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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 62, Number 3, Sept. 1997 

PEANO ARITHMETIC MAY NOT BE INTERPRETABLE 
IN THE MONADIC THEORY OF LINEAR ORDERS 

SHMUEL LIFSCHES AND SAHARON SHELAH 

Abstract. Gurevich and Shelah have shown that Peano Arithmetic cannot be interpreted in the monadic 
second-order theory of short chains (hence, in the monadic second-order theory of the real line). We will 
show'here that it is consistent that the monadic second-order theory of no chain interprets Peano Arithmetic. 

§0. Introduction. A reduction of a theory T to a theory T* is an algorithm, 
associating a sentence cp* in the language of T*, to each sentence y> in the language 
of T, in such a way that: T h ip if and only if T* \- ip*. 

Although reduction is a powerful method of proving undecidability results, it 
lacks in establishing any semantic relation between theories. 

A (semantic) interpretation of a theory T in a theory 7" is a special case of 
reduction in which models of T are defined inside models of T'. 

It is known (via reduction) that the monadic theory of order and the monadic 
theory of the real line are at least as complicated as Peano Arithmetic, (In [10] this 
was proven from ZFC + MA and in [6] from ZFC), and even as second order logic 
([7], [11] for the monadic theory of order). Moreover, second order logic was shown 
to be interpretable in the monadic theory of order ([8]) but this was done by using a 
weaker, non-standard form of interpretation: into a Boolean valued model. Using 
standard interpretation ([4]) it was shown that it is consistent that the second-order 
theory of coi is interpretable in the monadic theory of a>2 (hence in the monadic 
theory of well orders). 

On the other hand, by [5], Peano Arithmetic is not interpretable in the monadic 
theory of short chains, and in particular in the monadic theory of the real line. 

More details and historical background can be found in [5]). 
The previous results leave a gap concerning the question whether it is provable 

from ZFC that Peano Arithmetic is interpretable in the monadic theory of order. 
In this paper we fill the gap and show that the previous results are the best possible, 
by proving: 

THEOREM. There is a forcing notion P such that in Vp, Peano Arithmetic (in fact 
a weaker theory) is not interpretable in the monadic second-order theory of chains. 
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PEANO ARITHMETIC MAY NOT BE INTERPRETABLE IN THE MONADIC THEORY ... 849 

From another point of view the theorem may be construed as presenting the 
strength of the interpretation method by showing that although Peano Arithmetic 
is recursive in the monadic theory of order, it is not interpretable in it. 

The proof uses definitions and techniques from [10] and [5] but although we 
omitted some proofs we tried to make this paper as self contained as possible. We 
start by defining in § 1 the notion of interpretation. Although this notion is not 
uniform in the literature, our notion of interpretation seems to follow from every 
reasonable definition. In §2 we define partial theories and present the relevant 
results about them from [10]. The theory T that is not interpretable in the monadic 
theory of order is presented in §3. We start by showing that if there is a chain C that 
interprets T, then the interpretation 'concentrates' on an initial segment D C C 
called a major segment. 

The main idea in the proof is that of shuffling subsets X,YCC: Given a partition 
of C, (Sj : j 6 J) and a subset a c J, the shuffling of X and Y with respect to 
/ and a is the set: \Jj€a{X n Sj) U \JJga(Y n Sj). We show in §4 and §5 that 
under suitable conditions (in particular, if a is what we call a 'semi-club'), partial 
theories are preserved under shufflings. We use a simple class forcing P, defined in 
§5, to obtain a universe Vp in which generic semi-clubs are added to every suitable 
partition. 

The contradiction to the assumption that an interpretation exists in Vp can be 
roughly described as follows: Assuming a chain C interprets T we choose a large 
enough number of subsets of C that represent pairwise different elements in a model 
of T. After some manipulations we are left with 3 ordered pairs of subsets of C and 
shuffle each pair (U, V) with respect to a generic semi-club a, added by the forcing. 
This results in a new subset which is equivalent to (i.e., represents the same element 
as) U. Here we use the preservation of partial theories under shufflings. However, 
a condition p e P that forces this, determines only a bounded subset of a, and 
it is shown that one could have gotten the same results by shuffling the pairs with 
respect to the complement of a. Thus for each pair U,V,p forces that the result 
of the 'inverse' shuffling is also equivalent to U. We conclude by showing that one 
of the shufflings is equivalent to V as well, and get a contradiction since U and V 
were not equivalent. 

We would like to thank the referee for a careful reading of the paper and for 
suggesting many improvements to the representation. 

§1. The notion of interpretation. The notion of semantic interpretation of a the­
ory T in a theory T' is not uniform. Usually it means that models of T are defined 
inside models of T' but the definitions vary with context. The idea of our definition 
is that in some model of T' one can define (with parameters) a model of T. Alter­
native definitions could demand that every model of T is interpretable in a model 
of T' (As in [2]), or that in every model of T' there is a definable model of T (see 
[12]). 

Our aim is to show that in no chain C there is a model of Peano Arithmetic that 
is definable by monadic formulas with parameters. 

DEFINITION 1.1. Let a be a signature {P\,Pi, • • •) where each P, is a predicate 
symbol of some arity rit in the language S? = S£(p). An interpretation of a in an 
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850 SHMUEL LIFSCHES AND SAHARON SHELAH 

^'- theory 7" is a sequence J — {Jl', d, U(x\,a), E(x\,X2,a), y/Px{x\,.. .xn,a), 
y/P2(xi,...xr2,a),...) where: 

(a) Jl is a T'-model; 
(b) d is a positive integer (the dimension of the interpretation); 
(c) U(x\,a) and E{x\,X2,a) are ^'-formulas (the universe and the equality 

formulas); 
(d) each y/Pl{x\,.. .xn,a) is an_Sf'-formula (the interpretation of Pj); 
(e) x\, X2 • • • are disjoint J-tuples of distinct variables of S?'; 
(f) a is a finite sequence of elements of Jl (the parameters of the interpretation). 

DEFINITION 1.2. Let a and J2" be as in 1.1. Fix a function that associates each S? 
variable x with a a*-tuple x' of distinct J? ' variables in such a way that if x and j 
are different ^-variables then the tuples x' and y' are disjoint. 

We define by induction the J'-translation ip' of an arbitrary J?-formula <p: 
(a)(x=y)' = E(x>,y>,a). 
(b) If P is a predicate symbol of arity r in L, then P(x\ ... xr)' = y/p{x[... x'r, a). 
(c) (-.<?)' = -.(<?') and (( î A <p2)' = (<?! A ̂ ) . 
(d) (Vjc)y>(x)' = (VJc')[£/(jc',a) -> p ' (x ' ,a) ] and(3jc)p(jc)' = (3jc')[t/(x',«)A 

(Of course the variables x', y',x\,... are not bound in the interpreting formulas). 

DEFINITION 1.3. Let T and T' be first-order theories such that the signature of T 
consists of predicate symbols. Let S be an interpretation of the signature of 7 in 
7 ' and let U(x,a) be the universe formula of S. 

JF is an interpretation of 7 in 7 ' if: 
{*)JF \= (Bx')U(x') and 
(b) the J* translation of every closed theorem of 7 is satisfied in Jl. 
7 is interpretable in 7 ' if there is an interpretation of 7 in 7 ' . 

REMARK. The definitions are easily generalized to the case that a{T) consists 
also of function symbols, see [5], 

Being an S translation of the formula x = y, the equality formula E{x', y', a) 
defines an equivalence relation between a"-tuples of the interpreting model M'. 

DEFINITION 1.4. Let ~ be an equivalence relation on a nonempty set A, and let 
R be a relation of some arity r on A. We say that ~ respects R if for all elements 
a\,... ,ar, b\,... ,br of A, 

[R(a\,... ,ar) &(a\ ~ b\) & • •• & (ar ~ br)] implies R(b\,... ,br). 

DEFINITION 1.5. Let a, Jl and S be as in Definition 1.1. 
(a) U^ := {b : b is a d-tuple of elements of Jl and Jl |= U(b, a)}; 
(b) E^ := {{b, c): b,c e C / ^ and Jl |= E(b, c, a)}; 

(c) Pj :={(bi,... ,bri) : each Z>,- belongs to U^ and Jl (= yPi(b\,... ,bn,a)}, 
for every predicate symbol P, of arity r, in a. 

FACT 1.6. L e t ^ = {Jl, d, U(x\,a), E{x\,xi,a), i//Pl(x\,... ,xr,a),...) bean 
interpretation of a first-order theory 7 in a first-order theory 7". Then 
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(1) The equivalence relation ~ on U^ defined by b ~ c <=> (b,c) € £ 
respects each formula y/Pi(x\,... ,xn,a). 

(2) ( t / j r / ~ ; Pf,...) is a model of T. 

PROOF. Clear. H 

Although our notion of interpretation is not transitive the following clearly holds 
for any first-order theories, T\, T2 and Ty. 

FACT 1.7. Suppose that for each model J? |= T2 there is an interpretation 
<f{Jl) = (j?, 1, U(x), E(x,y), y/P(x)...) of T\ in T2 (without parameters). 
Then if Tj interprets T2, T3 interprets T\. 

