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Abstract. We show a general scheme of Ramsey-type results for partitions of countable sets of
finite functions, where “one piece is big” is interpreted in the language originating in creature
forcing. The heart of our proofs follows Glazer’s proof of the Hindman Theorem, so we prove
the existence of idempotent ultrafilters with respect to suitable operation. Then we deduce
partition theorems related to creature forcings.
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1. Introduction

A typical partition theorem asserts that if a set with some structure is divided into
some number of “nice” pieces, then one of the pieces is large from the point of view
of the structure under considerations. Sometimes, the underlying structure is compli-
cated and it is not immediately visible that the arguments in hands involve a partition
theorem. Such is the case with many forcing arguments. For instance, the proofs of
propernes of some forcing notions built according to the scheme of norms on pos-
sibilities have in their hearts partition theorems stating that at some situations a ho-
mogeneous tree and/or a sequence of creatures determining a condition can be found
(see, e.g., Rosłanowski and Shelah [10, 11], Rosłanowski, Shelah, and Spinas [12],
Kellner and Shelah [7, 8]). A more explicit connection of partition theorems with
forcing arguments is given in Shelah and Zapletal [13].
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2006108). Publication 957.
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354 A. Rosłanowski and S. Shelah

The present paper is a contribution to the Ramsey theory in the context of finitary
creature forcing. We are motivated by earlier papers and notions concerning norms
on possibilities, but we do not look at possible forcing consequences. The common
form of our results here is as follows. If a certain family of partial finite functions is
divided into finitely many pieces, then one of the pieces contains all partial functions
determined by an object (“a pure candidate”) that can be interpreted as a forcing
condition if we look at the setting from the point of view of the creature forcing. Sets
of partial functions determined by a pure candidate might be considered as “large”
sets.

Our main proofs follow the celebrated Glazer’s proof of the Hindman Theorem,
which reduced the problem to the existence of a relevant ultrafilter on ω in ZFC.
Those arguments were presented by Comfort in [3, Theorem 10.3, p. 451] with [3,
Lemma 10.1, p. 449] as a crucial step (stated here in Lemma 3.7). The arguments of
Section 3 of our paper really resemble Glazer’s proof. In that section we deal with the
easier case of omittory-like creatures (loose FFCC pairs of Definition 2.2(2)) and in
the proof of the main result Conclusion 3.10 we use an ultrafilter idempotent with re-
spect to operation ⊕ (defined in Definition 3.4). The third section deals with the case
of tight FFCC pairs of Definition 2.2(4). Here, we consider partitions of some sets
of partial functions all of which have domains being essentially intervals of integers
starting with some fixed n < ω . While the general scheme of the arguments follows
the pattern of Section 3, they are slightly more complicated as they involve sequences
of ultrafilters and operations on them. As an application of this method, in Theorem
4.9 we give a new proof of the partition theorem by Carlson and Simpson [2, Theorem
6.3]. The next section presents a variation of Section 4: Under weaker assumptions
on the involved FFCC pairs we get a weaker, yet still interesting partition theorem.
Possible applications of this weaker version include a special case of the partition
theorem by Goldstern and Shelah [4] (see Corollary 5.9). These results motivate Sec-
tion 5, where we develop the parallel of the very weak bigness for candidates with
“limsup” demand on the norms.

Our paper is self-contained and all “creature terminology” needed is introduced in
Section 2. We also give there several examples of creating pairs to which our results
may be applied.

Notation: We use standard set-theoretic notation.

• An integer n is the set {0, 1, . . . , n−1} of all integers smaller than n, and the set
of all integers is called ω . For integers n < m, the interval [n, m) denotes the set
of all integers smaller than m and greater than or equal to n.

• All sequences will be indexed by natural numbers and a sequence of objects is
typically denoted by a bar above a letter with the convention that x̄ = 〈xi : i < y〉,
y ≤ ω .

• For a set X , the family of all subsets of X is denoted by P(X). The domain of a
function f is called dom( f ).

• An ideal J on ω is a family of subsets of ω such that

(i) all finite subsets of ω belong to J but ω /∈ J, and
(ii) if A ⊆ B ∈ J, then A ∈ J and if A, B ∈ J then A∪B ∈ J.
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Partition Theorems from Creatures 355

For an ideal J, the family of all subsets of ω that do not belong to J is denoted by
J+, and the filter dual to J is called Jc. Thus Jc consists of all sets A ⊆ ω for which
ω \A ∈ J.

2. Partial Creatures

We use the context and notation of Rosłanowski and Shelah [10], but below we recall
all the required definitions and concepts.

Since we are interested in Ramsey-type theorems and ultrafilters on a countable
set of partial functions, we will use pure candidates rather than forcing notions gen-
erated by creating pairs. Also, our considerations will be restricted to creating pairs
which are forgetful, smooth ([10, 1.2.5]), monotonic ([10, 5.2.3]), strongly finitary
([10, 1.1.3, 3.3.4]), and in some cases omittory-like ([10, 2.1.1]). Therefore, we will
reformulate our definitions for this restricted context (in particular, val[t] is a set of
partial functions), thus we slightly depart from the setting of [10].

Context 2.1. In this paper H is a fixed function defined on ω such that H(i) is a finite
non-empty set for each i < ω . The set of all finite non-empty functions f such that
dom( f ) ⊆ ω and f (i) ∈ H(i)

(
for all i ∈ dom( f )

)
will be denoted by FH.

Definition 2.2. (1) An FP creature† for H is a tuple

t =
(
nor, val, dis, mdn, mup

)
=

(
nor[t], val[t], dis[t], mt

dn, mt
up
)

such that

• nor is a non-negative real number, dis is an arbitrary object and mt
dn <

mt
up < ω , and

• val is a non-empty finite subset of FH such that dom( f ) ⊆
[
mt

dn, mt
up
)

for
all f ∈ val.

(2) An FFCC pair‡ for H is a pair (K, Σ) such that

(a) K is a countable family of FP creatures for H,
(b) for each m < ω the set K≤m :=

{
t ∈ K : mt

up ≤ m
}

is finite and the set
K≥m :=

{
t ∈ K : mt

dn ≥ m & nor[t] ≥ m
}

is infinite,
(c) Σ is a function with the domain dom(Σ) included in the set{

(t0, . . . , tn) : n < ω , t� ∈ K and mt�
up ≤ mt�+1

dn for � < n
}

and the range included in P(K)\{ /0},
(d) if t ∈ Σ(t0, . . . , tn) then (t ∈ K and) mt0

dn = mt
dn < mt

up = mtn
up,

(e) t ∈ Σ(t) (for each t ∈ K) and
(f) if t ∈ Σ(t0, . . . , tn) and f ∈ val[t], then

dom( f ) ⊆
⋃{[

mt�
dn, mt�

up
)

: � ≤ n
}

and f �
[
mt�

dn, mt�
up
)
∈ val[t�]∪{ /0} for � ≤ n, and

† FP stands for Forgetful Partial creature.
‡ FFCC stands for smooth Forgetful monotonic strongly Finitary Creature Creating pair.
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356 A. Rosłanowski and S. Shelah

(g) if t̄0, . . . , t̄n ∈ dom(Σ) and t̄ = t̄0�· · ·�t̄n ∈ dom(Σ), then
⋃{

Σ(s0, . . . , sn) : s� ∈ Σ(t̄�) for � ≤ n
}
⊆ Σ(t̄ ).

(3) An FFCC pair (K, Σ) is loose if

(cloose) the domain of Σ is

dom(Σ) =
{
(t0, . . . , tn) : n < ω , t� ∈ K and mt�

up ≤ mt�+1
dn for � < n

}
.

(4) An FFCC pair (K, Σ) is tight if

(ctight) the domain of Σ is

dom(Σ) =
{
(t0, . . . , tn) : n < ω , t� ∈ K and mt�

up = mt�+1
dn for � < n

}
,

(ftight) if t ∈ Σ(t0, . . . , tn) and f ∈ val[t], then f �
[
mt�

dn, mt�
up
)
∈ val[t�] for all � ≤ n,

and

(htight) if s0, s1 ∈K, ms0
up = ms1

dn, f0 ∈ val[s0], f1 ∈ val[s1] and f = f0∪ f1, then there
is s ∈ Σ(s0, s1) such that f ∈ val[s].

Definition 2.3. (Cf. [10, Definition 1.2.4]) Let (K, Σ) be an FFCC pair for H. (Be-
low, if s̄ /∈ dom(Σ) then we stipulate Σ(s̄) = /0.)

(1) A pure candidate for (K, Σ) is a sequence t̄ = 〈tn : n < ω〉 such that tn ∈ K, mtn
up ≤

mtn+1
dn (for n < ω) and lim

n→∞
nor[tn] = ∞.

A pure candidate t̄ is tight if mtn
up = mtn+1

dn (for n < ω).
The set of all pure candidates for (K, Σ) is denoted by PC∞(K, Σ) and the family
of all tight pure candidates is called PCtt

∞ (K, Σ).
(2) For pure candidates t̄, s̄ ∈ PC∞(K, Σ) we write t̄ ≤ s̄ whenever there is a sequence

〈un : n < ω〉 of non-empty finite subsets of ω satisfying

max(un) < min(un+1) and s̄n ∈ Σ(t̄�un), for all n < ω .

(3) For a pure candidate t̄ = 〈ti : i < ω〉 ∈ PC∞(K, Σ) we define

(a) S(t̄ ) = {(ti0 , . . . , tin) : i0 < · · · < in < ω for some n < ω}, and
(b) Σ′(t̄ ) =

⋃
{Σ(s̄) : s̄ ∈ S(t̄ )} and Σtt(t̄ ) =

⋃
{Σ(t0, . . . , tn) : n < ω},

(c) pos(t̄ ) =
⋃
{val[s] : s ∈ Σ′(t̄ )} and postt(t̄ ) =

⋃
{val[s] : s ∈ Σtt(t̄ )},

(d) t̄ � n = 〈tn+k : k < ω〉.

Remark 2.4. Loose FFCC and tight FFCC are the two cases of FFCC pairs treated
in this article. The corresponding partition theorems will be slightly different in the
two cases, though there is a parallel. In the loose case we will deal with Σ′(t̄ ), pos(t̄ )
and ultrafilters on the latter set. In the tight case we will use Σtt(t̄ ), postt(t̄ ) and
sequences of ultrafilters on postt(t̄ � n) (for n < ω).

We will require two additional properties from (K, Σ): Weak bigness and weak
additivity (see Definitions 2.5, 2.6). Because of the differences in the treatment of
the two cases, there are slight differences in the formulation of these properties, so
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Partition Theorems from Creatures 357

we have two variants for each: l-variant and t-variant (where “l” stands for “loose”
and “t” stands for “tight”, of course).

