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For certain cardUs 1 and ~lt a colouring P:[A]* +AisconstructedsuchthatifXE[A]%nd 
Q : [xl*+ A, then there is a one-to-one diction i : K +X such that P(i’!A) = Q(A) for every 
A e [ir]*. Additional results are also obtained. 

0. Introduction 

The main objective of this paper will be to construct a graph on o1 which has 
the property that every finite graph appears as an induced subgraph in any 
uncountable set of vertices. Similar questions have been considered by Erdiis and 
Hajnal [l, 21. The construction to be presented was motivated by 0 3 of [3] which 
follows Todor&viPs proof that c&[o& in [6]. The same result was also 
obtained independently by Baumgartner using different techniques. 

In Section 1 it will be shown that there is a colouring P: [ml]*+ ml which 
satisfies the following property: 

(0.1) If X E [w,]‘~, n E o and h : [n]* --+ ml, then there is a one-to-one function 
i : n + X s.t. P(i”A) = h(A) for every A E [n]“. 

Section 2 wdl explore some further properties of this colouring. In particular it 
will be shown that certain infinite graphs are also induced by every uncountable 
set of vertices. The question of colouring finite sets rather than pairs will also be 
discussed. In Section 3 it will be shown how to generalize the results of Section 1 
to higher cardinals. The technical details here are more complicated than those in 
the case of o1 and, while they also apply to ol, it seems to be worthwhile to have 
a simpler proof in this important special case. Section 4 contains remarks 
pertaining to possible strengthenings of the counterexample. The final Section 5 is 
devoted to an application of this construction to Banach space theory. In 
particular a non-separable Banach space with few operators is constructed. 

* I thank J. Stepras for writing up this paper, and the Toronto logic 
during my visit there in spring ‘85, when most of the work was done. 

PUP for their hospitality 

0168-0072/88/$3.50 @ 1988, Elsevier Science Publishers B.V. (North-Holland) 

Sh:261



172 s. §sdkih 

1. 

For every kiaz3 odhd a tz do1 choose an increasing sequence a* : du- a adid 
ina.Ifa=/3+1leta*:1+abedegnedbya+(O)=~.Thecolouringof[(u1~ 

associated with pairs of ordinals. To 
) to be the least integer such that 

An important point to notice is that if a*(k(a, 6)) and @*(k(a, B)) are both 
it makes sense to look at k(a*(k(a, @)), p*(k(a, fl))). Since this 

may be amtimed it is worthwhile introducing notation to describe it. The 
ordinaIs q;(u) and ?I’@) will be defined by induction on the integer a Let 
~~0) = min{a, @} and !Q(O) = max{a, B}. Then define 

Notice that Y@ + 1) < !I’#). Hence there is a least integer, C(a, @), such that 
qW(a, B)) < *g(O) or else one of !!$@(a, @)) and @:@(a, /3)) is not 
defined. Since .C(a, b) >O it wiIl always nxke sense to ta& about r(ru, #!I) - 1. 

Before the colouring of [al]* can be defined it is necessaq to introduce a 
mechanism for coding all finite coiourings. For each ordinaI a E o1 choose a 
distinct subset of o and caU it X(a). Let {h,: a E ml} enumerate all functions 

)r-+ al where m E (io. Let m(a) be that integer such that dom(h,) = 

The way the coding works is that for every pair of ordinals, a and /3, there is 
some integer, m, such that X(a) and X(B) restricted to m are distinct. The coiour 
of the pair {a, @j will be determined by choosing a certain ordinal, y, and 
evaluating &(X(a) fl m, X(B) n m). 