The next aim is to define an interpretation of a first-order theory T, in the monadic 
version of a first-order theory T'. This is done by associating a model of T to a 
model of the monadic version of T'. Rather than giving the general definitions we 
will restrict ourselves to the case that interests us - the monadic theory of linear 
orders. 

DEFINITION 1.8. Let (C, <) be a chain (i.e., a model of the first-order theory of 
linear orders). The monadic second-order theory ofC is the first-order theory of the 
model 

c m o n = (c?(C); c, <*, EM, SING) 

where ^ ( C ) is the power set of C, < and C are binary relations, SING and EM 
are unary relations and: 

(i) c m o n |= SING(A') iff X is a singleton, 
(ii) Cmon \=X<* YiffX = {x}, Y = {y} (where x,y £ C) and C |= x < y, 

(iii) Cmon (=EM(Ar)iffA' = 0, 
(iv) C is interpreted as the usual inclusion relation between subsets of C. 

DEFINITION 1.9. A first-order theory T is interpreted in the monadic theory of lin­
ear orders iff'there is a chain C and an interpretation S = (Cm o n, d, U(x\,a), E{x\, 
x2, a)...) of T in the first-order theory Th(Cmon). 

DISCUSSION 1.10. The monadic version ^ m o n of a first-order language S? is usu­
ally described as enriching 2" by adding a new set of variables for sets of elements, 
atomic formulas of the form "x € Y" and the quantifiers (3Y) and (\/Y) ranging 
over subsets. There is a natural correspondence between monadic formulas (for­
mulas in {<}mon) and first-order formulas in the language {C, <*, EM, SING} 
and a natural identification between the theory of a chain (C, <) in {<}m o n and the 
first-order theory of Cmon. 

We will think of an interpretation of a first-order theory T in the monadic theory 
of linear orders as a sequence ((C, <), d, U{X\, A), E(X\, X2, A) ...) where E, U 
and the y/p's are monadic formulas with monadic parameters A e l g ^ ' ^ ( C ) . 

Abusing the notations we will often write C \= X C Y and C |= x e Y instead 
of Cmon |= X C Y and Cmon |= (SING(X) AX CY). 

§2. Partial theories. In this section we will define 3 kinds of partial theories 
following [10]: Th" (Definition 2.2) which is the theory of formulas with monadic 
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quantifier depth n, ATh" (Definition 2.10) which is the «-theory of segments 
(and by Lemma 2.9 'many' segments have the same theory), and WTh" which 
gives information about stationary subsets of the chain. The last two theories are 
naturally defined for well ordered chains only but will be modified later to apply to 
general chains as well. 

The main result of this section states roughly that for every n there is an m such 
that WThm and AThm determine Th" (Theorem 2.15). 

CONVENTION 2.1. The monadic second-order theory of a chain C is the first-
order theory of Cmon as described in Definition 1.8. We denote by L(mon) the 
(first-order) language of Cmon. 

SC is the monadic second-order version of the first-order language of an order 
relation {<} (described in 1.10). 

NOTATION. We denote individual variables by x, y, z and set variables by X, Y, Z. 
a, b, c are elements and A, B, C are sets, a and A denote finite sequences having 
lengths lg(a) and lg(^4). We will write a e C and A C C instead of a e lg(,3)C or 
AG 's(A^(C) 

The first definition is that of the partial monadic theory of a chain C: 

DEFINITION 2.2. Let (C, <) be a chain and I C C. We define 

t = Th"(C;A) 

by induction on«: 

for n = 0: t = {tp(X) : cp e L(mon), <p quantifier free, Cmon (= cp(A)} 

forn = m + l: ( = { T h m ( C ; I A 5 ) : B C C } . 

LEMMA 2.3. (A) For every formula y/{X) € % there is an n such that from 
Th" (C; A) we can decide effectively whether C \= y/(A). We call the minimal such n 
the depth ofy/ and write dp(^) = n. 

(B) For every n and I there is a finite set of monadic formulas {effectively computable 
from n and I) ^(nj) = {y/m{X) : m < m*, lg(Z) = £} C & such that for any 
chains C, D and A C C, B C D of length £ the following hold: 

(1) dp(^-m(Z) < nform < m*, 
(2) Th"(C;A) can be computed from {m < m* : C \= y/m[A]}, 
(3) Th"(C;A) = Th"(D;B) iffforanym <m*. C \= ip„[A] <=*• D |= y/m[B\ 

PROOF. In [10], Lemma 2.1. H 

DEFINITION 2.4. When ¥(«,£) is as in Lemma 2.3(B), for each chain C and 
i c e of length t we can identify Th"(C;A) with a subset of *¥(n,e). Denote 
by T„£ the collection of subsets of ^(n, £) and call it the set of formally possible 
(n,£)-theories. 

LEMMA 2.5. For given n,£ £ N, each Thn(C;A) is hereditarily finite, (where 
\g(A) — £, C is a chain), and we can effectively compute the set of formally possible 
theories Tnjt. 

PROOF. In [10], Lemma 2.2. H 

Sh:471



PEANO ARITHMETIC MAY NOT BE INTERPRETABLE IN THE MONADIC THEORY ... 853 

DEFINITION 2.6. If (C, < c ) and (£>, </>) are chains then (C + D, <) is the chain 
that is obtained by adding a copy of D after C (where < is naturally defined). 

If (J, <) is a chain and ((C,, <,) : i e / ) is a sequence of chains then ^ , e / ( C , , <,) 
is the chain that is the concatenation of the C,'s along / equipped with the obvious 
order. 

Next is the heavily used composition theorem for chains that states that the partial 
theory of a chain is determined by the partial theories of its convex parts. 

Given A = {A$,... , At-\) and B = {Bo,... , 5^-i) we denote by A U B the 
sequence {Ao U BQ, ... ,At_\ U i?^_i). 

THEOREM 2.7 (Composition theorem for chains). (1) If C, C, D and D' are 
chains, ACC,A'CC',BC.D and B' C D' are of the same length then if 

Thm(C;A)=Thm(C';A') 

and 

Thm (D;B) = T h m (D';B') 

then 

Thm(C + D;AU B) = T h m ( C + D';A' U B'). 

(2) / / / is a chain and Thm(C,;i"') = Thm{Di;B
i) for each i G / {with all 

sequences of subsets having the same length) then 

Thm ( J2 Q; |J A') = Thm ( J2 As (J *') • 
;'€/ i iel i 

PROOF. By [ 10] Theorem 2.4 (where a more general theorem is proved), or directly 
by induction on m. H 

Using the composition theorem we can define a formal operation of addition of 
partial theories. 

NOTATION 2.8. (1) When tut2,h £ Tm,i for some m,l e N, then t\ + t2 = h 
means: there are chains C and D such that 

tx=Jhm{C;A0,...,Ai^)> 

t2 = Thm{D;B0,...,Be-]), 

ti=7hm{C +D;AUB). 

(By the composition theorem, the choice of C and D is immaterial.) 
(2) E , e / T h m ( C , ; i ' ) is Thm ( £ , . e / C , ; U , e , ^ ) , (assuming lgU") = l g ( ^ ) 

for ijGl). 
(3) If D is a sub-chain of C and A C C then Thm(£>; (A0 n D, A{ n D,...)) is 

abbreviated by Thm{D; A) 
(4) For C a chain, a < b € C and P C C we denote by Th"(C;P) \ M the 

theoryTh"([a,fc);Pn[a,Z>)). 
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We will define now the partial theories ATh" and WTh". The following definitions 
and results apply to well ordered chains (i.e., ordinals); we will modify them later. 

For a an ordinal with cf (a) > co, let Da denote the filter generated by the closed 
unbounded subsets of a. 

The next lemma states that in a well ordered chain of uncountable cofmality, 
many convex segments have the same monadic theory. 

LEMMA 2.9. If the cofinality of a is > co, then for every A C a there is a closed 
unbounded subset J of a such that: for each fi < a, all the models 

{(<*'> A)\[/),r) -y £J> cf(r) = c o , y > p } 
have the same monadic theory. 

PROOF. In [10] Lemma 4.1. H 

DEFINITION2.10. Wheny?< aandcf(a;) > co, ATh"(/?, (a; A))isTh"(a;A)\[M) 
for some (equivalently every) y e J ,y > fi, cf(y) = co; 

Here J is from Lemma 2.9. 

REMARK. AS Da is a filter, the definition does not depend on the choice of / . 

DEFINITION 2.11. For a e C and A C C let 

th(a; A) = {"x e X" : a e A/} U {"x ^ X" : a g At}. 

So it is a finite set of formulas. 

DEFINITION 2.12. We define WTh"(a; A) for an ordinal a and A C a: 
(1) if a is a successor or has cofinality co, it is 0; 
(2) otherwise WTh"{a; A) is defined by induction on n: 
for n = 0: WTh°(a;A) = {t : {ft < a : th(/?;i) = t} is a stationary subset of 

a}; 
for n + 1: WTh"+l(a;A) = {(Sf{B),S$(B)) :BQa}. 

Where: 
S^{B)=WYh"{a;AAB), 
S*{B) = {(t,s) :{p<a: W T h " ( a ; i A 5 ) \p= t, th{p;AAB) = s} is station­

ary in a } . 