Plainly, PCtt

∞ (K, Σ) ⊆ PC∞(K, Σ), Σtt(t̄ )⊆ Σ′(t̄ ) and postt(t̄ )⊆ pos(t̄ ). Also, if
t̄ ∈ PCtt

∞ (K, Σ), then t̄ � n ∈ PCtt

∞ (K, Σ) for all n < ω .

Definition 2.5. Let (K, Σ) be an FFCC pair for H and t̄ = 〈ti : i < ω〉 ∈ PC∞(K, Σ).

(1) We say that the pair (K, Σ) has weak l-additivity for the candidate t̄ if for some
increasing f : ω −→ ω , for every m < ω we have:
if s0, s1 ∈ Σ′(t̄ ), nor[s0]≥ f(m), ms0

dn ≥ f(m), nor[s1]≥ f
(
ms0

up
)

and ms1
dn ≥ f

(
ms0

up
)
,

then we can find s ∈ Σ′(t̄ ) such that

ms
dn ≥ m, nor[s] ≥ m, and val[s] ⊆ { f ∪g : f ∈ val[s0], g ∈ val[s1]}.

(2) The pair (K, Σ) has weak t-additivity for the candidate t̄ if for some increasing
f : ω −→ ω , for every n, m < ω we have:
if s0 ∈ Σ(tn, . . . , tk), k ≥ n, nor[s0] ≥ f(n + m), s1 ∈ Σ(tk+1, . . . , t�), nor[s1] ≥
f(k + m) and � > k, then we can find s ∈ Σ(tn, . . . , t�) such that nor[s] ≥ m and
val[s] ⊆ { f ∪g : f ∈ val[s0], g ∈ val[s1]}.

(3) The pair (K, Σ) has l-additivity if for all s0, s1 ∈ K with nor[s0], nor[s1] > 1 and
ms0

up ≤ ms1
dn there is s ∈ Σ(s0, s1) such that

nor[s]≥min{nor[s0], nor[s1]}−1 and val[s]⊆{ f ∪g : f ∈ val[s0], g∈ val[s1]}.

The pair (K, Σ) has t-additivity if for all s0, s1 ∈ K with nor[s0], nor[s1] > 1 and
ms0

up = ms1
dn there is s ∈ Σ(s0, s1) such that

nor[s] ≥ min{nor[s0], nor[s1]}−1.

We say that (K, Σ) has t-multiadditivity if for all s0, . . . , sn ∈ K with ms�
up = ms�+1

dn
(for � < n) there is s ∈ Σ(s0, . . . , sn) such that nor[s] ≥ max{nor[s�] : � ≤ n}−1.

Definition 2.6. Let (K, Σ) be an FFCC pair for H and t̄ = 〈ti : i < ω〉 ∈ PC∞(K, Σ).

(1) We say that the pair (K, Σ) has weak l-bigness for the candidate t̄ whenever the
following property is satisfied:

(�)t̄
l

if n1, n2, n3 < ω and pos(t̄ ) =
⋃
{F� : � < n1}, then for some s ∈ Σ′(t̄ ) and

� < n1 we have

nor[s] ≥ n2, ms
dn ≥ n3, and val[s] ⊆F�.

(2) We say that the pair (K, Σ) has weak t-bigness for the candidate t̄ whenever the
following property is satisfied:

(�)t̄
t

if n, n1, n2 < ω and postt(t̄ � n) =
⋃
{F� : � < n1}, then for some s ∈

Σtt(t̄ � n) and � < n1 we have

nor[s] ≥ n2 and val[s] ⊆F�.
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358 A. Rosłanowski and S. Shelah

(3) We say that the pair (K, Σ) has bigness if for every creature t ∈ K with nor[t] >
1 and a partition val[t] = F1 ∪F2, there are � ∈ {1, 2} and s ∈ Σ(t) such that
nor[s] ≥ nor[t]−1 and val[s] ⊆ F�.

Definition 2.7. Let (K, Σ) be an FFCC pair for H.

(1) (K, Σ) is simple except omitting if for every (t0, . . . , tn) ∈ dom(Σ) and t ∈
Σ(t0, . . . , tn) for some � ≤ n we have val[t] ⊆ val[t�].

(2) (K, Σ) is gluing on a candidate t̄ = 〈ti : i < ω〉 ∈ PC∞(K, Σ) if for every n, m < ω
there are k ≥ n and s ∈ Σ(tn, . . . , tk) such that nor[s] ≥ m.

The following two observations summarize the basic dependencies between the
notions introduced in Definitions 2.5, 2.6 — separately for the two contexts (see
Remark 2.4).

Observation 2.8. Assume (K, Σ) is a loose FFCC pair, t̄ ∈ PC∞(K, Σ).

(1) If (K, Σ) has bigness (l-additivity, respectively), then it has weak l-bigness
(weak l-additivity, respectively) for the candidate t̄.

(2) If (K, Σ) has the weak l-bigness for t̄, k < ω and pos(t̄ ) =
⋃

�<k
F�, then for some

s̄ ∈ PC∞(K, Σ) and � < k we have

t̄ ≤ s̄ and (∀n < ω)(val[sn] ⊆F�).

(3) Assume that (K, Σ) has the weak l-bigness property for t̄ ∈ PC∞(K, Σ) and it is
simple except omitting. Let k < ω and pos(t̄ ) =

⋃

�<k
F�. Then for some s̄ ≥ t̄ and

� < k we have pos(s̄) ⊆F�.

Observation 2.9. Assume (K, Σ) is a tight FFCC pair, t̄ ∈ PCtt

∞ (K, Σ).

(1) If (K, Σ) has bigness and is gluing on t̄, then it has the weak t-bigness for the
candidate t̄.

(2) If (K, Σ) has t-additivity, then it has the weak t-additivity for t̄.
(3) If (K, Σ) has the t-multiadditivity, then it has the t-additivity and it is gluing on

t̄.

In the following two sections we will present partition theorems for the loose and
then for the tight case. First, let us offer some easy examples to which the theory
developed later can be applied. Example 2.13 will be used to give a new proof of
the Carlson-Simpson Theorem in 4.9. Examples 2.10 and 2.12 are much easier, but
they also can be used to deduce partition theorems from Conclusions 3.10 and 4.8
(we leave the details for the reader).

Example 2.10. Let H1(n) = n + 1 for n < ω and let K1 consist of all FP creatures t
for H1 such that

• dis[t] = (u, i, A) = (ut , i t , At) where u ⊆
[
mt

dn, mt
up
)
, i ∈ u, /0 
= A ⊆ H1(i),

• nor[t] = log2(|A|),
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• val[t] ⊆ ∏
j∈u

H1( j) is such that { f (i) : f ∈ val[t]} = A.

For t0, . . . , tn ∈ K1 with mt�
up ≤ mt�+1

dn , let Σ1(t0, . . . , tn) consist of all creatures t ∈ K1
such that

mt
dn = mt0

dn, mt
up = mtn

up, ut =
⋃

�≤n

ut� , i t = i t�∗ , At ⊆ At�∗ , for some �∗ ≤ n,

and val[t] ⊆
{

f0 ∪·· ·∪ fn : ( f0, . . . , fn) ∈ val[t0]×·· ·×val[tn]
}

.

Also, let Σ∗
1 be Σ1 restricted to the set of those tuples (t0, . . . , tn) for which mt�

up = mt�+1
dn

(for � < n). Then

• (K1, Σ1) is a loose FFCC pair for H1 with bigness and l-additivity,
• (K1, Σ∗

1) is a tight FFCC pair for H1 with bigness and t-multiadditivity, and it is
gluing on every t̄ ∈ PCtt

∞ (K1, Σ∗
1).

Example 2.11. Let H2(n) = 2 for n < ω and let K2 consist of all FP creatures t for
H2 such that

• /0 
= dis[t] ⊆
[
mt

dn, mt
up
)
,

• /0 
= val[t] ⊆ dis[t]2,
• nor[t] = log2(|val[t]|).

For t0, . . . , tn ∈ K2 with mt�
up ≤ mt�+1

dn , let Σ2(t0, . . . , tn) consist of all creatures t ∈ K2
such that

mt
dn = mt0

dn, mt
up = mtn

up, dis[t] = dis[t�∗ ], and val[t] ⊆ val[t�∗ ], for some �∗ ≤ n.

Then (K2, Σ2) is a loose FFCC pair for H2 which is simple except omitting and has
bigness.

Example 2.12. Let H be as in Context 2.1 and let K3 consist of all FP creatures t for
H such that

• /0 
= dis[t] ⊆
[
mt

dn, mt
up
)
,

• val[t] ⊆
{

f ∈ FH : dis[t] ⊆ dom( f ) ⊆
[
mt

dn, mt
up
)}

satisfies(
∀g ∈ ∏

i∈dis[t]
H(i)

)
(∃ f ∈ val[t])(g ⊆ f ),

• nor[t] = log3(|dis[t]|).

For t0, . . . , tn ∈ K3 with mt�
up ≤ mt�+1

dn , let Σ3(t0, . . . , tn) consist of all creatures t ∈ K3
such that

• mt
dn = mt0

dn, mt
up = mtn

up, dis[t] ⊆
⋃

�≤n
dis[t�], and

• if f ∈ val[t], then dom( f )⊆
⋃{[

mt�
dn,m

t�
up
)

: � ≤ n
}

and f �
[
mt�

dn, mt�
up
)
∈ val[t�]∪

{ /0} for all � ≤ n.
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Also, for t0, . . . , tn ∈ K3 with mt�
up = mt�+1

dn let Σ∗
3(t0, . . . , tn) consist of all creatures

t ∈ K3 such that

• mt
dn = mt0

dn, mt
up = mtn

up, dis[t] ⊆
⋃

�≤n
dis[t�], and

• if f ∈ val[t], then dom( f ) ⊆
⋃{[

mt�
dn, mt�

up
)

: � ≤ n
}

and f �
[
mt�

dn, mt�
up
)
∈ val[t�]

for all � ≤ n.

Then

• (K3, Σ3) is a loose FFCC pair for H with bigness and l-additivity,
• (K3, Σ∗

3) is a tight FFCC pair for H with bigness and t-multiadditivity and it is
gluing on every t̄ ∈ PCtt

∞ (K3, Σ∗
3).

Example 2.13. Let N > 0 and HN(n) = N. Let KN consist of all FP creatures t for
HN such that

• dis[t] = (Xt , ϕt), where Xt �
[
mt

dn, mt
up
)
, and ϕt : Xt −→ N,

• nor[t] = mt
up,

• val[t] =
{

f ∈ [mt
dn ,mt

up)N : ϕt ⊆ f and f is constant on
[
mt

dn, mt
up
)
\Xt

}
.