To make this more precise let {$ :6 E qj partition o1 into stationary sets. For 
Q E ol defme 6(o) to be the unique ordinal such that Q E &.,P Now if a and @ 
are distinct ordinals let g = 6(Y~(Z(a, /3) - 1)). Then define 

if the right-hand side is defined. Otherwise let P(a, /?) = 0. It must now be shown 
that if A is an uncountable subset of o1 and h : [tr+ ml, then there is T E [A] 
such that h and P 1 [T]* are isomorphic. Part of the proof of this fact will involve 
Wling a countable elementary submodel, M, and an ordinal, a, outside of M. It 
will then be sugued that there is an ordinal /3 in M which is in the shadow of a in 
the sense that tr*nMc_/?*, Y;(l)* n M s v;(l)*, Y;(2)’ n M s q;(2)* and 
so on. of course in order to End something in the shadow of a we must defme the 
shadow of 1~. This is done by d g Q;(n) by induction on n in a manner 
similar to the definition of particular, Pet q(O) = mar{ a, ig} and let 
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qxn + 1) = u4x~))*(@8”0) w ere h @,0(n) is the least integer such that 
(Q~(n))wxn)) a *{a, B)= Let L(~w, fl) be the iirst integer such that 
q(L(ar, p)) is not ‘defined (this will only happen because &?;@,(a; 19) - 1) = 
min{ar, &}). In order to keep tra?k of the relevant initial segments of sequences 
for each j E L(cw, p) define Q(j) = (q(j))* r @F(j). 

Now let AE [cu~]~~ and h :[t]* +a1 be given. Suppose, for the moment, that 
there is a countable elemectary submodel M <H = (H(02), {CU* : a E a~,}, 

{S’: a E wl}, {he : 4y E al}, {X(a): a E ml}, A, h, E) and there are L, {D(j): j E 
L}, {Y(i)9 E t} and y in A# such that, letting q = M n ol, the following 
statements are true: 

(1.1) (W ii E [t]*)W, j) = &(y(i), y(i))), 

(1.2:n) (Vcu)@~ E 5+x)(@* 1 (n + 1) = q+ t (n + 1) 

& (v&(3{(wi:i E t} E A\p)(vi E t)(L(cw,, p) = L 

& X(aJ n m(y) = Y(i) & (Vj E L)(D?(j) = D(j)))). 

Under this assumption it is possible to choose {a, : i E t}, {n,:i E t} and {@, j E 
t} such that 

(13) . a,<~+(ni)<~~C~~C~mmCrrC~<ai,l 

(14) . L(& aj) = L for i, j E t 

(1% . 0$(l) = D(1) for i, j E t 

(16) ~&,andifi>O. then@ rni-l+l=q* rni_l+l. 

(ke Fig. 1.) 
To see that this is easily done by induction, suppose that {din : i E t} have been 

chosen. Use the first existential quantifier of (1.2:~~~) to fkd a,,1 E S,,\fl. Find 
n,+l such that tl*&+l!>a,+l and then use the second existentiai quantifier of 
(1.2:n,,J to find {@‘:i Et} satisfying (1.3), (1.4) and (1.5). 

. If it can now be shown that P(arf, 4) = Jz(& j), then Tcan simply be defined 
to be { 4: i E t}. In order to calculate P( 4, #) let us assume that o/5 > 4 
and let e(l) = dom(D(l)). Then (orf)* r@(O) = D(0) = (a$)* r@(O). Moreover, 
(@(e(O)) > ui > aji> (4!*@(O)) and so k(cuj, 4) = e(0). Hence 

Y$l) = (#(e(O)) = Q$(l) and *j(l) = (tk$y(e(oj~ = 6@(l) 

neither of these is defined. (It is at this point that the fact that g*(O) = 0 if f is a 
Iimit ordinal is used. This ensures that 4 and 4 are either both limit ordinals or 

both successors.) 

To calculate Y$2) and ~$2) use the fact that 

y&2) = Y$ 1 e(i) = D(I) = q$ p e(l) = ~$(2). 

Continuing this proce; L times one discovers that V#!L - 1) = ai and vj{L - 1) 
= ai because Y$) > cuf > aj for each I E L - 1 or, il’other words, L s X(&i, 4). 
If it turned out to be the case that we actually had L = X(cuf, $3 then, since 0 E s;/, 
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Fig. 1 

it follows that a(q) = y and, hence, that 

P(& a$) = &(X(4) n m(y), x(+) n m(u)) = ~Wi), y(i)) = W9 i). 

