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CLASSIFICATION T H E O R Y  
FOR N O N - E L E M E N T A R Y  CLASSES I: 

THE N U M B E R  OF U N C O U N T A B L E  MODELS 
OF Lo, l,o,. PART B 

BY 

SAHARON SHELAH* 

ABSTRACT 

We continue here Part A, and the main results are proved here. This part deals 
with n-dimensional diagrams of models. 

w Good systems 

In this section we shall introduce the diagrams over which we shall define in 

the next section the generalized amalgamation properties. We shall have 

ordered sets I which will be used as index sets of diagrams; for each s E / ,  there 

corresponds a model Ms such that s =< t (in the order of I )  implies Ms C M,. We 

shall work with ordered sets I such that, for every s, t E / ,  s n t - -  the infimum 

of {s, t} - -  is defined; an additional requirement on our diagrams is Msn, = 

Ms N M,. Such diagrams will be cal led/-systems and defined in Definition 3.2(1). 

In this section, the reader should think of I as a power set of n = {0, 1,. �9 n - 1} 

and the order is the inclusion. We shall usually work with particular kinds of 

systems. They are introduced in Definition 3.3. The main theorem in this section 

is the generalized symmetry lemma, which will help to prove the goodness of 

systems. 

NOTATION 3.1. (1) Let ~ ( S )  be the family of subsets of S, ~ - ( S ) =  

~ ( S ) - { S } .  We use usually ~ ( n ) ,  remembering n = {0, 1 , . . . ,  n - 1}. 

(2) We use I mainly to denote a hereditary subset of some ~ ( n ) ,  but 
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generally 

that 

(i) 

(ii) 

it denotes a partially ordered set, finite if not indicated otherwise, such 

for any s, t ~ I there is a largest lower bound s M t, and if s, t has an 

upper bound then they have a least upper bound s U t; 

for each s ~ I  there is a natural number n = i s  ]I and a mapping 

g = g, = g,,~ from ~ ( n )  into I, g(n) = s, g commutes with U and Iq, 

and for each t E / ,  s Z  t, for some u E ~- (n ) ,  s n t _-< g,(u); 

(iii) n(I) = max,~, ]s I~ exists. 

Notice each linearly ordered set I is as required, and n ( I ) =  1. 

(3) ll is a submodel of /2 ,  (I1 _C 12) if s E 11 ~ s E 12, the intersection, order 

and g~ are the restriction, and union is the same when it exists in 11. 

(4) /1 is an initial segment of I2 if/1 C 12, and sx ~ 12, s2 < sl implies s2 E/1. 

(5) /1 x 12 is partially ordered by (sl, s2) <- (t~, tz) iff sl _-< h, and s2 _-< t2 (it is as 

required). I ~'~ is I •  where a < / 3 ;  notice that I ~'~ is isomorphic to 

~ ( n  + 1) if I is isomorphic to ~(n) .  Naturally for /1  x /2  we can have 

I<s,,s2>l,,• l,, +lsz112 and g< ..... >(u)=(g,,(u A[sll~,),g~({l:lsll1, + l ~u})). 

DEFINITION 3.2. (1) An I-system 0 ~ is an indexed set Ms (s ~ I) such that :  

(i) Us~1M, is an atomic set; 

(ii) s =< t implies Ms _C M, ; 

(iii) M,n, = M, n M,. 

We let A, = U,<,M, even if s ~ / ,  but I is an initial segment of /1,  and s E/1,  
(VtE/1)  [t <s  ~ t e l ] .  

When it isn't self-evident, we write M~, A ~. 

(2) We call 5r a (A, /)-system if 11 M, [I = A for each s E I. 

DEFINITION 3.3. (1) The system is called full if for every s, Ms is weakly full 
over A~. 

(2) The system is called good if for each enumeration g = (s( i): i  <]) of I 

(always without repetitions, and such that s(i~) <~ s(i2) ~ il < i2), it is good for if, 

which means (for not necessarily finite I)* that for each l < j :  

(i) A,,) is good; 

(ii) for every/7,. ~ M,~,,) for m < I, we can find /7" E M,.)n~,) such that 

(a) s (m)< s(l) ~ b ' =  b,,, 
(b) b0 ̂  ba^ . . ,  and b~ ̂  b~^. . ,  realizes the same type; 

(iii) the triple A,~o, M,0), U,,<zM,r is in stable amalgamation. 