For t0, . . . , tn ∈ KN with mt�
up = mt�+1

dn (for � < n) we let ΣN(t0, . . . , tn) consist of all
creatures t ∈ KN such that

• mt
dn = mt0

dn, mt
up = mt0

up, Xt0 ∪·· ·∪Xtn ⊆ Xt ,
• for each � ≤ n,

either Xt ∩
[
mt�

dn, mt�
up
)

= Xt� and ϕt�
[
mt�

dn, mt�
up
)

= ϕt� ,
or

[
mt�

dn, mt�
up
)
⊆ Xt and ϕt�

[
mt�

dn, mt�
up
)
∈ val[t�].

Then

(i) (KN , ΣN) is a tight FFCC pair for HN ,
(ii) it has the t-multiadditivity and

(iii) it has the weak t-bigness and is gluing for every candidate t̄ ∈ PCtt

∞ (K, Σ).

Proof. (i) All demands in Definition 2.2(2) and (4) are easy to verify. For instance, to
check Definition 2.2(4)(htight) note that:
If s0, s1 ∈ KN , ms0

up = ms1
dn, f� ∈ val[s�] (for � = 0, 1) and s ∈ KN is such that

ms
dn = ms0

dn, ms
up = ms1

up, Xs = Xs0 ∪
[
ms1

dn, ms1
up
)
, ϕs�Xs0 = ϕs0 , ϕs�

[
ms1

dn, ms1
up
)

= f1,

then s ∈ ΣN(s0, s1) and f0 ∪ f1 ∈ val[s].

(ii) The s constructed as in (i) above for s0, s1 will witness the t-additivity as well. In
an analogous way we also show the multiadditivity.

(iii) Let t̄ = 〈ti : i < ω〉 ∈ PCtt

∞ (KN , ΣN). Suppose that n, n1, n2 < ω and that
postt(t̄ � n) =

⋃
{F� : � < n1}. By the Hales-Jewett theorem (see [5]) there is k > n2

such that for any partition of kN into n1 parts there is a combinatorial line included
in one of the parts. Then we easily find s ∈ ΣN(t0, . . . , tk−1) such that val[s] ⊆F� for
some � < n1. Necessarily, nor[s] ≥ k−1 ≥ n2. This proves the weak t-bigness for t̄.
Similarly to (ii) we may argue that (KN , ΣN) is gluing on t̄.
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3. Ultrafilters on Loose Possibilities

Here we introduce ultrafilters on the (countable) set FH (see Context 2.1) which con-
tain sets large from the point of view of pure candidates for a loose FFCC pair. Then
we use them to derive a partition theorem for this case.

Definition 3.1. Let (K, Σ) be a loose FFCC pair for H.

(1) For a pure candidate t̄ ∈ PC∞(K, Σ), we define (for t̄ � n, Σ ′ and pos remember
Definition 2.3(3)):

• A0
t̄ = {pos(t̄ � n) : n < ω},

• A1
t̄ is the collection of all sets A ⊆FH such that for some N < ω we have(

∀s ∈ Σ ′(t̄ )
)(

nor[s] ≥ N & ms
dn ≥ N ⇒ val[s]∩A 
= /0

)
,

• A2
t̄ is the collection of all sets A ⊆FH such that for some N < ω we have

(∀ t̄1 ≥ t̄ )(∃t̄2 ≥ t̄1)(∀s ∈ Σ ′(t̄2))(nor[s] ≥ N ⇒ val[s]∩A 
= /0
)
.

(2) For � < 3 we let uf�t̄ (K, Σ) be the family of all ultrafilters D on FH such that
A�

t̄ ⊆ D. We also set (for � < 3)

uf�(K, Σ)
def
=

⋃{
uf�t̄ (K, Σ) : t̄ ∈ PC∞(K, Σ)

}
.

Proposition 3.2. Let (K, Σ) be a loose FFCC pair for H, t̄ ∈ PC∞(K, Σ).

(1) A0
t̄ ⊆A1

t̄ ⊆A2
t̄ and hence also uf2

t̄ (K, Σ) ⊆ uf1
t̄ (K, Σ) ⊆ uf0

t̄ (K, Σ).
(2) uf0

t̄ (K, Σ) 
= /0.
(3) If (K, Σ) has the weak l-bigness for each t̄ ′ ≥ t̄ , then uf2

t̄ (K, Σ) is not empty.
(4) If (K, Σ) has the weak l-bigness for t̄, then uf1

t̄ (K, Σ) 
= /0.
(5) Assume the Continuum Hypothesis. Suppose that (K, Σ) is simple except omit-

ting (see Definition 2.7(1)) and has the weak l-bigness on every candidate t̄ ∈
PC∞(K, Σ). Then there is D ∈ uf2

t̄ (K, Σ) such that(
∀A ∈ D

)(
∃t̄ ∈ PC∞(K, Σ)

)(
pos(t̄ ) ∈ D & pos(t̄ ) ⊆ A

)
.

Proof. (2) Note that A0
t̄ has the finite intersection property (fip).

(3) It is enough to show that, assuming (K, Σ) has the weak l-bigness for all t̄ ′ ≥ t̄,
A2

t̄ has fip. So suppose that for � < k we are given a set A� ∈ A2
t̄ and let N� < ω be

such that

(∗)� (∀t̄1 ≥ t̄ )(∃t̄2 ≥ t̄1)(∀s ∈ Σ ′(t̄2))(nor[s] ≥ N� ⇒ val[s]∩A� 
= /0
)
.

Let N = max{N� : � < k}. Then we may choose t̄ ′ ≥ t̄ such that

(∗) (∀s ∈ Σ′(t̄ ′))(nor[s] ≥ N ⇒ (∀� < k)(val[s]∩A� 
= /0)
)
.
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(Why? Just use repeatedly (∗)� for � = 0, 1, . . . , k − 1; remember t̄ ′ ≤ t̄ ′′ implies
Σ′(t̄ ′′) ⊆ Σ ′(t̄ ′).)

For η ∈ k2, set

Fη =
{

f ∈ pos(t̄ ′) : (∀� < k)(η(�) = 1 ⇔ f ∈ A�)
}

.

Then pos(t̄ ′) =
⋃{

Fη : η ∈ k2
}

and (K, Σ) has the weak l-bigness for t̄ ′, so we may
use Observation 2.8(2) to pick η0 ∈

k2 and s̄ ≥ t̄ ′ such that val[sn]⊆Fη0 for all n < ω .
Consider n < ω such that nor[sn] > N. It follows from (∗) that val[sn]∩A� 
= /0 for all
� < k. Hence, by the choice of s̄, η0(�) = 1 for all � < k and therefore /0 
= val[sn] ⊆⋂

�<k
A�.

(4) Similarly to (3) above one shows that A1
t̄ has fip.

(5) Assuming CH and using Observation 2.8(3) we may construct a sequence
〈t̄α : α < ω1〉 ⊆ PC∞(K, Σ) such that

• if α < β < ω1 then (∃n < ω)
(
t̄α ≤ (t̄β � n)

)
,

• if A ⊆FH then for some α < ω1 we have that either pos(t̄α)⊆ A or pos(t̄α )∩A =
/0.

(Compare to the proof of [10, 5.3.4].) Then the family

{pos(t̄α � n) : α < ω1 & n < ω}

generates the desired ultrafilter.

Observation 3.3. The sets uf�t̄ (K, Σ) (for � < 3) are closed subsets of the (Hausdorff
compact topological space) β∗(FH) of non-principal ultrafilters on FH. Hence each
uf�t̄ (K, Σ) itself is a compact Hausdorff space.

Definition 3.4. (1) For f ∈ FH and A ⊆FH we define

f ⊕A def
= {g ∈ FH : max(dom( f )) < min(dom(g)) and f ∪g ∈ A} .

(2) For D1, D2 ∈ uf0(K, Σ), we let

D1 ⊕D2
def
=

{
A ⊆FH : { f ∈ FH : ( f ⊕A) ∈ D1} ∈ D2

}
.

Proposition 3.5. (1) If A1, A2 ⊆FH and f ∈ FH, then

f ⊕ (A1 ∩A2) = ( f ⊕A1)∩ ( f ⊕A2) and

{g ∈ FH : max(dom( f )) < min(dom(g))}\ ( f ⊕A1) = f ⊕ (FH \A1).

(2) If D1, D2, D3 ∈ uf0(K, Σ), then D1 ⊕D2 is a non-principal ultrafilter on FH and
D1 ⊕ (D2 ⊕D3) = (D1 ⊕D2)⊕D3.

(3) The mapping ⊕ : uf0(K, Σ)×uf0(K, Σ) −→ β∗(FH) is right continuous (i.e., for
each D1 ∈ uf0(K, Σ) the function uf0(K, Σ) � D2 �→ D1 ⊕D2 ∈ β∗(FH) is contin-
uous).
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Proof. Straightforward, compare with Proposition 4.3.

Proposition 3.6. Assume that a loose FFCC pair (K, Σ) has the weak l-additivity
(see Definition 2.5(1)) for a candidate t̄ ∈ PC∞(K, Σ). If D1, D2 ∈ uf1

t̄ (K, Σ), then
D1 ⊕D2 ∈ uf1

t̄ (K, Σ).

Proof. Let f : ω → ω witness the weak l-additivity of (K, Σ) for t̄, and let D =
D1 ⊕D2, D1, D2 ∈ uf1

t̄ (K, Σ). We already know that D is an ultrafilter on FH (by
Proposition 3.5(2)), so we only need to show that it includes A1

t̄ .
Suppose that A ∈ A1

t̄ and let N < ω be such that

(∗)1
(
∀s ∈ Σ ′(t̄ )

)(
nor[s] ≥ N & ms

dn ≥ N ⇒ val[s]∩A 
= /0
)
.

Claim 3.6.1. For every s ∈ Σ′(t̄ ), if nor[s] ≥ f(N) and ms
dn ≥ f(N), then val[s] ∩

{ f ∈ FH : f ⊕A ∈ D1} 
= /0.

Proof of Claim 3.6.1. Suppose s0 ∈ Σ ′(t̄ ), nor[s0] ≥ f(N), ms0
dn ≥ f(N). Set

B =
⋃
{ f ⊕A : f ∈ val[s0]}.

We are going to argue that

(∗)2 B ∈A1
t̄ .

