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Abstract

Let T be the family of open subsets of a topological space (not necessarily Hausdorff or
even T,). We prove that if T has a base of cardinality < p, 4 < u< 2% A strong limit of
cofinality Ng, then T has cardinality < g or > 2* This is our main conclusion (21). In
Theorem 2 we prove it under some set-theoretic assumption, which is clear when A = y; then
we eliminate the assumption by a theorem on pcf from [Sh 460] motivated originally by
this. Next we prove that the simplest examples are the basic ones; they occur in every
example (for 1 = N, this fulfills a promise from [Sh 454]). The main result for the case 1 = ¥,
was proved in [Sh 454].

Why do we deal with A strong limit of cofinality &,? Essentially as other cases are
closed.

Example 1. If I is a linear order of cardinality u with A Dedekind cuts then there is
a topology T of cardinality A > u with a base B of cardinality p.

Construction. Let Bbe {[—o0,x);:x € I} where [—o0,x);={yel:IkFy<x} [,

Remarks. As is well known, if u=pu~* p< i< y=y" then there is a u*-cc.
u-complete forcing notion Q, of cardinality y such thatin V¢ we have 2* = y, there is
a A-tree with exactly p A-branches (and < u other branches) hence a linear order of
cardinality u with exactly 4 Dedekind cuts. As possibly 2¥° > J, this limits possible
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generalizations of our Main Theorem. Also there are results guaranteeing the exist-
ence of such trees and linear or®ders, e.g. if y is strong limit singular of uncountable
cofinality, u < A < 2* (see [14], [15, 3.5 + §5]) and more (see [17]).

So we naturally concentrate on strong limit cardinals of countable cofinality. We do
not try to ‘save’ the natural numbers like n(*) + 6 used during the proof.

Theorem 2 (Main). Assume

(@) A, for n < w are regular or finite cardinals, 2** < A, and /. = Zn<w Ar (= Ro).

by A=), tn (even p,oi=2,) and J3(p,) <4, A<pu<i¥ (=2%) and
cov(u, AF, AJ, ) < p(see Definition 3 below, trivial when A = N, and easy when y = 1).

(c) Let T be the family of open subsets of a topological space (not necessarily
Hausdorff or even T,), and suppose that T has a base B of cardinality < p (i.e., B is
a subset of T which is closed under finite intersections, and the sets in T are the unions of
subfamilies of B).

Then

(1) The cardinality of T is either at least A™° (=2%) of at most p.

(2) In fact, if |T| > p then for some set X, of A points, {U~X,:U € T} has
cardinality 2*. Moreover, for some B' = T of cardinality A, {Xo N U:U is the union of
a subfamily of B'} has cardinality 2*.

Definition 3 ([15, 5.1]). cov(u, A*,4%,«) = min{|P|: P a family of subsets of u each of
cardinality < A, such that if a € y, |a| < A then for some a < k and a; € P (for i < «)
we have ac | ), a:}.

Proof of Theorem 2. Suppose we have a counterexample T to 2(2) (as 2(1) follows
from 2(2)) with a base B and let Q be the set of points of the space, so w.lo.g.
A < u=|B| < 2% Our result, as explained in the abstract, for the case 1 = ¥, was
proved in [18], and see background there; the proof as written here applies to this case
too but we usually do not mention when things trivialize for the case 4 = Ny; w.lo.g.
Q= U B, 0 € B and B is closed under finite intersections and unions. So T is the set of
all unions of subfamilies of B.
We prove first that:

Observation 4. For each n there is a family R of cardinality < u of partial functions
Sfrom A, to u such that: for every function f from A, to u there is a partition {r;|{ < p,» of
A, (i.e., pairwise disjoint subsets of A, with union A,) for which /\CW” fir.eR

Proof. By assumption (b) and 2**< A< u and A is strong limit of cofinality
No< pto. Ua

Claim 5. Assume Z* is a subset of Q of cardinality at most p and T’ is a subfamily of
T satisfying
(*) (VUI,UzeT/)[U1=U2 << UlmZ*=Usz*],

|T'| > u and n < w.
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Then we can find a subset Z of Z* of cardinality u,, subsets Z, of Z and members U,
of T and subfamilies T, of T’ each of cardinality > u for o < u, such that:

(a) the sets Z, for o < p, are pairwise distinct;

(b) forao < p,and Ve T'we have: Ve T, iff VnZ=2Z,cU,c V.

Proof. We shall use (*) freely. Define an equivalence relation E on Z*:
xEy iff {UeT :xeU<=y¢U}|<p

(check that E is indeed an equivalence relation).
Let Z® = Z* be a set of representatives. Now for V € T’ we have:

*) {UeT:UnZ®=VnZ®}c

U {(UeT:zeU=x¢UbutUnZ®=VnZ®}u{V*}

xEz,{x,z} S Z*
where

V* = {y e Z*:for the x € Z® such that yEx we have x € V'}.

[Why? Assume U is in the left side, i.e, U € T"and U N Z® = V' n Z®; now we shall
prove that U is in the right side; if U = V'* this is straightforward, otherwise for some
xeZ* xeU=x¢V* as Z® is a set of representitives for E for some z € Z%, we
have zEx so by the definition of V*, x e V* < ze V.ButasUnZ® = VnZ® we
have z € V' < z € U. Together x € U < z¢ U and we are done.]