REMARK. Clearly, if we replace (a; A) by a sub-model whose universe is a club 
subset of a, WTh" (a; A) will not change. 

DEFINITION 2.13. Let cf (a) > co and A C a with lg{A) = I. We define a sequence 
g"(a;A) = g"(A) of subsets of a: 

for s G Tn/ let g"{A)s := {yS < a : * = ATh"(y9, {a; A))} and 

g"(A):=(...,g"(A)s,...)seTnt. 

LEMMA 2.14. (A) g"(a;A) is a partition of a. 
(B) g"(a; A AB) is a refinement of g"(a; A) and we can effectively correlate the 

parts. 
(C) gn+i(a;A) is a refinement of g"(a;A) and we can effectively correlate the 

parts. 
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PROOF. Easy. H 

The next theorem shows that the partial theory of a chain can be computed from 
the theories ATh and WTh and is the main tool for showing that monadic theories 
are preserved under shufflings of subsets. 

THEOREM 2.15. If cf(a-) > co then for each n,£ e N there is an m = m(n,£), 
effectively computable from n and£, such that if A C C and lg(A) = £ and if 

h = WITT (a;gm(a;A)), t2 = AThm (0, (a; A)) 

then we can effectively compute Th"(a; A) from {t\, t2). 

PROOF. By [10], Theorem 4.4. H 

NOTATION 2.16. We will denote (tut2) from Theorem 2.15 by WAm(a; A). 

§3. Major segments. Rather than working with Peano arithmetic we define a 
first order theory T such that any chain that interprets Peano arithmetic interprets 
T. Then, assuming a chain C interprets T we show that the interpretation 'con­
centrates' on a special initial (or final) segment D C C, called a minimal major 
segment. 

DEFINITION 3.1. Let T be a first order theory with a signature consisting of one 
binary predicate p. The axioms of T are as follows: 

(a) \/x3yVz[p(z, y) <-> z — x] 
(b) Vx V>3wVz[/?(z, u) <-> (p{z,x)V p(z,y))] 
(c)3xVy[-np(y,x)]. 

Intuitively (a) means that for every set x there exists the set {x}, (b) means that 
for every set x, y there exists the set x U y and (c) means that the empty set (or an 
atom) exists. 

DISCUSSION 3.2. By Remark 1.7 it is enough to show that there is no interpretation 
of T in the monadic theory of order since in every model of Peano arithmetic we can 
interpret T letting U{x) :—"x — x", E(x, y) :—"x — y" and (choosing our favorite 
way of coding finite sets) y/p(x, y) :="y codes a finite set to which x belongs". 

For the remaining of the section we will assume that C is a chain, Q C C and 

S = (C, d,U(Xl,Q),E(XuX2,Q),P(Xl,X2,Q)) 

is an interpretation of T in the monadic theory of chains. 
We may assume by increasing d and adding dummy variables that lg((?) = d. 

We also assume (by modifying E) that the interpretation is universal i.e., C f= 
(VX)U(X,Q). 

Therefore the interpretation defines a model of T: 

J( = (&>(C)d/E, P) 

CONVENTION. We will refer to (J-tuples of) subsets of C as 'elements'. If not 
otherwise mentioned, all the sequences appearing in the formulas have length d (= 
the dimension of the interpretation). 
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We will say that A is equivalent to B and write A ~ B when C \= E(A,B,Q). 

DEFINITION 3.3. (1) A sub-chain D c C is a segment if it is convex (i.e., x < y < 
z &x,z € D => y £ D). 

(2) Let A,B C C. We will say that A, B coincide on [resp. outside] a segment 
D C Cif ADD = BDD [resp. An{C\D) = Bn{C\D)]. 

(3) The bouquet size of a segment D C C is the supremum of cardinals \S\ where 
S ranges over collections of non-equivalent elements coinciding outside D. 

(4) A Dedekind cut of C is a pair (L, R) where L is an initial segment of C, R is 
a final segment of C and LC\R = $, LuR = C. 

Our next step is to show that the bouquet sizes of initial segments are either 
infinite or uniformly bounded. 

LEMMA 3.4. There are monadic formulas 6\ (X, Z, Q), and 92{X, Y, Z, Q) such 
that: 

(1) For every finite, nonempty collection S of elements, there is an element P such 
that for an arbitrary element A, C |= 6\ {A, P, Q) if and only if there is an element 
B e S such thatB ~ A. 

(2) For every finite, nonempty collection S of pairs of elements, there is an element 
P such that for an arbitrary pair of elements {A\,A2), C \= 0i{A\,A2, P, Q) if and 
only if there is a pair {B\,Bi) £ S such that B\ ~ A\ and Bi ~ Aj_. 

PROOF. Easy. H 

PROPOSITION 3.5. Let 92{X, Y,Z,Q) be from Lemma 3.4 and dp(6>2) = m, let 
Ni = \Tm,\d\-

Then, for every Dedekind cut (L, R) of C, either the bouquet size of L is at most 
N\ or the bouquet size ofR is at most N\. 

PROOF. (By [5] Theorem 6.1). Assume that neither L nor R have bouquet size < 
N\. Fix non-equivalent elements A0,... , A^l that coincide on R, and Bo, • • • , BN] 

that coincide on L. 
By Lemma 3.4(2) there is an element P that codes {A0, Bo),... , (AN], BN]). 
By the definition of N\ there are i < j < N\ such that 

Thm(R; A,, B,, P, Q) = Thm(R; Ah Bh P, Q). 

By the composition Theorem 2.7 

Thm(C; AhBhP, Q) = Thm(Z,; AuBhP, Q) + Thm(R;AhBhP, Q) 

= Thm(L; A,, Bu P, Q) + Thm(R; Ah Bh P, Q) 

= Th"7(R; A,, Bu P, Q) + Th"'(R; A,, B,, P, Q) 

= Thm(C;AhBi,P,Q). 

Here the second equality holds since Bj nL = B, n L and A,• n R = A,- n R, and 
the third holds by the choice of i < j . 

As dp(02) = m and C \= Q1{Ai, Bh P, Q) we have C \= 62(Ah Bh P, Q). By the 
properties of 92 and P, At ~ A^ and Bj ~ Bk for some k <N\. 

Sh:471



PEANO ARITHMETIC MAY NOT BE INTERPRETABLE IN THE MONADIC THEORY .. . 857 

As we started with sequences of non-equivalent elements, i = k and j = k. 
Hence /' = j which is a contradiction. H 

DEFINITION 3.6. A segment D C C is called minor if its bouquet size is at most 
N\. A segment D C C is called major if its bouquet size is infinite. 

The following is Lemma 8.1 in [5]. Note that the first part is trivial as T has only 
infinite models. 

CONCLUSION 3.7. C is major and for every Dedekind cut (L, R) of C either L is 
minor and R is major, or vice versa. H 

DEFINITION 3.8. An initial [final] segment D is called a minimal major segment if 
D is major and for every proper initial [final] segment D' c D, D' is minor. 

LEMMA 3.9. There is a chain C* that interprets T and an initial segment D C C* 
{possibly D = C*) such that D is a minimal major segment. 

PROOF. (By [5] Lemma 8.2). Let L be the union of all the minor initial segments 
(note that if L is minor and L' C L then L' is minor as well). If L is major then set 
L = D, C* = C and we are done. 

Otherwise, let D — C \ L, and by Conclusion 3.7 D is major. If there is a proper 
final segment D' c D which is major then C \ D' is minor. But, (C \ D') D L, and 
this is impossible by maximality of L. 

Therefore D is a minimal major (final) segment. Now take C* to be the inverse 
chain of C. By virtue of symmetry C* interprets T and D is a minimal major initial 
segment of C*. H 

NOTATION. By the previous lemma we may assume that C has a minimal major 
initial segment. Let D denote this segment. 

DISCUSSION. Being the shortest initial segment such that there are at least JVi + 1 
non-equivalent elements coinciding outside it, D is definable in C. What about 
cf(D)? 

It's easy to see that D does not have a last point. On the other hand, it was proven 
in [5] that T is not interpretable in the monadic theory of short chains (where a 
chain C is short if every well ordered sub-chain of C or of the inverse chain C1NV 

is countable). 
However, we don't need to assume that the interpreting chain is short in order to 

apply [5]'s argument. All we have to assume to get a contradiction is that cf (D) — co 
(which is of course the only possible case when C is short). So if C interprets T and 
cf(D) = co, we can repeat the argument from [5] to get a contradiction. Therefore, 
we can conclude: 

PROPOSITION 3.10. cf(D) > co. H 

DISCUSSION (continued). Now, fix some R C (C \ D) witnessing the fact that D 
is major i.e., such that 

S :={AC C :An{C\D) = R} 

contains an infinite set of pairwise non-equivalent elements. Belonging to S is of 
course definable in C (using an additional parameter R). 
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Choose a finite set of pairwise non-equivalent elements sf = {Ac... , Ak-\} C 
S. Using the formula 0\ from Lemma 3.4, for each sub-collection sft C si there 
is an element Bt that codes the elements of si i. Let 38 = {Bo,... , 2?2<r_i} be a 
collection of such elements (they are of course pairwise non-equivalent). Repeating 
this another time we get a collection of "hypersets" % — {EQ,... ,E22k_l} of 

elements coding subsets of 38, let E* code W. 
Clearly the following are expressible (by monadic formulas with E* as a param­

eter): 
(a) "X is equivalent to a member of si" (:= Atom(X)). 
(b) " Y is equivalent to a member of 38" (:= Set( ?)) . 
(c) "X is equivalent to a member A/ of si and Y is equivalent to a member of 38 

that codes a sub-collection to which A, belongs" (:= Code(X, Y)). 
(d) HSet(Z) (meaning Z is a hyperset). 
(e) HCode( Y, Z) (meaning the set Y is a member of the hyperset Z). 
Moreover, the depths of 'Atom', 'Set', 'Code' 'HSet' and 'HCode' are a function 

of the depth of 8\ and d hence they are independent oik = \si\. 