So let M = f
(
ms0

up
)
+ms0

up +1 and suppose s1 ∈ Σ(t̄ ) is such that nor[s1] ≥ M and
ms1

dn ≥ M. Apply the weak additivity and the choice of M to find s ∈ Σ ′(t̄ ) such that

ms
dn ≥ N, nor[s] ≥ N and val[s] ⊆ { f ∪g : f ∈ val[s0] & g ∈ val[s1]}.

Then, by (∗)1, val[s]∩A 
= /0 so for some f ∈ val[s0] and g∈ val[s1] we have f ∪g∈ A(
and max(dom( f )) < ms0

up < M ≤ms1
dn ≤ min(dom(g))

)
. Thus g ∈ ( f ⊕A)∩val[s1]⊆

B∩val[s1] and (∗)2 follows.
Since D1 ∈ uf1

t̄ (K, Σ) we conclude from (∗)2 that B ∈ D1 and hence (as val[s0] is
finite) f ⊕A ∈ D1 for some f ∈ val[s0], as desired.

It follows from Claim 3.6.1 that { f ∈ FH : f ⊕ A ∈ D1} ∈ A1
t̄ and hence

(
as

D2 ∈ uf1
t̄ (K, Σ)

)
{ f ∈ FH : f ⊕A ∈ D1} ∈ D2. Consequently, A ∈ D1 ⊕D2.

The following lemma has been known at least since 1950s; see, e.g., [3, Lemma
10.1, p. 449 and p. 452].

Lemma 3.7. If X is a non-empty compact Hausdorff space, � an associative binary
operation which is continuous from the right (i.e., for each p ∈ X the function q �→
p�q is continuous), then there is a �-idempotent point p ∈ X (i.e., p� p = p).

Corollary 3.8. Assume that a loose FFCC pair (K, Σ) has weak l-additivity and the
weak l-bigness for a candidate t̄ ∈ PC∞(K, Σ). Then,

(1) uf1
t̄ (K, Σ) is a non-empty compact Hausdorff space and ⊕ is an associative right

continuous operation on it.
(2) There is D ∈ uf1

t̄ (K, Σ) such that D = D⊕D.
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Proof. (1) By Proposition 3.2(3), Observation 3.3, Proposition 3.5(2) and (3), and
Proposition 3.6.

(2) It follows from (1) above that all the assumptions of Lemma 3.7 are satisfied for
⊕ and uf1

t̄ (K, Σ), hence its conclusion holds.

Theorem 3.9. Assume that (K, Σ) is a loose FFCC pair, t̄ ∈ PC∞(K, Σ). Let an
ultrafilter D ∈ uf1

t̄ (K, Σ) be such that D⊕D = D. Then,(
∀A ∈ D

)(
∃s̄ ≥ t̄

)(
pos(s̄) ⊆ A

)
.

Proof. The main ingredient of our argument is given by the following claim.

Claim 3.9.1. Let (K, Σ), t̄ and D be as in the assumptions of Theorem 3.9. Assume
A ∈ D and n < ω . Then there is s ∈ Σ′(t̄ ) such that

(•)1 val[s] ⊆ A, nor[s] ≥ n, ms
dn ≥ n, and

(•)2 (∀ f ∈ val[s])( f ⊕A ∈ D).

Proof of Claim 3.9.1. Let A′ := { f ∈ FH : f ⊕ A ∈ D} and A′′ := A∩ A′. Since
A∈D = D⊕D we know that A′ ∈D and thus A′′ ∈D. HenceFH\A′′ /∈A1

t̄

(
remember

D ∈ uf1
t̄ (K, Σ)

)
. Therefore, there is s ∈ Σ′(t̄ ) such that

nor[s] ≥ n, ms
dn ≥ n, and val[s]∩ (FH \A′′) = /0.

Then val[s] ⊆ A and for each f ∈ val[s] we have f ⊕A ∈ D, as desired.

Now suppose A ∈ D. By induction on n we choose sn, An so that

(a) A0 = A, An ∈ D, and An+1 ⊆ An,
(b) sn ∈ Σ ′(t̄ ), nor(sn) ≥ n and msn

up ≤ msn+1
dn ,

(c) val[sn] ⊆ An,
(d) if f ∈ An+1, then msn

up ≤ min(dom( f )),
(e) if f ∈ val[sn], then An+1 ⊆ f ⊕An.

Suppose we have constructed s0, . . . , sn−1 and An so that demands (a)–(e) are satisfied.
Set N = msn−1

up + n + 1 (if n = 0 stipulate msn−1
up = 0) and use Claim 3.9.1 to find

sn ∈ Σ ′(t̄ ) such that

(•)n
1 val[sn] ⊆ An, nor[sn] ≥ N, msn

dn ≥ N, and
(•)n

2 (∀ f ∈ val[sn])( f ⊕An ∈ D).

Put
An+1 := An ∩

{
g ∈ FH : msn

up < min(dom(g))
}
∩

⋂

f∈val[sn]

f ⊕An.

Since A0
t̄ ⊆ D we know that {g ∈ FH : msn

up < min(dom(g))} ∈ D and since val[sn]
is finite

(
and by (•)n

2
)

also
⋂

f∈val[sn]

f ⊕An ∈ D. Thus An+1 ∈ D. Plainly the other

requirements hold too.
After the above construction is carried out we set s̄ = 〈sn : n < ω〉. Clearly s̄ ∈

PC∞(K, Σ) and s̄ ≥ t̄ (remember clause (b)).
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Claim 3.9.2. If n0 < · · · < nk < ω and f� ∈ val[sn�
] for � ≤ k, then

⋃

�≤k
f� ∈ An0 .

Proof of Claim 3.9.2. Induction on k. If k = 0 then clause (c) of the choice of sn0
gives the conclusion. For the inductive step suppose the claim holds true for k and let
n0 < n1 < · · ·< nk < nk+1, f� ∈ val

[
sn�

]
(for �≤ k+1). Letting g = f1∪·· ·∪ fk+1 we

may use the inductive hypothesis to conclude that g ∈ An1 . By (a) and (e) we know
that An1 ⊆ An0+1 ⊆ f0⊕An0 , so g∈ f0⊕An0 . Hence f0∪g = f0∪ f1∪·· ·∪ fk+1 ∈An0 .

It follows from Claim 3.9.2 that pos(s̄) ⊆ A (remember (a) above and Definition
2.2(2)(f)).

Conclusion 3.10. Suppose that (K, Σ) is a loose FFCC pair with weak l-bigness and
weak l-additivity over t̄ ∈ PC∞(K, Σ). Assume also that pos(t̄ ) is the finite union
F0 ∪·· ·∪Fn. Then for some i ≤ n and s̄ ∈ PC∞(K, Σ) we have

pos(s̄) ⊆Fi and t̄ ≤ s̄.

Proof. By 3.8, there is D ∈ uf1
t̄ (K, Σ) such that D = D⊕D. Clearly for some i ≤ n we

have Fi ∈ D. By 3.9 there is s̄ ∈ PC∞(K, Σ) such that t̄ ≤ s̄ and pos(s̄) ⊆Fi.

4. Ultrafilters on Tight Possibilities

In this section we carry out for tight FFCC pairs considerations parallel to that from
the case of loose FFCC pairs. The main difference now is that we use sequences of
ultrafilters, but many arguments do not change much.

Definition 4.1. Let (K, Σ) be a tight FFCC pair for H, t̄ = 〈tn : n < ω〉 ∈ PCtt

∞ (K, Σ).

(1) For f ∈ postt(t̄ � n), let x f = xt̄
f be the unique m > n such that f ∈ val[s] for some

s ∈ Σ(tn, . . . , tm−1). (Note Definition 2.2(4)(f tight).)

(2) If f ∈ postt(t̄ � n), n < ω , A ⊆FH, then we set

f � A = f �t̄ A =
{

g ∈ postt(t̄ � x f ) : f ∪g ∈ A
}
.

(3) We let suft̄(K,Σ) be the set of all sequences D̄ = 〈Dn : n < ω〉 such that each Dn
is a non-principal ultrafilter on postt(t̄ � n).

(4) The space suft̄(K,Σ) is equipped with the (Tichonov) product topology of
∏

n<ω
β∗

(
postt(t̄ � n)

)
. For a sequence Ā = 〈A0, . . . , An〉 such that A� ⊆ postt(t̄ � �)

(for � ≤ n) we set

NbĀ =
{

D̄ ∈ suft̄(K,Σ) : (∀� ≤ n)(A� ∈ D�)
}
.

(5) For D̄ = 〈Dn : n < ω〉 ∈ suft̄(K,Σ), n < ω and A ⊆ postt(t̄ � n), we let

setnt̄ (A, D̄) =
{

f ∈ postt(t̄ � n) : f � A ∈ Dx f

}
.
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(6) For D̄1, D̄2 ∈ suft̄(K,Σ), we define D̄1 � D̄2 to be a sequence 〈Dn : n < ω〉 such
that for each n

Dn =
{

A ⊆ postt(t̄ � n) : setnt̄
(
A, D̄1) ∈ D2

n
}

.

Observation 4.2. Let (K, Σ) be a tight FFCC pair for H and t̄ ∈ PCtt

∞ (K, Σ). Suppose
f ∈ postt(t̄ � n), g ∈ postt(t̄ � x f ). Then,

(1) f ∪g ∈ postt(t̄ � n) (note Definition 2.2(4)(htight)) and

(2) ( f ∪g)� A = g � ( f � A) for all A ⊆FH.

(3) suft̄(K,Σ) is a compact Hausdorff topological space. The sets NbĀ for Ā =
〈A0, . . . , An〉, A� ⊆ postt(t̄ � �), � ≤ n < ω , form a basis of the topology of
suft̄(K,Σ).

Proposition 4.3. Let (K, Σ) be a tight FFCC pair for H and t̄ ∈ PCtt

∞ (K, Σ).

(1) If D̄1, D̄2 ∈ suft̄(K,Σ), then D̄1 � D̄2 ∈ suft̄(K,Σ).
(2) The mapping � : suft̄(K,Σ)× suft̄(K,Σ) −→ suft̄(K,Σ) is right continuous.
(3) The operation � is associative.

Proof. (1) Let D̄1, D̄2 ∈ suft̄(K,Σ), n < ω , and

Dn =
{

A ⊆ postt(t̄ � n) : setnt̄
(
A, D̄1) ∈ D̄2

n
}

.

Let A, B ⊆ postt(t̄ � n).

(a) If f ∈ postt(t̄ � n) and A is finite, then f �A is finite as well, so it does not belong
to D1

x f
. Consequently, if A is finite then setnt̄

(
A, D̄1) = /0 and A /∈ Dn.

