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Abstract 

Let T be the family of open subsets of a topological space (not necessarily Hausdorff or 
even To). We prove that if T has a base of cardinality < p, 1< p < 2”, 1 strong limit of 
cofinality PC,, then T has cardinality < p or 2 2 *. This is our main conclusion (21). In 
Theorem 2 we prove it under some set-theoretic assumption, which is clear when 1 = p; then 
we eliminate the assumption by a theorem on pcf from [Sh 4601 motivated originally by 
this. Next we prove that the simplest examples are the basic ones; they occur in every 
example (for 1 = NO this fulfills a promise from [Sh 4541). The main result for the case 1 = NO 
was proved in [Sh 4541. 

Why do we deal with II strong limit of cofinality K ,,? Essentially as other cases are 

closed. 

Example 1. If I is a linear order of cardinality p with 2 Dedekind cuts then there is 
a topology T of cardinality 2 > p with a base B of cardinality p. 

Construction. LetBbe{[-co,x)I:x~Z}where[-co,x),={y~Z:I~y<x}. Kll 

Remarks. As is well known, if p = pCp, ,u < 2 < x = xP then there is a ,u+-C.C. 

p-complete forcing notion Q, of cardinality x such that in VQ we have 2’ = x, there is 

a A-tree with exactly p A-branches (and < p other branches) hence a linear order of 

cardinality p with exactly 2 Dedekind cuts. As possibly ANo > 1, this limits possible 
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generalizations of our Main Theorem. Also there are results guaranteeing the exist- 
ence of such trees and linear or”ders, e.g. if p is strong limit singular of uncountable 
cofinality, p < A d 2’ (see [14], [15, 3.5 + 051) and more (see (7173). 

So we naturally concentrate on strong limit cardinals of countable cofinality. We do 
not try to ‘save’ the natural numbers like n(*) + 6 used during the proof. 

Theorem 2 (Main). Assume 
(a) A, for n -C w are regular or jinite cardinals, 2”n < A,+ 1 and ,I = c,<, ,I,, ( > NO). 
(b) il = c,<,p, (even P,,+~ > A,) and 13(p,) < A,, 2 <p-c AHo (=2’) and 

cov(p, A,‘, A,‘, p.’ ) < p (see Dejinition 3 below, trivial when il = tc,, and easy when p = 1). 
(c) Let T be the family of open subsets of a topological space (not necessarily 

Hausdorff or even TO), and suppose that T has a base B of cardinality < p (i.e., B is 
a subset of T which is closed underjinite intersections, and the sets in Tare the unions of 
subfamilies of B). 

Then 
(1) The cardinality of T is either at least INo (= 2”) of at most p. 
(2) In fact, if 1 TI > p then for some set X0 of 2 points, {U n X0: U E T) has 

cardinality 2”. Moreover, for some B’ G T of cardinality 1, {X0 n U: U is the union of 
a subfamily of B’} has cardinality 2”. 

Definition 3 ([lS, 5.11). cov(p, ,I+, A+, K) = min (1 P) : P a family of subsets of /J each of 
cardinality < 2, such that if a c p, 1 a 1 < I then for some CI < K and ai E P ( for i < a) 
we have a G uiCcrai}. 

Proof of Theorem 2. Suppose we have a counterexample T to 2(2) (as 2(l) follows 
from 2(2)) with a base B and let R be the set of points of the space, so w.1.o.g. 
;1 d p = 1 B) < 2”. Our result, as explained in the abstract, for the case 1 = No was 
proved in [ 181, and see background there; the proof as written here applies to this case 
too but we usually do not mention when things trivialize for the case i = K,; w.1.o.g. 
C! = u B, 0 E B and B is closed under finite intersections and unions. So T is the set of 
all unions of subfamilies of B. 

We prove first that: 

Observation 4. For each n there is a family R of cardinality d p of partial functions 
from A,, to p such that: for evevy function f from A, to u theve is a partition (ry I[ < p,,) of 
I, (i.e., pairwise disjoint subsets of A,, with union A,,) for which /\i<m f 1 ri E R. 

Proof. By assumption (b) and 2”” < I < p and I is strong limit of cofinality 

KodPL,. 04 

Claim 5. Assume Z* is a subset of R of cardinality at most p and T’ is a subfamily of 
T satisfying 

(*) (‘WI, U, E T’)[Ul = Uz 0 u1nz*= u,nz*1, 

IT’\ >uaand n< w. 
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Then we can find a subset Z of Z* of cardinality ,u,,, subsets Z, of Z and members U, 
of T and subfamilies T, of T’ each of cardinality > ,t~ for a < p” such that: 

(a) the sets Z, for a < ,uL, are pairwise distinct; 
(b)fora<p,,andVET’wehave:VET,iflVnZ=Z,~U,cV. 

Proof. We shall use (*) freely. Define an equivalence relation E on Z*: 

xEy iff I{UET’:XEU~~$U}I<~ 

(check that E is indeed an equivalence relation). 

Let Z @ E Z * be a set of representatives. Now for V E T’ we have: 

(*) (UET’:U~Z@=V~Z’}E 

u (UET’:zEU-x$UbutUnZ@=VnZ@}u{V*} 
xEz, (x, z) E Z * 

where 

V* = (y E Z*:for the x E Z@ such that yEx we have x E V>. 

[Why? Assume U is in the left side, i.e., U E T’ and U n Z’ = V n Z @; now we shall 

prove that U is in the right side; if U = V* this is straightforward, otherwise for some 

xEZ*,xEU=x$v*; as Z @ is a set of representitives for E for some z E Z @, we 

have zEx so by the definition of V*, x E V* o z E V. But as U n Z @ = V n Z @ we 
have z E V o z E U. Together x E U o z $ U and we are done.] 

Now the right side of (*) is the union of d ) Z*12 sets, each of cardinality < fl (by 

the definition of xEz). Hence the left side in (*) has cardinality < 1 Z* I2 x p d ,u. Let 

{Vi:i< i*}s T’bemaximalsuchthat: KnZ@ are pairwise distinct and 6 E T’. So 
clearly 

IT’I= u {UET’:U~Z@‘= EnZ@} < 1 p=u/i*j, 
i<i* i<i* 

butIT’I>~henceli*l=J{UnZ~:UET’}I>~.Hence(asilisstronglimit)neces- 

sarily (Z @( 2 1, so we can let zp E Z * for jI < 2, be distinct. For a <: /? < 2, we know 

that 1 z,Ezg hence for some truth value t,,B we have 1 {U E T’: 
z, E U = zp .$ U % ta,a} I > p. But B is a base of T of cardinality d ,n, hence for some 

P& E B the set 

Sa,B={U~T’:z,~U-zZB~U-tt,,8, and {z,,ztr)nUsV,,,GU} 

has cardinality > p. 