(3) We say the system is weakly good if for some t* ~ I, for each enumeration 

* But U= bm below should be finite. 
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g of I in which t* is the last element,  the conditions of (2) hold for each l, 
l + 1 < ] and there are such enumerations.  Speaking on enumerat ion of I for 
weakly good systems we mean t* is the last. 

(4) We say "fully good system" instead of "full and good system", and 
"weakly fully good system" means "full and weakly good system". 

CLAIM 3.4." (1) I f  J is a submodel of I, 5 e~ {M, :s E I} a [full] [good] 

I-system, then Sf l = { M s : s  E J} is a [full] [good] J-system, and for s ~ J, 
A ~ ~  '. 

(2) I f  ( s (0) , . . . ,  s(k - 1)) is an enumeration of I, then for each l, {s(0) , . . . ,  
s (l - 1)} is an initial segment of L 

(3) I f  90 = {Ms : s ~ I} is a good system, (s(0),. �9 ,, s(k - 1)) an enumeration, 

then for each l, (A,to, U,<~Ms,)) satisfies the Tarski-Vaught condition, hence for 

each t ~ I, (A,, U,,~ Ms) satisfies the Tarski- Vaught condition. 

(4) In Definition 3.3(2), part (iii) follows by (i) and (ii). 

(5) In Definition 3.3(2), we can replace (ii), (iii) by (ii)-, (iv) where (ii)- is like 

(ii) with b~ = 0 and (iv) says: for b E A,,),  tp(/~, U,~<tMsc,,)) does not split over 

some finit~ B C_ A,,). 

PROOF. (1) By Notation 3.1(3) g~ = g~, hence Is I, = I s ]J, and let n = Is I~. By 
Notation 3.1(2)(ii), 

A ~  ~ U A~, = U { A ~ : t = g ~ , ( u ) , u E ~ - ( n ) }  
t < s  
t E I  

~u = A  = U { A ~ : t = g s (  ) , u ~ - ( n ) } =  U A ~' s~, t s �9 

t < s  

(2) Easy. 
(3) By Definition 3.3(2)(iii) for the first phrase, and by choosing an approp- 

riate enumerat ion for the second. 
(4) So suppose 5e is an / - sys tem,  ~ = (s(i) : i < j) an enumerat ion o f / ,  and (i) 

and (ii) from Definition 3.3(2) are satisfied for a given I < j. We should prove that 
A,t~), Ms,), Um<tM, t,,) is in stable amalgamation. 

Now A, , ) i s  a good set by Definition 3.3(2)(i), and (A,t~), U,,<~Ms(m)) satisfies 
the Tarski-Vaught  condition by Definition 3.3(2)(ii). The part left to show is 
that, for any / ~ M , , ) ,  tp(/7, U,,<~Mst,.)) does not split over some finite 
B C_ As.). 

By Lemma 2.2(1), as A,to is a good set, for some finite B _C As,), tp (/~, A,tt)) 
does not split over B, and we shall show that even tp (/~, U,,<~M,t,.)) does not 
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split over B, thus finishing. So let ~1, ~2 E Um<lM..~, tp (~l, B) = tp (~2, B) and it 

suffices to prove that tp(~l ,B U/7)=tp(~2 ,B U/7). We can easily find 

/7,. E Mst,.~ for m _-<l such that b~ =/7, B _C U {/7,. : s ( m ) <  s(l)}, and 3~ ̂ ~2C 

U,.<~/7,.. By Definition 3.3(2)(ii) there is an elementary mapping f, Dom)r _- 

U,.~,/7m, /(/7m) =/7'~EMso.,ns,), such that s(m)<-s(I) implies /(/7m) =/7,.. 

Clearly f [ (B U/7) = id, hence tp (tT~, B U/7) = tp (f(tTi), B U/7). Hence 

tp (f(~),  B)  = tp (~,, B) = tp (t72, B) --- tp 0c(t72), B). 