But why shoqld equality hold? This is where the second half of clause (1.6) is 
used. since VaL-l)=qand a,t t(ni++l)& t&+l)=q* t(q+l) and 
sinoe ai < q*(nj) it foUowS that aif # &(P+). Moreover, SiaCe Uf(nj) = 
q*(q) < 4 it follows that Y$(L) C 4. Hence L = X(4,4. 

AU that remainS to be sh’own now is that the supposition upon which the 
preceding discussion was based is valid. To do this f%st choose, for each 0 E ml, 
{~(Q:i~t}cA\o, e(u), {@j, a):j~&)} andm(a)suchthat 

O-7) L@(i), a) = L(a) for i E t, 

(1.8) L@(j) = D(j, 0) for i et and j E &a) P 

a(i)) n m(a):i E t}l = t. 

S a it is easy to find E [WI? (j):j EL}, m and 
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{Y(i) : i E t} such that for B E W and i E t the following hold: 

(1.10) &a(i), a) = t, 

(1.11) D?)(j) = D(j), 

(1.12) X@(i)) n m = Y(i) and m(a) =m. 

Now find a continuous increasing sequence of elementary submodels (A& : Q! E 

a~,} of H (recaU the original statement of the supposition) such that & contains 
{b(j) : j E t}. Choose y E ml such that {Y(i): i E t} G 9(m(y)) and (1.1) is 
satisfied. We would like to find q and % such that A$, n o1 = CT E W n S,, and 
(1 a(i) : i E t} n M’ = 0 but of course there is no reason why this should be the case. 
Instead, choose q such that A& n o1 E s/ and choose CJ E W\Mii,l. Let q = 
A$ n ml. Notice that &8$‘)(j) E M,,, for j E i and that the range of (=2)(j))* is 
disjoint from A$+, q \ since {b(j) : j E i} E M,,. Hence L@(i), q) > i. Moreover 
D?)(j) = d(j) for j E i. But even more is true; since aF)(i - 1) = o for every 
i E t it follows that w)(l) = *)(o for I E L(a(i), r)). 

If we now let L = L@(O), q) and D(j) = 0$‘)(j) for j E L, then: 

(1.13) {0(i) :i E t} n M,,, = 0, 
(1.14) L@(i), q) = L for i E t, 

(1.15) OF)< j) = D(j) for i E t and j E L, 

(1.16) {D(j): j E i} E A$. 

Clause (1.13) ensures that the formula 

(V/4)(3(4& : i E t} s A\p)(Vi E t)(L(ai, 18) =‘L 

& X(&i) n m(y) = Y(i) & (V’j E L)(D?(j) = D(j))) 

is satisfied by q in Mii+I. Now, since q* obviously contains every one of its initial 
segments, clause (1.2 : n) is Satisfied for every n. This completes the proof. 

2. Other properties of the colouring 

The reader of Section 1 will no doubt have noticed that the argument there can 
be strengthened and generalized. Perhaps the most obvious part of the argument 
which can be strengthened is in the selection of the t-element set { 4: i E t}. The 
inductive selection of these sets need not have stopped after t steps but could 
have been carried on infinitely often. Having done this, of course, it is no longer 
possible to choose the ith element of the ith set. However the only part used in 
the calculation of P(~I& 4) was that i #j. Hence the calculation of P(a$, cul) can 
be carried out as before provided that i #j. The consequence of this is that given 
any ecuivalence relation, E, on o with only finitely many equivalence classes, 
{[miJE : i E k}, a colouring h : [{ml: i E k}]*+ o1 and X E [oIixl it is possible to 
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find{xj:iEOV}E[,such~t . 

(2 1) . if B’ md jEj', then P(x~, x,) = P(+, Xjl); 

(=I p(x,, ~4 = k(w, qj if i #j. 

Whenever a colouring of pairs is constructed with certain propertiCS there is 
to construct a colouring of triples with similar properties. 