Choose U& E S,,, such that p < I&!, 1 where 

note that U& exists as 2”” < ,I < P < I S,,pI. 
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By Observation 4 we can find a family R of cardinality < pL, members of R have the 
form 6 = (u,: c1 E r), where r c I,, u, E B such that for every sequence 
U = (u,: a < A,,) of members of B, there is a partition (rr:< < p,) of A, (so 
ri = rr[G] L I, for C < pL,) such that U 1 rc E R (remember 0 E B). W.1.o.g. if 
u’=(u~:a~r’)~Rfor1=1,2thenu=(u,:a~r)~Rwherer=r’ur~and 

u, = 
i 

u,’ if aEr’, 

2.4: if u E r2\r’. 

For each V E T’ we can find ti[V] = (u,[ I’] : y < A,), such that (remember 8 E B): 

q~l E B, 

zy E v =s zy E uy[V] E v, 

z,$V * u,[V] = 0. 

Clearly there is U& E S& such that: 

(**) for any finite subset w E p” and tl < /? < A,, the following family has cardinal- 
ity > p: 

s&,,$~ {U E s~,,:(vc < pu.)(rc[~CU1l = qC$u,‘,Jl) and 

(K E w)(UCUI r ri = XU&31 t q)). 

By the Erdiis-Rado theorem for some set M E [A,] rL : 

(a) for every a < /3 from M, tn.0 are the same; 
(b) for every u < /I E M, y, E E M the truth values of “zY E Va,s”, “zy E U&“, 

“z, E u,[Uz,]” and the value of “min{i < ,un:y E rc[ti[U~s]]}” depend just on 
the order and equalities between a, /?, y and E. 

Let M = {cr(i):i< pz} where [i<j =S a(i) < a(j)], let t be 0 if i <j =E- 
ta(i),a(j) = truth and 1 if i < j => t,(i),=(j) = false. 

Casel. Ifi<j<~~ande<ivs>jthenz,(,, 4 Ucf(i).a(j). SO for SOme [I < CL, 

(0) for every i < pn+, (I = min{i:di + t) E r~C~CU~i),a(i+ljll}~ 

Let Z = {zcc(i) : i < A}, zi = (zc4(2i+r))9 vi = U,(2i+t)CU~2i),a(2i+l~l. Clearly 

uinzUi s Ucf(Zi),(Zi+l) and Vi n Z = Zi, lastly let T = Szzi),a(2i+l),t<1j; now Z, Zi, 
Vi, z are as required. 

Case 2. If i < j < ,u,’ then 

e < i * G(E) E UcfCi),a(j)r 

E >j * i&)4 U,2,i),a(j). 
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So for some cl < pn, iz < pu, 

(0) (a) for E < i <j < lb+, [I = min{i:W E r~[“iI~c?(i).z(j)ll), 
(b) for i < ,uJ, 52 = min(i:4 + t) E r~C”CU2(i),a(i+1)11)~ 

Let 2 = {Z,(i) 1 i < /tn}, Zi = (Z,(,) : E < 2i} CJ {Za(?,i+t)}, ui = t.J {Kz(z)C~$Zi),a(2i+ I)1 : 
8 d 2i + 11 and K = Sa:2i),a(2i+1),(1,,1*1. 

Case 3. If i < j < pi then 

& < i * Za) $ Ucl$i),a(j), 

Pi+ > & >j * Z~(~) E Ucf(i),a(j). 

So for some i1 < P,, ix < fin 

(8) (a) fori<&+, (1 = min{i:a(i + t) E ryCUCU,:i),n(i+1~11}, 
(b) for i < j < E -C pL,+, 12 = min{i:+) E riCUCU~i,,mll). 

Let Z = {Z,(i) : i < k}, Zi = {zatE): E = 2i + t or 2i + 1 < E < pn}, Q= 

u {Ua(c)CU~Zi),a(2i+l) ] :E = 2i + t or 2i + 1 < E < ~“1 and T = Sbl:Zi),a(2i+1),(11,52~. 

Case 4. If i < j < ,uz then 

8 < i * Z,(E) E Uc?(i),a(j)2 

E >j * Z,(E) E Uc&),a(j). 

So for some 11,12,13 < CL, 

(0) (a) for E < i < j < d, il = min{i:a(d E r<[~[U2(i),a(j)]l}r 

(b) for i < ,&+, 12 = min(i:a(i + t) E ryChCU,:i,,.(i+l,lI), 
(c) fori<j<E<pz, 13 = min{C:+) E r~C~Cu&i~,d~j~ll). 

Let Z = (z,Ci): i < pL,}. Zi = {za(~) : 8 < 11” and E # 2i + 1 - t}, Ui= 

u (U,(s)CU2(2i),a(2i+ I,]: 8 > pn, E Z 2i + 1 - t} and T = S~zi),or(~i+ l).(~l,~2r~3). Now in 
all cases we have chosen Z, T,, U,, Z, (a < p.) as required thus finishing the proof of 

the claim. Cl5 

CIaim6. ZfZ*sR,(Z*I<p, then{UnZ*:UE T> hascardinality<p. 

Proof. Assume not. We can find T’ c T such that: 

(a)forU,,U,ET’wehaveU,=U20U1nZ*=U~nZ*. 

(P) IT’1 > CL. 
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By induction on n we define ( q, Z; , Z,‘, U,, : q E n, <n p, ) such that: 

(a) T, is a subset of T’ of cardinality > p; 
(b) if v Q q then q c q; 
(c) if q = ( ) then q = T’, Z,l = Z,f = 8, U,, = 8; 
(d) Z,l G Z:GZ* and 1Zt1 <pLlgq, Zt disjoint to u(U,rI:I<lgq}; 

(e) U, E R 
(f) ifVETqthenU,,zVandVnZ,2=U,,nZ~=Z~; 
(g) if lg(q) = lg(v) = II + 1 and q 1 n = v t n then Zi = Z,? but 
(h) iflg(q)=lg(v)=n+l,qtn=vfnbutq#vthenZ,’#Z,’. 