(b) setnt̄
(
postt(t̄ � n), D̄1) = postt (t̄ � n) ∈ D2

n (note Observation 4.2(1)). Thus,
postt (t̄ � n) ∈ Dn.

(c) If A ⊆ B then setnt̄
(
A, D̄1)⊆ setnt̄

(
B, D̄1), and hence

A ⊆ B & A ∈ Dn ⇒ B ∈ Dn.

(d) setnt̄
(
A∩B, D̄1) = setnt̄

(
A, D̄1)∩ setnt̄

(
B, D̄1) and hence

A, B ∈ Dn ⇒ A∩B ∈ Dn.

(e) setnt̄
(
postt (t̄ � n)\A, D̄1) = postt (t̄ � n)\ setnt̄

(
A, D̄1), and hence

A /∈ Dn ⇒ postt(t̄ � n)\A ∈ Dn.

It follows from (a)–(e) that Dn is a non-principal ultrafilter on postt(t̄ � n) and
hence clearly D̄1 � D̄2 ∈ suft̄(K,Σ).

(2) Fix D̄1 ∈ suft̄(K,Σ) and let Ā = 〈A� : � ≤ n〉, A� ⊆ postt (t̄ � �). For � ≤ n put
B� = set�t̄

(
A�, D̄1) and let B̄ = 〈B� : � ≤ n〉. Then, for each D̄2 ∈ suft̄(K,Σ), we have

D̄1 � D̄2 ∈ NbĀ if and only if D̄2 ∈ NbB̄.

(3) Let D̄1, D̄2, D̄3 ∈ suft̄(K,Σ). Suppose n < ω , A ⊆ pos(t̄ � n). Then
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(i) A ∈
((

D̄1 � D̄2)� D̄3)
n iff setnt̄

(
A, D̄1 � D̄2) ∈ D3

n iff{
f ∈ postt(t̄ � n) : f � A ∈

(
D̄1 � D̄2

)
x f

}
∈ D3

n, and

(ii) A ∈
(
D̄1 �

(
D̄2 � D̄3))

n iff setnt̄ (A, D̄1) ∈
(
D̄2 � D̄3)

n iff
setnt̄

(
setnt̄

(
A, D̄1) , D̄2) ∈ D̄3

n iff
{

f ∈ postt (t̄ � n) : f � setnt̄
(
A, D̄1) ∈ D2

x f

}
∈

D3
n.

Let us fix f ∈ postt(t̄ � n) for a moment. Then

f � A ∈
(
D̄1 � D̄2)

x f
iff set

x f
t̄

(
f � A, D̄1) ∈ D2

x f
iff{

g ∈ postt
(
t̄ � x f

)
: g � ( f � A) ∈ D1

xg

}
∈ D2

x f
iff{

g ∈ postt(t̄ � x f ) : ( f ∪g)� A ∈ D1
xg

}
∈ D2

x f
iff{

g ∈ postt(t̄ � x f ) : ( f ∪g) ∈ setnt̄
(
A, D̄1)} ∈ D2

x f
iff f � setnt̄

(
A, D̄1) ∈ D2

x f
.

Consequently, {
f ∈ postt (t̄�n) : f � A ∈

(
D̄1 � D̄2)

x f

}

=
{

f ∈ postt(t̄�n) : f � setnt̄
(
A, D̄1) ∈ D2

x f

}
and (by (i) and (ii)) A ∈

(
D̄1 � (D̄2 � D̄3)

)
n if and only if A ∈

(
(D̄1 � D̄2)� D̄3)

n.

Definition 4.4. Let (K, Σ) be a tight FFCC pair for H and t̄ ∈ PCtt

∞ (K, Σ).

(1) For n < ω , Bn
t̄ is the family of all sets B ⊆ postt(t̄ � n) such that for some M we

have: if s ∈ Σtt(t̄ � n) and nor[s] ≥ M, then val[s]∩B 
= /0.
(2) suf∗t̄ (K,Σ) is the family of all D̄ = 〈Dn : n < ω〉 ∈ suft̄(K,Σ) such that Bn

t̄ ⊆ Dn
for all n < ω .

Proposition 4.5. Let (K, Σ) be a tight FFCC pair for H and t̄ ∈ PCtt

∞ (K, Σ).

(1) suf∗t̄ (K,Σ) is a closed subset of suft̄(K,Σ).
(2) If (K, Σ) has the weak t-bigness for t̄, then suf∗t̄ (K,Σ) 
= /0.
(3) If (K, Σ) has the weak t-additivity for t̄, then suf∗t̄ (K,Σ) is closed under �.

Proof. (1) Suppose D̄ ∈ suft̄(K,Σ) \ suf∗t̄ (K,Σ). Let n < ω and B ∈ Bn
t̄ be such

that B /∈ Dn. Set An = postt(t̄ � n) \B and A� = postt(t̄ � �) for � < n, and let Ā =
〈A0, . . . , An〉. Then D̄ ∈ NbĀ ⊆ suft̄(K,Σ)\ suf∗t̄ (K,Σ).

(2) It is enough to show that, assuming the weak t-bigness, each family Bn
t̄ has fip.

To this end suppose that B0, . . . , Bm−1 ∈ Bn
t̄ . Pick M0 such that

(∗)
(
∀s ∈ Σtt(t̄ � n)

)(
∀� < m

)(
nor[s] ≥ M0 ⇒ B�∩val[s] 
= /0

)
.

For η ∈ m2 set Cη = { f ∈ postt(t̄ � n) : (∀� < m)( f ∈ B� ⇔ η(�) = 1)}. By the
weak t-bigness we may choose η and s ∈ Σtt(t̄ � n) such that nor[s] ≥ M0 and
val[s] ⊆ Cη . Then

(
by (∗)

)
we also have η(�) = 1 and val[s] ⊆ B� for all � < m.

Hence /0 
= val[s] ⊆
⋂

�<m
B�.
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(3) Let an increasing function f : ω −→ ω witness the weat t-additivity of (K, Σ) for
t̄. Suppose that D̄1, D̄2 ∈ suf∗t̄ (K,Σ), D̄ = D̄1 � D̄2. We have to show that for each
n < ω , Bn

t̄ ⊆ Dn (remember Proposition 4.3(1)). To this end assume that B ∈ Bn
t̄ and

let M be such that

(∀s ∈ Σtt(t̄ � n))(nor[s] ≥ M ⇒ val[s]∩B 
= /0).

Claim 4.5.1. If s ∈ Σtt(t̄ � n) is such that nor[s]≥ f(n+M), then val[s]∩setn
t̄

(
B, D̄1)


= /0.

Proof of Claim 4.5.1. Fix s0 ∈ Σ(tn, . . . , tm−1) such that nor[s0] ≥ f(n + M). Let
A =

⋃
{ f � B : f ∈ val[s0]}. We claim that

(�) A ∈ Bm
t̄ .

(Why? Set N = f(m + M). Suppose s1 ∈ Σtt(t̄ � m) has norm nor[s1] ≥ N. By the
weak t-additivity and the choice of N we can find s ∈ Σtt(t̄ � n) such that nor[s] ≥ M
and val[s]⊆{ f ∪g : f ∈ val[s0], g∈ val[s1]}. By the choice of M we have B∩val[s] 
=
/0, so for some f ∈ val[s0] and g ∈ val[s1] we have g ∈ f � B. Thus val[s1]∩A 
= /0
and we easily conclude that A ∈ Bm

t̄ .)
But D̄1 ∈ suf∗t̄ (K,Σ), so Bm

t̄ ⊆ D1
m and hence, for some f ∈ val[s0], we get f �B ∈

D1
x f

. Then f ∈ val[s0]∩ setnt̄
(
B, D̄1).

It follows from Claim 4.5.1 that setn
t̄

(
B, D̄1) ∈ Bn

t̄ ⊆ D2
n, so B ∈ Dn, as required.

Corollary 4.6. Assume that (K, Σ) is a tight FFCC pair with the weak t-additivity
and the weak t-bigness for t̄ ∈ PCtt

∞ (K, Σ). Then there is D̄ ∈ suf∗t̄ (K,Σ) such that
D̄� D̄ = D̄.

Proof. By Lemma 3.7, Observation 4.2(3), Proposition 4.3, and Proposition 4.5.

Theorem 4.7. Assume that (K, Σ) is a tight FFCC pair, t̄ = 〈tn : n < ω〉 ∈PCtt

∞ (K, Σ).
Suppose also that

(a) D̄ = 〈Dn : n < ω〉 ∈ suf∗t̄ (K,Σ) is such that D̄� D̄ = D̄, and
(b) Ā = 〈An : n < ω〉 is such that An ∈ Dn for all n < ω .

Then there is s̄ = 〈si : i < ω〉 ∈ PCtt

∞ (K, Σ) such that s̄ ≥ t̄ , ms0
dn = mt0

dn and if i < ω ,
si ∈ Σtt(t̄ � k), then postt(s̄ � i) ⊆ Ak.

Proof. Let (K, Σ), t̄, D̄ and Ā be as in the assumptions. Then, in particular, Bk
t̄ ⊆ Dk

for all k < ω .

Claim 4.7.1. If M, k < ω and B ∈ Dk, then there is s ∈ Σtt(t̄ � k) such that val[s]⊆ B,
nor[s] ≥ M and (∀ f ∈ val[s])

(
f � B ∈ Dx f

)
.

Proof of Claim 4.7.1. Since D̄ = D̄�D̄ and B∈ Dk, we know that setkt̄ (B, D̄)∈ Dk and
thus B∩setkt̄ (B, D̄) ∈ Dk. Hence postt(t̄ � k)\

(
B∩setkt̄ (B, D̄)

)
/∈ Bk

t̄ and we may find
s ∈ Σtt(t̄ � k) such that nor[s] ≥ M and val[s] ⊆ B∩ setk

t̄ (B, D̄). This s is as required
in the assertion of the claim.
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Now we choose inductively si, Bi, ki (for i < ω) such that

(i) B0 = A0, k0 = 0,
(ii) Bi ∈ Dki , Bi ⊆ Aki , ki < ki+1 < ω , si ∈ Σ

(
tki , . . . , tki+1−1

)
,

(iii) val[si] ⊆ Bi, nor[si] ≥ i+ 1,
(iv) if f ∈ val[si], then Bi+1 ⊆ f � Bi ∈ Dki+1 .

Clause (i) determines B0 and k0. Suppose we have already chosen ki and Bi ∈ Dki . By
Claim 4.7.1 we may find ki+1 > ki and si ∈ Σ

(
tki , . . . , tki+1−1

)
such that

nor[si] ≥ i+ 1, val[si] ⊆ Bi, and (∀ f ∈ val[si])
(

f � Bi ∈ Dki+1

)
.