Now the right side of (*) is the union of < |Z*|? sets, each of cardinality < u (by
the definition of xEz). Hence the left side in (*) has cafdinality < |Z*Pxpu< p Let
{V;:i< i*} = T’ be maximal such that: ¥;~ Z ® are pairwise distinct and V; € T". So
clearly

IT'N=|{J{UeT:UnZ®=V,nZ®} < Y u=pli*|
i<i* i<i*
but | 7’| > p hence |i*| = [{UNZ®:U € T'}| > u. Hence (as / is strong limit) neces-
sarily | Z®| > 1, so we can let z; € Z® for § < A, be distinct. For « < § < 4, we know
that —z,Ezz hence for some truth value t,, we have |[{UeT"

z,€ U=z3¢ U=t,,}| > p But Bis a base of T of cardinality < p, hence for some
V..s € B the set

Seap={UeT :z,e U=sz3¢U =t,, and {2,235} n U V,, c U}

has cardinality > u.
Choose U, ; € S, 5 such that u < |S} ;| where

def

Sip={U€SupUn{z:{ <A} =Utpn{z;:{ < A}},

note that U, ; exists as 2*» < A < pu < |8,.5]-
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By Observation 4 we can find a family R of cardinality < u, members of R have the
form #@=<u,;aer), where rc i, u,e€B such that for every sequence
= (U2 < A,y of members of B, there is a partition {r;:{ <,y of A, (so
re=rlu]ls i, for {<p,) such that @lr,e R (remember @ € B). Wlog if
@' =<ul:aer'yeRforl=1,2then ii = {u,;x €r) e R where r = r! Ur? and

ul if aerl,
U, =

w2 if o er?\rl
Foreach Ve T" we can find a[V] = <u,[V]:y < 4,), such that (remember ) € B).
u,[V] e B,
z,eV = z,eylV]cV,
z,¢V = u,[V]1=0.
Clearly there is U2, € S2 5 such that:

(*x) for any finite subset w < u, and a < f§ < A,, the following family has cardinal-
ity >

def

Sapw={U€Sap: (V{ < ) (r;[al U] = r,[a[UZ]]) and
(Ve ew)@LU] re=da[U2g] Iro)}.
By the Erdés-Rado theorem for some set M € [4,]%:

(a) for every o < f from M, t, ; are the same;

(b) for every a<fBeM, y, e€ M the truth values of “z, e V", “z, € U2y,
“z, € u,[U2;]” and the value of “min{{ < p,:y € r,[#[U2;]]}” depend just on
the order and equalities between «, 8, y and &.

Let M = {a(i):i<p,} where [i<j = a()<af(j)], let + be 0 if i<j=
ta(i),a(j) = truth and l lf l <J = taz(i),a(j) = false.

Case 1. If i< j< p, and e <iv &> jthen z,, ¢ UZi, ) So for some {; < p,
(®) foreveryi<puy, ¢ =min{{:a(+t)er[alUZa+nll}

Let Z={z»: i<t} Zi={Zsitn} U= ua(2i+:)[Ua2(2i),a(2i+ n].  Clearly
Ui ﬁZU, = Uaz(zi),(2i+1) and Ui NZ = Zi, 1ast1y let T; = Sa2(2i).a(2i+1),{§1); now Z, Zi5
U;, T, are as required.

Case 2. If i < j < p then
. 2
e<i = Zyy € Ugliy,aiy

. 2
e>j = Zyo & Usiiyaii)
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So for some {y < u,, {> < i,

(®) (@) fore<i<j<up,, {;=min{{:afe)e r([ﬂ[Urzz(i).a(j)]]}7
(b) fori<pu,, (= min{C:a(i +1t)e r{[ﬁ[Ua2(i),a(i+ 1)]]}-

Let Z = {Za(i)ii < #n}, Z, = {Za(e)33 < Zi} v {Za(2i+z)}, U= U {ua(z)[Uazz(Zi),zz(Zi+ nl:
e< 2i+ 1} and T = S52i).ai+ 1), €001

Case 3. If i < j < p,} then
N 2
e<i = Zuyey¢ Uslinaii)s
+ . U2
e >E€>] = Zye) € Uagi),at)
So for some {; < py, {2 < phy

(®) (a) fori<up,, ¢ =min{l:a(+1t)e r{[a[Uaz(i),a(i+ 511}
(b) fori<j<e<y, {=min{{: afe)erulUZ, .11}

Let Z = {Za(i):i<un}’ Zi= {Za(e):6=2i+t or 21+ 1 <8<ﬂn}, (Jl=
U {ua(s)[Uaz(Zi).a(2i+l)] ce=2i+tor2i+l<e<p,}and = Sa2(2i),a(zi+1),(;,,cz)-

Case 4. If i < j < p, then
£<i = Zye € Ugiyati)
€>] = Zyo € Udp,ay-

So for some {,0,,{3 < u,

(®) (@) fore<i<j<up, & =min{l:a)erlalUwpnll}

(b) fori<py,, {=min{{:ai+t)e r;[ﬁ[Uaz(i),a(Hn]]},

) fori<j<e<p’, (s=min{{:a)er[a(Uiy«;11}
Let Z={z,5:i<pn). Zi={z409'¢<p, and e#2i+1-1t}, U=
U {ua(e)[Uazz(Zi),a(Zi+ nlie>py,e#E2+1 - t}and T, = SaZ(Zi),a(2i+ 1), €1, 02.¢5)- NOW In

all cases we have chosen Z, T, U,, Z, (x < u,) as required thus finishing the proof of
the claim. 5

Claim 6. If Z* = Q,|Z*| < y, then {UNZ*:U € T} has cardinality < p.

Proof. Assume not. We can find 7' < T such that:

() for U, U, e T"wehave Uy = Uy, > Uy nZ*=U,nZ*.
BT > p
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By induction on n we define <T;,Z,,Z;,U,:n € [],., m> such that:

(a) T, 1is a subset of 7" of cardinality > y;

(b) f vanthen I, = T;;

(c)ifn=C dthenT,=T,Z}=2Z2=0,U,=0

(d) Z; = Z7 = Z* and |Z]| < pogy, Z7 disjoint to | J{U, 1,11 < Ign};
) U,eT

(f) if Ve T,then Uys Vand VnZZ=U,nZ2=2Z);

(g) iflgtp) =1g(vy=n+1landnln=v|nthen Z? = Z2 but

(h) iflgm) =1g)=n+ 1L nln=v|nbuty #vthen Z] #Z,.