NOTATION 3.11. Let Tk be the first-order theory of the model 

{Ao,.. • ,Ak-i,Bo,... ,B2k-\,Ef),... ,E22k_x; Atom, Set, Code, HSet, HCode}. 

DISCUSSION (continued). Clearly Tk is interpretable in C. Moreover, as for some 
n G N the depths of the interpreting formulas are < n regardless of the choice of k, 
and as there are only finitely many formulas (with a pre-fixed number of variables) 
with such depth we can conclude: 

(*) There is an increasing and unbounded sequence of natural numbers (kj : j < co), 
formulas U'{X, W, Q), E'{X, Y, W, Q), Atom(Z, W, Q), Set(X, W, Q), Code(X, 
Y, W, Q), HSet(Z, W, Q), and HCode( Y, Z, W, Q) and a sequence of parameters 
(B* : j < co) such that for every j < co 

(C, d, U'(X, B*, Q),E'[X, Y, Bj, Q),Mom{X, B*, Q), Se t ( l , B), Q)...) 

is an interpretation ofTk in the monadic theory of chains. 

The next step is to show that Tk, for unboundedly many k's, is interpretable even 
in the minimal major initial segment D. 

Choose some kj and a parameter B* as in (*). Look at the formula Atom(X, Bj, 

Q) and assume dp(Atom) = n. Let A e S. By the composition theorem 

t:=Th"(C;A,B*,Q) 

= Th" (£>; A, B*,Q)+Thn{C\D; A, B*,Q) 

= Th"(D;A,B*,Q)+Th"(C\D;R,B*,Q). 

Where the second equality holds by A n C \ D = R. 
Now R and Q n (C \ D) are fixed therefore Th"(C \ D; R, Bj, Q) is constant for 

unboundedly many j < co. Call this theory t*. 
To determine if C |= Atom(4, Bj, Q) one needs to ask if Th"(£>; A, Bj, Q) is 

suchthatTh"(D;/l, Bj,Q) + t* = t. For unboundedly many kj's a positive answer 
to the second question implies a positive answer to the first one. 
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The same holds for the other formulas in the interpretation and as we have only 
7 of them we can interpret 7^; in D, for unboundedly many k,'s. This is done using 
B* n D and Q n D as parameters and in fact for different fc/s the interpretations 
differ only in the first set of parameters. 

Note also that for every proper initial segment D' c D the bouquet size of D' 
(with respect to the interpretation of 7\ in D) is at most N\. This is because, putting 
it roughly, being an element with respect to the interpretation of 7\ is stronger than 
being an element with respect to the interpretation of T. Therefore (for k> N\) D 
is the minimal non-minor initial segment in D. 

Summing up, we have proved: 

THEOREM 3.12. If there is an interpretation ofT in the monadic theory of a chain 
C then, there is a chain D such that cf (D) > co, and such that for unboundedly many 
k < co there is an interpretation ofTk in the monadic theory ofD. The interpretations 
do not "concentrate" on any proper initial segment of D [i.e., D itself is the minimal 
non-minor initial segment ofD). Furthermore, the interpretations differ only in the 
set of parameters and in particular there is ann < co which does not depend on k, such 
that all the interpreting formulas have depth < n. 

§4. Preservation of theories under shufflings. We will define here shufflings of sub-
chains and show that the partial theories denned in §2 are preserved under them. In 
fact what we really shuffle are sequences of partial theories, this is a key observation 
in passing from well ordered chains to general chains. We will elaborate on that 
later. 

CONVENTION. Unless otherwise said, all the chains mentioned in this section are 
well ordered (i.e., ordinals). Throughout this section, 3 will denote an ordinal, 
X > Ko a regular cardinal and usually X — cf (3). 

DEFINITION 4.1. (1) Let a C X. We say that a is a semi-club subset of X if for every 
a < X with cf (a) > co: 

(a) if a e a then there is a club subset of a, Ca such that Ca C a, and 
(b) if a 0 a then there is a club subset of a, Ca such that Ca n a = 0. 

Note that X 'and 0 are semi-clubs and that a club J C X is a semi-club provided that 
the first and the successor points of J are of cofinality < co. 

(2) Let X,YC3,J = {at : i < X} a club subset of 3, and let a C X be a semi-club 
of X. We will define the shuffling of X and Y with respect to a and J, denoted by 
[X,Y}J

a,as: 

[X, Y]J
a =\Jieu (Xn[ahal+l)) U U,*a (Y n[ahai+l)). 

(3) When J is fixed (which is usually the case), we will denote the shuffling of X 
and Y with respect to a and J, by [X, Y]a. 

(4) When X,Y C3 are of the same length, we define [X, Y]a naturally. 
(5) We can define shufflings naturally when J C 3 is a club, and a C otp(J) is a 

semi-club. 

NOTATION 4.2. (1) Let Pt c 3 and / c 3 a club subset of 3 witnessing ATh((5, P,) 
as in Lemma 2.9. For n < co, and fi < y with y e J, cf(y) = co, we denote 
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Th"(<S; Pi) \[M= ATh" (/?, (8; P,)) by s"p (p). (Of course, this does not depend on 

the choice of / and y.) 
(2) When n is fixed and using the parameters Po, P\, we will just write so(fi) and 

5! Q8) instead of s^(fi) and a? (p). 

(3) Recall (2.13)°, g"(P0). is the set {P < 3 : *» (£) = * } . 

(4) Sg" is the set {y < 8 : cf (y) = co}. 

DEFINITION 4.3. Let P0, P\ C <S be of the same length and / c 8 be a club. We 
will say that / is n-suitablefor Po, P\ if the following hold: 

(a) / witnesses ATh(<5; Pe) for £ = 0,1, 
(b) / = {a, : i < X}, a0 = 0 and cf(a,-+i) = co, 
(c) for every theory s, J D g"(Pt)s n 5Q is either a stationary subset of 8 or is 

empty. 
When n > 1 and WA"(<5;Po) = WA"(<5;Pi) (see Notation 2.16) we require also 
that: 

(d) If cij G J, cf(ay) < co and ^ ( o / ) = s then there are fci,A:2 < co such that 
•** ("/+*,) = s> and 5i_i(av-+fc2) = s. 

REMARK 4.4. It is easy to see that for every finite sequence (Po, P\, • • • ,Pk) Q $ 
with equal lengths, there is a club J C 8 which is n -suitable for every pair of the 
Pi's. 

We will show now that ATh is preserved under 'suitable' shufflings. 

THEOREM 4.5. Suppose that Po,P\ C 8 are of the same length, n > 1 and 
WA"(c5;P0) = WA"(<3;Pi). (In particular, ATh"(0, (<S;P0)) = ATh"(0, (<5;P,)) := 

Let J C 8 be an n-suitable club for Po, Pi of order type X = cf (8) and a C X a 
semi-club. 

Then, ATh"(0,(<5;[P0,Pi^)) = t. 

PROOF. Denote X := [P0, P\]J
a. We will prove the following facts by induction 

on 0 < j < X: 

(*) For every i < j < X with cf (j) < co: 
i € a =>• Th" ([at,aj);X) = Thn ([an ,aj); P0) = s0(a,), 
i?a^ Thn([ahaj);X) = Th"([a , ,a , ) ;P,) - *,(a,). 

(**) For every i < j < X with cf (j) > co: 
i,j G a => Th"( [a , , a , ) ;* ) = Th"([a,-,ay);P0), 
i,7 £ A =• T h " ( [ a ; , a , ) ; l ) = T h ^ a ; ) ^ ) . 

In particular, by choosing i = 0 we get (remember ao = 0), Th"([0, aj);X) = t 
whenever cf(a;) = co. 

j = 1 (so i = 0): Let £ = 0 if i £ a and £ = 1 if i g a. S o i f l [0, a,) = 
Pe n [0,o;) and so Th"([0, a,-);Jf) = Th"([0,aj);Pe) = t 

i = k + 1 < co: There are 4 cases. Let us check for example the case / G a, 
k $ a. By the composition theorem and the induction hypothesis we have: 

Thn([ai,aj);X)=Thn([ai,ak);X)+Th',([ak,ak+]);X) 

= so(eti) + Th" ([ak, a j);P\) = *o(«/) + s\(ak). 
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So we have to prove so(«i) + si (ak) = Jo(<*;)• 
Since / is ^-suitable there is an m < co such that so(ctj+m) = s\ (a^) hence, 

Jo (a/) = Th"([a,-,a,-+m+i);P0) 

= Th"([a,, a,-+m); P0) + Th"([a,+m, a,-+m+i); P0) 

= s0(ai) + s0(ai+m) = so(ai) + s\ (ak). 