As ~ C U,,<tMs~,,~, f(~)__. U,.<~M,~,,~ns0~= A,,~, and as tp(/7, A,w) does not 

split over B, by the previous sentence tp (f(~l), B U/7) = tp (f(g2), N U/7). But as 

tp(6, B U/7) = tp(f(g~), B U/7), clearly tp(g~, B U/7) = tp(g2, B U/7), as required. 
(5) Clearly (ii)-, (iv) follow from (i), (ii), (iii). Now assume (i), (ii)-, (iv); by (4) 

it suffices to prove (ii). So we are given/7,, ( m ~  l) as there. By (iv) we can find a 

finite B C_A,o such that tp(/~,A,0~) does not split over B. Now w.l.o.g. 
B cU{ /7 , , : s (m)<s ( l ) } .  Now we define /7" ( m < l )  as guaranteed by the 

weaker (ii), and let /7} =/~. 

THE GENERALIZED SYMMETRY LEMMA 3.5. For finite systems in the definitions 
of good systems and of weakly good systems, we can replace "for every 
enumeration ~" by "for some enumeration g". 

PROOF. It suffices to prove that if our system is good for g =  
(s(O),. . . ,s(k - 1)) then our system is good for i, where t" = (t(0), . . . ,  t(k - 1)) is 
such that for some l * : s ( i ) = t ( i )  for i # l * ,  l * + l ,  and t ( l * )=s ( l*+l ) ,  
t ( l *+l )=s ( l* ) .  

We can also ignore the case of "weakly good" (check the definition). 
We now check that, for each l < k, the conditions (from Definition 3.3(2)) for 

the system to be good for t hold. For l #  l*, l* + 1 the conditions are the same as 
the corresponding conditions for g. For l = l* the conditions are just easier than 
the corresponding conditions for g. So we have to deal with l = l* + 1. 

As for condition (i), it is the same as condition (i) for g and l*. For condition 

(ii)- we prove a more general claim (apply Claim 3.6(2) for { M , o : i <  l*}, 

h(t(i)) = t ( i )n  t(l*) which is a good system by Claim 3.4(1); then we finish by 

Claim 3.4(5) if we prove (iv)). 

Now for every/7 E M,,.+~, ~ E M,,.~, remembering that g is a good enumera- 

tion, we know that letting D = Ui<~. M,o,  tp(/7, D)  is the stationarization of 
tp(/7, B)  for some finite B C A,,.+~ C_ D and tp(~,D U M,,.+I~) is the stationar- 
ization of tp(3, C) for some finite C C A,,.~ C D. Hence also tp(~, D U/7) is the 

stationarization of tp(?,C).  By the symmetry property, 1.4(1)(c), also 
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tp (/~, D t.J g) is the stationarization of tp (/~, B). As this holds for every g ~ M,m 

also tp(/~, D U M,,.)) is the stationarization of tp(/~,B). By 1.4(1)(b) we finish. 

CLAIM 3.6. Suppose the I-system {M~ : s ~ I} is good for the enumeration 

w = ( s ( 0 ) , . . . , s ( k - 1 ) ) ,  J C_ I an initial segment, h a function from I to J, 
h I J = the identity, h is order ( <- ) preserving. 

Let As = I..J~jA,. Then: 

(1) The pair (A~, ~ ~ ~, Ms) satisfies the Tarski- Vaught condition. 

(2) For every b,. UMst,.I (m < k) there are b'~Mh~,t.,)~ such that: s ( m ) U J  
implies b ' . . )= f).~m), and 

tp(b,, ^ b, ^ . . . , ~ ) =  tp(b/~ ^ bi ^. .  . ,~) .  

REMARK. If I is the initial segment of I* = I tO {t}, t E / ,  J = {s ~ I : s < t}, 
h(s) = s 71 t are O.K. 

PROOF. (1) Follows by Claim 3.6(2). 

(2) We can find sequences a,,, cm, d,, for m < k such that 

(i) &. C [..J~ . . . .  (o<s~,.)(~^~), and dm C__A~m) and /),. C 6,.^d,. C_ M.r 
(ii) tp (~, d~) ~- tp (?~, A~,)) hence tp ((~, 5~) ~- tp (~, [..J,<~ M.o); 

(iii) tp(d,  As,lto6~) is a stationarization of t p ( d , ~ ) ,  hence so is 
tp (d,, [..J,<,M,,) to e,). 

