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For certain cardinals A and x a colouring P:[A]?— 1 is constructed such that if X e [A]* and
Q:[x]?—> 4, then there is a one-to-one function i:x— X such that P(i"A) = Q(A) for every
A e[x]>. Additional results are also obtained.

0. Introduction

The main objective of this paper will be to construct a graph on w; which has
the property that every finite graph appears as an induced subgraph in any
uncountable set of vertices. Similar questions have been considered by Erdos and
Hajnal [1, 2]. The construction to be presented was motivated by § 3 of [3] which
follows TodorZevi€’s proof that @,-p[@,]Z, in [6]. The same result was also
obtained independently by Baumgartner using different techniques.

In Section 1 it will be shown that there is a colouring P:[w;]*— @, which
satisfies the following property:

0.1) ¥ Xe[w,]", new and h:[n]*> w,, then there is a one-to-one function
i:n— X s.t. P(i"A) = h(A) for every A € [n]>.

Section 2 will explore some further properties of this colouring. In particular it
will be shown that certain infinite graphs are also induced by every uncountable
set of vertices. The question of colouring finite sets rather than pairs will also be
discussed. In Section 3 it will be shown how to generalize the results of Section 1
to higher cardinals. The technical details here are more complicated than those in
the case of w, and, while they also apply to w,, it seems to be worthwhile to have
a simpler proof in this important special case. Section 4 contains remarks
pertaining to possible strengthenings of the counterexample. The final Section 5 is
devoted to an application of this construction to Banach space theory. In
particular a non-separable Banach space with few operators is constructed.

*I thank J. Steprans for writing up this paper, and the Toronto logic group for their hospitality
during my visit there in spring '85, when most of the work was done. : .
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1. The coastruction

For every lir} ordinal @ € @, choose an increasing sequence a*: @ — a cofinal
in a. if a=p+1 let @*:1— a be defined by a*(0) = . The colouring of [@,]’
will be defined by comparing the sequences associated with pairs of ordinals. To
facilitate this comparison define k(a, ) to be the least integer such that

cither a*(k(x, B))# B*(k(a, B)) or k(a, B) ¢ dom(a*) N dom(B*).

An important point to notice is that if a*(k(a, B)) and B*(k(a, B)) are both
defined, then it makes sense to look at k(a*(k(a, B)), B*(k(a, B))). Since this
process may be coatinued it is worthwhile introducing notation to describe it. The
ordinals y§(n) and ¥g(n) will be defined by induction on the integer n. Let
¥5(0) = min{e, B} and ¥3(0) = max{a, B}. Then define

¥ +1) = (v5@))* (k(y5@®), P5(n))) and
P(n +1) = (P5(@n))*(k(vs(n), Pa(nd).

Notice that P§(n + 1) < Wg(n). Hence there is a least integer, Z(a, 8), such that
P5(Z(a, B))<y5(0) or else one of ¥ ;5(Z(a, B)) and Y&(Z(a, B)) is not
defined. Since Z(a, ) >0 it will always 1.ke sense to talk about Z(a, ) — 1.

Before the colouring of [@,]* can be Jdefined it is necessary to introduce a
mechanism for coding all finite colourings. For each ordinal & € @, choose a
distinct subset of @ and call it X(«a). Let {k,:a € ®,} enumerate all functions
h:[P(m)F— o, where m € w. Let m(«) be that integer such that dom(h,)=
[P(m(a))F-

The way the coding works is that for every pair of ordinals, & and f, there is
some integer, m, such that X{a’) and X(B) restricted to m are distinct. The colour
of the pair {a, B} will be determined by choosing a certain ordinal, y, and
evaluating k, (X{a) Nm, X(B) Nm).