Why this is sufficient? Let Z < () {Z2:n € {J,[],<, - It is a subset of Z* of
cardinality < A. The set B’ & {U,me U"w]—[,qu,} is included in T and has car-
dinality < 4. Forn e[|, pn welet U, =, . Uy,in. Now as U, 1, € T (by clause (e)),
clearly U, € T. Now suppose # #v are in HK(D i, and we shall prove that
UnZ#U/nZ, as |Hn,u,,| = 2% this suffices (giving (1) + (2) from Theorem 2). Let
n be minimal such that 7(n) # v(n), so n [ n = v | n. By clause (g), Z?(n+ 1y = ZZ 1+ 1)-
So (by clause (0)) Z; w4 1), Zv 1w+ 1) are distinct subsets of Z2 11 1) = Z2 141, S Z. So
it suffices to show U, N ZZ2 41y =Z)tm+1y and U,nZ2 i1y = Z} 141y and by
symmetry it suffices to prove the first. Now Z, 41, S U, 1w+1y by clause (f), hence
Z, 1w+ 1) S Uy so it suffices to prove that U, " Z21 .1 1) S Z,}1 4 1); for this it suffices to
prove that for I < w

(%) Ui 0 Z3 e S Zatas -
Case 1. | = n + 1. This holds by clause (f).

Case 2. I > n + 1. Then choose any V € T,};, so we know U, ;; € V (by clause (f))
and V & T, w+1) (by clause (b)), and V N Z21 4 1) = Z4 1+ 1) (bY clause (f)), together
finishing.

Case 3. 1< n. By clause (d), Z2 .+ 1) is disjoint from U, ;.

So we have finished to prove sufficiency, but we still have to carryout the induction.
For n = 0 try to apply (c), the main point being | T, | > u which holds by the choice of
T’ (which was possible by the assumption that the claim fails). Suppose we have
defined for n and let n € [],., . We apply Claim 5 with T,, Z*\|J,_, U, and
n here standing for T°, Z*, n there.

We get there Z, Z,, T, U, (a < u,) satisfying (a) 4 (b) there. We choose T, to be
T,, Upr oy to be Uy, Z2 (4 to be Z and Z,l ., to be Z,. You can check the induction
hypotheses, so we have finished. g

Definition 7. X < Q is small if {X " U:U € T} has cardinality < . The family of
small X = Q will be denoted by £ = £ (or more exactly, Fr q).

Claim 8. The family of small sets, .#, is a u*-complete ideal (on Q, including all
singletons of course).
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Proof. Clearly .# is a family of subsets of Q, and it is trivial to check that (X € 4 and
Y= X)= Ye g Soassume X, € # for o < a(*), a(*) < u and we shall prove that
X =J,X, € 4. Each X, has a subset ¥, such that

(a) 1Y < p and
(b) if ¥V, W are elements of T with V' n X, # W X, then there is some element y € Y,
which is in exactly one of V, W (possible as X, € #).

Now if V, W are elements of T which differ on X = UKW} X,, then they already
differ on some X, and hence they differ on some Y, hence on Y def anm Y,. So
HUNX:UeT}| =|{UnY:UeT}|, so it suffices to prove that Y is small. But
Y has cardinality < [( ), Y.l <) ,1Y,| < uxp = py;so Claim 6 implies that Y is small
and hence X is small. [lg

Conclusion 9. W.lo.g. card(Q) = u*.

Proof. Asobviously {x} € # for x € Q, by Claim 8 we know |Q| > p. Let T’ < T be of
cardinality u* and let Q' < Q be of cardinality u* such that: if U # V are from T"
then UNnQ' #VAQ . Let T"be {UnQ':U e T}and B'={UnQ":U € B}. Now
T”,B',Q’ are also a counterexample to the Main Theorem and satisfy the additional
demand. O,

Claim 10. W.lo.g. for some n(*), for no Z = Q of cardinality p,., and U,, T,, Z,
(& < fhoqs)) does the conclusion of Claim 5 (with Q, T here standing for Z*, T’ there) hold.

Proof. Repeat the proof of Claim 6. Le. we let Z* % Q, and add the demand
@) T,={UeT:UycUand UnZ}, < Uy, for I < lgn}.

The only change is in the end of the paragraph before the last one where we have used
Claim 5, now instead we say that if we fail then for our n, replacing T, Q by T,,, Z* resp.
gives the desired conclusion (note 7, is closed under union and finite intersection, and
has a basis of cardinality <

B, {Uu U Uyn:UeBand UnZk; = U,,“forl<lgn}
I<lgn

which is included in 7;). (Pedantically, we have to replace T,, Z* by
{U\Ul<n UtinUe Tn}’ ﬂUeTﬂ U\Ul<n Us rl') L

Observation 11. Suppose 4 is strong limit of cofinality N, I is a linear order of
cardinality < p, A < pu < 2™, and I has > u Dedekind cuts. Then I has > po (= %)

Dedekind cuts.

Remark. This observation does not rely on the assumptions of Theorem 2.



Sh:454a

102 S. Shelah | Annals of Pure and Applied Logic 68 (1994) 95— 113

Proof. We define by induction on « when rk;(x, y) = o holds for x < y in I

For o = 0: rk,(x, y) = a iff (x, y); = {z € I:x < z < y} has cardinality < 4.

For a > 0: tk;(x, y) = a iff for f < a, 71 [rk;(x,y) = B] but for any (x;,y;) (i < A),
pairwise disjoint subintervals of (x, y), there is i such that \/ﬁqu,(x,-, y;) = B.

(*); Note that by thinning the family, w.lo.g., [x;,y;] are pairwise disjoint.
[Why? E.g. as for every j the set {i: [x;, y:] n [x;,y;] # 0} has at most three members.]

(*); Fora >0and x < y from I, rk;(x, y) = aiff for § < o, —1[rk;(x,y) = ] and for
some A’ < A for any (x;,y;) (i < A'), pairwise disjoint subintervals of (x, y), there
are i < A" and B < a such that rk,(x;,y;) = f.