We let Bi+1 = Aki+1 ∩
⋂
{ f � Bi : f ∈ val[si]} ∈ Dki+1 . One easily verifies the relevant

demands in (ii)–(iv) for si, Bi+1, ki+1.
After the above construction is carried out, we set s̄ = 〈si : i < ω〉. Plainly, s̄ ∈

PCtt

∞ (K, Σ), s̄ ≥ t̄ and ms0
dn = mt0

dn.

Claim 4.7.2. For each i, k < ω and s ∈ Σ(si, . . . , si+k) we have val[s] ⊆ Bi.

Proof of Claim 4.7.2. Induction on k < ω . If k = 0 then the assertion of the claim
follows from clause (iii) of the choice of si. Assume we have shown the claim
for k. Suppose that s ∈ Σ(si, . . . , si+k, si+k+1), i < ω , and f ∈ val[s]. Let f0 =
f �
[
msi

dn, msi
up
)
∈ val[si] and f1 = f �

[
msi+1

dn , msi+k+1
up

)
∈ postt(s̄ � (i + 1)) (remember

Definition 2.2(4)(f tight) and Observation 4.2(1)). By the inductive hypothesis we
know that f1 ∈ Bi+1, so by clause (iv) of the choice of si we get f1 ∈ f0 � Bi and
thus f = f0 ∪ f1 ∈ Bi.

It follows from Claim 4.7.2 that for each i < ω we have postt(s̄ � i) ⊆ Bi ⊆ Aki ,
as required.

Conclusion 4.8. Suppose that (K, Σ) is a tight FFCC pair with weak t-bigness and
weak t-additivity for t̄ ∈ PCtt

∞ (K, Σ).

(a) Assume that, for each n < ω , kn < ω and dn : postt(t̄ � n) −→ kn. Then there is
s̄ = 〈si : i < ω〉 ∈ PCtt

∞ (K, Σ) such that s̄ ≥ t̄, ms0
dn = mt0

dn and for each n < ω , if n
is such that si ∈ Σtt(t̄ � n), then dn�postt(s̄ � i) is constant.

(b) Suppose also that (K, Σ) has t-multiadditivity. Let dn : postt(t̄ � n) −→ k (for
n < ω), k < ω . Then there are s̄ = 〈si : i < ω〉 ∈ PCtt

∞ (K, Σ) and � < k such that
s̄ ≥ t̄ and for each i < ω , if n is such that si ∈ Σtt(t̄ � n) and f ∈ postt(s̄ � i), then
dn( f ) = �.

Now we will use Conclusion 4.8 to give a new proof of Carlson-Simpson Theo-
rem. This theorem was used as a crucial lemma in the (inductive) proof of the Dual
Ramsey Theorem [2, Theorem 2.2]. Also, as they noted in [2, p. 273], this theorem
provides an immediate proof of the Halpern-Läuchli-Laver-Pincus Theorem [6, 9].

Theorem 4.9. (Carlson and Simpson [2, Theorem 6.3]) Suppose that 0 < N < ω ,
X =

⋃
n<ω

nN and X = C0 ∪·· ·∪Ck, k < ω . Then there exist a partition {Y}∪{Yi : i <

ω} of ω and a function f : Y −→ N such that
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(a) each Yi is a finite non-empty set,
(b) if i < j < ω then max(Yi) < min(Y j),
(c) for some � ≤ k, if i < ω , g : min(Yi) −→ N, f �min(Yi) ⊆ g and g�Y j is constant

for j < i, then g ∈C�.

Proof. For f ∈ X let d0( f ) = min{� ≤ k : f ∈ C�}. Consider the tight FFCC pair
(KN , ΣN) defined in Example 2.13. It satisfies the assumptions of Conclusion 4.8.
Fix any t̄ ∈ PCtt

∞ (KN , ΣN) with mt0
dn = 0 and use Conclusion 4.8(a) to choose s̄ ∈

PCtt

∞ (KN , ΣN) such that s̄ ≥ t̄, ms0
dn = mt0

dn = 0 and d0�postt(s̄) is constant. Set Y =⋃
i<ω

Xsi , f =
⋃

i<ω
ϕsi and Yi =

[
msi

dn, msi
up
)
\Xsi for i < ω .

5. Very Weak Bigness

The assumptions of Conclusion 4.8 (weak t-bigness and weak t-additivity) are some-
what strong. We will weaken them substantially here, getting weaker but still inter-
esting conclusion.

Definition 5.1. Let (K, Σ) be a tight FFCC pair for H, t̄ ∈ PCtt

∞ (K, Σ).

(1) For n < m < ω , we define

pos(t̄�[n, m)) =
⋃
{val[s] : s ∈ Σ(tn, . . . , tm−1)}

and we also keep the convention that pos
(
t̄�[n, n)

)
= { /0}.

[Note that pos(t̄�[n, m)) = { fn ∪ ·· · ∪ fm−1 : f� ∈ val[t�] for � < m} (remember
2.2(4)(f tight) and 4.2(1)).]

(2) We say that (K, Σ) has the very weak t-bigness for t̄ if

(�)vw
t̄ for every n, L, M < ω and a partition F0∪·· ·∪FL = postt(t̄ � n), there are

i0 = n ≤ i1 < i2 ≤ i3, � ≤ L and g0 ∈ pos(t̄�[i0, i1)), g2 ∈ pos(t̄�[i2, i3)) and
s ∈ Σ(ti1 , . . . , ti2−1) such that

nor[s] ≥ M and (∀g1 ∈ val[s])(g0 ∪g1 ∪g2 ∈ F�).

Observation 5.2. If a tight FFCC pair (K, Σ) has the weak t-bigness for t̄, then it has
the very weak t-bigness for t̄.

Definition 5.3. Let (K, Σ) be a tight FFCC pair for H and t̄ ∈ PCtt

∞ (K, Σ).

(1) For n < ω , Cn
t̄ is the family of all sets B ⊆ postt(t̄ � n) such that for some M

we have if i0 = n ≤ i1 < i2 ≤ i3, g0 ∈ pos(t̄�[i0, i1)), g2 ∈ pos(t̄�[i2, i3)) and s ∈
Σ
(
ti1 , . . . , ti2−1

)
, nor[s] ≥ M, then B∩{g0∪g1 ∪g2 : g1 ∈ val[s]} 
= /0.

(2) suf�t̄ (K,Σ) is the family of all D̄ = 〈Dn : n < ω〉 ∈ suft̄(K,Σ) such that Cn
t̄ ⊆ Dn

for all n < ω .

Proposition 5.4. Let (K, Σ) be a tight FFCC pair for H and t̄ ∈ PCtt

∞ (K, Σ).

(1) suf�t̄ (K,Σ) is a closed subset of suft̄(K,Σ), suf∗t̄ (K,Σ) ⊆ suf�t̄ (K,Σ).
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(2) If (K, Σ) has the very weak t-bigness for t̄, then suf�t̄ (K,Σ) 
= /0.
(3) If D̄ ∈ suf�t̄ (K,Σ), n < ω and B ∈ Cn

t̄ , then setnt̄ (B, D̄) = postt(t̄ � n).
(4) suf�t̄ (K,Σ) is closed under the operation � (defined in 4.1(6)).

Proof. (1) Since in Definition 5.3(1) we allow i1 = i0 and i3 = i2 (so g0 = g2 = /0), we
easily see that Cn

t̄ ⊆ Bn
t̄ . Hence suf∗t̄ (K,Σ) ⊆ suf�t̄ (K,Σ). The proof that suf�t̄ (K,Σ) is

closed is the same as for Proposition 4.5(1).

(2) Like Proposition 4.5(2).

(3) Let M be such that B∩{g0∪g1∪g2 : g1 ∈ val[s]} 
= /0 whenever g0 ∈ pos(t̄�[n, i1)),
g2 ∈ pos(t̄�[i2, i3)), s ∈ Σ(t̄�[i1, i2)), nor[s] ≥ M, n ≤ i1 < i2 ≤ i3. We will show that
this M witnesses f � B ∈ C

x f
t̄ for all f ∈ postt(t � n).

So suppose that f ∈ postt(t̄ � n) and x f ≤ i1 < i2 ≤ i3, g0 ∈ pos(t̄�[x f , i1)),
s ∈ Σ(t̄�[i1, i2)), nor[s] ≥ M and g2 ∈ pos(t̄�[i2, i3)). Then f ∪ g0 ∈ pos(t̄�[n, i1))
(remember Observation 4.2(1)) and consequently (by the choice of M) B∩

{
( f ∪

g0)∪g1 ∪g2 : g1 ∈ val[s]
}

= /0. Let g∗1 ∈ val[s] be such that f ∪g0∪g∗1 ∪g2 ∈ B. Then

g0 ∪g∗1 ∪g2 ∈ f � B witnessing that ( f � B)∩
{

g0 ∪g1 ∪g2 : g1 ∈ val[s]
}

= /0.

Since C
x f
t̄ ⊆ Dx f we conclude now that f � B ∈ Dx f , so f ∈ setnt̄ (B, D̄).

(4) Suppose D̄1, D̄2 ∈ suf�t̄ (K,Σ), D̄ = D̄1 � D̄2. Let B ∈ Cn
t̄ , n < ω . By (3) we know

that setnt̄ (B, D̄1) = postt(t̄ � n) ∈ D2
n and thus B ∈ Dn. Consequently, Cn

t̄ ⊆ Dn for all
n < ω , so D̄ ∈ suf�t̄ (K,Σ).

Corollary 5.5. Assume that (K, Σ) is a tight FFCC pair with the very weak t-bigness
for t̄ ∈ PCtt

∞ (K, Σ). Then there is D̄ ∈ suf�t̄ (K,Σ) such that D̄� D̄ = D̄.

Theorem 5.6. Assume that (K, Σ) is a tight FFCC pair for H, t̄ = 〈tn : n < ω〉 ∈
PCtt

∞ (K, Σ). Let D̄ ∈ suf�t̄ (K,Σ) be such that D̄� D̄ = D̄ and suppose that An ∈ Dn for
n < ω . Then there are sequences 〈ni : i < ω〉, 〈g3i, g3i+2 : i < ω〉 and 〈s3i+1 : i < ω〉
such that for every i < ω :

(α) 0 = n0 ≤ n3i ≤ n3i+1 < n3i+2 ≤ n3i+3 < ω ,
(β ) if j = 3i or j = 3i+ 2, then g j ∈ pos

(
t̄�
[
n j, . . . , n j+1

))
,

(γ) if j = 3i+ 1, then s j ∈ Σ
(
tn j , . . . , tn j+1−1

)
and nor[s j] ≥ j,

(δ ) if g3�+1 ∈ val [s3�+1] for � ∈ [i, k), i < k, then
3k−1⋃
j=3i

g j ∈ An3i .