To make this more precise let {S;:0 € w,} partition @, into stationary sets. For
0 € », define 6(0) to be the unique ordinal such that o € S5(,). Now if « and
are distinct ordinals let & = 6(W5(Z(a, B) — 1)). Then define

P(a, B) = hs(X(a) N m(§), X(B) N m(8))

if the right-hand side is defined. Otherwise let P(a, )= 0. It must now be shown
that if A is an uncountable subset of @, and h:[t— w,, then there is T € [A]
such that k and P | [T} are isomorphic. Part of the proof of this fact will involve
finding a countable elementary submodel, M, and an ordinal, &, outside of M. It
will then be argued that there is an ordinal B in M which is in the shadow of « in
the sense that a*NM c B*, Yg(1)*NMcy3(1)*, Y5(2)*NMcyg(2)* and
so on. Of course in order to find something in the shadow of & we must define the
shadow of a. This is done by defining Qg(n) by induction on n in a manner
simiar to the definition of Wg(n). In particular, let ©25(0) = max{a, B} and let
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25(n + 1) = (825(n))*(05(n)) where 05(n) is the least integer such that
(2§(n))*(65(n)) =min{a, B}. Let L(a,B) be the first integer such that
Q§(L(a, B)) is not defined (this will only happen because Q§(L(a, f)—1)=
min{«, §}). In order to keep track of the relevant initial segments of sequences
for each j € L(a, B) define D(j) = (@5(7))* | 63().

Now let A€ [@;]** and h:[t]’— w, be given. Suppose, for the moment, that
there is a countable elemertary submodel M <H=(H(w,), {a*:aecwm,},
{S.: @€ @}, {h,: @€}, {X(a):a€w}, A, h, €)and there are L, {D(j):je
L}, {Y(i):iet} and y in M such that, letting =M Nw,, the following
statements are true:

@) v ) e [tPRE ) =h(YE), Y(i))),
(1.2:n) (Va)3@BeS\a)B*(n+1)=n*(n+1)

& (V) 3{a;:iet} c A\p)(Viet)(L(a, B)=L

& X(o;) Nm(y) = Y(i) & (Vj € LYDg(j) = D(i))))-
Under this assumption it is possible to choose {0;:i€t}, {n;:i et} and {a}:i, j €
t} such that
1L3) o<n*(n)<dh<ai<---<ai<om
(14 L(aj,0)=L forijet
(1.5) DYN)=D() forijet
(1.6) o;eS,andifi>0.thenof In_,+1=1n*[n_,+1
(See Fig. 1.)

To see that this is easily done by induction, suppose that {a/":i € ¢} have been
chosen. Use the first existential quantifier of (1.2:n,,) to find o,,,., € S, \ a7 Find
R4 Such that n*(n,,.1) > 0,41 and then use the second existential quaatifier of
(1.2:n,,) to find {a]"*':i et} satisfying (1.3), (1.4) and (1.5).

If it can now be shown that P(«a}, &) = h(i, j), then T-can simply be defined
to be {ai:iet}. In order to calculate P(ai, o) let us assume that &;>a’
and let €(!)=dom{D(!)). Then (a})* | 6(0) = D(0) =(a))* | 8(0). Moreover,
(@)*(8(0) > 0; > &> ()*(6(0)) and so k(e ) = 6(0). Hence

wel(1) = (e)*(0(0) = Q1) and (1) =(a))*(6(®)) = 2D)

neither of these is defined. (It is at this point that the fact that 5*(0)=0if §is a
limit ordinal is used. This ensures that &} and o/ are either both limit ordinals or
both successors.)

To calculate tyg‘,(z) and w,,(z) use the fact that

wi(2)= w2 1 6(1) = D(1) = v} | 6(1) = ¥i(2).