[Why? The demand in (), certainly implies the demand in the definition; for the other
direction assume that the definition holds but the demand in (%), fails, and we shall
derive a contradiction. So for each n < w there are pairwise disjoint subintervals
(x?, yMyof (x, y), for i < A, such that = [rk,(x}, y!) = f](when § < aand i < 4,). As we
can successively replace {(x,)}):i < 4,} by any subfamily of the same cardinality
(when the A,’s are finite— by a subfamily of cardinality 4,_,), w.Lo.g, for each n, all
members of {x}:i < 4,} realize the same Dedekind cut of {x7, y7:m < n,j < 4,} and
similarly for all members of {y/:i < 4,}. So for m < n, i < 4,, the interval (x},y’)
cannot contain a point from {x7, y':j < 4, } (as then the same occurs for all such i’s,
for the same point contradicting the “pairwise disjoint”) so either our interval (x?, y?)
is disjoint to all the intervals (x7, yJ') for j < 4, oritis contained in one of the intervals
(x}7,y}'); as j does not depend on i we denote it by j(m, n); if A = Xy, by the Ramsey
theorem w.l.o.g. for m < n, j(m,n) does not depend on n; now the family {(x7, y7"):
m< ,i< i,and for every n < w which is > m we have i # j(m,n)} contradicts the
definition. ]

If tk; (x, y) is not equal to any ordinal let it be co. Let o* = sup{rk;(x,y) + Lx < y
in I and rk;(x,y)} < co}. Clearly rk;(x, y) € «* U {o0} for every x < yin I (and in fact
a* < u*). As we can add to I the first and the last elements it suffices to prove:

(A) if rky(x,y) = « < oo then (x, y); has < u Dedekind cuts, and

(B) if rk;(x,y) = oo then it has > A Dedekind cuts.

Since (B) is straightforward, we only prove (A).

Proof of (A). We prove this by induction on a. If « is zero, this is trivial. So assume that
o > 0, hence by (*), for some 4’ < A there are no pairwise disjoint subintervals (x;, y;)
for i < A’ such that 8 < o implies —1[rk;(x;, ;) = f]. Let J be the completion of I, so
each member of J\I realizes on I a Dedekind cut with no last element in the lower half
and no first element in the upper half,and |J| > pu = |I]. Let J * def {zeJ:z¢Tandif
xel, yel and x <,z <;y and B < o then —[rk,(x,y) = B]}. By the induction
hypothesis, as |I| < p, easily |J\J *| < p hence the cardinality of J * is > u. By the
Erd6s-Rado theorem (remembering A is strong limit and 1’ < 1), there is a monotonic
(by <) sequence {z;:i < ') of members of J *; by symmetry wlo.g. <z;:i < ') is
< j-increasing. Now for each i < A’ as Z; < jZ;+, are both in J ¥, necessarily there is
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amember x; of I suchthat z; <, x; < ;z;41.S0X; < zi4 g <yXizvi1and x; € [, x4 €1
and z;,, € J" hence by the definition of J* we know that for no f < « holds
tky(x;, X;+1) = f. So finally the family {(x;, x;+,):i < 4’} of subintervals of (x, y) gives
the desired contradiction to (*),. [O;

Definition 12. We define an equivalence relation E on € xEy iff
{UeT:x e U=y¢U} has cardinality < p.

Conclusion 13. (0) The equivalence relation E has < A,y < A equivalence classes (for
some n(*) < w, which w.lo.g. is as required in Claim 10 too).
(1) W.lo.g. for each x € Q one of the following sets has cardinality < u:

(@ {UeT:xe U}, (b) {UeT:x¢U}.

(2) Wlo.g. for all x € Q we get the same case above, in fact it is case (b).
(3) W.lLo.g. for any two distinct members x, y of Q for some U € B we have x € U iff

y¢U.

Proof. (0) By Claim 10 and the proof of Claim 5 (if E has > A equivalence classes we
can repeat the proof of Claim 5 and get a contradiction to Claim 10).

(1), 2), (3) Let <X;: { < {*) list the E-equivalence classes, 50 {* < 4,n). As Q¢.7,
and # is p*-complete (Claim 8) for some {, X,¢9. Let Q' =X,
T'={UnQ:UeT},B={UnQ:UeB};so, B, T have all the properties we
attribute to Q, B, T and in addition now E has one equivalence class. So we assume
this.

Fix any xo€Q, let B®={U e B:xo¢ U}, T°={UeT:x,¢U}u{Q}, B' =
{UeBixge U}, T'={UeT:xoe U}u{0}. For some [ €{0,1}, |T"| > p, and
then Q, B!, T' satisfy the earlicr requirements and the demands in (1) and (2). For (3)
define an equivalence relation E' on Q: xE'y iff (WU e B)[x e U=ye U], letQ = Q
be a set of representatives, B’ = {U nQ’: U € B} and finish as in the beginning of the
proof of Claim 5. The only thing that is left is the second phrase in (2). But if it fails
then for every U € T\ {0} choose a nonempty subset V'[U ] from B. As the number of
possible V[U] is < |B|< y, for some Ve B\{0}, for >pu members U of T,
V = V[U] and hence ¥ = U. Choose x € V; so for x clause (a) of (2) fails and hence
for all y € Q clause (b) of (2) holds, as required. [,

Proof 14 (of Theorem 2). Consider for n = n(x*) (from Claim 13(0) and as in Claim 10)
the following:

(%) there are an open set ¥ and a subset Z of ¥ and for each « < A, there are Z, = Z
and open subsets V,, U, of V such that:
(a) for a < B < 4, the sets V, nZ, V; n Z are distinct;
b) U.nZ =2,
(c) the number of sets U € T satisfying UnZ=V,nZand U, c Uis > pu.