So so(aj) + s\ (a/t) = so(ai) as required. The other cases are proven similarly. 
/' — co: Suppose i < co, i e a. We have to prove that Th"([o;,, affl); X) = s$(i). 

Now either (A \ a) n co is unbounded or a n co is unbounded and suppose the first 
case holds. Let i < k < i\ •.. be a strictly increasing sequence in [X \ a) n co . By 
the induction hypothesis we have: 

Thn([aha0J);X)=Th.n([ai,ail);X) + £ Th"([aim,aim+l);X) 

0<m<co 

0<m<a> 

Now choose (using the suitability of J), a strictly increasing sequence /?,0 < /?,-, • • • C 
1 such that f5im = a/m+i for some j m < co, fiix > at and for every 0 < m < co, 
soifrj - *i ("/„)• We will get: 

s0(ai) = Thn([ahaai);P0) = Th"([a,-,#,);P0) + £ Th"([#m,/?,m+1);Po) 
0<m<co 

= s0{ai)+ ^2 so(frJ = so(<*i) + 5 Z •r^Q!'™)-
0<m<co 0<m<at 

So we have so(aj) = Th"([a,-, am); X) as required. When only the other case holds 
(i.e., only a n co is unbounded) the proof is easier. When i' ^ a we prove similarly 
thatTh"([a , ,a a ) ) ;^) = 5i(o/). 

cf(/) = co: Choose a sequence (in a or 1 \ a), i < z'o < i\ • • • with Supm im = j , 
im non limit, and continue as in the case j — co. 

cf(/) > co: Now we have to check (**). Suppose /, j £ a and we have to show 
Th"([a,, ay); X) = Th"([a,, a , ) ; P„). 

Let {/?,, : y < ci{j)} C a be a club subset of y n / with /?o = ' and with 
cf(/?,,+i) = co. By the induction hypothesis we have as required: 

Th"([a , - ,a / ) ;Z)= £ Th" ([/?„/?,+,) ;X) = £ ,„(/?,) 
7<cf(./) y<cf(./') 

= £ Th"([/?7>/fJf+1),P0)=Th"([aI-,a,-)>Po). 
y<cf(./) 

The case i, j £ a is similar. 
j = k + 2: Easy. 
i = k + l,cf(fc) = co: Easy. 
j = k + l,cf(fc) > co: There are 4 cases. We will check for example the case: 

i € a, k £ a. 
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Choose {iy : y < cf(fc)} C X\a a club offcnJ such that/ < /o,cf(a,0),cf(A,r+l) = 
co. Using (**) we get 

Th"{[ah,aj)\X)= Y, Th"(K'a 'V+>);^ + T h " (K, <*y);*) 
y<cf{k) 

= Y Th"(Kv,a,-+1);JP1) + Th"(K,a/);JP1) = . 1 K ) . 

y<cf(fc) 

Therefore Th"([a;, a ,) ; X) = ^ ( a , ) + î (<*,„), and all there is left is to show that 

So(a/) + si(«/o) = s0{aj). 
This follows from clause (d) in Definition 4.3: for some m < co we have 5! (a,0) = 
s0(ai+m) so so("i) + «i(a,b) = so(a>) + ^{ai+m) = s0{oij) as required. The other 
cases are similar. 

So we have gone through all the cases and proven (*) and (**). H 

CONCLUSION 4.6. Let P0, P\C3, WA"(3; P0) = WA"(3; Pi) and let / C 3 be an 
n-suitable club for PQ, P\. Assume that a C X is a semi-club that is generic enough 
i.e., that for £ e {0,1} if g"{Pe)s f~l SQ *s stationary then its intersection with a is 
stationary and co-stationary. Then: 

(1) J is an ^-suitable club subset for the pair P0, [PQ, P\]J
a (except that maybe k\ 

and k2 from clause (d) in Definition 4.3 are guaranteed only to be < 3). 
(2)[g"(Po),gn(Pi)YanJ = g"([P0,PiYa)nJ (so[g"(P0),g"(Pl)]iandgn([P0, 

Pi]J
a) have the same WTh"). 

PROOF. Use (*), (**) from the last theorem. H 

Our next aim is to show that WTh (hence, by 2.15 and 4.6(2), also Th) is preserved 
under shufflings. 

DEFINITION 4.7. Let a, P C X. We define a-WTh" (A; P) by induction on n: 
for n = 0: a-WTh°(A; P) = {t : th(X; (P, a)) is stationary in X} (see Def. 2.11) 

for n + 1: a-WTh"+1 (X; P) = {(S^a(Q),S^a(Q),S^a(Q)) : Q C X} Where: 

a-WThn(X;P,Q) 

Ut,s):{Pea:W[hn(X;P,Q) \fi= tA 
\th(/?; P, Q) = s} is stationary in X J 

Ut,s) :_{/? € X\a : WTh"(A;P,g) \„= t,) 
\th(/?; P, Q) = s} is stationary in X J ' 

REMARK 4.8. (0) Remember that if P C 3 and / C 3 is a club, then WTh"(<5; P n 
7) = WTh" (3; P). Moreover, if J C 3 club of order type X and h: J —> /I is the 
isomorphism between / and A, then for every PCS, WTh" (<5; P) = WTh" (X; h(Pn 
J)). 

(1) WTh"(A;P) tells us if certain sets are stationary. a-WTh"(A;P) tells us if their 
intersections with a and X \ a are stationary. 

(2) We could have defined a-WTh"(A; P) by WTh"(A; P, a), which gives us the 
same information. We preferred the original definition because it seems to be more 
friendly in proving the preservation under shufflings. 

SP
x'

a{Q) 

SP
2'

a(Q) 

SP,'a{Q) 
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FACT 4.9. (1) WTh"(A;P) is effectively computable from a-WTh"(A;P), so if 
P, g C A and a-WTh" (A; P) = a-WTh" (A; g ) then WTh"(A; P) = WTh"(A; g ) . 

(2) From a-WTh" (A; PDa) and a-WTh" (A; PD (A\a)) we can effectively compute 
a-WTh"(A;P). 

PROOF. (1) is trivial. We prove (2) by induction on n: 
n = 0: To compute a-WTh°(A; P) all we need to know is which Boolean com­

binations of the elements of P, a and A \ a are stationary. This clearly can be 
computed from a-WTh°(A; P (la) and a-WTh°(A; P n (A \ a)) because a subset of 
A is stationary if and only if it is either stationary on a or on A \ a. 

n + l. We need to compute the set of possibilities (Si'a(Q),S['a(Q),S[-a(Q)) 
for g C A. For S f ' ^ g ) all we need to know is g n a and for s / , a (g) all we need 
to know is g n A \ a . 

Now from a-WTh"+1 (A; P n a) we can compute 

5-, = { ( s f n a ' a (g ) ,S f n a ' a (g )} : e n (A \ a) nonstationary} 

and from a-WTh"+1 (A; P n (A \ a)) we can compute 

ET2 = {(sfn{^aU(Q),S^a)-"(Q)) : g n a nonstationary}. 

Let / „ be the recursive function (given by the induction hypothesis), that computes 
a-WTh" (A; A, B) from a-WTh" (A; An a, B n a) and a-WTh" (A; ,4 n (A \ a), 5 n (A \ 
a)). T h e n ^ f ' ^ g ^ S f ' ^ g L s ' ^ g ) ) € a-WTh"+1(A;P) if and only if there are 

_(?,, J I ) G T\ and (f2, J2) G ̂ i such that S2
Aa(g) = su S^a{Q) = s2 and Sf' f l(g) 

isfn(ti,t2). H 

THEOREM 4.10. Suppose a,J,Po,P\ C A, a a semi-club, J a club, X := [Po,Pi]o 
airf a-WTh" (A; P0) = a-WTh" (A; Pi). 

7%e«a-WTh"(A;P0) = a-WTh"(A; jf). (flence WTh"(A;P0) = WTh"(A;Z) = 
WTh"(A;P,).) 

PROOF BY INDUCTION ON n (FOR EVERY a', J', X', Y'). n = 0: Check. 
n + l: Suppose go Q A and (by the equality of the theories) let Q\ C A satisfy 

(5f°'fl(eo),^o,fl(eo),<0'a(eo)) = <^fi'fl(ei))^''a(e,),^''fl(e1)). 
Define & := [go,gi];J. .Now a-WTh"(A;P0, go) = a-WTh"(A; X, g*) by the 

induction hypothesis so if0'" (go) = s f ,a(gA-)-

Now suppose (f, J ) G S,
2
/>0'a(go), t ^ 0. Let 

2?£° := {P E a : WTh"(A; P0, go) r/»= ', th{P; P0, Q0) = s} 

and this is a stationary subset of A. For each such /?, since t ^ 0 => cf (/?) > a>, 
a contains a club C^ C /? and, remembering a previous remark, we can restrict 
ourselves to (P<j, go) D Q . 