Why this is sufficient? Let Z ef u (Zt:q E lJnnlinpL1}. It is a subset of Z* of 
cardinality < A. The set B’ ‘kf {U,, : q E u,, <w n, <” pl} is included in T and has car- 
dinality d il. For v] E n,, pL, we let U,, = U n< w U,, 1”. Now as U, 1 n E T (by clause (e)), 
clearly U,, E T. Now suppose y # v are in fl, <~ pn and we shall prove that 
U,, n Z # U, n Z, as 1 n, p,,l = 2” this suffices (giving (1) + (2) from Theorem 2). Let 
n be minimal such that q(n) # v(n), so v] t n = v 1 n. By clause (g), Zil(,+i, = Zzr,,,+ 1). 
So (by clause (h)) Z,l r (“+ 1), Z,’ r (n + 1J are distinct subsets of Z,’ r (” + r) = Z,’ r (” + i) E Z. So 
it suffices to show U,,nZ,fl(n+lj = Z,‘I(,,+~, and U,nZ,?r(,+lj = Z,fr(,+l, and by 
symmetry it suffices to prove the first. Now Z :I(,,+~) E U, T(~+~) by clause (f), hence 
Zi I(,, + 1j E U, so it suffices to prove that U, n Z,f r (n+ 1j c Z,l, (” + 1,; for this it suffices to 
prove that for 1 < o 

(*) U, 11 nZir(n+lj s Z,‘I(,+W 

Case 1. 1 = n + 1. This holds by clause (f). 

Case 2. 1 > n + 1. Then choose any V E TV r r, so we know U,, , l E V (by clause (f)) 

and V-E TV ~(,,+l) (by clause (b)), and V n Z,’ I (,, + 1) = Z: r (“+ i) (by clause (f)), together 
finishing. 

Case 3. I < n. By clause (d), Zil(,,+ r) is disjoint from U,, r I. 

So we have finished to prove sufficiency, but we still have to carryout the induction. 
For n = 0 try to apply (c), the main point being 1 T( > 1 > p which holds by the choice of 
T’ (which was possible by the assumption that the claim fails). Suppose we have 
defined for n and let q E n I<npl. We apply Claim 5 with T,, Z*\U,,,,U,,II and 
n here standing for T’, Z*, n there. 

We get there Z, Z,, T,, U, (a < p,,) satisfying (a) + (b) there. We choose T,b +> to be 

K> U,~<ol> to be U,, Z$ +> to be Z and Z,lA +> to be Z,. You can check the induction 
hypotheses, so we have finished. Cl6 

Definition 7. X E R is small if {X n U: U E T} has cardinality < p. The family of 
small X c Q will be denoted by 9 = .9r (or more exactly, S,,,). 

Claim 8. The family of small sets, 9, is a p’-complete ideal (on R, including all 
singletons of course). 
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Proof. Clearly 9 is a family of subsets of R, and it is trivial to check that (X E 9 and 

YEX)* Y~9.SoassumeX,~gfora<cc(*),cr(*)~~andweshallprovethat 

X = U o1 X, E 9. Each X, has a subset Y, such that 

(a) lY,l<pand 
(b) if V, Ware elements of T with Vn X, # W n X, then there is some element y E Y, 

which is in exactly one of V, W (possible as X, E 9). 

NOW if V, W are elements of T which differ on X = UllcOlltJXa, then they already 

differ on some X, and hence they differ on some Y, hence on Y sf Uaca(*) Y,. So 

l{UnX:U E T}( = [{Un Y:U E T}(, so it suffices to prove that Y is small. But 

Y has cardinality ,< 1 U oL Y, ( < Ca 1 Y, 1 d p x p = p(; so Claim 6 implies that Y is small 

and hence X is small. q 8 

Conclusion 9. W.1.o.g. card@) = h ‘. 

Proof. As obviously (x> E 9 for x E R, by Claim 8 we know (0 ( > p. Let T’ G T be of 

cardinality p+ and let 51’ c Q be of cardinality p’ such that: if U # V are from T’ 
thenUnR’#Vnn’.LetT”be{UnSZ’:UET}andB’=(UnR’:UEB}.Now 

T”, B’, R’ are also a counterexample to the Main Theorem and satisfy the additional 

demand. q 9 

Claim 10. W.1.o.g. for some n(*), for no Z _C !A of cardinality p,(,) and U,, T,, Z, 
(a < p,+,) does the conclusion of Claim 5 (with !2, There standing for Z*, T’ there) hold. 

Proof. Repeat the proof of Claim 6. I.e. we let Z* ‘%=’ Sz, and add the demand 

(i) T,,={U~T:U,,~~cUandUnZ~~,~U,,~,forl<lgq}. 

The only change is in the end of the paragraph before the last one where we have used 

Claim 5, now instead we say that if we fail then for our n, replacing T, R by T,, Z* resp. 

gives the desired conclusion (note TV is closed under union and finite intersection, and 

has a basis of cardinality < p: 

B,d&f 
i 

Uu U U,,Ir:U~BandUnZ~~,~U,,~Iforl<lg~ 
r<igq i 

which is included in T,). (Pedantically, we have to replace T,,, Z* by 

(U\Ur<n U+:UG), n,,.,U\u,<.U+) 0 

Observation 11. Suppose 1 is strong limit of cojinality NO, I is a linear order of 
cardinality < ,u, 2 d ,u < 2’0, and I has > p Dedekind cuts. Then I has 2 pNo (= ANo) 
Dedekind cuts. 

Remark. This observation does not rely on the assumptions of Theorem 2. 
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Proof. We define by induction on c( when rkr(x, y) = CI holds for x < y in I. 
For a = 0: rk,(x, y) = a iff (x, y), = {z E I : x < z < y} has cardinality < ,I. 
For C( > 0: rkr(x, y) = C( iff for /3 < a, 1 [rk,(x,y) = p] but for any (xi,yi) (i < A), 

pairwise disjoint subintervals of (x, y), there is i such that Vg<.rkl(xi, yi) = fl. 

(*)r Note that by thinning the family, w.l.o.g., [xi, yi] are pairwise disjoint. 

[Why? E.g. as for every j the set {i : [xi, yi] n [Xj, yj] # @} has at most three members.] 

(*)* For CI > 0 and x < y from I, rkI(x, y) = c( iff for fi < c(, 1 [rk,(x, y) = fl] and for 
some 2’ < 2 for any (Xi, yi) (i < nl), pairwise disjoint subintervals of (x, y), there 
are i < A’ and /? < c( such that rkl(xi, yi) = Z3. 