The existence of d,., &. d,. (m < k) is proved as follows. We prove by 
downward induction on j =< k that there are d~, ~ ,  d~ (m -< k) such that (i) 
holds for every m < k and (ii), (iii) hold for every i, j <= i < k. 

For j = k let (~ = / ~ ,  a~ = d,. = ( ) (the empty sequence), and clearly they 
are as required. 

Suppose we have defined for j + 1 and we want to define for ]. For i < k, 
s ( i ) ~ s ( j )  let ~{= ~{+~, ~ =  g{+', d~= d~ +~. 

Now A.~i~ is good (by hypothesis that, for some enumeration, (i) of Definition 
3.3(2) holds), and A,,j) C M~.j), (~+l^ d~+. C_ M,~i~, so tp (e~ *'^ d~ § A~/)) E D,~,o ,. 
Hence by Lemma 2.2(1) there are ~/* ~ A.j~, ~* E M~,~, SF* ~ M.j~ such that: 

t ] ] + l  - *  ^ - - ,  (a) e~+'^_~ C_c~ d~, 
(b) tp (r *, ti *) ~- tp (g *, A,,,)), 

(c) tp(d*,  A,~)to 6*) is stationarization of tp (di,ci).-* -* 

We now let ci-c~,-~--* d j = d *  and a~-ai,-~--* and for i < k ,  s ( i ) < s ( j ) ( h e n c e  
i < j )  w e  let ci{ = -~+' -~+l a~ , e~= c~ and d~ = d~ +~ t.3 (M,,) Oti*) (that is, the ranges of 

the sequences satisfy those conditions). Clearly we have defined ~i~, 6{, d~ for all 
i's. 
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Why does alL, c -j,., d~ (m < o~) satisfy the induction hypothesis? 

(i) Obvious.  

(ii) For  i ~ j  it is obvious;  for i = j ,  by Definition 3.3(2)(iii) (which by 

assumption holds for the enumera t ion  g), (As,) ,Ul<iMsu))  satisfy the 

Tarsk i -Vaught  condition, so by (b) above it follows. 

(iii) For  i ~ j  it is obvious.  For  i = j  r emember  (c) above;  as Asu), M,(n, 

U~<jM~w is in stable amalgamat ion and Lemma 2.10(4), the second phrase, 

follows too. 

From the above it follows that: 

(ii)' tp ((i, U {E~ ̂  d~ : s ( l ) =  < s(i), l < i} )k tp (~ ,  U,<ic-~ ̂  d~); 

(iii)' tp (di, U ,<i (~t ̂  dr) u ~i ) is a stationarization of tp (di, gi). 

So we have defined &,, (,., d,, as required.  

Now we define by induction on i an e lementary  mapping f~, increasing with i, 

whose  domain is U,<i(c-~ ^ ~ )  and fi(~l ^ dl)~-.Mh(s(l)) and f~(c-i ̂  d~)= ~l ̂  ~ if 

s ( l ) E J .  

For  i = 0 the condit ions hold, so let us define/~§ assuming ~ has been  defined. 

Case I: s ( i ) ~ J  

Clearly U {~(~l ^ d~): s(l)<= s ( i ) , l  < i}c_ Mh~s~,), hence we can find 

C'i E Mh(s(i))such that if we extend g~ = ~ I{~t ^dt : l  < i, s (I)=< s(i)} by (i ~ ('i we 
get an e lementary  mapping g'~. By (ii)', f~ U g; is an e lementary  mapping and we 

call it f;. Now tp (di, el) is stationary, hence so is g'i(tp (~, (i)). Now choose a finite 
B i _C Mh~.~n), such that 

p = tp (~ [6o ^ do ^ - . . ^  6i_, ^ di--l], Mh(s(i))) 

and p I B i has the same rank, -' ~ - '  ci C_ B ,  and choose a di E Mh,u)) which realizes 

the stat ionarization of g'i(tp (di, 6i)) over  Bi. By the symmetry  lemma (Theorem 

(di,)~[co ^do ^. ^~i_, ^a~_~]utZ) is the stationarization of 1.4(1)(c)), t p - '  - . .  

g'i(tp (d~,'#i)), hence f'i U {di --9 St'i} is an e lementary  mapping, and it is as required.  