So by Claim 10 we know that this fails for n.
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Let y be large enough and let N = (N;:i<pu*) be an elementary chain of
submodels of (H(y), €) of cardinality u (and B, Q, T belong to N, of course) increasing
fast enough hence e.g.: if X e N; is a small set, U € 7T then there is U’ € N; n T with
UnX =U’'nX (you can avoid the name “elementary submodel” if you agree to list
the closure properties actually used; as done in [18]. For x € Q let i(x) be the unique
i such that x belongs to N;;;\N; or i = —1if x € Ny (remember [Q| = ™).

Definition 15. We define: x € Q is N-pertinent if it belongs to some small subset of
Q which belongs to Ny, (e.g. i(x) = — 1) and N-impertinent otherwise.

Observation 16. Q;, = {x € Q: x is N-impertinent} is not small (see Definition 7).

Proof. As NynQ is small by Claim 8, for some U* T’ def {UeT:
UnNynQ=U*nNynQ} has cardinality > p. So it suffices to prove:

(*) U1§éUzeT( = UlﬁQip:;éUzﬁgip.

Choose x € (U;\U,)u (U,\U,) with i(x) minimal. As U,,U, € T, i(x) = —1 (ie,
x € No)is impossible, so x € (N;+ 1 \N;) " Qfor i = i(x). If x € Q;; we succeed, so assume
not, i.e., x is N-pertinent, so for some small X € N; x € X. Hence by the choice of N: for
some Ui, U, e N;AT we have: UinX=U;nX, UjnX=U,nX so UinX,
U5 n X € N; are distinct (as x witness) so thereis x' € Nyn X, x' € Uy = x"¢ U3; but
this implies x' € U; = x' ¢ U,, contradicting i(x)’s minimality. ;4

We define a binary relation =< on Q;, by:

x<Xy <« forall UeB,if ye U then x € U.

Claim 17. The relation < is clearly reflexive and transitive. It is antisymmetric by
Claim 13(3).

Observation 18. If J = Q;, is linearly ordered by X then J is small.

Proof. For each U, U, € B such that U; nJ = /U, nJ choose yy, v, € J n(U\U,).
Let I = {yy,v,:U, U, e B& Uy nJ SU,nJ}. Clearly |I| < p. We claim that [ is
dense in J (with respect to <, i.e., I has a member in every non-empty interval of J).
Suppose that x, y, z € J, x<y<z. By 13(3) we find U,,U, € B such that x e U,,
y¢ U, and y € U,, z¢ U,. Consider yy, y, € I. Easily x<yy, v,<z. Thus if (x,z) # 0
then (x,z) n I # 0.

Now note that each Dedekind cut of I is a restriction of at most 3 Dedekind cuts of
J (and the restriction of a Dedekind cut of J to I is a Dedekind cut of I). For this
suppose that Y;, Y,, Y3, ¥, are lower parts of distinct Dedekind cuts of J with the same
restriction to I, wlo.g. ¥« Y, c Y3 < Y,. For i = 2,3,4 choose y; € Y; such that
Y <y, Y;<y; and Y3<y,. As (y2,y4) # 0 we find x € (y2,y4) N L. Since y,<x we
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get x¢ Y, and since x<y, we obtain x € Y,. Consequently x distinguishes the
restrictions of cuts determined by ¥; and Y, to I.

To finish the proof of the observation apply observation 11 to I (which has
essentially the same number of Dedekind cuts as J). [;g

Continuation 19 (of the Proof of Theorem 2). Now it suffices to prove that for each
x € Q;,, i = i(x) > 0 there is no member y of Q;, n N; such that x, y are <-incompar-
able.

[Why? Then we can divide €, to u sets such that any two in the same part are
< -comparable contradicting 16 + 18 and 8. How? By defining a function h: Q;, - u
such that h(x) = h(y) = x<y v y<x. We define h [ (Q;, » N;) by induction on i, in
the induction step let N;, 1 \N; = {x;.:¢ < u}. Choose h(x; ) by induction on &: for
each ¢ there are < |g| < u forbidden values so we can carryout the definition.]

So assume this fails, so we have: for some x € €, i = i(x) > O thereis yo € N;n €,
which is <{-incomparable with x; so there are U,,V, € B such that x € V,, x¢ U,,
yo € Up, yo#Vo. Now U*=|J{U €T y,¢U} is in T N; and x e U* (as V
witnesses it) but by 13(2) we know that U * is small, so it contradicts “x € ;,”. This
finishes the proof of Theorem 2. [I,

Concluding Remarks 20. Condition (b) of Theorem 2 holds easily for p = A. Still it
may look restrictive, and the author was tempted to try to eliminate it (on such set-
theoretic conditions see [ 16, §6]). But instead of working “honestly” on this the author
for this purpose proved (see [19]) that it follows from ZFC, and therefore can be
omitted, hence

Conclusion 21 (Main). If J is strong limit, cf A = N, and T a topology with base B,
|T| > |B| = A, then | T| = 2* and the conclusion of 2(2) holds.

Theorem 22, (1) Under the assumptions of Theorem 2 (or 21), if the topology T is of size
> 2% then there are distinct x, € Q for n € {J, . 11,<,t: such that letting Z = {x,:

ne Un<w [1.<,m} one of the following occurs:
(a) there are U, € T (i.e., open) for n € [| 1< M1 such that:

UynZ={x,€eZ:3n<1g)(vIn=nn&v(n)<nn)}
(b) there are U, € T for n € [ ], ., i such that:

UynZ={x,€eZ:@n<lgM)v[n=nln&v(n)>nn)}
(c) there are U, € T for n € [, ., t such that:

U,nZ ={x,eZ:vay}.