[Why? The demand in ( *)2 certainly implies the demand in the definition; for the other 
direction assume that the definition holds but the demand in (*)Z fails, and we shall 
derive a contradiction. So for each II < o there are pairwise disjoint subintervals 
(xl, yl) of (x, y), for i < A, such that 1 [rkl(xl, yr) = /I] (when Z? < LY and i < A,,). As we 
can successively replace {(xl, yl): i < A,} by any subfamily of the same cardinality 
(when the &‘s are finite- by a subfamily of cardinality ,I,_ 1), w.l.o.g., for each n, all 
members of {xl : i < A,} realize the same Dedekind cut of {xj”, yj”: m < n, j < ,I,} and 
similarly for all members of { yr : i < A,,}. So for m < n, i < A,, the interval (xl, y;) 

cannot contain a point from {XT, yj”: j < A,} (as then the same occurs for all such i’s, 

for the same point contradicting the “pairwise disjoint”) so either our interval (xl, y;) 
is disjoint to all the intervals (x7, yj”) for j < ,I,,, or it is contained in one of the intervals 
(~7, ~7); as j does not depend on i we denote it by j(m, n); if 2 = Ke, by the Ramsey 
theorem w.1.o.g. for m < n, j(m, n) does not depend on n; now the family ((x7, y?): 
m < co, i < I, and for every n < o which is > m we have i # j(m, n)] contradicts the 
definition.] 

If rk,(x, y) is not equal to any ordinal let it be co. Let c(* = sup{rk,(x, y) + 1: x < y 
in Z and rk,(x, y) < co}. Clearly rk,(x, y) E c1* u {co} for every x < y in Z (and in fact 
Q* < p’). As we can add to Z the first and the last elements.it suffices to prove: 

(A) if rk,(x, y) = c( < cc then (x, yh has < fl Dedekind cuts, and 
(B) if rk, (x, y) = co then it has 3 INo Dedekind cuts. 

Since (B) is straightforward, we only prove (A). 

Proofof( We prove this by induction on CI. If c( is zero, this is trivial. So assume that 
c( > 0, hence by ( *)2 for some ,I’ < ;1 there are no pairwise disjoint subintervals (xi, yi) 
for i < 2’ such that B < a implies 1 [rkI(xi, yi) = p]. Let .Z be the completion of I, SO 

each member of .Z\Z realizes on I a Dedekind cut with no last element in the lower half 
and no first element in the upper half, and 1 .Z 1 > ZI >, 1 Z 1. Let .Z + dsf (z E J : z $ Z and if 
x E I, y E Z and x cJ z cJy and p < CI then 1 [rk,(x, y) = /I]}. By the induction 
hypothesis, as 1 Z I Q p, easily ) J \ J + ( < p hence the cardinality of .I ’ is > CL. By the 
Erdos-Rado theorem (remembering 2 is strong limit and I’ < A), there is a monotonic 
(by <J) sequence (zi: i < A’) of members of J + ; by symmetry w.1.o.g. (Zi: i < A’) is 
<,-increasing. Now for each i < X as zi < J Zi+ r are both in J +, necessarily there is 
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a member xi of I such that zi <J xi < J r+l.SOXi<JZi+l <,Xi+lalldXiEZ,Xi+l EI Z, 

and Zi+r E J+ hence by the definition of J + we know that for no /I < CI holds 

rkl(xi, Xi+ 1) = fi. SO finally the family {(Xi, Xi+ r): i < A’} of subintervals of (x, y) gives 

the desired contradiction to ( *)Z. 0 1 1 

Definition 12. We define an equivalence relation E on 0: xEy iff 

{U~T:x~U=y~$U)hascardinalityd~. 

Conclusion 13. (0) The equivalence relation E has < A”(*, < 1 equivalence classes (for 
some n( *) < o, which w.1.o.g. is as required in Claim 10 too). 

(1) W.1.o.g. for each x E R one of the following sets has cardinality d p: 

(a) {U E T:x E U}, (b) {U E T:x$U}. 

(2) W.1.o.g. for all x E Q we get the same case above, in fact it is case (b). 

(3) W.1.o.g. for any two distinct members x, y of R for some U E B we have x E U ifs 

Y&U. 

Proof. (0) By Claim 10 and the proof of Claim 5 (if E has 3 2 equivalence classes we 

can repeat the proof of Claim 5 and get a contradiction to Claim 10). 

(l), (2), (3) Let (X, : [ -c i*) list the E-equivalence classes, so [* < A,,(*,. As R $9, 

and 4 is p+-complete (Claim 8) for some [, Xi#S. Let Sz’ = X,, 

T’={UnR’:U~T},B’=~UnR’:U~B};so51’,B’,T’haveallthepropertieswe 

attribute to 0, B, T and in addition now E has one equivalence class. So we assume 

this. 

Fix any x,E~, let B”=(U~B:xo$U}, T”={U~T:xo+!U}u{R}, B’= 
{U E B:xo E U}, T’ = {U E T:xO E U} u (8). For some 1 E {0, l}, 1 T’J > p, and 

then Q B’, T’ satisfy the earlier requirements and the demands in (1) and (2). For (3) 

define an equivalence relation E’ on 0: xE’y iff (VU E B) [x E U 3 y E U], let Q’ E Q 

be a set of representatives, B’ = {U n !A’: U E B} and finish as in the beginning of the 

proof of Claim 5. The only thing that is left is the second phrase in (2). But if it fails 

then for every U E T\(O) h c oose a nonempty subset V[U] from B. As the number of 

possible V[U] is d 1 Bj d ,a, for some V E B\{@}, for > ,u members U of T, 
V = V[U] and hence V c U. Choose x E V, so for x clause (a) of (2) fails and hence 

for all y E Sz clause (b) of (2) holds, as required. 0 r3 

Proof 14 (of Theorem 2). Consider for n = n( *) (from Claim 13(O) and as in Claim 10) 

the following: 

(*) there are an open set V and a subset Z of V and for each a < A, there are Z, c Z 

and open subsets V,, U, of V such that: 

(a) for CI < fi < 1, the sets V, AZ, V, n Z are distinct; 

(b) U, n 2 = Z,; 

(c) the number of sets U E T satisfying U n Z = V, n Z and U, c U is > p. 