Suppose further that a = (iy : 7 < A) (note that a has to be stationary otherwise 
52 is empty) and J = (ay : y < A). Look at the club J' = (ay : ay = y) and let 
J" = the accumulation points of J'. Now P,p° n J" is also stationary, and choose 

Sh:471



864 SHMUEL LIFSCHES AND SAHARON SHELAH 

P in this set, and a club C j j C a f i / ' . By the choice of Cp we get (PQ, QO) n Cp = 
{X,Qx)r\Cp, and this implies: WTh"(A;X, Qx) \fi= t,aadth{B;X,Qx) = s. So, 
(since ft was random) B* is also stationary. 

The case t = 0 is left to the reader. We deal with 53 symmetrically, replacing a 
with k\a. 

So we have proved that a-WTh"+1 {k; P0) C a-WTh"+1 (A; X). _ 

Now, for the inverse inclusion suppose Qx C A and {S?'" {Qx), S%'" {Qx), S%'" 

(&r)} is in a-WTh"+1 {k; X). Let tf 0 = Qx n a and £ , = g * n (A \ a). 
Now choose 7b (w.l.o.g C k \ a) such that 

(S^a(T0),S^"(T0),S?>a(T0)) = <srf''"(/?,), Sf' •"(/?,), Sf' '"(/?,)> 

and choose 7^ (w.l.o.g C a) such that 

{si<"a(Ti),si°<a{Tl),S*<"'(Tl)) = (sf"a(R0),S^"(R0),S^a(R0)}. 

Let go be equal to Ro on a and to To on A \ a, let gi be equal to T\ on a and to 
R\ on A \ a. 

By Claim 4.9(2) it can be easily checked that 

{S^a{Q0),S^a(Q0),S^a(Q0)) = (S^a(Qi),S^a(Q,),S^a(Q[)). 

But Qx = [Qo, Q\]J
a on a club of A hence these are, by the same arguments as in the 

first part of the proof, equal to {S*-°{QX), S*'"{QX), S*>U(QX)). 

This proves the inverse inclusion: a-WTh"+1(A;P0) 3 a-WTh"+1(A;X), hence 
the equality a-WTh"+1U;Po) = a-WTh"+1(A;Pi) = a-WTh"+1(A; X). H 

NOTATION 4.11. Suppose P, J C 8, J a club of order type A and a C A a semi-club. 
Let ?, := AThm(0, (<S; P)) and (keeping in mind Remark 4.8.(0)), let h: J - • A 

be the isomorphism between J and A and let t2 := a-WThm{k;h(gm {S; P) n / ) ) . 
We denote (?,, f2) by a-WAm(<5; P) (assuming / is fixed). 

Collecting the last results we can conclude: 

THEOREM 4.12. Let J, P0, P\ C 5, lg(Po) — Ig(-Pi). -7 an m-suitable club for PQ, P\ 
of order type A and a C. ka semi-club and set X := [PQ, P\ ]J

a. 
Then: a-VJAm{8;P0) = a-WAm(«5;Pi) =» a-WAm(5;P0) = a-WAm (<$; X), and in 

particular, ifm = m{n,t) then: TW(5;Po) = Th"^,/3!) = Th"(<5; X). 

PROOF. The first statement follows directly from Theorm 4.5, Conclusion 4.6(2) 
and Theorem 4.10. For the second, by the definition of a-WA, and by Remark 
4.8(0), Fact 4.9(1), the equality of a-WAm W ) implies equality of W A m M ) from 
Definition 2.16. But by Theorem 2.15 this implies the equality of Th". H 

§5. Formal shufflings. The purpose of this section is to overcome two difficulties: 
1. We want to generalize the definitions and results of §2 which apply to well 

ordered chains, to the case of a general chain of uncountable cofinality. 
2. It could happen that the interpreting chain is of cofinality A but of a larger 

cardinality. Still, we want to shuffle objects of cardinality < A. The reason is that the 
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contradiction we want to reach depends on shufflings of elements along a generic 
semi-club added by the forcing, and a semi-club of cardinality X will be generic only 
with respect to objects of cardinality < X, What we want to show is that we can 
shuffle sets of partial theories rather than subsets of our given chain. 

PROVISO. We are working with a chain C, with a first element CQ and with cofi-
nality X > co 

Note that in view of §3 these are the chains that interest us, except maybe for the 
demand of having a first element. However, it is clear that adding a first element 
to the minimal major initial segment will cost us at most an additional parameter 
(alternatively a larger depth of the interpreting formulas) and Theorem 3.12 still 
holds. 

The first task is to generalize the definitions of ATh and WTh. 

NOTATION 5.1. Let C be a chain as above. Fix a partition C — Y2i<A C, and 
denote by C[Q/?) the sub-chain J2a<i<p ^>- (c(a,p)> C[a,p\ a r e defined naturally.) 
Note that if C = J2KX ^< ' s another partition of C then on a club J C X, if a < ft 
are in J then C[aJi) = DM. 

All the clubs that are mentioned below have co as their first element. 

LEMMA 5.2 (2.9*). For every A C C there is a club J C X such that if a < X is in 
J then s(a) = Th" (C[a^y, A) does not depend on the particular choice of fi > a of 
cofinality co in J. 

PROOF. Replace [a, /?) with C[a>/j) in the proof of Lemma 4.1 in [10]. H 

NOTATION 5.3 (2.10*). Let C, A and / be as above. ATh"(j8, (C;A)) for p e / 
is Th" (C[/jy); A) for every y £ J with y > P, cf (y) = co. 

(The choice of/ and y £ / is as usual immaterial.) 

DEFINITION 5.4 (2.13*). Let C, X and ACC with lg(A) = I be as above. Then 
(1) g"(A)s is (for s eT„e) the set {a < X : ATh"(o;, (C; A)) = s} and 
(2) g"(A):=(...,g"(A)s,...)seTnl. 

THEOREM 5.5 (2.15*). For every n, £ e N there is an m — m{n,€), effectively 
computable from n and £, such that whenever C is as above, i c e and \g{A) = i, if 

r, = WThw {X;gm(A)), t2 = AThm(0, (C;A)) 

then we can effectively compute Th"(C; A) from {t\,t2}-

PROOF. Immediate from the proof of Theorem 4.4 in [10]. Note that t\ and t2 do 
not depend on the partition of C nor on the choice of the ATh-club / . H 

NOTATION 5.6(2.16*). (tut2) from above is denoted by WAm (C;A). 

In the second part of the section we formulate the results of §4 in terms of 
shuffling A-sequences of theories. Given a chain C = Yli<x Q a n c ' ^ ^ we set 
si := Th"(C,;^4). Clearly, by the composition theorem, Th"(C;^4) = J2i<j.si anc^ 
the sequence (s, : i < X) is all the information that we need. 

Moreover, letting H{X+) := {x : x is hereditarily of cardinality smaller than X+}, 
the equation J2i<x si = t c a n ^e checked in H{X+) regardless of the cardinality of C. 
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In view of Lemma 5.2 we can even choose the partition of C in a way such that 
for every i < j € A with cf(y') < co, st = Y^i<k<j sk- This motivates our next 
definitions. 

DEFINITION 5.7. (1) £ — (SJ : i < X) is an (n,(.)-formally possible set of theories 
if each s, is a member of T„tt and for every i < j < X with cf(y') < co we have 
si = J2i<k<j sk-

(2) The (n, £)-formally possible set of theories £ is realized in a model N if there 
is a chain C = £],<;. Q and A C C of length (. such that Th"(C,-; A) = sy for every 
i < X. 

(3) Let £ = {SJ : i < X) and ET — (t, : i < X) be (n, ̂ -formally possible sets 
of theories, and a C A a semi-club. We define the formal shuffling ofS and ST with 
respect to a as: [£,^]a := (w, : i < X) where 

{ Si if i € a 

tj if/ 0 a. 

FACT 5.8. Let C be of cofinality X and A,B C C of length t. 
(1) There is a partition C = J2I<A <W such that letting s,- = Th"(C,; J ) , a? = (s,- : 

i<X),tj = Th"(Ci;B),&' - (/, : / < A) we get £ and 5" are {n,£) -formally possible 
sets of theories. Moreover, for any semi-club a C A [cS',^]a=(Th"(C,, [̂ 4,-B]„) : 
i < A). (Here [ i , fi]0 n C, is i"n Q iff e a and 5 n C, if i 0 a.) 

(2) If in addition WAm{n/) (C; A) = WA m W ) (C; f i ) , then we can choose a parti­
tion such that [£, T\a is an («, ^-formally possible set of theories. 

(3) If in addition a-WAm{n'£) (C; A) = a-WAm(n'e)(C; B), then we can choose a 
partition such that £,-<; j,- = £;.</L /,• = £,<;. ">• 

(« -WA m W ) (C ; i ) is ( f l -WThm W ) (A;g'"U")),ATh'"(^)(0,(C;i'))).) 
(4) Given a finite sequence {AQ, ... ,Ak-\) of sequences of length I, we can 

choose a partition such that the above properties hold for each pair. 

PROOF. Part 1 is obvious, part 2 follows from the proof of Theorem 4.5 (choosing 
an "n-suitable partition"), part 3 follows from Theorem 4.12, and part 4 is Remark 
4.4. H 

We can define in a natural way the partial theories WThm and a-WThm of an 
(«, I)-formally possible set of theories. 