Continuing this process L times one discovers that W2 (L 1)=o0;and ¢ ‘(L 1)
= g; because ¥ Kl) > a}> o) foreachle L —1or, in other words, L < Z(af:, o).
If it turned out to be the case that we actually had L = Z(a/, a)) then, since o;€S,,
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it follows that (0;) = y and, hence, that

P(ai, o)) = hy(X(a)) N m(y), X(a) N\ m(Y)) = b, (Y(), Y()) = h(, j)-

But why should equality hold? This is where the second half of clause (1.6) is
used. Since WYL —1)=o0; and of | (.-, +1) 207 | (n;+1)=19* | (n;+1) and
since 0;<n*(n;) it follows that o}(n;)+# of(n;). Moreover, since of(n;)=
n*(n;) < af it follows that W2(L) < af. Hence L = 3(a}, af).

All that remains to be shown now is that the supposition upon which the
preceding discussion was based is valid. To do this first choose, for each o € w,,
{o(i):i et} € A\o, L(0), {D(j, 0):j € L(0)} and m(0) such that
(1.7 L(o(i),0)=L(o) foriet,

(1.8) D3®(j)=D(j, o) forietandjeL(o),
1.9 HX(e@))Nm(o):iet}| =t

Using Fodor's Lemma it is easy to find W e[w,J, L, {D(j):jeL}, m and
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{Y(i):i et} such that for 0 € W and i e ¢ the following hold:
(1.10) L(oe(i), o)=L,

(1.11)  DZO(j)= D)),

1.12) X(o(@))Nm=Y(@) and m(o)=m.

Now find a continuous increasing sequence of elementary submodels (M, :a €
‘”1} of H (Secall the original statement of the supposition) such that M, contains
{D(j):jeL}. Choose yew, such that {Y(i):iet}cP(m(y)) and (1.1) is
satisfied. We would like to find n and & such that M, Nw,=ceWNS, and
{o(i):i et} " M =0 but of course there is no reason why this should be the case.
Instead, choose #j such that M;Nw, €S, and choose 0 W\M;,,. Let n=
M;N @,. Notice that Q3)(j) € M;.,, for j € L and that the range of (22¢(j))* is
disjoint from M;.,\ since {D(j):j € L} € M,. Hence L(o(i), n)> L. Moreover
D3®(j) = D(j) for j € L. But even more is true; since QZY(L — 1) = o for every
i et it follows that Q3€() = Q2U)(]) for { € L(0(i), n).

If we now let L = L(0(0), n) and D(j) = DZXj) for j e L, then:

(1.13) {o(i):iet}NMyz,,=0,

(1.14) L(o(i),n)=L foriet,

(1.15) D3O = D(j) forietandjelL,
(1.16) {D(j):jeL}eM;.

Clause (1.13) ensures that the formula

(Vu)Hai:iet} = A\u)(Vie t)(L(a;, B)=L
& X(a;) N\m(y) =Y() & (Vj e L)YDg(j) = D(j)))

is satisfied by # in M;,,;. Now, since n* obviously contains every one of its initial
segments, clause (1.2:n) is satisfied for every n. This completes the proof.

2. Other properties of the colouring

The reader of Section 1 will no doubt have noticed that the argument there can
be strengthened and generalized. Perhaps the most obvious part of the argument
which can be strengthened is in the selection of the t-element set {a;:i e t}. The
inductive selection of these sets need not have stopped after ¢ steps but could
have been carried on infinitely often. Having done this, of course, it is no longer
possible to choose the ith element of the ith set. However the only part used in
the calculation of P(a, aj) was that i #j. Hence the calculation of P(«;, a)) can
be carried out as before provided that i #j. The consequence of this is that given
any ecuivalence relation, E, on @ with only finitely many equivalence classes,
{[m)c:i ek}, a colouring h:[{m;:i e k}*— w, and X € [w,]™ it is possible to
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find {x;:i € ®} € [X]" such that .
(2.1) if iEi’ and JEj', then P(x;, x;) = P(xy, x;);
(22) PR, Xm)=h(m, m;) ifi#].