So by Claim 10 we know that this fails for n. 
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Let x be large enough and let i? = (Ni : i < p + ) be an elementary chain of 
submodels of (H(X), E) of cardinality ,U (and B, R, T belong to N,, of course) increasing 
fast enough hence e.g.: if X E Ni is a small set, V E T then there is V’ E Ni n T with 
V n X = V’ n X (you can avoid the name “elementary submodel” if you agree to list 
the closure properties actually used; as done in [18]. For x E Q let i(x) be the unique 
i such that x belongs to Ni + 1 \Ni or i = - 1 if x E N,, (remember JQ 1 = p ’ ). 

Definition 15. We define: x E Sz is N-pertinent if it belongs to some small subset of 
Q which belongs to Ni(,) (e.g. i(x) = - 1) and N-impertinent otherwise. 

Observation 16. Szip = {x E R:x is N-impertinent} is not small (see Dejinition 7). 

Proof. As NO n R is small by Claim 8, for some V *, T’ dzf {V E T: 

V n iVo n R = V * n N,, n a} has cardinality > p. So it suffices to prove: 

(*) Vi # Vz E T’ * VI n Rip # Vz n Szip. 

Choose x E (V,\V,) u (V,\V,) with i(x) minimal. As Vr, Vz E T’, i(x) = - 1 (i.e., 
x E NO) is impossible, SO x E (Ni+ 1 \Ni) n Q for i = i(x). If x E Szi, we succeed, SO assume 
not, i.e., x is N-pertinent, so for some small X E Ni x E X. Hence by the choice of I?: for 
some V;,V;EN~~T we have: V;nX=V,nX, V;nX=VznX so V;nX, 

Vi n X E Ni are distinct (as x witness) SO there is x’ E Ni n X, x’ E Vi s x’$ Vi; but 
this implies x’ E V1 = x’ $ V,, contradicting i(x)% minimality. q i6 

We define a binary relation =$ on Szi, by: 

x<y o for all V E B, if y E V then x E V. 

Claim 17. The relation < is clearly rejexive and transitive. It is antisymmetric by 

Claim 13(3). 

Observation 18. Zf J G nip is linearly ordered by < then J is small. 

Proof. For each VI, V, 5 B such that VI n J E/V, n J choose yu,, U, E J n (VI \ V,). 

Let 1 = {YU,,U ,:V,,V,~B&V~nJc/V~nJ}.Clearly~Zl~~.WeclaimthatIis 
dense in J (with respect to <, i.e., I has a member in every non-empty interval of J). 

Suppose that x, y, z E J, xiyiz. By 13(3) we find VI,V2 E B such that x E Vr, 
y$ VI, and y E V2, z# Vz. Consider yut,Ul E I. Easily ~Iy~~,~~iz. Thus if (x,z) # 0 
then (x, z) n I # 0. 

Now note that each Dedekind cut of I is a restriction of at most 3 Dedekind cuts of 
J (and the restriction of a Dedekind cut of J to I is a Dedekind cut of I). For this 
suppose that Y, , Y,, Y,, Y, are lower parts of distinct Dedekind cuts of J with the same 
restriction to I, w.l.0.g. Y, c Y2 c Y, c Y 4. For i = 2,3,4 choose yi E Yi such that 

Yriy,, Y,iy, and Y3<y4. As (YZ,Y~) # 8 we find x E (yz,y4) n I. Since YZ<X we 
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get x & Y, and since x< y, we obtain x E Y,. Consequently x distinguishes the 

restrictions of cuts determined by Y1 and Y, to I. 

To finish the proof of the observation apply observation 11 to I (which has 

essentially the same number of Dedekind cuts as J). q I8 

Continuation 19 (of the Proof of Theorem 2). Now it suffices to prove that for each 

x E nip, i = i(x) > 0 there is no member y of Rip n Ni such that x, y are <-incompar- 

able. 

[Why? Then we can divide Rip to /J sets such that any two in the same part are 

<-comparable contradicting 16 + 18 and 8. How? By defining a function h: 52i, + p 

such that h(x) = h(y) * x<y v y<x. We define h l(Q, n Ni) by induction on i, in 

the induction step let Ni+ 1 \Ni = {Xi,c: E < p}. Choose h(xi,,) by induction on E: for 

each E there are d J&l < p forbidden values so we can carryout the definition.] 

So assume this fails, so we have: for some x E R,,, i = i(x) > 0 there is yO E Ni n Ri, 

which is <-incomparable with x; so there are U,,V, E B such that x E V,, x# U,,, 

yO E U,, yO#&. NOW U* = (J {U E T: yO&U} is in TnNi and x E U* (as V0 

witnesses it) but by 13(2) we know that U * is small, so it contradicts “x E slip”. This 

finishes the proof of Theorem 2. q 2 

Concluding Remarks 20. Condition (b) of Theorem 2 holds easily for p = /2. Still it 

may look restrictive, and the author was tempted to try to eliminate it (on such set- 

theoretic conditions see [ 16, $61). But instead of working “honestly” on this the author 

for this purpose proved (see [19]) that it follows from ZFC, and therefore can be 

omitted, hence 

Conclusion 21 (Main). 1s A is strong limit, cfA = K,,, and T a topology with base B, 

ITI > (BI 3 1, then I Tj > 2” and the conclusion of2(2) holds. 

Theorem 22. (1) Under the assumptions of Theorem 2 (or 21), ifthe topology T is of size 

> 2” then there are distinct x4 E Q for q E Un<onI<nc(l such that letting Z = (x,: 

9 E u,<, fl,<, pi} one of the following occurs: 

(a) there are U,, E T (i.e., open) for q E nlcwpul such that: 

U, n 2 = {x, E Z : (3 < lg(v))(v r n = q r n&v(n) < I?(n))}; 

(b) there are U,, E Tfor q E fllio ,u~ such that: 

U,n.Z = (x,, E 2:(3n < lg(v))(v tn = u] /n&v(n) > q(n))); 

(c) there are U,, E Tfor q E fl,<,,,pf such that: 

U,nZ= (x,~Z:-~vatj}. 

(2) If in addition A = K,, then we get 
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(0) there are distinct x4 E Qfor q E Q (the rationals) such thatfor every real r, for some 

(open) set U E T 

Un{x,:qEQ}={xq:qEQ,q<r}. 