DEFINITION 5.9. For £ = (s,- : i < X) an (m, ^-formally possible set of theories, 
denote gm(<S)s:=(i < X : Si = s) and gm(£):=(gm{S)s : s e TmJl). We define 
WThm(aS-) to be WThm(A; gm {£)), and for a c A a semi-club, a-WJhm(£) is 
a-WThm{X;gm(S)). 

Finally we define a-WAm {£) to be the pair (s0, a-WThm (£)). 

THEOREM 5.10. If C = Yli<x C>> {where the partition is as in Fact 5.8(1)) A C 
C and £ = (T\im(n'l'(Ci;A)) are given then we can compute Th"{C;A) from 

WAm(n'l'{£). Moreover, the computation can be done in H{X+) even if\C\ > A. 

PROOF. The first claim is exactly Theorem 2.15. The second is trivial. H 
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§6. The forcing. To contradict the existence of an interpretation we will need 
generic semi-clubs in every regular cardinal. To obtain that we use a simple class 
forcing. 

CONTEXT. V \= G.C.H. 

DEFINITION 6.1. Let X > No be a regular cardinal 
(1) SCx '•={/'• f '• OL —* {0,1}, OL < X, cf (a) < co } where each / , considered 

to be a subset of a (or A), is a semi-club. The order is inclusion. (So SCx adds a 
generic semi-club to X.) 

(2) Qx will be an iteration of the forcing SCx with length X+ and with support 
<X. 

(3) P:—(Pfl, QM: ju a cardinal > No ) where QM is forced to be QM if// is regular, 

otherwise it is 0. The support of P is Easton's: each condition p 6 P is a function 
from the class of cardinals to names of conditions where the class S of cardinals 
that are matched to non-trivial names is a set. Moreover, when K is an inaccessible 
cardinal, S OK has cardinality < n. 

(4) PKx, P>x, P<x are defined naturally. For example PKx is (P/,, QM: Ho < ju < 

X). 

DISCUSSION 6.2. Assuming G.C.H it is standard to see that Qx satisfies the X+ 

chain condition and that Qx and P>x do not add subsets of X with cardinality < X. 
Hence, P does not collapse cardinals and does not change cofinalities, so V and 
Vp have the same regular cardinals. 

Moreover, for a regular A > No we can split the forcing into 3 parts, P = Po*P\*P2 
where Po is PKx, P\ is a iVname of the forcing Qx and P2 is a Po * Pi-name of the 
forcing P>x such that V and Vp°*p> have the same H{X+). 

In the next section, when we restrict ourselves to H(X+) it will suffice to look only 
in Vp"*Pl. 

§7. The contradiction. Collecting the results from the previous sections we will 
reach a contradiction from the assumption that there is, in Vp, an interpretation 
of T in the monadic theory of a chain C. For the moment we will assume that 
the minimal major initial segment D is (isomorphic to) a regular cardinal, later 
we will dispose of this by using formal shufflings. So we may assume the follow­
ing: 

ASSUMPTIONS. 

(1) C e VpinterpretsTby {Uc(X,Q*),Ec(X, Y,Q*),P(X, Y,Q*)),Q*CC, 
</ = lg(jf) = lg(?) = lg(g*). 

(2) D = X is the minimal major initial segment of C, cf (X) = X > co. 
(3) R C (C \ D) and S := {A C C : A n (C \ D) = R) contains an infinite 

number of pairwise non-equivalent representatives of Ec -equivalence classes. 
(4) There are monadic formulas U{X,Z), E(X, Y,Z),Mom(X,Z),Set(X,Z), 

..., such that for infinitely many k < co there is a sequence Qu Q D such that 

J = {D,d, U{X,Qk),E(X,Y,Qk), 

Atom(Z, Qk), Set(7, Qk), Code(^, Y, Qk)...) 
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is an interpretation of Tk in D. D is the minimal non-minor initial segment for 
these interpretations. 

(5) The depths of all the mentioned formulas are < n — 10, m — m{n + d,4d) is 
as in Theorem 2.15. 

(6) N\ is the maximal bouquet size of a minor segment. 
Fixing k, a sequence A c D satisfying U(A, Qk) will be called an element. 

DEFINITION 7.1. The vicinity [A] of an element A is the collection {B : some 
element E ~ B coincides with A outside some proper initial segment of £>}. 

REMARK. By the choice of n, A e [B] is determined by Thn+d{D; A, B, Qk). 

LEMMA 7.2. Every vicinity [A] is the union of at most N\ different equivalence 
classes. 

PROOF. See [5] Lemma 9.1. H 

Using Ramsey theorem we define the following functions. 

NOTATION 7.3. (1) Let M be the number of possibilities for a - WAm {C;Bi,B2,B3, 
A) where \g{B\) = lg{B2) = lg(-S3) = lg{A) = d, C a chain and a a semi-club of 
cf(C). Given/fc < colett(k) be such that for every coloring of {(i,j) : i < j < t{k)} 
into M colors, there is a subset / of {0, . . . , t{k) - 1} such that \I\>k and all the 
pairs from {(i,j) : i < j , i, j € 1} have the same color. 

(2) Given k < co, let h{k) be such that for every coloring of {(i,j,£) : i < j < 
£ < h(k)} into 32 colors, there is a subset 7 of { 0 , 1 , . . . ,h(k) — l} such that \I\> k 
and all the members of {(i, j,t) : i < j < £, i, j,£ e 7 } have the same color. 

We are ready now to prove the main theorem: 

THEOREM 7.4. The above assumptions lead to a contradiction. 

PROOF. The proof will be split into several steps. 
Step 1. Let R C (C\D) and S := {A C C : A n (C \ D) = R} be as in 

Assumption 3. Choose 0 < Â i <c K < co and interpret TK on D using parameters 
QK — Q^L D. (K\ and K depend only on n and d and their actual size is obtained 
from repeated applications of the Ramsey functions.) 

Choose sequences of non-equivalent elements from S, 38 := (C/, : / < K), 
38\ := (Vs : s < 2K) and 382 •= {Wt : t < 22") such that 33 is the family of 
"atoms" of the interpretation, 38 \ the family of "sets" of the interpretation, and 
381 the family of "hypersets" of the interpretation. 

Step 2. Fix J := {aj : j < X} C X an w-suitable club for every combination one 
can think of from the f?,-'s, the Vs's, the Wt's and Q. 

Now, everything mentioned happens in H (X+)v which is equal (using a previous 
remark and notations) to H(X+)V °* ' . Pi is an iteration of length X+ and it follows 
that all the mentioned subsets of X are added to H(X+)v°l after a proper initial 
segment of the forcing which we denote by PQ * (Pi \p). So there is a semi-club 
a C X in H{X+)V °* ' which is added after all the mentioned sets, say at stage /? of 
Pi. Fix a. 
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Step 3. We will begin now to shuffle the elements with respect to a and J. Let 
for i < j < K, 

k(i,j) := min{k : [Ult Uj]J
a ~ Uk, or k = K). 

Assuming that K > h{Ki) for some Kj » t(2K\ + 2N\ + 2) there is a subset 
5 C {0, . . . , K - 1} of cardinality at least K2 such that for every Uh Uj, Ue with 
i < j < £ ins the following five statements have the same truth value: 

k(j,£) = i, k{i,£) = j , k(i,j) = i, k(i,j) = j , k(i,j) = £. 

Moreover, by [5] Lemma 10.2, if there is a pair i < j in s such that k(i, j) e s (i.e., 
not all the statements are false on s) then, either for every pair / < j in s, k(i, j) = i 
or for every i < j in s, k(i, j) = j . 

Step 4. Let us show that for some / < j in s we have k{i, j) e s. Let Vs be the 
set that codes (U, : i e s). By the definition of t there is a set s' C s with at least 
KT, » 2Ki + 2N\ + 2 elements and a sequence (U, : i e s') such that for every r < £ 
in s', a-WAm(D; Ur, Ue, Vs, Q) is constant. 

It follows that for every r < £ in s', a-WAm(D; Ur, Vs, Q) = a-WAm{D-LUe, Vs, 
Q), and by the preservation theorem both theories are equal to a-WAm (D;[Ur,Ue]J

a, 
VS,Q). 

ButD (= Code(f7r, Vs, Q), and since a-WAm decides if'Code' holds, the equality 
of the theories implies that D f= Code([t7r, Ue]

J
a, Vs, Q). 

By the definition of 'Code' there is k e s such that [Ur, U(]J
a ~ Uk. Therefore 

there are r, £ in s with k{r,£) e s and by Step 3 we can conclude that, without loss 
of generality, 

i,j Gs, i<j => [Uj, Uj]i ~ Uj. 

Step 5. By applying the function t again choose s" C s' of size > 2K\ + 2N\ + 2 
such that for every r < £ in s", a-WAm{D; Ur, Ue, VS<,Q) is constant. 

Note that if a is a semi-club then X \ a is also a semi-club. We will use the fact 
that a is generic with respect to the other sets for finding a pair / < j e s" such 
that [Uj, Uj]\, ~ Uj holds as well. Let p G Po * P\ be a condition that forces 

the (equal) value of all the theories a-WAm(D; Ur, Ue, Vs,, Q) for r < £ e s". The 
condition p is a pair (^i, qj) where q\ G Po and qi is a /Vname of a function from 
X+ to conditions in the forcing S Q . qi{p) is forced by p to be an initial segment of 
a of height y < X and w.l.o.g. we can assume that y = aj+i e J (So cf(y) = co.) 
As y<X = D,y is a. minor segment. Recall that \s"\ > 2K\ + 2N\ + 2 and define 
s* Cs" with |**| >2Ki by 

s* := {i e s" :\{je s" : j < i}\ > N{ and | { ; £ s" : j > i}\ > N,}. 