Case H: s ( i ) ~ J  

In this case we have to define f~+,(c5+~ ̂  ~+,) = c5+~ ̂  ~+,, and have to prove this 

is an e lementary  mapping. Remember ing  f~ are the identity mappings on 

U {~^ d~ �9 l < i, s(1) < s(i)}, as J is an initial segment  there is no new point here.  

So we have proved Claim 3.6, hence L e m m a  3.5. 

CLAIM 3.7. Let (for simplicity) I be finite, 5 ~ = {Ms : s ~ I} an I-system, then 

5e is good iff the following are satisfied: 
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(a ) each Axm~ is good (this does not depend on the enumeration); 

(fl ) if J is an initial segment o[ I, then for some s E J, for no t E J, s < t, and for 

every/~ E Ms, tp (/~, U,E~,,,,sM,) does not split over some finite subset of As. 

PROOF. We prove, by induction on k, that if J is an initial segment of I, 

I J I = k, then {Mr, : s E J} is a good system, assuming (c~) and (/3). 

Clearly this suffices and for k --0 it is trivial. 

So let I J1 = k + 1, let s E J be as mentioned in (/3), and let (s(m) : m _-< k) be 

an enumeration of J such that s ( k ) =  s. Let us check the condition from 

Definition 3.3(2). For l < k they follow by the induction hypothesis, so let l = k. 

(i) This is guaranteed by (a)  of Claim 3.7. 

(ii) By the induction hypothesis, {M~<,~: m < k} is good. Suppose/~, E Ms,,) 

(m-<_ k) are given and we should find - '  b,,~Ms~m)ns~ as required there. By 

condition (/3) (in the claim) w.l.o.g, tp (/~k, U {Ms~,,~ : m < k}) does not split over 

U {/~m : s ( m ) <  s(k)}. As (Ms<,,): m < k) is good, we can apply Claim 3.6 to 

J - {s (k)}, {s (m) : s (m) < s (k)} and h : h (s (m)) = s (m) n s (k) standing for I, J, 

h, resp. and get (/~:: m < k); letting/~, =/~k we finish (ii). By Claim 3.4(4), (iii) 

follows. 

So we finish one direction; the other direction is easy. 

w The generalized amalgamation properties 

In this section, we explicate the scheme we have described in the Introduction, 

in [18], of reducing the analysis of a model M (which we have or we want to 

construct) to amalgamation properties for n-dimensional cubes (for uniqueness 

or existence). Definition 4.1, which introduces an appropriate family of proper- 
ties, is the main definition of the section and possibly of the paper. We 

concentrate on fully good (A, ~-(n))-systems, as under reasonable conditions 

they are unique, so the uniqueness and non-uniqueness properties become 

complementary (but we shall also get the conclusions about all good systems, 

i.e., the "strong" properties). 

Theorem 4.5 is the main theorem of the section; it says how to decompose a 

(A, /)-system {Ms : s E I} to {M~' : s ~ I}, a < A, and how good and full are the 

and {M,,,> s E L l ~ {0, 1}} where ~'~ " systems {MT: s G I} ~ . M<,,t> is M,  if l = 0, M, ~ if 

l = 1. This lays the ground for proving uniqueness and building amalgamation 

(thus proving existence or non-uniqueness) by induction on the cardinality. 

DEFINITION 4.1. (1) K satisfies (or has) the (A, n)-goodness property if for 

every fully good (A, ~-(n))-system 9 ~ A ,  ~ is a good set. 
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(2) K satisfies (or has) the (A, n)-existence property if every fully good 
(A, ~-(n))-system 5e can be completed to a weakly good, full (A, ~(n))-system, 
i.e., we can find an M weakly full over A , ,  ~ I] M ][ = A. 

(3) K satisfies the (A, n)-uniqueness property provided that: if 5e is a fully 

good (A, ~-(n))-system, and for l = 0, 1 A ~_C M~, II M~ II = A, M~ weakly full over 
A ,J, then M,), M, are isomorphic over A ~. 