Observation 23. Suppose that there are distinct x,, E Q (for y E UnEWn,<.pl) such 

that one of the following occurs: 

(d) there are U, E Tfor q E fllcw p, such that: 

U,nZ = {xv E Z:v = pA(i)&[ip4g or PaV]&q(lg(p)) = (1); 

(e) there are U,, E T for q E n I<w pl such that: 

U,nZ = {xv E Z:v = P”(i)&C1paq or pavl&vl(k(p)) < Cl}; 

(f) there are U,, E Tfor q E nTICw pI such that: 

U,nZ=(x,EZ:v=p”(i)&[ipa~orpavl&rl(lg(p))>~]}. 

Then for some distinct x: E Q (v E u ..,) the clause (c) of Theorem 22 holds. 

Proof. Let U,, (for 4 E nlsopl) be given by one of the clauses. For v E fl,<,,,!~, n E w 

let g(v) E n I< Zn pI be such that g(v)(21) = 0, g(v)(21+ 1) = v(l) and for rl E nlew pLI let 

g(q) = U I<o g(u 1 I) (we assume that pLI < ,ul+ 1). Next define points x: E R and open 

sets Ug as 

u; = U&j, x: = 
i 

xgcvjA <1> if we are in clause (d), 

x,(,)~<~) if we are in clauses (e), (f). 

Then XL, Vi exemplify clause (c) of Theorem 22. q z3 

Proof 24 (of 22 for the case 1 = K,). It suffices to prove 22(2), as (0) implies (a). Let 

p = A+ (no connection to ~1 of Theorem 2). By Theorem 2(2) and 21 w.1.o.g. IQ\ = 2, 

(B(~<.Let9={ZcfZ:(UnZ:UET)(<~);againitisaproperidealonR(but 

not necessarily even K1 -complete). Let P = ((U, V): U G V are from T, V\U $9}. 
Clearly P # 8 (as (0, a) E P); if for every (U,,, U,) E P there is U such that (U,,, U), 
(U, U,) are in P then we can easily get clause (0). So by renaming w.1.o.g. 

(*)1 (VVET)(VE~~~~~\VE~). 

We try to choose by induction on n < w, (x,, U,,) such that 

(a) x, E U,, E T, 

04 w+LJl<“Ul, 
(4 U,,ES and xr#U,, forl<n, 

(d) I(VE T:(VI d n)(xl# V))l 3 P. 

If we succeed, {U n (x,: n < CO} : U E T} includes all subsets of the infinite set 

{x n: n < CO}, which is much more than required (in particular (0) holds). 
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Suppose we have defined (x,, U,) for n < m and that there is no (x,, U,,,) satisfying 

(a)-(d). This means that if x E U E Tn 9, (Vn < m)(x,$ U) and x4 u,<,,, U, then 

(*)2 ](VE T:(Vn < m)(x,$ V) and x$ V}j -C ,K 

Let U* = u {U E TnS:(Vn < m)(x,$U)). As IQ1 < p = cfp we get 

(*)3 
Ii 

V.T:(V~<m)(x.bV)&U*\(YV~~U.)i)}l<p. 

Suppose that U * $9. Then, by (*)r , fl\U * E 9 (as U * is open). Since (by clause (c)) 

u ncm U,, E 9 we can find an open set U such that (Vn < m)(x, 4 U) and 

,Gi(Vt T:Vn(~j(llu@\U*))= Un(im(i.u(Q\U*))}/ 

(thisispossibleby(d)).ButifVn(U,,,mU,,u(Q\U*))= Un(Un,,U,,u(C2\U*)), 

V # Uu U*, then U*\(Vu U,<,,, U,) # 8, (Vn < m)(x,# V). This contradicts (*)3. 

Thus U* E 9. Hence (by (d)) we have 

(*I4 u<~{V~T:V\U*#~8c(Vn<rn)(x,+!V)}~. 

Since IBI < p we find VO E B such that V,\U* # 0, (Vn < m)(x,$K) and 

,u d ) ( V E T: V, 5 V} (. The last condition implies that Q\ V, 4 j and hence V, E 9 
(by (*)r). By the definition of U * we conclude V, G U *, a contradiction, thus proving 

22 (when A = K,). q z4 

Proof 25 (of 22 when A > K,). By Theorems 2, 21 w.1.o.g. Ia I = IB I = il. Let 

9={A~n:I{UnA:U~T}(~;1};itisanideal.Let4+=8(~)\9andlet~~be 

as in Theorem 2. 

Observation 26. It is enough to prove 

(01 

I$ 
(4 
(4 

) for every Y E 9 + and n we canJind a sequence U = (U,: [ < u”) of open subsets 
of R such that one of the following occurs: 
U increasing, Yn U,,,\U, E 9+; _ +. 

(*I 

04 

(*I 

(f) 

(*I” 

U decreasing, Y n U,\U,, 1 E 9 , 

Yn Ui\U EZ<UE E$+; 

forsome(Vi,yi:i<~*)wehaveYn(ni,~U,U,\U,,BnVS)Eg+,V,‘sandU~s 
are open, VC E U,, yi E Y are pairwise distinct and 

U,n{y,:E<un}= V,n{y,:E<11,}={y,:E~i}; 

like (d) but 

U,n{y,:e<p,)= V,n{y,:E<~~}={y,:id&<~“); 

like (d) but 

Ucn {y,:e < pn> = Vrn {ye:& < k> = {Ye}; 
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(8) like (d) but 

(*),I’ Ucn{Y,:s<p,}= V,n{y,:E<y,}={y,:&<~,,&fi}; 

(h) there arc y, y&r i < p,, such that f$ c UC are open, yC E Y are pair-wise distinct, 

(u,\v n n s+cV,~$+ and 

(**) WCw+hJ= ~~{Y,:E<~~}={Y,:E<~}; 

6) like (h) but 

(**) Wbw-w,}= ~n{y,:&<C1,}={y,:id&<~(,); 

(j) like (h) but 

(**)‘I Ugn{w+4= V~n{y,:E<p,)={yS); 

(k) like (h) but 

(**),‘I U,n{w<h)= V,n{y,:E<11,}={y,:if&,&<~,). 

Proof. First note that if n < m < CD, Y, c Y,,, Y1, Ye E 3 ’ and one of the cases 

(a)-(k) of (@i) occurs for Yr, m then the same case holds for YO, n. Consequently, 

(0 i ) implies that for each Y E 9 + one of (a)-(k) occurs for Y, n for every n E o. 