Denote by A^B the sequence {A n y) U (B (1 (D \ y)). We claim that for every 
i,j,km s*, Uk ~ [Uj, Uj\u~Uk. 

Note that by the definition of s" and the preservation theorem for ATh, p forces 
for i,j,k ins*: 
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Thn+d(D;[UhUj]a~Uk,Vs,,Q) 

= Thn+d([0, y); [Ut, Uj]a, Vs,,Q) + Thn+d([y,A); Uk, Vs,, Q) 

— (by y £ J, the equality of the a-WA's and the preservation theorem) 

Thn+d([0,y); Ut, V,,, Q) +Th"+d([y,A); Uk, V,,,Q) 

= (by y e / and the equality of the ATh's) 

Th"+rf([0, y); Uk, VS,, Q) + Th"+d ([y,X); Uk, V,,, Q) 

= Thn+d(D,Uk,Vs,,Q). 

Hence, since Vs> codes s', [Ui, C/7]a ^Uk ~ Ut for some £ e s'. 
If £ = k we are done so assume w.l.o.g that £ < k. Now £// e [Uk] and this 

is determined by a previous remark by Th"+ {D;Ue,Uk,Q). Since ^ < k are 
in the homogeneous s', for every w < k in s' we have Th"+ (D; (7 ,̂ C4, g) = 
Th"+d(D; Um,Uk,Q). By the choice of s* and as k e s* we have more than JVi 
such m'& in s'. This means that |[£4]| > N\ and this contradicts Lemma 7.2. It 
follows that £ = k after all and the claim is verified. 

Therefore for a set of \s* \ elements it is possible to replace an initial segment with 
a shuffling without changing equivalence classes. 

Step 6. We are ready to prove that for every / < j in s*, [Ui} U,]a ~ [£/,, Uj]X\a. 
By Step 4 p \\— [Uj, Uj]a ~ £/,. Remember that p 'knows' only an initial 

segment of a, namely only a D (j + I) where y — a,+i. Since our forcing is 
homogeneous b :— (a n [0,j + 1)) U ((A \ a) n [/ + 1, A)) is also generic for all 
the mentioned sets and parameters, and everything p forces for a it forces for b. 
Therefore p \\- "[Uj, Uj]b ~ U". Note that by the preservation theorem 

Th"([0,y); [Ui, Uj],v, Q) = Th"([0,y);[£7yj U,\a, Q) 

= Th"([0,y);[t7,-, Uj]a,Q)\ - Th"([0,y); Ut, Q) = Th"([0,y); Uj, Q). 

It follows that 

Th"([0,y);[Ui, Uj]a,[Uh Uj]a, Q) = Th"([0,y); [U,, Uj]X\a, Wi, Ut]X\a, Q). 

By Step 5 (where we used only the fact that i,j e s*), [Uj, Uj]x\a~Uj ~ £/, ~ 
[Ui, Uj]h. Now 

Th"(D; [Uh Uj]Aa~Ui, [Ui, Uj]A\a, Q) 

= Th"([0>y);[J7/, U,]Aa,[Uj, Uj)]X\a, Q) +Th"([y, A); U,,[U,, Uj],.\a,Q) 

= Thn([0,y);[Ui, Uj]a,[U,, U,)]a, Q) +Th"([y, A); C7„[t/,-, t/ ,]A«, 2) 

= Th"(D;[Ui, Uj]a ~U,,[Ui,Uj]h,Q). 

But [Ui, Uj]a^Ui ~ C/,- ~ [Uj, Uj]h and it follows, by the equality of the theories, 
that [Uj, Uj]x\a ~ [Uj, Uj]a ~ C/; as required. 

Step 7. By renaming ((/,• : i 6 s* )we get a sequence (Aj : i < 2K\) such that for 
every i < j < 2K\, r < £ < 2K\ the following hold: 

(i) a-WAm(D;A,,Aj,Q) = a-WAm(D;Ar,Ae,Q). 
(ii) [Aj,Aj]a ~ [Aj,Aj\k\a - i',-. 
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For / < Â i denote by Bt the element that codes the set {Aj,A2K^-i-i} and look 
at the sequence (5, : / < K\). As K\ is large enough by repeating Steps 1,2 and 3 
(using sets and hypersets for atoms and sets) one is left with i < j < K\ such that: 

(hi) a-WAm(D;Ai,A2Kl_i_uBi,Q) = a-WAm{D;Aj,A1Ki-j-\,Bj,Q). 
(iv) [Bi,Bj]a ~ Bi or [Bi,Bj]a ~ Bj. 

(Note that in (iv) choosing one of the possibilities will cause a loss of generality.) 
Now let's shuffle with respect to a and / using clause (iii): 

Thn{D;Ai,A2Kl-l-uBi,Q) 

= Th"(D;[AhAJ]a,[A2K^i^,A2K,-j-i]a, [BhBj]a, Q) 

= Th"{D;[Ai,Aj]ll,{A2K^j^,A2Kl-i-]h\a,[Bi,Bj]a,Q)-

But [Ai,Aj]a ~ Ai, and by Step 6, [A2Kl-j-\,A2Ki-i-ih\a ~ A2Ki-j~\ and by 
clause (iv) [BhBj]a ~ B, or [Bi,Bj]a ~ 5 , . 

So we have, as implied by the equality of Th", either 

D \= C o d e U , Bt, Q) & Code{A2Kl-j-u Bi, Q) 

or 
D \= Code{Ai,Bj, Q) & CodeiA^-j-i.Bj, Q). 

Both cases are impossible! 
We have reached a contradiction assuming, in Vp, that a chain C interprets T 

with a minimal major initial segment D which is a regular cardinal. H 

We still have to prove that there is no interpretation in the case D is not a regular 
cardinal. For that we will use formal shufflings as in Section 5. 

LEMMA 7.5. The assumption "D is a regular cardinal" is not necessary. 

PROOF. The only place where we used genericity is Step 6 so the difficulty is to find 
2 elements A, B and a semi-club a such that [A, B]a ~ [B, A]a. Since it is possible 
that \a\ < \D\, a will be generic not with respect to A and B but with respect to 
sequences of theories of length X. We will repeat Steps 1 to 7 from the previous 
proof modifying and translating them to the language of formal shufflings. 

Step 1. We assume D interprets TK, and choose Q, K atoms (t7, : i < K), sets 
V„ and hypersets Wt as before. 

Step 2. As in Fact 5.8(3) fix an "w-suitable" partition D = ^2i<x Dh Let r,- be 
the theory Thm(£),; E, Q) where E is the sequence of all atoms, sets and hypersets. 
Let ET — (T, : / < A), SO every relevant theory can be computed from J~. Now 
5" G H{X+Y'' and fix some a e H{X+)yP = H{X+)vP{"'1, generic with respect to 

STEPS 3-4: Repeat Steps 3 and 4 in V (there is no need of referring to 5^ at 
this point.) 

We are left with a sequence (Uj : j e s) such that w.l.o.g j \ < j 2 => [£//,, UJ2]a ~ 
UJl. {[Uh, Uh]a n Dj is of course £/,, n D, if / G a and Uh n D, if i g" a). 

Step 5. Go down to H(X+)V and translate everything we have achieved so far 
to a statement about T. For example, the 'formal' meaning of [Ue, Ur]

J
a ~ Vk is 

as follows: 
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"if s} = Th"(£>,; Ut, Uk, Q) and sj = Th"(D,-; Ur, Uk, Q) then letting S\ := (sj : 
i < X), £2 '•— (sf : i < X) and % = [̂ *i,aS*2]r, = («,- : i < X) we get that u = J2i<;. u> 
is a theory that satisfies: if C is a chain, A,B,E C C then [Th" (C; J", B,E) = u =$• 
C \= E(A,B,E)]." {Si and <£2 are of course computable from y.) 

Now find a condition p e P<^ that forces each such formal statement (we are 
talking about events occurring in H(X+)) and define <S\ ~£i. Repeat Step 5 to get 
s* C s as there. So the 'formal' version of j\,ji,k e s* ̂  [£/,-,, C7/2]a "C4 ~ tjk 

holds. 
Step 6. We have to prove for I, r e **: 
"if s/ = Th"(A; C/f, C/r, 2 ) and s} = Th"(D,-; t/r, C/f, Q) then both X),<;."/ and 

J2i<iv' imply ^(-^> Y, Z) where for «, = s} and v, = s} for / G a and «,- = 5?, 
u,- = s} for / ^ a". This is easily achieved using the genericity of a. 

Step 7. Go back to Vp and shuffle elements. No genericity is required. H 

Combining Theorem 7.4 and Lemma 7.5 we conclude: 

THEOREM 7.6. There is a forcing notion P such that in Vp, Peano Arithmetic is not 
interpretable in the monadic second-order theory of chains. 
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