Section 1 is easily mod&d to accomplish this. In fact a colouring 
P*:[a~l)qa al with the following property can be constructed: 

(2.3) If XE [ap and k : CP@z)+ cul where n.~ cu, then there is a one-to-one 
i :n- X such that h(A) = P*(f’A) for every A E [n]““. 

chuck a one-to-one HY : [n(h)p+ q for every h : sP(n(h))+ 
tul such that if h +g, then the r&e of Hk is disjoint from the range of H,. Now, 
given zu~y P:[(u$+ tul de@e P*:[toJa+ ml by P*(A) = h(i”A) if there is 
i :A+ n(h) such that i is an isomorphism of P 1 [Ap and H’ 1 [i”A12. If there is 
no such isomorphism defute P*(A) = 0. It is easy to check that P* works. Having 
seen that it is possible to construct a colouring of all finite sets with property 
(2.3), it is reasonable to ash whether it is possible to construct a colouring of pairs 
which will induce a property similar to (2.3) on n-tuples. In particular there is a 
colouring Ik[cuJ2-+0~ of section 1 which satisfies: 

(2.4) Ifp E a and (x, E 01; a E (YP~) are disjoint p-tuples and h : [p X kp-* Cui is 

given, theu there are (lu,:i E k} such that P@,(m), q&z)) = 
h((i, nt), ii, 82)) provided that m = n. 

To see this suppose that disjoint p-tuples (x, E%I~: Q! E oI} and h : ip x klk-+ 
ml are given. To modify the proof change (1.2~) to 

(2.2:n) (va)(3#ks&Y)(p t(Ic+l)=tl+ I(n+l) 

& (v&(z!{x& Et} E;p(A\&)(W E t)(W EP) 

(I&#‘), p) = L(P) & X(x&‘)) n m(y) = Y(i, i’) 

& (Vj E L(i’>i(DF)(j) = D(i’, j)))). 

Of course (1.1) must now be changed to 

The rest of the proof requires only obvious modifications. For a tied m the 
CdwMiOxi Of P&(m), Xj(tn)) iS 8Xactly the sitaxe aS before. 

However if m #n we do not have ecQugh information to calculate 
P&(m), xi(n)). IS this an essential difficulty with the proof or is it in fact possible 
to o’btain a colouring P which sat&&s (2.4) without the final proviso that m = n? 

, but if so then this would also provide a counterexample to the partition 
relation or- ,a& (in other words, we would have a colouring of the 
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complete graph in K1 colours such that no large bipartite graph misses any 
colour). What is known is that it is easy to modify the example of Section 1 to 
obtain tie exact opposite in behaviour namely 

(2.5) If p em and {x~E%~; ~[YE ol} are disjoint p-tupks, then there is 
X E [o@ and h :p xp-+ a1 such that if {cu, @} E [Xl*, then 
IQ&), x&2)) = h(n, m) provided that n # m. 

So, without loss of generality, there is no freedom at all in the colour of 
(x,(n), x@(m)} tubless m = n. For an application of (2.5) see [S]. The modifka- 
tions necessary to achieve (2.5) are discussed in the next section. 

3. Gewdizations to larger c4adWs 

Until now the dkcussion has concentrated entirely on colouring the pairs of ml 

but it is not difkult to imagine similar colourings on larger cardinals. Can these 
colourkgs be constructed by trivially generalizing the construction of Section l? 
The answer appears to be negative. To see this begin by considering the 
sequences c(*. The obvious choice of cc+ for the construction on higher cardinals 
would be to let cc* : cof@)+ p be increasing and cofinal. However notice &it the 
fact that if cof(& = o and q is a limit ordinal below cc, then @*“KG) n q is 
bounded below q was often relied upon (see (1.8), (1.15) and (I.16) for 
example). One way of ensuring that this remains true when cof(& > w is to insist 
that cc* be continuous and that q does not belong to the. range of p*. Of course 
we cannot insist that no q belongs to the range of cc* but we need sufkiently 
many such ordinals to intersect every closed unbounded set so that, for example, 
we can find Q as in Section 1. Hence if we are to construct a colouring on some 
higher cardinal A we must assume the following hypothesis. 