Proof. Parallel to Theorem 4.7, just instead of val[si] use {gi−1 ∪g∪gi+1 : g ∈ val[si]}.

Conclusion 5.7. Assume that (K, Σ) is a tight FFCC pair with the very weak t-
bigness for t̄ ∈ PCtt

∞ (K, Σ). Suppose that for each n < ω we are given kn < ω and a
mapping dn : postt(t̄ � n) −→ kn. Then there are sequences 〈ni : i < ω〉, 〈g3i, g3i+2 :
i < ω〉, 〈s3i+1 : i < ω〉, and 〈ci : i < ω〉 such that for each i < ω :

(α) 0 = n0 ≤ n3i ≤ n3i+1 < n3i+2 ≤ n3i+3 < ω , ci ∈ kn3i ,
(β ) if j = 3i or j = 3i+ 2, then g j ∈ pos(t̄�[n j, . . . , n j+1)),
(γ) if j = 3i+ 1, then s j ∈ Σ

(
tn j , . . . , tn j+1−1

)
and nor[s j] ≥ j,
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(δ ) if i < k and f ∈ pos
(
t̄�
[
n3i, n3k

))
are such that

g3�∪g3�+2 ⊆ f and f �
[
ms3�+1

dn , ms3�+1
up

)
∈ val[s3�+1], for all � ∈ [i, k),

then dn3i( f ) = ci.

Example 5.8. Let (G, ◦) be a finite group. For a function f : S −→ G and a ∈ G we
define a◦ f : S −→ G by (a◦ f )(x) = a◦ f (x) for x ∈ S. Let HG(m) = G (for m < ω)
and let KG consist of all FP creatures t for HG such that

• nor[t] = mt
up, dis[t] = /0,

• val[t] ⊆ [mt
dn,mt

up)G is such that (∀ f ∈ val[t])(∀a ∈ G)(a◦ f ∈ val[t]).

For t0, . . . , tn ∈ KG with mt�+1
dn = mt�

up (for � < n) we let ΣG(t0, . . . , tn) consist of all
creatures t ∈ KG such that

• mt
dn = mt0

dn, mt
up = mtn

up,

• val[t] ⊆
{

f ∈ [mt
dn ,mt

up)G : (∀� ≤ n)
(

f �
[
mt�

dn, mt�
up
)
∈ val[t�]

)}
.

Then

(1) (KG, ΣG) is a tight FFCC pair for HG.

(2) If |G| = 2, then (KG, ΣG) has the very weak t-bigness for every candidate t̄ ∈
PCtt

∞ (KG, ΣG).

Proof. (1) Straightforward.

(2) Let G = ({−1, 1}, ·). Suppose that t̄ ∈ PCtt

∞ (KG, ΣG) and postt(t̄ � n) = F0 ∪
·· ·∪FL, n, L, M < ω . For future use we will show slightly more than needed for the
very weak bigness.

We say that N ≥ n + M is �-good (for � ≤ L) if

(�)� there are j2 ≥ j1 > N, g0 ∈ pos(t̄�[n, N)), g2 ∈ pos(t̄�[ j1, j2)) and s ∈
ΣG(t̄�[N, j1)) such that {g0 ∪g1 ∪g2 : g1 ∈ val[s]} ⊆ F�.

(Note that if s is as in (�)�, then also nor[s] = m
t j1
dn ≥ j1 > N ≥ M.) We are going

to argue that

(�) almost every N ≥ n + M is �–good for some � ≤ L.

So suppose that (�) fails and we have an increasing sequence n + M < N(0) <
N(1) < N(2) < · · · such that N(k) is not �-good for any � ≤ L (for all k < ω). Let
m = L + 2 and for each i ∈ [n, N(m)] fix fi ∈ val[ti] (note that then − fi ∈ val[ti] as
well). Next, for j < m define

h j =

N( j)−1⋃

i=n

fi ∪

N(m)⋃

i=N( j)

− fi
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and note that h j ∈ postt(t̄ � n). For some � ≤ L and j < k < m we have h j, hk ∈ F�.
Set

g0 =

N( j)−1⋃

i=n

fi = h j�m
tN( j)
dn = hk�m

tN( j)
dn ,

g2 =

N(m)⋃

i=N(k)

− fi = h j�
[
m

tN(k)
dn ,m

tN(m)
up

)
= hk�

[
m

tN(k)
dn , m

tN(m)
up

)
,

and let s ∈ ΣG(t̄�[N( j), N(k))) be such that

val[s] =
{

h j�
[
m

tN( j)
dn , m

tN(k)
dn

)
, hk�

[
m

tN( j)
dn , m

tN(k)
dn

)}
.

Then {g0 ∪ g1 ∪ g2 : g1 ∈ val[s]} = {h j, hk} ⊆ F�, so g0, g2 and s witness (�)� for
N( j), a contradiction.

The following conclusion is a special case of the partition theorem used in Gold-
stern and Shelah [4] to show that a certain forcing notion preserves a Ramsey ultra-
filter (see [4, 3.9, 4.1 and Section 5]).

Corollary 5.9. Let Y =
⋃

n<ω
n{−1, 1}. Suppose that Y = C0 ∪·· ·∪CL, L < ω . Then

there are a sequence 〈ni : i < ω〉, a function f : ω −→ {−1, 1}, and � < L such that

(a) 0 = n0 ≤ n3i ≤ n3i+1 < n3i+2 ≤ n3i+3 < ω ,
(b) if g : n3i −→ {−1, 1} for each j < i satisfies

g�
[
n3 j, n3 j+1

)
∪g�

[
n3 j+2, n3 j+3

)
⊆ f and

g�
[
n3 j+1, n3 j+2

)
∈ { f �

[
n3 j+1, n3 j+2

)
, − f �

[
n3 j+1, n3 j+2)

}
,

then g ∈C�.

Proof. By Conclusion 5.7 and Example 5.8.

6. Limsup Candidates

Definition 6.1. Let (K, Σ) be a tight FFCC pair for H and J be an ideal on ω .

(1) A limsupJ-candidate for (K, Σ) is a sequence t̄ = 〈tn : n < ω〉 such that tn ∈ K,
mtn

up = mtn+1
dn (for all n) and for each M{

mtn
dn : n < ω & nor[tn] > M

}
∈ J+.

The family of all limsupJ-candidates for (K, Σ) is denoted by PCJ
w∞(K,Σ).

(2) A finite candidate for (K, Σ) is a finite sequence s̄ = 〈sn : n < N〉, N < ω , such
that sn ∈ K and msn

up = msn+1
dn (for n < N). The family of all finite candidates is

called FC(K,Σ).
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(3) For s̄ = 〈sn : n < N〉 ∈ FC(K,Σ) and M < ω we set

baseM(s̄) =
{

msn
dn : n < N & nor[sn] ≥ M

}
.

(4) Let t̄, t̄ ′ ∈ PCJ
w∞(K,Σ), s̄ ∈ FC(K,Σ). Then we define t̄ � n, Σtt(t̄ ), postt(t̄ ), t̄ ≤

t̄ ′, pos(t̄�[n, m)), and pos(s̄) as in the case of tight pure candidates (cf. Definitions
2.3 and 5.1).

(5) Let t̄ ∈PCJ
w∞(K,Σ). The family of all finite candidates s̄ = 〈sn : n < N〉 ∈FC(K,Σ)

satisfying

(∀n < N)(∃k, �)(sn ∈ Σ(t̄�[k, �))) and ms0
dn = mt0

dn

is denoted by Σseq(t̄ ).

Definition 6.2. Let (K, Σ) be a tight FFCC pair, and let J be an ideal on ω and t̄ ∈
PCJ

w∞(K,Σ).

(1) We say that (K, Σ) has the J-bigness for t̄ if

(⊗)J
t̄ for every n, L, M < ω , and a partition F0 ∪ ·· · ∪FL = postt(t̄ � n), there

are � ≤ L and a set Z ∈ J+ such that

(∀z ∈ Z)(∃s̄ ∈ Σseq(t̄ � n))(z ∈ baseM(s̄) & pos(s̄) ⊆F�) .

(2) The pair (K, Σ) captures singletons (cf. [10, 2.1.10]) if

(∀t ∈ K)(∀ f ∈ val[t])(∃s ∈ Σ(t))(val[s] = { f}).

(3) We define suft̄(K,Σ) as in Definition 4.1(3), setn
t̄ (A, D̄)

(
for A ⊆ postt(t̄ � n) and

D̄ ∈ suft̄(K,Σ)
)

as in Definition 4.1(5) and the operation � on suft̄(K,Σ) as in
Definition 4.1(6).

(4) For n < ω , Dn,J
t̄ is the family of all sets B⊆ postt(t̄ � n) such that for some M < ω

and Y ∈ Jc we have if s̄ ∈ Σseq(t̄ � n) and baseM(s̄)∩Y 
= /0, then B∩pos(s̄) 
= /0.

(5) sufJ
t̄ (K,Σ) is the family of all D̄ = 〈Dn : n < ω〉 ∈ suft̄(K,Σ) such that Dn,J

t̄ ⊆ Dn
for all n < ω .

Remark 6.3. Note that no norms were used in the proofs of Observation 4.2, Propo-
sition 4.3, so those statements are valid for the case of t̄ ∈ PCJ

w∞(K,Σ) too.

Observation 6.4. (1) Assume that (K, Σ) is a tight FFCC pair with bigness (see Def-
inition 2.6(3)). If (K, Σ) captures singletons or it has the t-multiadditivity (see
Definition 2.5(3)), then (K, Σ) has the J-bigness for any t̄ ∈ PCJ

w∞(K,Σ).

(2) The tight FFCC pairs (K1, Σ∗
1), (K3, Σ∗

3), and (KN , ΣN) defined in Examples 2.10,
2.12, and 2.13, respectively, have J-bigness on every t̄ ∈ PCJ

w∞(K,Σ).

Every tight FFCC pair can be extended to a pair capturing singletons while pre-
serving postt(t̄ ).
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Definition 6.5. Let (K, Σ) be a tight FFCC pair for H. Define Ksin as the family of
all FP creatures t for H such that

dis[t] = K, nor[t] = 0, and |val[t]| = 1.