(4) K satisfies the (A, n)-non-uniqueness property provided that, for any fully 

good (Z, ~-(n))-system, there are M, ( l - -0 ,  1) weakly full over A,~', II M~ II = A 
and there are no M weakly full over A ,  ~ and elementary embeddings 

f~ : M, --> M, f,,r A ~  = f, t A f  = id. 
(5) The meaning of abbreviations, such as " ( <  A, ~ n)-non-uniqueness prop- 

erty", is clear. 

(6) For each of those properties the meaning of "the strong (A, n)-x property" 
means we do not demand the systems to be full (but in (3), M~ still is weakly full 
over A,).  

REMARK. Note that it may occur that some of those properties hold 

vacuously, as no good (A,)- (n))-system exists. 

LEMMA 4.2. (1) The strong (No, n)-existence property always holds. 

(2) The following properties hold: [strong] (•o, n )-goodness, [strong] (~o, n)- 
existence, [strong] (~,), n)-uniqueness for n = 0, 1. 

(3) The [strong] (No, n)-uniqueness property is equivalent to the [strong] 
(~o, n )-goodness property. 

(4) If  the (A, n)-goodness property holds, 5P is a full weakly good (A, ~(n)) -  
system, then it is good (hence fully good). 

(5) If the strong (A, n)-goodness property holds, we can waive the fullness. 
(6) If the (A, 1)-existence property holds, then the (A, n)-existence property is 

equivalent to: for every fully good (A, ~-(n  ))-system 5 ~ there is iV/, A ~ C  M. 

PROOF. (1) Let .9~ be an (~o, ~-(n))-system, then A~' is a countable atomic 

set, hence for some countable M, A f_C M. 
(2) See Theorem 1.4 and Lemma 2.2. 

(3) We have already proven "good implies unique" (in Lemma 2.2). For the 
other direction, uniqueness implies, by (1), the existence of a universal model 

over the relevant set (which is countable), hence the set is good by Claims 2.3 
and 2.4. 

(4) Check the definition. 

(5) Obvious. 

(6) Easy. 
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THEOREM 4.3. (1) Suppose 

(a) It is an initial segment of 12, n (12) <-- n*. 
(b) 6# 1 = {Ms : s E L} is a fully good ()t, I~)-system. 

(c) K satisfies the (A, _-< n*)-existence and (A, <_-n*)-goodness properties. 

Then we can complete 5 e~ to a fully good ()t, I2)-system. 

(2) If, in addition, the (A, <= n *)-uniqueness property holds, then the completion 

above is unique up to isomorphism over 6F ~. 

(3) In part (1), in (b )and  in the conclusion, we can omit the "fully " if in (c) we 

demand the strong properties. 

PROOF. (1) Let gt = { s ( i ) : i  < k~} be an enumerat ion of I, for l = 1,2 (possi- 
ble as I1 is an initial segment of /2). We now define Ms~) for kl_-<i< k2 by 
induction on i. By Lemma 3.5 it suffices to prove {Ms(i): i < k2} is good for the 
enumerat ion g2, so by Definition 3.3(2) we have to define Ms(~) so that conditions 
(i), (ii), (iii) there hold and Ms(~) is weakly full over As(i), assuming {Mso) : j < i} is 
a fully good system, I[Ms(j)H = A. By Notation 3.1(2)(ii) there is an appropriate 
g:~-(n)--->I2,  n=ls112. By Lemma 3.5, { M g t , ) : s E ~ - ( n ) }  is a fully good 
(A, 3~-(n))-system; so by the ()~, n)-existence property, there is M, full over 
(..J {Mg,): s E ~-(n)}  = A~(,,, I[ M II = A, and by the (h, n)-goodness condition 

A~(~ is good (i.e., condition (i)). If we let Ms, )= M the fullness condition holds. 
Now by Claim 3.6, (A~(,), I.]j<~ Ms~)) satisfies the Tarski-Vaught  condition, hence 

by Lemma 2.10(2) we can find an elementary mapping f, f I As(~) = id, and As(~), 
f(Ms(,)), I,]j<, Ms(j)is in stable amalgamation (i.e., condition (iii)), so f ( M )  is the 
desired Ms(~) by the proof of Claim 3.7. 