(3.1) There is S s A which is stationary but such that S n LY is not stationary for 
every Q! E il. 

The reason is that now we can choose a closed stt Co s CY which is unbounded in 
- Q! and disjoint from S. We will let cy* be the increasing ~ZXELG~~“&XI of Cm. 

The next di&ulty arises when one considers why i? VVEE pozible to get (1.16) 
to hold. The reason of course was that each I;(j) is IMe but if cof(cu) > o, then 
initial segments of 1y* will not be finite. In order to have GE analog of (1.16) hold 
it would be necessary to have the elementary submodels closed under certain 
subsets and this would require a hypothesis on cardinal arithmetic. To avoid 
making this hypothesis we will alter the definition of P(cu, @) so that it does not 
depend on the initial segment of QI* below @ but only on the maximal element of 
this initial segment. 

For Q < (Y < /3 < A define I”;@, B) and ri(a, /3) by induction on 1 as follows: 

(3.2) I-&, #9) = /9 and I-&Y, p) = 0; 
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(3.3) if =(a, B) is defined and greater than a let fi+l(a, fi)= 

(C(G B))V%(pr, B)) w ere h 6&u, 8) is the least ordinal such that 

(I‘;‘(% B))‘!e,(% B)) 3 G 

(3-4) define F+&, B) = &(G(a, @W(T) = 5 E er(% to]* 

Notice that if ad, then F(a,@)Ccr and so if we let &,,(<y)/?)= 
~wc{~(cB, @) + 1: I E m}, then b(a, @) c a provided that a E S and a is a limit 
ordinal. What is also true is that asc+Aa, @) < G(a, @) and hence there is 
some least integer k such that =(a, p) is not defined because C+&, @) = a- 
LetR(a,@)=R 

ThenexthypothesisrequiredonAisrhatthereissomer<Asuchthat2’8A. 
J.fthisisthecase,thenwecanlet {X(a):cwEA} listdistinctsubsetsof randlet 
{&: a E A} list all f~&ons R:[F(A#)r+A where &f E [r]? As before let 
{Se: a E A} partition S into A mauy stationary sets. Given c E S let 6(c) be tbe 
uniqueordinalsuchthat@S 61C) and let M(c) be the finite subset of t such that 

don&t,) is PUW))~- 
The f@nction P: [Sp+ A can now be defined. Let {a, 6) E [S]3 a C @ and let 

isR(a, @) he maximal su& that 

(3.5) C@&, B), @) = C(Pi(% B), B) for 1 E k 

(3.6) M(r;‘(&, B), a)) = M(G(Cci(@, Ip), P)) -for l E k 

(3.7) X(a) n M(fi(Cci(a, B), au)) =X(B) n M(G+(Ccitar, /% 49) for l E i- 

If i = 0 let P({a, /3}) = 0. Otherwise let y = &L1(pi(cU, p), 48) and define 
p(W 18)) = &({X(P) n M(Y), x(au) n M(y))). If x(B) n MyI = x(ar) n My) 
let P({a, @}) = 0. 

Techniques very similar to those of Section 1 can now be used to show: 

(3.8) If A is a regular cardinal which has a non&kcting stationary set and such 
that there is t<l such that ?,‘a& then there is P:[A]*- A such tbat if 
XE[#, nuo and h:[rr]* -+A are given, then tbere is a one-to-one 
function i : n+ A such that P(i”A) = h(A) for every A E [n]*. 

The details are left to the reader. Moreover, there is no difkulty in replacing o 
bY E that@cAforeverypcA. 