Then we let Ks = K ∪Ksin and for t0, . . . , tn ∈ Ks with mt�
up = mt�+1

dn (for � < n) we set

• Σsin(t0, . . . , tn) consists of all creatures t ∈ Ksin such that mt
dn = mt0

dn, mt
up = mtn

up

and: If val[t] = { f} then f �
[
mt�

dn, mt�
up
)
∈ val[t�] for all � ≤ n;

• if t0, . . . , tn ∈ K, then Σs(t0, . . . , tn) = Σ(t0, . . . , tn)∪Σsin(t0, . . . , tn);
• if t� ∈ Ksin for some � ≤ n, then Σs(t0, . . . , tn) = Σsin(t0, . . . , tn).

Observation 6.6. Let (K, Σ) be a tight FFCC pair for H.

(1) (Ks, Σs) is a tight FFCC pair for H and it captures singletons.
(2) If (K, Σ) has bigness then so does (Ks, Σs) and consequently (Ks, Σs) has the

J-bigness on any t̄ ∈ PCJ
w∞(Ks, Σs).

(3) If t̄ ∈ PCJ
w∞(K,Σ), then t̄ ∈ PCJ

w∞(Ks, Σs) and postt(t̄ ) with respect to (K, Σ) is
the same as postt(t̄ ) with respect to (Ks, Σs).

Observation 6.7. Let G = ({−1, 1}, ·) and (KG, ΣG) be the tight FFCC pair defined
in Example 5.8. Suppose that t̄ ∈ PCJ

w∞(KG, ΣG). Then
(
Ks

G, Σs
G

)
(sic!) has the

J-bigness for t̄.

Proof. Note that PCJ
w∞(KG, ΣG) ⊆ PCtt

∞ (KG, ΣG) and remember (�) from the proof
of Example 5.8(2).

Proposition 6.8. Assume that (K, Σ) is a tight FFCC pair for H, J is an ideal on ω
and t̄ ∈ PCJ

w∞(K,Σ).

(1) sufJ
t̄ (K,Σ) is a closed subset of the compact Hausdorff topological space

suft̄(K,Σ).
(2) If (K, Σ) has the J-bigness for t̄, then sufJ

t̄ (K,Σ) 
= /0.
(3) If D̄ ∈ sufJ

t̄ (K,Σ), n < ω and B ∈ Dn,J
t̄ , then setnt̄ (B, D̄) ∈Dn,J

t̄ .
(4) sufJ

t̄ (K,Σ) is closed under the operation �.

Proof. (1) Same as Proposition 4.5(1).

(2) Similar to Proposition 4.5(2).

(3) Let B ∈ Dn,J
t̄ be witnessed by M < ω and Z ∈ Jc. We are going to show that then

for each s̄ ∈ Σseq(t̄ � n) with baseM(s̄)∩Z 
= /0 we have pos(s̄)∩setnt̄ (B, D̄) 
= /0. So let
s̄ = 〈s0, . . . , sk〉 ∈ Σseq(t̄ � n), baseM(s̄)∩Z 
= /0 and let x be such that msk

up = mtx
dn. Set

A =
⋃
{ f � B : f ∈ pos(s̄)}. Suppose that r̄ ∈ Σseq(t̄ � x). Then s̄�r̄ ∈ Σseq(t̄ � n) and

baseM(s̄�r̄) ⊇ baseM(s̄), so pos(s̄�r̄)∩B 
= /0. Let g ∈ pos(s̄�r̄)∩B and f0 = g�msk
up,

f1 = g�[msk
up, ω). Necessarily, f0 ∈ pos(s̄), f1 ∈ pos(r̄) and (as g = f0 ∪ f1 ∈ B) f1 ∈

f0 � B. Consequently, A∩pos(r̄) 
= /0. Now we easily conclude that A ∈ Dx,J
t̄ ⊆ Dx.

Hence for some f ∈ pos(s̄) we have f � B ∈ Dx, so f ∈ setnt̄ (B, D̄).

(4) Follows from (3).
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Corollary 6.9. Assume that (K, Σ) is a tight FFCC pair, J is an ideal on ω and
t̄ ∈ PCJ

w∞(K,Σ). If (K, Σ) has the J-bigness for t̄, then there is D̄ ∈ sufJ
t̄ (K,Σ) such

that D̄� D̄ = D̄.

Definition 6.10. Let J be an ideal on ω .

(1) A game �J between two players, One and Two, is defined as follows. A play of
�J lasts ω steps in which the players construct a sequence 〈Zi, ki : i < ω〉. At a
stage i of the play, first One chooses a set Zi ∈ J+ and then Two answers with ki ∈
Zi. At the end, Two wins the play 〈Zi, ki : i < ω〉 if and only if {ki : i < ω} ∈ J+.

(2) We say that J is an R-ideal if player One has no winning strategy in �J .

Remark 6.11. The game �J is attributed to Fred Galvin. He also showed that if J is a
maximal ideal on ω , then it is an R-ideal if and only if the dual filter Jc is a Ramsey
ultrafilter (cf. [1, Theorem 4.5.3]). Also, the ideal [ω ]<ω of all finite subsets of ω is
an R-ideal.

Theorem 6.12. Assume that (K, Σ) is a tight FFCC pair, J is an R-ideal on ω and
t̄ ∈ PCJ

w∞(K,Σ). Suppose that D̄ ∈ sufJ
t̄ (K,Σ) satisfies D̄ � D̄ = D̄ and let An ∈ Dn

for n < ω . Then there are s̄ ∈ PCJ
w∞(K,Σ) and 0 = k(0) < k(1) < k(2) < k(3) <

· · · < ω such that t̄ ≤ s̄, ms0
dn = mt0

dn and if i < j, � < ω , sk(i) ∈ Σtt(t̄ � �), then
pos

(
sk(i), sk(i)+1, . . . , sk( j)−1

)
⊆ A�.

Proof. The proof follows the pattern of Theorem 4.7 with the only addition that we
need to make sure that at the end s̄ ∈ PCJ

w∞(K,Σ), so we play a round of �J . First,

Claim 6.12.1. Assume M, � < ω and B ∈ D�. Then for some set Z ∈ J+, for every
x ∈ Z, there is s̄ ∈ Σseq(t̄ � �) such that

x ∈ baseM(s̄), pos(s̄) ⊆ B, and (∀ f ∈ pos(s̄))
(

f � B ∈ Dx f

)
.

Proof of Claim 6.12.1. Similar to Claim 4.7.1. Since D̄ � D̄ = D̄ and B ∈ D�, we
know that postt(t̄ � �)\ (B∩ set�t̄ (B, D̄)) /∈ D�,J

t̄ . Therefore, for each Y ∈ Jc there are
x ∈ Y and s̄ ∈ Σseq(t̄ � �) such that x ∈ baseM(s̄) and pos(s̄) ⊆ B∩ set�t̄ (B, D̄). So the
set Z of x as above belongs to J+.

Consider the following strategy for player One in the game �J . During the course
of a play, in addition to his innings Zi, One chooses aside �i < ω , Bi ∈ D�i and s̄i ∈
FC(K,Σ). So suppose that the players have arrived to a stage i of the play and a
sequence

〈
Z j, k j, s̄ j, � j, B j : j < i

〉
has been constructed. Stipulating �−1 = 0 and

B−1 = A0, One uses Claim 6.12.1 to pick a set Zi ⊆ ω \m
t�i−1
dn such that Zi ∈ J+ and

for all x ∈ Zi there exists s̄ ∈ Σseq (t̄ � �i−1) with

x ∈ basei+1(s̄) & pos(s̄) ⊆ Bi−1 & (∀ f ∈ pos(s̄))
(

f � Bi−1 ∈ Dx f

)
.

The set Zi is One’s inning in �J after which Two picks ki ∈ Zi. Now, One chooses
s̄i ∈ Σseq(t̄ � �i−1) such that

(α)i ki ∈ basei+1
(
s̄ i
)
,
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(β )i pos
(
s̄i
)
⊆ Bi−1, and

(γ)i
(
∀ f ∈ pos

(
s̄ i
))(

f � Bi−1 ∈ Dx f

)
.

He also sets

(δ )i �i = x f for all (equivalently: some) f ∈ pos
(
s̄i
)
, and

(ε)i Bi = A�i ∩
⋂{

f � Bi−1 : f ∈ pos
(
s̄i
)}

∈ D�i .

The strategy described above cannot be winning for One, so there is a play
〈Zi, ki : i < ω〉 in which One follows the strategy, but {ki : i < ω} ∈ J+. In the
course of this play One constructed aside a sequence

〈
�i, Bi, s̄i : i < ω

〉
such that s̄ i ∈

Σseq(t̄ � �i−1) and conditions (α)i–(ε)i hold (where we stipulate �−1 = 0, B−1 = A0).
Note that s̄ i�s̄ i+1�· · ·�s̄ i+k ∈ Σseq(t̄ � �i−1) for each i, k < ω . Also

s̄ def
= s̄ 0�s̄ 1�s̄2�· · · ∈ PCJ

w∞(K,Σ) and s̄ ≥ t̄.

Claim 6.12.2. For each i, k < ω , pos
(
s̄i�s̄ i+1�· · ·�s̄ i+k

)
⊆ Bi−1 ⊆ A�i−1 .

Proof of Claim 6.12.2. Induction on k; fully parallel to Claim 4.7.2.

Now the theorem readily follows.

Conclusion 6.13. Assume that (K, Σ) is a tight FFCC pair, J is an R-ideal on ω and
t̄ ∈ PCJ

w∞(K,Σ). Suppose also that (K, Σ) has J-bigness for t̄. For n < ω let kn < ω
and let dn : postt(t̄ � n)−→ kn. Then there are s̄ ∈ PCJ

w∞(K,Σ) and 0 = k(0) < k(1) <
k(2) < · · · < ω and 〈ci : i < ω〉 such that

• t̄ ≤ s̄, ms0
dn = mt0

dn, and
• for each i,n<ω , if sk(i)∈Σtt(t̄ �n), i< j<ω and f ∈ pos

(
sk(i),sk(i)+1, . . . ,sk( j)−1

)
,

then dn( f ) = ci.

Corollary 6.14. Let H∗ : ω −→ ω \{0} be increasing, Z∗ =
⋃

n<ω
∏
i<n

H∗(i) and let J

be an R-ideal on ω . Suppose that Z∗ =C0∪·· ·∪CL, L < ω . Then there are sequences
〈ki, ni : i < ω〉 and 〈Ei : i < ω〉 and � ≤ L such that

(a) 0 = n0 ≤ k0 < n1 ≤ ·· · < ni ≤ ki ≤ ni+1 ≤ ·· · < ω , {ki : i < ω} ∈ J+, and
(b) for each i < ω , /0 
= Ei ⊆ H∗(i), |Eki | = i+ 1, and

∏
j<ni

E j ⊆C�.
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