(2) If in addition A = X, then we get
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(®) there are distinct x, € Q for q € Q (the rationals) such that for every real r, for some
(open)set Ue T
Un{x;:qe @} ={x;:9eQ,g<r}

Observation 23. Suppose that there are distinct x, € Q (for n € Unew]_[ 1<n th) such
that one of the following occurs:

(d) there are U, e T for n e nkw 1 such that:
UynZ={x,eZ:v=p"{>&[M1panor pan&nlg(p)) =1}
(¢) there are U, € T for n €[], m such that:
UnZ={x,eZ:v=p"{{>&[Mpanorpan&nlg(p)) < {1}
(f) there are U, € T for n e [],.,, w such that:
UynZ={x,€Ziv=p"{{>&[T1pan or pan&nlg(p)) > {1}
Then for some distinct x, € Q (v e | J,__) the clause (c) of Theorem 22 holds.

new

Proof. Let U, (for n € [],_,, i) be given by one of the clauses. For v € H,qp,, neEw
let g(v) € [, ., # be such that g(v)(2]) = 0, g(v)(2 + 1) = v(I) and for € [, s let
gin) = U 1< 9 ['1) (we assume that u < g4 ). Next define points x|, € Q and open
sets U, as
Uiz Uy o= {xg(w<1> '%f we are %n clause (d),
Xgmrcoy 1f we are in clauses (¢), (f).

Then x!,, U, exemplify clause (c) of Theorem 22. [O,;

Proof 24 (of 22 for the case 1 = ¥,). It suffices to prove 22(2), as (D) implies (a). Let
u = A" (no connection to u of Theorem 2). By Theorem 2(2) and 21 w.lo.g |Q] = 4,
IBl< A Let S ={Z<=Q:{UNZ:U e T}| < u}; again it is a proper ideal on Q (but
not necessarily even N, -complete). Let P = {(U, V):U < V are from T, V\U ¢ .9 }.
Clearly P 5 0 (as (@, Q) € P); if for every (Uy, U,) € P there is U such that (U,, U),
(U,U,) are in P then we can easily get clause (®). So by renaming w.l.o.g.

(*)1 (YWWeTHVed or Q\Ve F)

We try to choose by induction on n < w, (x,, U,) such that

(a) x, €U, eT,

(b) xn¢U1<"Ul,

(c) U,ef and x¢U, forl<n,
@  HVeT:(V<snE¢EN)>n

If we succeed, {Un{x,:n< w}:Ue T} includes all subsets of the infinite set
{x,: n < w}, which is much more than required (in particular (®) holds).
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Suppose we have defined (x,, U,) for n < m and that there is no (x,,, U,,) satisfying
(a)—(d). This means thatif xe U e Tn 4, (Yn < m)(x,¢U) and x¢| ) _ U, then

(%), K{VeT:(Yn<mx,¢V)and x¢ V}| < p

n<m

Let U¥=|J{UeTnS:(Vn<m)(x,¢U)}. As |Q| < pu = cfu we get

(*)3

{Ve T:(Vn<m)(x,¢ V)& U*\(Vu U U,,) # (Z)}’ < U
Suppose that U *¢.#. Then, by (*);, Q\U * € .# (as U* is open). Since (by clause (c))
U, <w Un € # we can find an open set U such that (Vn < m)(x,¢ U) and

{Ve T:Vm( U U,,u(Q\U*)): Um( U U,,u(Q\U*))}]

n<m n<m

U<

(this is possible by (d)). Butif ¥ ([}, ., Us 0 (@\U*) = Un({J,,, Usu (Q\U*)),
V#UuU¥* then U*\(Vu Un<m U,) #0, (Vn < m)(x,¢ V). This contradicts (*);.
Thus U* € .#. Hence (by (d)) we have

(%)a p<{VeT: V\U*#0&(Vn<m)x,¢V)}|

Since |B|<u we find V,e B such that Vp\U* #§, (Vn<m)(x,¢V,) and
u<|{V € T: ¥, = V}|. The last condition implies that Q\ ¥, ¢.# and hence V;, € S
(by (*),). By the definition of U * we conclude V;, = U *, a contradiction, thus proving
22 (when 1 =Ng). Oy

Proof 25 (of 22 when 4 > ¥,). By Theorems 2, 21 w.lo.g |Q|=|B|= A Let
F={AcQ:{UnA:UeT} <4};itis anideal. Let #* = 2(Q)\.F and let y, be
as in Theorem 2.

Observation 26. It is enough to prove

(®1) forevery Y € 57 and n we can find a sequence U = (Uy: { < u,» of open subsets
of Q such that one of the following occurs:

(a) U increasing, Y " Uy \U; € S *;

(b) U decreasing, YA U\U;+, € £,

© YnUANU, . Ues;

(d)  forsome <V, y;:{ < ppy wehave Y (.., UNU, ., V) e F ", Vsand Us
are open, V, = U, y; € Y are pairwise distinct and

(%) Un{yeie<pn}=Ven{yere < pa} = {y1e < s
(€) like (d) but

(%) Un{yse<pn}=Vin{yee<p)={y:{<e< )
(f)  like (d) but

(+)" Unf{ye<m}=Vin{y.ie <} ={y}
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(&) like (d) but

B Un{reie < ) = Vi {yeie < i} = (0 £ < iy 8 #

(h)  thereare V,, y for { < p, such that V, = Uy, are open, y, € Y are pairwise distinct,
(U\VIN (Ve prVie F* and

() Uo{yee<m}=Viol{ye<p}={y:e<{}

(1)  like (h) but

(e Un{yee<m}=Vn{yne<m)={r:{<e<m}

(j)  like (h) but

(o) U {yee<pa) = Vi {peie < thay = {3}
(k)  like (h) but

()" Un{yoe<y=Vio{yee<pp)={y:{#&e< )

Proof. First note that if n<m< w, Y, € Yy, Yy, Yo € £ 7 and one of the cases
(a)—(k) of (®) occurs for Y,, m then the same case holds for Y, n. Consequently,
(®,) implies that for each ¥ € #* one of (a)-(k) occurs for ¥, n for every n € w.
Moreover, if (®,) then for some x € {a,b,c,d,e,fg, h,i,j,k} and Y, € #© we have

{x) forevery Y, S Y, from #* and n € w case (x) holds.