Finally it will be sbown that this version of the colouring P satisfies (2.5). To 
see this su th2t bc:gEa) cna are one-to-one functions with disjoint 
ranges. To see that (2.5) is satisfied choose MC E [c]‘~ such that ((X,,,n 
A@~ER}~=PJ, witbout loss of generality AQ=M and .X&~fIM=~i for &A 
and i E IL Now choose Q such that tbe domain of Cr, is [9(M)]*. Next, for S E S, 
choose e(S) such tbat (y&,n) n 6 = 0. Since So is stationary there is /3 E A and 
S E [Sap such that ~~~~,~O~~~i~~(S, ye(s)(i)) = #! for i E IL and 6 E S. IA & be tbe 
ckosure of (6) Uy&p under rr and r;. Notice that tbis closure is finite because 
the functions c and I’i are regressive in the second variable. Let X6 be tbe 
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function defined on 4~ by X6(E) =Xg n M(E). Let & be defined by hg((~, p) = 
ha(x, n M(n)). It follows that there is A E [s]’ such that if {c, f} s A and c G g, 
then there is an isomorphism I~,s of the two structures (XC, rr, r;-, Xc, H’, E) 
ad (& K, ri, X8, He, E) su& that &,s is the identity below c. Moreover it 
canbearrangedthatifr~5and{r,f}cAthenZiEE 

Now let {i, j} E [n]* and S E g such that (5, g} e_ A. It wiil be shown that 
P(Y&~), y,&j)) depends only on i, j and the unique isomorphism type of the 
structures indexed by A. First note that since c E y&i) E g E ye&j) it follows 
that WW)(~)~ Ye&j)) > k(G Ye&j))* Now let Q s W0&, Y0& j)) be 
maximal satisfying (3.9, (3.6) and (3.7) in the definition of P. 

NOVY not43 that for l s k(6 Yetdj)X IdYe( Ye&j)) = !G Ye&j)) C 5 
Hence the sequences 

VW(Ye(& (Yet&j))* Ye&j)) : t E 0, 

K(Ccl(Ye(t)(0~ (Yetn(j)L Ye(&) : t E 0, 

{X ~(~~0) n W%i(ue(&)~ Ye&i)x Ye(e)(j))) : t E 0, 

1X yeg)(O n M(W&e(t)(% Yecs)(j)L Ye(&)) : t E 0, 

W(r,‘(P&&)~ Y&j))# Yet&j))) : t E 0, 

W(r,+(Crr(Ye(&8 Ye(e)(j)), Ye&)) :t E 0 

depend only on the unique isomorphism type of the structures indexed by A if 
I s k(& Ye&j)). Since P(y e&i), Ye&j)) is determined by these sequences and 
by the function Hg it suBices to show that 4 G k(& Ye&j)). 

To see this let K = k(g, Ye&j)) and notice that 

G-&k6%t&)~ Yet&j)), Ye&j)) = g and M(E) = M 

‘I&n either M(G-h&e&, yt& j)), ye(&))) # M in which we (3.6) in 
the definition of P fails or else equality holds in which case 

and so (3.5) fails. 

One possillle strengthening of the construction of Section 1 would be: 

(4.1) There is a colouring P : [2”]* + c;I)~ s.t. if X E [2cu]Kl, n E o and h : [n]*+ 

ml, then there is i : II --) X, one-to-one, s.t. P(i”A) = h(A) for A E [n]*. 

The proof of the Erd&-Rado theorem shows that 2” cannot be replaced by 
(2”)’ since then there is always X E [2”ln1 s.t. the colour of pairs is determined by 
the Crst element of the pair. Also it is at least consistent that (4.1) is false since it 
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is shown in [3] that 2-[&g is consistent assuming the existence of a MahIo 

Joseethisstartwithamodel 
z& branches and -f(K)) m. 

co& of functiom h : [zq2+ (iol, 

at least untiI level h({a, fl}). 

.c.c. since after applying a A-system any two 
colouring new pairs 0. To see that the generic 

and that 1 II- ‘X E [gl”’ and h witnesses that 
and {x~: e E a~~} such that ps lb 

: f E al) farms a A-system with root D 

h. Then choose {&i):i~ Ihl} such that {b,,:i~ ih() all agree 
below y + 1. It is now trivial to ama@mate to get a contradiction. 