Whenever a colouring of pairs is constructed with certain properties there is
always a temptation to construct a colouring of triples with similar properties.
The example of Section 1 is easily modified to accomplish this. In fact a colouring
P*:[0,]*— @, with the following property caa be constructed:

(2.3) K Xe[o,f" and h:P(n)—> o, where n € @, then there is a one-to-one
function i :n— X such that h(A) = P*(i"A) for every A € [n]>2

To do this simply choose a one-to-one H, : [r(h)]>— o, for every h: P(n(h))—
@, such that if h #g, then the range of H, is disjoint from the range of H,. Now,
given any P:[w,— @, define P*:[,]"°— @, by P*(A)=h(i"A) if there is
i:A—>n(h) such that i is an isomorphism of P | [A}* and #, | [i"A]. If there is
no such isomorphism define P*(A) = 0. It is easy to check that P* works. Having
seen that it is possible to construct 2 colouring of all finite sets with property
(2.3), it is reasonable to ask whether it is possible to construct a colouring of pairs
which will induce a property similar to (2.3) on n-tuples. In particular there is a
colouring P:[@,— @, of Section 1 which satisfies:

(2.4) Ifpewand {x, € ®; a € ®,} are disjoint p-tuples and h:[p X kP— oy is
given, then there are {a;:iek} such that P(x,(m), x.(n))=
h((i, m), (j, n)) previded that m =n.
To see this suppose that disjoint p-tuples {x, €”’w,:a@ € @,} and h:[p X k]*—
@, are given. To modify the proof change (1.2:n) to
(22:n) (Va)3BeS\a)f*t(n+1)=70*(n+1)
& (Vu)3{x;:i et} =P(A\p))(Vi € t)(Vi' € p)
(L"), B) = L(") & X(x,(i")) Nm(y) = Y, i')
& (Vj € L@")DF*’ ()= D, i))))-
Of course (1.1) must now be changed to
{G )G, i} elp X kP)R(G, i), G, i)} =h (Y G, i), Y, J)))-

The rest of the proof requires only obvious modifications. For a fixed m the
calculation of P(x;(m), x;(im)) is exactly the same as before.

However if m#n we do not have erough information to calculate
P(x,(m), x;(n)). Is this an essential difficulty with the proof or is it in fact possible
to obtain a colouring P which satisfies (2.4) without the final proviso that m =n?
Perhaps, but if so then this would also provide a counterexample to the partition
relation @;— [Ky, J%, (in other words, we would have a colouring of the
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complete graph in X, colours such that no large bipartite graph misses any
colour). What is known is that it is easy to modify the example of Section 1 to
obtain the exact opposite in behaviour namely

25) if pew and {x, €’w,;¥€w,} are disjoint p-tuples, then there is
Xe[o* and h:pXp—w, such that if {a, B)}e[X]’, then
P(x4(n), xg(m)) = h(n, m) provided that n #m.

So, without loss of generality, there is no freedom at all in thé colour of
{x4(n), xg(m)} unless m =n. For an application of (2.5) see [5]. The modifica-
tions necessary to achieve (2.5) are discussed in the next section.

3. Generalizations to larger cardinals

Until now the discussion has concentrated entirely on colouring the pairs of w,
but it is not difficult to imagine similar colourings on larger cardinals. Can these
colourings be constructed by trivially generalizing the construction of Section 1?
The answer appears to be negative. To see this begin by considering the
sequences pu*. The obvious choice of u* for the construction on higher cardinals
would be to let u*:cof(u)— u be increasing and cofinal. However notice zh:t the
fact that if cof(u)=w® and 7 is a limit ordinal below u, then (u*"'w)N 9 is
bounded below 7 was often relied upon (see (1.8), (1.15) and (1.16) for
example). One way of ensuring that this remains true when cof(i) > o is to insist
that u* be continuous and that » does not belong to the range of u*. Of course
we cannot insist that no 7 belongs to the range of u* but we need sufficiently
many such ordinals to intersect every closed unbounded set so that, for example,
we can find # as in Section 1. Hence if we are to construct a colouring on some
higher cardinal A we must assume the following hypothesis.