Moreover, if (0 i) then for some x E {a, b, c, d, e, fg, h, i, j, k} and Y,, E 9 + we have 

(*) for every Yi c Y, from 9 + and n E o case (x) holds. 

If x = a, clause (a) of 22(l) holds. For this we inductively define open sets V,, I’; for 

v E u,,., fl,<,~ such that for YI E nl<,,~r, c < ~~1 

1. v,- E V,, (v,\v;)n YO E y+, (I&+i)\VVA(i))n YO E 9+; 

2. if<<p,+i then I$G VA tl <i> E G<i,r> E G<1+1>. 

Let (U, : [ -c p. ) be the increasing sequence of open sets given by (a) for Yo, n = 0. Put 

v,,, = uzi+i, V<. = U,< for [ < po. Suppose we have defined V,, Vq- for lg(q) d m. 

Given v E n,<,_ 1 pl, C < A,-~. Apply (a) for (VV~~s+l>\K,A<i>)n YO and n = m to 

get a sequence <Ut : 5 < pm). Put 

G,,,,, = w25 n V7ci+~))u V,AW. 

Next for each q* (i) E U,,,, nlcnpl choose X,A(C) E &<c+I>\ G<c+I)) n 

.Yo\& /I : I < lg(q)}. As the last sets are pairwise disjoint we get that x,,‘s are pairwise 

distinct. Moreover, if we put U, = u,,, V, rn (for q E nneopLI) then we have 

u,n 
i 
x,:v E tJ I-I ~1 I = {x,:(3n < lg(v))(v In = r tn&v(n) < q(n))). 

IIEW l<n 
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Similarly one can show that if x = b, clause (b) of 22(l) holds and if x = c then we 

can get a discrete set of cardinality A hence all clauses 22(l) hold. 

Suppose now that x = d. By the induction of n we choose Y,, (U,,[, V,,c, y,,,[: 

i -=I PL,k 
Y(J= Y (E$+), 

U n.i, Vn+ Y,,< (for i < A) are given by (4 for Y,, 

As K,rl(n) n {Y,,c:~ < A) = {Y,A:~ d v(n)) and 
u m,tl(m) (for * < n) we get 

Win (y,,i:i < ~“1 = {y,,<:i G r(n)), 

{Y”,<X < PL, ,} E Y, E Y,,, G 

Now for q E n,,<,p,, we define W, = u,<. Wh,,. Then for each n, 

W,nf~,,~:l< cl.1 = {Y~,c:~G v(n)). BY renaming this implies clause (a) of 22(l). 

[For r E n,,, PLI let K, = Y~+I,~(~)+I, where y(q) = &x r(O) + pi-’ x q(l) + 

/4-*xyl(2)+... + pj x q(n - 1) + q(n). Note: pf is the Ith ordinal power of Pi. For 

11 E rIl<,Pf let Y(r) = (Y(V t 11, Y(V t 21, . . . > and let U, = W&.1 
For x = e we similarly get clause (b) of 22(l). For x = f we similarly get a discrete 

set of cardinality ;1 so all clauses of 22(l) hold. The case x = g corresponds to the 

clause (c) of 22(l). 

Suppose now that x = h. By induction on n we define Y,, U,,, V, and x,, for 

VI E n&G 

Y, ) = Y, 

U fl^<i>, f$<i>, WC> are U,, V,, yi given by the clause (h) for Y,, pn+ 1, 

Y fl^<i> = (U~A<<,MA<i>)“f-l~z~ v,A<,,. 

For ‘I E n,<, PI put Ui = uliw &tl. Then 

u; r-7 
i 

x,: v E u n p1 
“co l<n I 

= {x,:v = ~^<i)&C1~ar or vv&rl(k(p))< [I> 

witnessing case (e) of 23, hence by Observation 23, case (c) of 22(l) holds. 

If x = i then we similarly get case (f) of 23 and if x = j we get (d) of 23, hence case (c) 

of 22. Lastly x = k implies the case (c) of 22(l). q z6 
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Claim 27. If K < ;1, (Z, : ( < JC) is a partition of 51 or just UrsK Z, E _% + then for some 
countable w* G K, for every injinite w c w*, USEWZc$~. 

Proof. W.l.0.g. Q = UccK Z,. Otherwise there are 9 c [xlKo and ( TW: w E P), 
T, E T, 1 T,l G J such that for every w* E [K-]~Q and U E T, for some w E w*, w E B 

and VE T,,, we have Un(UiewZ,)= Vn(UIEWZ,). Let {Ur:[< A) list 

U { TW: w E S} (note that since K < ,? also 1 [K]‘~“I = I& < A). We claim that there is 

U E T such that for every 5 < 2 there are c(, /I E Sz for which: 

(c) (V& < 7c)(a E z, 0 fi E Z,). 

Indeed, to find such U consider equivalence relations E, (for 5 < 2) determined by (b) 

and (c), i.e., for CI, fi E Ck 

ctEt/I iff (Vi < <)(c( E U, o /? E U,) and 

(VE < K)(CI E z, 9 p E Z,). 

The relation E, has < 21<1+” < 1 equivalence classes. Consequently for each 5 < 1 

1 {V E T: V is a union of Et-equivalence classes) ( < 1. 

As ( TI > il we find a non-empty open set U which for no 4 < I is a union of 

Es-equivalence classes. This U is as needed. 

Now let (a,, b,,) be a pair (a, 8) satisfying (a)-(c) for 5 = 2, and let (tl,, &} G Z,,. 

Then w* = (cn:n < w}, U contradict the choice of 9 and (T,,,: w G 9). q 2, 

Proof 28 (of ( 01) of 26). For notational simplicity we assume that Y = Q. Let 

B = u,<, B,, lB,,l < I., (b E BO and B, G B,+l. 
As in the proof of Claim 5 w.1.o.g. for every x # y from Q we have 

I(U E T:x E: U o y$U}l >A. 

Let y5 E R for [ < pn+6 be pairwise distinct. For each < < 5 < P,,+~ there is 

s = s(i, 5) E {i, <> such that Tr(1< dsf {U E T: {yi, y<} n U = {y,}} has cardinality > 1. 