Suppose P: [a#-* ml establishes that ml- [q; a& (in other words, when- 

ever {%:a!~ ml) and {6=: 911~ ox} are disjoint uncountable sets and q E ml, then 

there exist QI < @ such that P({u~, be}) = q). Thea 

(4.3) If h : [a#-+ aI and X E [CO@ there is i : co+ X, one-to-one, such that 
P(C’A) = h(2) for every A E [a~]~. 

To see this suppose that i :n+X has been debed so that P(i”A) = h(A) for 
every A E [I$. Suppose further that for every f :n-, h”[m]’ there is Z(f) E [Xln’ 
such that P((a; i(j)}) =f(i) f or every i E n and o! E Z(f). We now wish to extend 
i:n+l+Xso that the above hypotheses are satisfied. 

To * this let F(j) = h((j, n}) for j E II. Let A and B be disjoint uncountable 
subsets of Z(F) and redetine Z(F) = B. It now sdkes to show that for every 
f:n+ h”[op and <y E h”[or there is l#‘, cx) E ml such that: 

(4.4) If a~A\gu a), then jXcf)% =K, where Xcf)z= (6 l Xdf):P({a, 8)) 
= Y}. 

If this is the case, then we simply choose i(n) E A\U{Sdfr a)$ :n--* h”[o12 and 
o! E A”#} ad define X(f) = Xcf 1 n)$J\ for f : (n + l)/~“[o]~. 

But c:earIy if (4.4) fails for some f and cu, then there is A E [AIN and 
XE [X(f)ln’ such that P({pt g}) = Q! for PEA and yczX and M>p. This 
contradicts the fact that P witnesses ol+ [ol; w&. This is similar to Theorem 
1.1 from [l]. 

Since certain colourings automatically have the strong embedding property 
(4.3) it is reasonable to ask if there is a simple class of graphs which will have the 
weaker property (0.1). In Iight of the fact that the construction in Section 1 was 
motivated by TodorEevZ’s proof that ml% [o& it might beconjectured that any 
colouring which witnesses that o1 % [o& will satisfy (0.1). It is easy to see that 
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this is not the case but Bauxngartner wondered whether such a colouring might 
not be obtained by identifying some of the c&ours. The weakest possible result in 
this direction one could hope for would be 

(4.5) If P: [c~~]~+ ml witnesses that CO& [at&, then there is a partition of wl, 
UO~ = A0 U A', such that the induced colouring P*[(u~]~-*~ defined by 
P*(B) =i if and only if P(B) r A’ satisfies the following property: if 
XE [q]K’ arndt h $21 *-+ 2, then there is i : n+ %, one-to-one such that 
P(i”B) = h(B) for B E [fl12. 

This is not a themenn of ZFC however, because of the following forcing 
construction. Define an order on graphs according to the following detition. 

(4.6) (V, E) G (V’, E’) if and only if there is a function f : V’+ V which takes 
one set of vertices onto the other and such that if f(x) pf(y), then 
(x, y) E E’ if and only if (f(x), f(y)} E E. 

Now if 4 is an initital segment of the class of graphs with more than one vertex 
with respect to this ordering, let I&%) be the partial order consisting of functions 
f : [a2+ ol, where X E [o$~ such that 

(4.7) fU% m < m={cw, #v E v12; 
(4.8) if f”[X12=AoUA’ is a partition, then no induced subgraph of 

(X, {{a; B} E [a2:f({% B)) -@I) belongs to 4. 

The generic cololuring, P!, has the property that no partition of o1 will yield a 
graph which contains any member of .% as an induced subgraph. However, if 
h:[n12-, o1 is a colouring whose range can not be partitioned so that the 
resulting graph is in .% and 1 It- ‘53 E [OJKl”, then 1 I!- “there is i : n=+ 2, 

one-to-one, such that &&“A) = h(A) for A E [n12”. 
To see this suppose not and let vE: [XJ*- ol; S_ E ol} and {zs : g E aI} be 

such that zs E X6 and fs It- “zE E 2”. The usual A-system argument allows us to 
find {C(i) : i E 12) such that max h”[n12 < rnin&, : i E JZ} and dfeci,l as(i)) is 
isomorphic to dfw,, 251i)) for i, j E n. Let f = U(f&i) : i E n}. Then f is a partial 
function from @J{XetiJ: i E ?2)12 t0 01. 