(3.1) There is S = A which is stationary but such that S N « is not stationary for
every @ €A.

The reason is that now we can choos: a closed sct C, c & which is unbounded in

- o and disjoint from S. We will let a* be the increasing eznuuicraiion of C,.

~ The next difficulty arises when one considers why i* was possible to get (1.16)
to hold. The reason of course was that each F(j) is finite but if cof(a) > w, then
initial segments of a* will not be finite. In order to have az: analog of (1.16) hold
it would be necessary to have the elementary submodels closed under certain
subsets and this would require a hypoihesis on cardinal arithmetic. To avoid
making this hypothesis we will alter the definition of P(«, B) so that it does not
depend on the initial segment of a* below § but only on the maximal element of
this initial segment.
For 0 < & < B < A define I';(«, ) and I'; (a, B) by induction on [ as follows:

(3.2) Ig(a, f)=p and Io(e, f)=0;
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(3.3) if If(x,B) is defined and greater than a let I} (e, p)=
(I"“ (a, ﬁ))'(o,(a', ﬁ)) where O(a, B) is the least ordinal such that

PN PN

(I (a, B))*(6i(a, B)) = a;

 (3.4) define I .i(a, B) =sup{(I'(a, B))*(5): & € Oi(a, B)}-

Notice that if a€S, then I't(a, f)<a and so if we let p,(a, f)=
max{I'7 (a, B) +1:l e m}, then p,(a, B) < « provided that « € S and « is a limit
ordinal. What is also true is that @ <I},,(a, B} < I (a, B) and hence there is
some least integer k such that I'}(a, B) is not defined because I'},1(a, f)=a.
Let k(ﬁ‘, P) )=k.

The next hypothesis required on A is that there is some <A such that 2°=A.
If this is the case, then we can let {X(a):a € A} list distinct subsets of = and let
{h,:a €A} list all functions h:[F(M)P’—>1 where M e[z]. As before let
{S.:a €A} partition S into A many stationary sets. Given § € S let 8({) be the
unique ordinal such that € S; ;) and let M({) be the finite subset of 7 such that
dom(hsy)) is [P(M(E))F-

The function P:[SF— A can now be defined. Let {a, B} €[S, @ <p and let
i<k(a, p) be maxima! such that

335 Ii(uda, B), @)=TI;(uga, B), B) forlei,
(3.6) M(I7(ua, B), a)) = M(I'{ (e, B), B)) forlei,
G.7)  X(a)N M7 (ule, ), ) =X(B) N M(I'; (i, B), B)) forlei.

If i=0 let P({a, B})=0. Otherwise let y=TI;",(u(a, B), B) and define
P({x, 8}) = h,({X(B)N M(y), X(a)NM(y)}). If X(B)NM(y)=X(a)NM(y)
let P({a, B})=0.

Techniques very similar to those of Section 1 can now be used to show:

(3-8) If A is a regular cardinal whick has a non-reflecting stationary set and such
that there is <A such that 2°= A, then there is P:[A}>— A such that if
Xe[A}, new and h:[sP—>A are given, then there is a one-to-one
function i :n— A such that P(i"A) = h(A) for every A €[]

The details are left to the reader. Moreover, there is no difficulty in replacing
by k provided that p* <A for every p <A.