(2),(3) Easy. 

CONCLUSION 4.4. Suppose the (h, <n)-exis tence  and (h, <n) -goodness  
properties hold. Then there is a fully good (A, ~-(n))-system. It is unique (up to 
isomorphism) if the (h, < n)-uniqueness property holds. 

THEOREM 4.5. (1) I r A  is an atomic set, we can find countably many functions 

from A to A,  such that, if B C A is closed under those functions, then 

(a) (B, A )  satisfies the Tarsk i -Vaught  condition, 

(b) A is good iff B is good. 

(2) I f  A,  B, C is in stable amalgamation we can find countably many functions 

on A t_J B kJ C such that, if A * C A LJ B kJ C is closed under them, then A fq A *, 
B f3 A *, C is in stable amalgamation, and so is A ', B fq A *, C' if A f3 A * C 

A ' C_ A, C' C_ C and A ' is closed under the functions. 

(3) Suppose I is finite, 5e is a (h, I)-system. Let K be a regular cardinal big 

enough so that 6f E H(K)  (the family of sets of hereditary power < K), N~' < 
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(H(~),  ~ ) (a < 6o) increasing, continuous, 90 ~ No, No ~ No , II N U  1 I[ = 

[I N; II _-< Ix, No= Uo ,oN;, HNoH=Ix, n No for (6o Ix <A). 
Then 

(a) 

(b) 

(c) 
(d) 

900 = {M<,.o> : (s, 0) E I • {0}} is a (IX, I)-system ; 
if 90 is good, then 90o is good; 

if 2f is fidl, cf 6o = Ix, then 90o is full; 

if 60 is divisible by Ix, and the (No, <- n (I) + 1)-goodness property holds 

and 90 is full, then 90" is full. 

(4) Suppose I, 90, Ng (a < 8o), No, M<,.o~ are as in (3), and N7 (a < 6~), N1, 

M<,.~ satisfy similar conditions, and N o = No. Let I* = I x {0, 1} (see Notation 3.1) 

and M<~.,> = M, C3 Nt for s E I, 90* = {M<~j> : (s, l) E I*}. Then 
(a) 90* is a (/x,I*)-system; 

(b) if for all t E I, the (N,,, n (t) + 1)-goodness property holds and 90 is fully 
good, then 90* is fully good. 

(5) Suppose I is finite, 90 a (Z,I)-system, NoEN~,  N o < N ~ < ( H ( K ) , ~ ) ,  
[[Nt ][= p., M<,.~> = M~ n Nt for s ~ I, 1E{0,1}, and 90* = {M(,.t~ : (s, l) E I x 2}. 

(a) I f  the (No, n (I)+ 1)-goodness [the strong (No, n (I)+ 1)-goodness] prop- 
erty holds, and 90 is fully good [is good], then 90* is good. 

(b) I f  in (a) we replace n ( I )+  1 by n(I),  and [{t E I ' n ( t )  = n( I )}[=  1 then 
we get "9 0* is weakly good". 

PROOF. (1) We define for every n and formula ~p = ~o(.~, ]) ,  1(~7) = n some 
n-place functions F~' (1 < o2) such that: 

(a) if d = ( a o , . . . , a , - ~ ) ~ A ,  ~=(3s163 and there are qJ and G such 
that ~(Vs ~(3X)~0(X,/~), and tp(s a 

complete type over A, then for some q~ this holds for b =  
(F~(a), F~(a), F$(~i), �9 �9 �9 ); 

(b) if for some /~EA,  ~q~[/~,d], then b=(F ' ; (~ ) ,F~(~) ,F~(~) , . . . )  
satisfies this too. 

It is trivial to define the F~ such that they will be sufficient. If A is not good, 

trivially also B is not good.* 

(2) Similar proof (using the characterization of Da in Lemma 2.2(1)). 
(3),(4),(5) We shall prove (3), (4) and (5) simultaneously by induction on ]1 ], 

and fixing I we prove them in the following order: 3(a), 3(b), 3(c), 4(b), 5(a), 5(b), 

3(d), and 4(a) (e.g., the proof of 3(d) depends on the fact that (5) holds). 