Now suppose that neither a nor /I belong to the root of the A-system and 
(Y E Xeti> and /3 E Xzu, where i #j. Let I:Xs<I,“-+X~(j~ k the natural isomorph- 
ism. If P(a) #b, then definef({lu, /?}) =f&{l(cu), /3)). If I(a) = fl, then deline 
f( (cu, @}) = k( (i, j}). It is straightforward to check that f is a condition and hence 
we have a contradiction. 

As an immediate corollary we can let 4 be the initial segment consisting of the 
Scycle (it is easy to see that this is an initial segment). Then P(9) yields a graph 
witnessing ol+ [o& but which is a counterexample to (4.5) and this is 
witnessed by h being the S-cycle. 
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5. 

In this section an application of preceding results to the theory of Banach 
be discussed. It will be shown that there is a non-separable Banach 

the property that every operator fkom the space to itself is the sum of a 
operator and one with separable range. An operator T is 

there is a basis for the Banach space {bd: : 4y E A} such 

construct the Banach space let P:[o#-* to1 satisfy (2.4) (it will soon 
apparent that a much weaker hypothesis is sufhcient but since (2.4) is 
available to us we will use it instead of introducing a new hypothesis). 

NownoticethatifXis SQ G [Xl- is closed under subsets, then it is 

is a vector space under the pointwise operations. It is now possible to 
~~I,(X,sP)=(fEXR;IlfIICQ)}Withthisnorm.Let6i:X-, 
&(~)=land&@)=Oif/3#&Ihen{&:o~X}isabasisfor 

Z1(X, &) provided that Ud =X Let this subspace be denoted Zc(X, sQ. The 
routine verifications are left to the reader who should also notice that if 
X=VUW, then 

q(x, J8) = I;(v, S# n [VI-) @ ZC(W, d fl [w]-). 

Returning to the problem at hand, it will be shown that the Banach space 
property where Z = {A E [o~]~~: P”[A]* = 0). To see 

ml, 9y9)+1&, %‘) is a linear mapping which can not be 
decomposed as T = Zi -I- G where & has separable range and G is diagonalizable. 
If there is some a~ o1 such that T@) = V(g) CD y# for every p > (Y where 
V(B) E ~:(cY, Zn [a]-), then we have the desired decomposition. Hence it can 
be sqposed that for every ar there is /3(a) > Q! and y(cu)> QI such that 

C&Y) and T@(cu))(y(ru)) #O. Choose E >O and XE [o,lnl such that 
a))(y(cu)))] > 8 for ay E X and such that if {q, c} E [Xl*, then 

lITI > M for any integer M. To see this choose k E o such 
ai : i E k} such that P({p(ai), B( aj)}) = 1 and 

P({y(mi), y&)}) =O if {i, j} E [k]*. From the definition of % it follows that 
]I &EL @( aci)ll = 1. However, 

nce T is unbounded. A similar example using 0 was found in [4]. The 
le can be modified to obtain the even stronger assertion that every 

of a multiple of the identity and an operator with 
elsewhere. 

Sh:261



A graph which embeds a0 small graphs 183 

References 

[1] P. E&s and A. Hajnal, Embedding theorems for graphs establishing negative partition r&tion~, 
Periodica Hungazica 9 (1978) 206-W). 

[2] P. Erd6s and A. Hajnal, Unsolved and solved problems in set theory, Proc. of the Tar&i 
Symposium (Berkley, CA, 1971), (Amer. Math. Sot., Providence, RI, 1974) 269-287. 

[3] S. Shelah, Was Sierpinski right? Israel J. Math. (1988), to appear. 
[4] S. Shelah, An uncountable construction, Israel 3. Math. 4 (1985) 231-262. 
[S] S. Shelah and J. Step-, Extraspecial p-groups, AM. Pure Appl. Logic 34 (1987) 87-97. 
[6] S. Todor&&, Berldey notes on q- [a&, 1985. 

Sh:261