Finally it will be shown that this version of the colouring P satisfies (2.5). To
see this suppose that {y.: €A} c"A are one-to-one functions with disjoint
ranges. To see that (2.5) is satisfied choose M; e[z]™ such that |{X, N
M;:ien}|=n, without loss of generality M, =M and X, ;N M =ag; for QeA
and i e n. Now choose o such that the domain of A, is [9’(M)]2 Next, for S €S,
choose 6(6) such that (ygs)yn) N & =0. Since S, is stationary there is § €A and
h E[S.,P such that p,‘(d,,“»(,-»(&, yo(a)(i))= ﬁ forien and 6 €S. Let 26 be the
closure of {8} U y5(syn under I'y and I';. Notice that this closure is finite because
the functions I'y and I'y are regressive in thc second variable. Let X; be the
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function defined on 25 by X;(&) = Xz N M(E). Let H;, be defined by Hy(a, f) =
hg(X, N M(B)). It follows that there is A € [S]* such that if {{, £} c A and £ <&,
then there is an isomorphism I ; of the two structures (3, I'Y, I'T, X;, H;, €)
and (3, I'y, I'y, X, H, €) such that I ; is the identity below . Moreover it
can be arranged that if e 5 and {{, E} cAthen J; c &

Now let {i,j} €[] and £ e& such that {f, &} c A. It will be shown that
P(yaz)(@), yo)(j)) depends only on i, j and the unique isomorphism type of the
structures indexed by A. First note that since £ € yo(;)(i) € & € yoe)(j) it follows

that k(ye)(i), Yo (J)) > k(& yo)(/))- Now let g <k(yor)(i), Yor)(j)) be
maximal satisfying (3.5), (3.6) and (3.7) in the definition of P.

Now note that for I<k(&, ye)(/)) t:(Ye)(©): Yor)()) = mi(5; yo)()) <.
Hence the sequences

{re (1 (Yey(@), (Yo ()): Yorx(1)):t €l},

{I'e (1 (o (@, (Yo ()))s Yoer(i)):t l},

{Xm;)(n NM(; (!‘I(YO(C)(i): .YO(E)(f ) Yoe)(D)):tel},
{Xyoy0 N M (1l (Yoe)(@)s Yo)(1)s Yoy (D))t l},
{MI (1 (Yo)(@): Yo (1)) Yo (D)) :t €l},

{M(I (w(Yoy(@); Yo () Yoe)(i))):t €}

depend only on the unique isomorphism type of the structures indexed by A if
I<k(E, yo)(j)- Since P(yoc)(i), Yoz)(j)) is determined by these sequences and
by the function H it suffices to show that g < k(&, ye)(j))-

To see this let K = k(&, yocz)(j)) and notice that

Tx-1(Bx(Yor)(@): Yor(1))s Yorr)()) =& and M(E)=M.

Then either M(Ix-1(ux(Yoc)(i) Yo)(7))s Yor)(¥))) # M in which case (3.6) in
the definition of P fails or else equality holds in which case

Xyoes» N M(Tx—1(8x(Yo)(@)s Yo)(7))s Yor)(@)))
= X.Ya(s)(i) nM= a;# a; = XYa(a)(i) nM (E)

and so (3.5) fails.

4. Remarks

One possible strengthening of the construction of Section 1 would be:

(4.1) There is a colouring P:[2°F— o, s.t. if X € [2°]", ne w and h:[nf—
®,, then there is i :n— X, one-to-one, s.t. P(i"A) = h(A) for A € [n}*.
The proof of the Erdos—Rado theorem shows that 2 cannot be replaced by

(2)* since then there is always X € [2°]" s.t. the colour of pairs is determined by
the first element of the pair. Also it is at least consistent that (4.1) is false since it
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is shown in [3] that 2"— [R.]} is consistent assuming the existence of a Mahlo
cardinal.

However it is also consistent thai (4.1) is true. To see this start with a medel
where there is a Kurepa tree (7, <) with x =2% branches and cof(x) > w.
Enumerate the branches as {b,:« € k}. Let P consist of functions k:[Df— o,,
where D e [x]<, satisfying:

(42) If {a, B) €{XP, then b, agrees with by at least until level A({x, B}).

