is the following parametrized version of 
the Galvin-Blass theorem which was originally proved by Laver (unpublished). 
For a subset P of 2” we identify [PI” with the set of all increasing n-tuples of 
elements of P. 

Theorem 3. Let n be a positive integer and suppose 

[2”]” x [WI” = K” u K, 

is a Bore1 partition. Then there is a perfect set P, an infinite subset A of 6.1, and for 
each type i of increasing n-tuples of reals an E< E (0, l} such that for every pair 

(x, B) E [PI” x [Al” such that the type of x is -C if maxi,,, A(Xi_1, xi) < min B then 

(x, B) E K,<. 

Proof. For a type < of increasing n-tuples of reals define a function f< : o --, o 

as follows. For k <n let i be the (k - 1)th element of (0, . . . , n - 2) under < and 
let f(k) = ]{j<i:j<i}(, for kan let f(k) = k - 1. 

Then define a partition of all well-pruned trees of type f< into two classes C,, 
and C1 as follows. Let R be such a tree. It is easy to see that the set of infinite 
branches of R is ordered in type w under the lexicographical ordering of 2”. Let 
{xi: i < o} be th e increasing enumeration of this set. Let then xR = (xi: i < n) and 
let BR = {A(x;_~, Xi): i 3 n}. Then put R in C, iff (x,, BR) E K,. 

Now find a skewed perfect tree T and an E< E (0, l} such that T is 
l ,-homogeneous for well-pruned trees of type f<, for each linear ordering < of 

(0, . . . I n - 2). Let s be the least splitting node of T and let P be the set of all 
infinite branches through T,-,. Let b be the right-most branch through T and let 
A = {n: b 1 n is a splitting node}. It is easy to see that for any pair (x, B) E [PI” x 
[A]” where x has type < and maxi<,, A(Xi_1, Xi) -=c min B there is a well-pruned 
subtree R of T of type f-: such that XR = x and BR = B. Since T is E,- 
homogeneous for such trees and by the way the coloring on such trees is defined 
it follows that (x, B) E KEI. Thus P and A are as required. 0 

The following result was originally proved by J. Stern who was motivated by an 
application in Banach space theory (see [9]). A path is a subset of 2’” which is 
linearly ordered by extension. For a subset S of 2’” let Pm(S) denote the set of 
all infinite paths contained in S. Finally say that a subset S of 2’” is splitting if 
every member of S has two incomparable extensions in S. Thus S is splitting iff 
the set of all initial segments of members of S is a perfect tree. 

Theorem 4 (Stern [9]). Let P,(2’“) = K0 U K, be a partition into an analytic and 
co-analytic piece. Then there is a splitting set S G 2’” and i E (0, l} such that 

pm(S) G Ki. 
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Proof. Fix such a partition of gc0(2’“) and define a partition 

as follows. Given any infinite comb C let PC be the set of splitting nodes of C. 
Note that PC forms a path. Put C in Hi iff PC is in K;. Applying Theorem 2 find a 
perfect tree T* and i E (0, l} such that %&( T*) E I&. Now it is easy to find a 
perfect subtree T of T* such that letting S be the set of splitting nodes of T for 
every path P E 9’o(S) there is a comb C E ‘%&(T*) such that PC = P. Thus, it 
follows that p,(S) c Ki. Cl 
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