If x = a, clause (a) of 22(1) holds. For this we inductively define open sets V,, V,; for
ne Unew I_[l<nl'l1 such that for e H1<nﬂla C< Hp'

LVysV, W\V,)nYeesd', (Vpgn\Vpo)nYoed™;
2. < sy then V€ Viry S Varioor S Vi

Let {U,:{ < po > be the increasing sequence of open sets given by (a) for Y5, n = 0. Put
Vies = Usgr 1, Vigy = Uy for { < po. Suppose we have defined V,, ¥, for Ig(n) < m.
Given 1 € [[,<,,— 1 1> { < tim—-1- Apply (@) for (Vx4 15\Vyop) N Yo and n=m to
get a sequence (U;: ¢ < p,,». Put

Vircees = Wagar1 O Vpr s 1) 9 Vorioys
Vircoes = Uze 0 Ve 1) 9 Vo

Next for each 7’]A<C> € U"ew Hl<nﬂl choose Xy (O € V;1A<;+ 1)\V,1_A<§+1>) M
AYO\{x” nil< 1g(n)}. As the last sets are pairwise disjoint we get that x,’s are pairwise
distinct. Moreover, if we put U, = | J Vyin (for n € I],.., ) then we have

new

U,n {xv:v e U1l p,} = {x,:(An < 1gM)(v [ n=nn&v(n) < nn)}.

new I<n
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Similarly one can show that if x = b, clause (b) of 22(1) holds and if x = ¢ then we
can get a discrete set of cardinality A hence all clauses 22(1) hold.
Suppose now that x = d. By the induction of n we choose Y,, <U,r, Vi Vuc:
C<pn
Yo=Y (est),
Un.co Vaos ¥ o for { < p,) are given by (d) for Y,,,
Yoe1 =Y m{<“n U",C\U5<un Vn,C ef".

For 5 € [[,<, 1 (n € w) we let

(—
Wn_ n,nn) N ﬂ Um.n(m)'

m<n

AS Vn,n(n) M {yn,CZC < #n} = {yn,C:C < ’1(”)} and {yn,ZZC < Aun} = Yn & Ym+1 ==
U, oy (for m < n) we get

Wy {n: 8 <t} = {Pn:{ < nn)},
w,n {Ym.c:c < “m} S Unpem O {.Vm,CZVC < .“m}
S {(Ym: (< n(m)} (for m < n).

Now for ne[[,., #« we define W,=1J,_ Wy;.. Then for each n,
Wy {Yn: 0 < tn} = {¥nc:{ < n(n)}. By renaming this implies clause (a) of 22(1).
[For nell,c,tt let Xy=Yus1m+1, Where y(m) = unxn(0) + up~ ' xn(1) +
WX + - - - + pl xn(n — 1) + n(n). Note: u! is the Ith ordinal power of u,. For
L] € Hl<w Hi let ’)—)-(77) = <'))(77 fl), ’})(Y] r2)7 .. > and let Uﬂ = W)?(n)']

For x = e we similarly get clause (b) of 22(1). For x = f we similarly get a discrete
set of cardinality A so all clauses of 22(1) hold. The case x = g corresponds to the
clause (c) of 22(1).

Suppose now that x = h. By induction on n we define Y,, U,, V, and x, for
KN | PP

Yo,=1Y,
Usrioss Varcoss Xqros are Uy, Vi, y, given by the clause (h) for ¥, pp4 1,
Yo = WUnrs \Var ) 0 (Vg o Varco-
Forne[],.,mput Uy=1J,., Vor: Then
U,;m{xv:v e U 1 u,}
n<w l<n
= {x,:v=p" > &[panor pan&nlg(p)) < (1}

witnessing case (e) of 23, hence by Observation 23, case (c) of 22(1) holds.
If x = i then we similarly get case (f) of 23 and if x = j we get (d) of 23, hence case (¢)
of 22. Lastly x = k implies the case (c) of 22(1). [J,6
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Claim 27. If k < 4, {Z;:{ < k) is a partition of Q or just Ugele € # * then for some
countable w* < «, for every infinite w = w*, |}, Z;¢ 5.

Proof. W.lo.g. Q= (J;<.Z, Otherwise there are 2# <[] and <(T,:we 2),
T, < T,|T,| < 2 such that for every w* € [x]® and U € T, for some w = w*, w € #
and VeT, we have Un(l,. ,Z)= Va(lUpe, Z) Let {Upsl{< A} list
U {T:w e 2} (note that since x < 4 also |[«] SNO| = k™ < ). We claim that there is
U € T such that for every & < A there are «, f € Q for which:

(a) aelU <« B¢U,
(b) (V< iNee U = Belp),
(] (Ve<k)aeZ, < feZ,)

Indeed, to find such U consider equivalence relations E, (for ¢ < 1) determined by (b)
and (c), i.e., for o, § e Q

aE:B iff (V<) aeU, = Bely) and
(Ve< kW neZ, = feZ,).

The relation E; has < 2!¢!** < } equivalence classes. Consequently for each & < 1
[{V e TV is a union of E.-equivalence classes}| < A.

As |T| > 4 we find a non-empty open set U which for no £ < A is a union of
E.-equivalence classes. This U is as needed.

Now let («,, 8,) be a pair («, f) satisfying (a)—(c) for ¢ = 4, and let {o,,8,} = Z,,.
Then w* = {{,:n < w}, U contradict the choice of # and {(T,,:w e 2}. [,

Proof 28 (of (®,) of 26). For notational simplicity we assume that ¥ = Q. Let
B = Un<wB", IBnl < /l, Q) € BO and Bn = Bn+1'
As in the proof of Claim 5 w.l.o.g. for every x # y from Q we have

HUeT:xeU <« y¢U}| > A

Let y, e Q for { < u,+¢ be pairwise distinct. For each { < ¢ < p,.¢ there is
e=e((,¢) € {¢,¢}suchthat T?: & {U e T:{y;.y:} " U = {y,}} has cardinality > A.
For each U e T, thereis V[U] € B, y. € V[U] < U. As | B| < A for some V*; € B
we have that the set

Te={UeT:{y,y}nU={y}andy e V¥ <= U}
has cardinality > A. For U € T let fy, gy be functions such that:

L fuilthie > @, Guilly+6— B,
2. gule) =0 iff y,¢U,

3. ify,e Utheny, egyle) = U,
4. fy(e) = min{n € w:gy(e) € B,}.
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For each { < & < pi,+¢ we find f; s: ftn+ 6 = @ such that the set
T2e={UeTlefu="r.)

has cardinality > A. By the Erd6s—Rado theorem we may assume that for each
{ < &< fn+s, € < lp+s the value of f; -(e) depends on relations between {, ¢ and
¢ only. Consequently for some n* < w, if € < p,+s5, U € T#s, { < &< pip15 then
gule) € B». As |B,x| < 4 we find (for each { < & < p,+5) a function g; ¢: pty16 = B
such that the set

ch ={Ue T€?§:gv =gr¢)

is of size > 4. Let

Ue=UT  Vee= U guee)

E<Un+5

Clearly

(*) Vee€ Une,  Ure\Vi ¢S,
Upen {yo veh = Vg0 {yo v} = (e §)} and

(%x) Upen {950 0 < ttnrs} = Vee O {052 0 < fiyss )

Let Ty = { Ve, U s:{ < & < ppss},50 | T1| < A Define a two-place relation Er, on
x Er,y it (WUeT))(xelU = yeU).

Clearly Er, is an equivalence relation with < 2!/l < 1 equivalence classes. Hence by
Claim 27 for each { < & < y,5, for some w-sequence of Ey -equivalence classes
{Ag e n:n < w) we have:

A enS U \V, . and for each infinite w = w, | ) Ay, ¢.2.
new
By the Erdés—Rado theorem, w.lo.g. for {; < {; < py+4, &1, &3 < fp+4 the truth
values of “8(C1’C2) =017 “Y§1 € V§1.C2”’ “y§1 € Uél,iz”’ “Ail,Cz,n = Uéxyéz”’
“Ariom S Ve e “Agyoon = Atam s “Agytan = Agy 5w depend just on the order
and equalities among {4, {,, &, &, (and of course n, m).

As each infinite union | ), __ A, ., isin £ *, wlo.g those truth values also do not
depend on n (for the last one we mean “A;, r, » = A¢, 6,7 ) Notet if Ay 5= As,a.m
then 4, 5, = A3.4.0= 41,2, m

Now, A; . , is either included in U;, , or is disjoint from it (uniformly for n);
similarly for V;, ,.

Case A: A3,4,,,r'\ U1,2 = ¢. Let UC’ = U{S{ U2§’2§+1. Then <U£§ < ﬂn> iS an
increasing sequence of open sets and U new A20+2,20+3.0 S Uf 1 \U{, which witnesses
that the last set is in # *. Thus we get clause (a).

Case B: A4y 5y nUs o = 0. Let U = | ) <., Use 2e+1- Then UL 1L < p, ) is a de-
creasing sequence of open sets and ( J,_ Aar 20+1,n = U{\U{+ ;. Consequently we get
clause (b).

hew
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Thus we have to consider the case
A1 2,SUzs and Ay,,S U,
only. So we assume this.

Case C: Alyz,nm V3,4 = ®, A3,4‘n m VI,Z = m. Let UC/ = U25,2€+1, V;’ = V2§,2(+1.
Subcase Cl: y; e Usy, ys€ Us,. Then let y; be the unique member of

{¥20s Vaes 1)\ { Becag, 20+ 1} By (%%) we easily get that CU¢, VY, y;:{ < p,> witnesses the
clause (g).

Subcase C2: y, ¢ Uz 4 or ys¢ Us 4. Then we put y; = .27, 20+ 1) and we get one of
the cases (d), () or (f).

Case D: Al,Z,n < V3’4, A3,4,,,r\ V1,2 = 0. We let Ugl = U {V2€,2§+1:§< C} Thus
Uy increases with { and U/, (\U/ includes U"w Ajz¢ ar+1,.- Thus clause (a) holds.

Case E: Al‘z,n(—\ V3‘4 = @, A3,4,n < V1’2. Let U{I = U {V25,2§+1:§ > C} Then
U/ decreases with { and the clause (b) holds.

Case F: AI,Z,n == V3,4, A3,4'" < V1,2. Let UC’ = U2€‘2§+1, V{, = V2€+25+1. If
¥1,¥s € Us 4 then we put yz € { ¥y, Yar+1) \{ Vet 2041y and we get case (k). Other-
wise we put y; = . 2041y and we obtain one of the cases (h), (i) or (j). [j»

Concluding Remarks 29. (1) Assume that a topology T on Q is given with a base B,
IB| < A, and that A, {u,:n € w) are as before (u, regular for simplicity). If

(x) x,€eQforvel) [Im and U,eT forne [] p

new l<n new

(x¢) ifn<w,ve[[m and ne [] w then for some k,

I<n I<w

(W)(n’e [Twm&ntk=ntk = Uyn{x}= Um{xv}>,

I<w

hold, then we can find S = | ), . . I 1,<, 1 and <U%,:n,v € [{,., " S for some n) and
Ug:nelimS) (where imS = {n € [ [, t: (VI < w)(n | | € S)}) such that
(a) < > €S, Sis closed under initial segments and

neS&n=Igy = (3" {a)eS)
and for some infinite w S w, for every n < w and n € im S we have:
new < (32 < )" <) €S) = (Fa<p,)n"{a) €S
®) ifpvell,c,unSandvaneSn[],., t then
Us n (%) = Uty o {3
(c) for n € lim §,
Urni{x,:peS}=U,n{x,:pe S}
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(d) Ur¥,eBfornve (l_[,<np,> NS, n< w,

(e) U= U{U,’;‘r,,,v:n <w Ve (Hknl‘l) N S}for n €lim§.

(2) So in Theorem 22, the case (c) can be further described.
(3) We can consider basic forms for any analytic family of subsets of 4 (then we have
more cases; as in 23 and (® 1) of 26).
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