The partial order is trivially c.c.c. since after applying a A-system any two
conditions can be amalgamated by colouring new pairs 0. To see that the generic
function will satisfy (4.1) suppose not and that 11-“X e [x]** and k witnesses that
(4.1) fails”. Choose {p::[D:ff—> o ;Ecw,} and {x;:Eew,} such that p; I+
“xz € X™. Without loss of generality {D;:§ € w,} forms a A-system with root D
and xz € D;\D and p; | [DF=p for all £ w,. Let y be the maximal ordinal
nentioned by k. Then choose {5(i):i€|h|} such that {b, :i€lh|} all agree
below y + 1. It is now trivial to amalgamate to get a contradiction.

Suppose P:[ef— o, establishes that @, — [@,; o, %, (in other words, when-
ever {a,:a € w,} and {b, : « € ®,} are disjoint uncountable sets and € @,, then
there exist & < f such that P({a,, bg}) =n). Then

4.3) If h:[@f— o, and X €[o,]* there is i:@— X, one-to-one, such that
P(i"A) = h(A) for every A € [0}

To see this suppose that i:n— X has been defined so that P(i"A) = h(A) for
every A € [n’. Suppose further that for every f:n— h"[o} there is Z(f) € [X]™
such that P({a, i(j)}) =f(j) for every j e n and a € Z(f). We now wish to extend
i:n +1— X so that the above hypotheses are satisfied.

To do this let F(j)=h({j, n}) for jen. Let A and B be disjoint uncountable
subsets of Z(F) and redefine Z(F) = B. It now suffices to show that for every
f:n— h"[w] and a € h"[w] there is &(f, @) € ®, such that:

(4.49) K ocA\E(f, a), then |X(f)2] =N, where X(f)2={6 € X(f):P({0, 6})
= x}.

If this is the case, then we simply choose i(n) e AN\KE(f, @):f :n— h"[w]? and
@ € h"fo]’} and define X(f) = X(f | n)i{) for f:(n + Dh"[w]

But clearly if (4.4) fails for some f and a, then there is Ae[A]" and
X e[X(f)I* such that P({p, u})=a for peA and peX and M>p. This
contradicts the fact that P witnesses @, [@,; @,]%,. This is similar to Theorem
1.1 from [1].

Since certain colourings automatically have the strong embedding property
(4.3) it is reasonable to ask if there is a simple class of graphs which will have the
weaker property (0.1). In light of the fact that the construction in Section 1 was
motivated by Todortevi€’s proof that @, -p [w,]Z, it might be.conjectured that any
colouring which witnesses that @, [0, ]}, will satisfy (0.1). It is easy to see that
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this is not the case but Baumgartner wondered whether such a colouring might
not be obtained by identifying scme of the colours. The weakest possible result in
this direction one could hope for would be

(4.5) If P:[@,’— @, witnesses that w,-p [@,]%,, then there is a partition of @,
o, =A%UA", such that the induced colouring P*[w,]’*—2 defined by
P*(B)=i if and only if P(B)e A’ satisfies the following property: if
X e[@,]* and A:[nJ?->2, then there is i:n— X, one-to-one such that
P*(i"B) = h(B) for B € [n}.

This is not a theorem of ZFC however, because of the following forcing
construction. Define an order on graphs according to the following definition.

(4.6) (V, E)<(V', E’) if and only if there is a function f:V'— V which takes
one set of vertices onto the other zad such that if f(x)#f(y), then
(x, y) € E' if and only if {f(x), f(¥)} € E.

Now if # is an initital segment of the class of graphs with more than one vertex
with respect to this ordering, let P(#) be the partial order consisting of functions
f:[XP— w,, where X € [@,]=* such that

4.7 f({« B}) <max{a, B} € [XT;
(4.8) if f[XP=A°UA' is a partition, then no induced subgraph of
(X, {{a, B} €[XP*:f({a, B}) € A"}) belongs to S.

The generic colouring, Pg, has the property that no partition of w; will yield a
graph which contains any member of $ as an induced subgraph. However, if
h:[n’— w, is a colouring whose range can not be partitioned so that the
resulting graph is in $ and 1F“Ze[w,]*”, then 1 “there is i:n—>Z,
one-to-one, such that P;(i"A) = h(A) for A € [n]*.