For each U E T?< there is V[U] E B, y, E V[U] c U. As ) BJ Q 1 for some V2< E B 
we have that the set 

Tit, = {U E T: {Y~,Y~> n U = {Y,} and yE E Vzr c U} 

has cardinality > ,%. For U E T let fv, gv be functions such that: 

1. fU:P”+6 --) 0, glJ:PL,+6 + 3, 

2. gu(s) = 0 iff ~~6 U, 
3. if y, E U then y, E g”(s) G U, 
4. f”(E) = min{n E w:g”(s) E B,}. 
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For each [ < 5 < ,4,+6 we findfi,T:p,+6 + w such that the set 

T&= GJ E Tits:fu =fr,s) 

has cardinality > i. By the Erdos-Rado theorem we may assume that for each 

i < < < PL,+s, E < P,,+~ the value of f<,<(E) depends on relations between i, 5 and 

E only. Consequently for some n* < 0, if E < p,,+ 5, U E T2r, [ < 5 < P,+~ then 

&E) E B,,*. As lB,,*j < 2 we find (for each 5 < 5 < ,unt5) a function gi,r:,u,,+6+ B,* 

such that the set 

T& = {U E T&g” = gi,r) 

is of size > i. Let 

U,, 5 = u % 5, = u &,&). 
E<Bn+5 

Clearly 

(*) Vr,r c L&T, U,,,\v,.,+~> 

L&n {YO ys> = ti,r n &y6> = {YWK 01 and 

(**) U,,,n (~8: 6 < ~,+51 = Q,cn (~6: 6 < P”+s). 

LetT,={V,,,,U,,5:i(5<~~+5, } so ( T, 1 < 2. Define a two-place relation ET1 on R: 

x Er,y iff (VU E T,)(x E U * y E U). 

Clearly Eri is an equivalence relation with G 21r11 < 2 equivalence classes. Hence by 

Claim 27 for each i < 5 < p,,+ 5, for some o-sequence of Er,-equivalence classes 

(4, c. n : n < w) we have: 

A,,,,” E U,,,\k, and for each infinite w s w, ~~/f,,&~. 

By the Erdos-Rado theorem, w.1.o.g. for c1 < c2 < P,,+~, cl, t2 < P,,+~ the truth 

values of “s(51,M = (I”> “Y<, E V&z”> “ye, E ULNA”, “A,,,,,,, c U<,.<2”, 

“At,,,,,, G Vt1,;2”, “A,,,,,,, = *~,,~2,m”, “*,,,c,,, = A,,,,,,,” depend just on the order 

and equalities among iI, iz, tl, r2 (and of course n, m). 

As each infinite union U,,,A,,,,. is in Y+, w.1.o.g. those truth values also do not 

depend on n (for the last one we mean “A,,,,,,. = A,,,,,,.“). Note: if A1,2,n = A3,4,m 

then *1,2+, = -4~~ = *I,~,,,,. 

Now, A,,,,, is either included in U51,62 or is disjoint from it (uniformly for n); 

similarly for VE1, <*. 

Case A: Aa,4,,n U1,2 = 8. Let U; = u,,, U25,25+1. Then (U;:c < ,u,) is an 

increasing sequence of open sets and u nEO Azi+ 2, 2i + 3, ,, E U;, I\ U;, which witnesses 

that the last set is in 9+. Thus we get clause (a). 

CaseB: AI,~,,,~US,,= 8. Let U; = U145..pnU25,26+1.Then (U[:[< p,)isade- 
creasing sequence of open sets and u DEW A 21, zi + 1, n E U;\ U[+ 1. Consequently we get 
clause (b). 
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Thus we have to consider the case 

A 1,2,n s u3,4 and A 3,4,n s u1.2 

only. So we assume this. 

Case C: A1,2,“n V3,4 = 8, A3,4,nn Vi,, = 0. Let U; = U,,,,,.,, V; = V25,21+1. 
Subcase Cl: yl E U3,4, y, E U3,4. Then let y; be the unique member of 

~Y2i~y2r+l~\~Y,~2y,2~+1) }. By (**) we easily get that (U;, Vi, y;: [ < pn) witnesses the 
clause (g). 

Subcase C2: y1 $ U3,4 or y5 $ U3,+ Then we put y[ = y,(,<, zi+ 1) and we get one of 
the cases (d), (e) or (f). 

Case D: A 1,~~ E V3,4, A3,4,” n VI,, = 8. We let U; = u { V2c,25+1 : 5 G l>. Thus 
U; increases with i and U;, I\U; includes u nEW A,,, zi+ I,n. Thus clause (a) holds. 

Case E: A1,2,,,n V3,4 = 8, A3,4,n c Vi,,. Let U[ = u {V2t,26+1:5 3 [>. Then 
U; decreases with i and the clause (b) holds. 

Case F: ALL, _c VL~, A3,4,n _c Vi,,. Let U; = U25,25+l, V; = V2(+2r+l. If 

~1~~5 E U3,4 then we put Y[ E {yzi, Y~~+I}\{Y~~~~,~~+~~} and we get case(k). Other- 
wise we put y; = yE(2r,25+ i) and we obtain one of the cases (h), (i) or (j). q 22 

Concluding Remarks 29. (1) Assume that a topology T on R is given with a base B, 
1 BI G I, and that I, (,u, : n E o) are as before ( pL, regular for simplicity). If 

(*) x, E R for v E u fl pt and U,, E T for n E fl pm; 
PIE03 l<n “EO 

(**) ifn < co, v E n I*1 and n E fl pt then for some k, 
f<fl I<W 

(W) 
( 

n’~ n ,ut&n’tk= n tk * U,,,n(x,) = U,,n{x,} , 
IGO > 

hold,thenwecan$ndSE Un<onlcn~*and(U~,,:r,vEnr<n~,nSforsomen)and 
(U,*:~~limS)(wherelimS={~~~~~~~~:(V/1<0)(~~I~S)})suchthat 

(a) < ) E S, S is closed under initial segments and 

n E S&n = Ign =3 (301)(n^(cr) ES) 

and for some infinite w c w, for every n < o and n E IimS we have: 

n -5 w 0 (!la2c( < ,uL,)(nh(a) E S) 0 (Pa < pL,)(nh<a) E S); 

(b) ifo,v E n,<,,ptnS and vqn 6 SnnIiwcll then 

U; n {x,} = U,T, n {xp>; 

(c) for v] E lim S, 

U,*n(x,:p E S} = U,n{x,:p E S}; 
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(4 

(4 

(2) So in Theorem 22, the case (c) can be further described. 

(31 We can consider basic forms for any analytic family of subsets of II (then we have 

more cases; as in 23 and (8 1 ) of 26). 
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