To see this suppose not and let {f; :[X;— w,; e @,} and {z:E€w,} be
such that z; € X; and f; I+ “z; € Z”. The usual A-system argument allows us to
find {C(l'):ien} such that maXh’[ﬂF(min{Z&-(i):iEﬂ} and U&(i)r Z;(;)) is
isomorphic to (fgg), zz) for i, jen. Let f =\ {fgy:i en}. Then fis a partial
function from [U{X¢eq):i € n}) to ;.

Now suppose that neither a nor B belong to the root of the A-system and
& EX;(,-) and ﬂ EXEU) where i?‘:f. Let I:Xg(.-)"'l‘) Xg(,‘) be the natural isomorph—
ism. If I(a) # B, then define f({a, B}) =fz;({I(a), B}). If I(«) = B, then define
f({e, B}) =h({i, j}). 1t is straightforward to check that f is a condition and hence
we have a contradiction.

As an immediate corollary we can let # be the initial segment consisting of the
5-cycle (it is easy to see that this is an initial segment). Then P(#) yields a graph
witnessing @, [@,]3, but which is a counterexample to (4.5) and this is
witnessed by h being the 5-cycle.
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S. An application

In this section an application of preceding results to the theory of Banach
spaces will be discussed. It will be shown that there is a non-separable Banach
space with the property that every operator from the space to itself is the sum of a
diagonalizable operator and one with separable range. An operator T is
diagonalizable if and only if there is a basis for the Banach space {b, : @ € A} such
that T'(b,) = v,b, for every a.

To construct the Banach space let P:[o,]’— o, satisfy (2.4) (it will soon
become apparent that a much weaker hypothesis is sufficient but since (2.4) is
already available to us we will use it instead of introducing a new hypothesis).
Now notice that if X is any set and of < [X]<* is closed under subsets, then it is
possible to define a norm on *R by

i =sup{ 3 @) A e ot}

where *R is a vector space under the pointwise operations. It is now possible to
define a Banach space [(X, o) = {f e *R; |If|| <=} with this norm. Let &:X—
R be defined by @(a)=1 and &(B)=0 if f+ a. Then {&:a € X} is a basis for
L(X, sf) provided that | Jof = X. Let this subspace be denoted I{(X, ). The
routine verifications are left to the reader who should also notice that if
X=VUW, then

X, )=V, ANV @ L (W, £ N[W]™).

Returning to the problem at hand, it will be shown that the Banach space
I{ (@, &) has the desired property where ¥ = {A € [@,]<°: P"[A]=0}. To see
this suppose that T:/{(@,, ¥)— I} (@,, ¥) is a linear mapping which can not be
decomposed as T = T, + T, where T, has separable range and 7, is diagonalizable.
If there is some @€ o, such that T(B)=V(B) D yB for every B> a where
V(B) eli(a, ¥N[a]™), ther we have the desired decomposition. Hence it can
be supposed that for every a there is f(a)>a and y(a)>a such that
v(a)#p(a) and T(B(a))(y(«))#0. Choose £>0 and X e[w,]* such that
IT@@)(¥(2)|>¢c for aeX and such that if {n, }e[X], then
TBmMXr (&) =0.

It will be shown that || T|| > M for any integer M. To see this choose k € @ such
that k> M/e. Using (2.4) find {a;:ick} such that P({f(a), B(a;)})=1 and
P({y(a), y(a)}) =0 if {i,j} e[k]>. From the definition of ¥ it follows that
| Zicx B(a)ll = 1. However,

“T(z ﬁ(“f))" =13 v(@)|= e>M.

ick iek iek

Hence T is unbounded. A similar example using > was found in [4]. The
example can be modified to obtain the even stronger assertion that every
bounded operator is the sum of a multiple of the identity and an operator with
separable range. This will appear elsewhere.
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