However, the proofs will be written in the usual order. 

Provided  that :  
(c) if ::12,p(2, ti), a ~ A, {,~ (.~, ,~)} has no isolated extens ions  over  A, then  for  some such ~, & for  

every  /~ and  q~, ,i C_ {F~(/~) : l < ~o}. 
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(3)(a) Easy. 
(3)(b) Easy by Theorem 4.5(1)(b), 4.5(2), and a similar argument for (ii) of 

Definition 3.3(2). 
(3)(c) Easy by Lemma 2.12(2)(ii). 

{M~s.~>. (s, 1) E I • 2} be defined by M~,o> - (3)(d) Let a < 30, and 5r ~ o,~. o,~_ 

M, n N~, M ~ = M~ N N0 § So by (5) it is a good system, and clearly it is 

no-full. So for each s ~ / ,  for every a, ArM N~, M~ n N~, A f N  N~ *l is in stable 

amalgamation and (M~ n N~) U (A ~ n N~§ is a good set and (as NO ~ Ng § 
a a + l  

_ No , and stationary N o < N o  < ( H ( K ) , E ) )  for every finite B C M ~ A  ~.1 
p E S~(B), the stationarization of p over B U (Ms n N~)U ( A f n  N~ § is 
realized in M~ n N~ § (remember M~ was h-full over A f, h >/x) .  So by Lemma 

2.12(2)(iii) we finish. 

(4)(a) Easy. 
(4)(b) First combine (3)(d) and (5)(a). 
(5)(a) We prove it using Claim 3.7. In our notation we refer to the system 5r 

unless specified otherwise. 
We first check condition (a),  i.e., that A~,~> is good. For l = 0 it follows by 

(3)(b). For l =  1, by the induction hypothesis for n(I) applied to (5)(a), 
{M,.~>: t < s, t E I} is a good system, No-full if 5e was No-full. What occurs when 

we add to it M(,,o>? By the choice of No, N~ and as 5r was a good system, 
U,<~M(,.o~, M~,.o>, U,<~M,,~> is in stable amalgamation, and if 5e is I%-full then 

M~.o~ is No-full over U,<~M(,.o>. As 5r was a good system by Theorem 4.5(1), 

U,<,M,,o> is a good set. So by Claim 3.7 easily {M~,,,~>: (t, m ) <  (s, 1)} is a good 

system, and it is l%-full if 5 r is h-full. 
If the strong (1%, n(s)+ 1)-goodness property holds, then by Theorem 4.5(1), 

(2), (3) clearly the strong ( /~,n(s)+l)-goodness  property holds, hence 
U {M(,.m~;(t, m ) <  (s, 1)} is a good set, a required conclusion. 

If the strong (No, n ( s )+  1)-goodness property fails, by the hypothesis of (5)(a), 
the (no, n(s)+ 1)-goodness property holds and {M~,,,~>:(t, m) < (s, 1)} is an 1%- 
fully good (L /x )-system. If U{M~.m~:(t,m)<(s, 1)} is not good, then by 

Theorem 4.5(1), (2) we can contradict the (1~o, n(s)+ 1)-goodness property.* So 
we finish proving (a)  from Claim 3.7. 

Now we shall prove (/3) from the fact that Claim 3.7 holds, thus finishing the 

proof of Theorem 4.5(5)(a). So let J _C I x 2 be an initial segment. 

Case a : There is (s,0) ~ J such that (s, 1) ~ J 

Choose t . ~ I  such that s<=t., (t . ,O)~J but t .<t~_I:~(t ,O)f~J; 

* We use the uniqueness of such an (no, ~-(n(s)+ 1))-system. 
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this is possible as L J are finite. Now ( t . , 1 ) E J  (as (s,1)<=(t.,1),(s,1)~_J). 
We shall show that ( t . ,  0 ) E  J can serve as the required element  of J in Claim 

3.7(/3); that is, for every /~M<,. ,o)  for some finite B C_A,.,o>, 
tp(/~, U{M<~,I> : (s, l ) ~ J -  {(t.,0)}) does not split over B. 

Let  J ( 0 ) = { s  :(s,O)EJ} = { s :  (~l)(s , l )~J}.  Let bEm(,.,o~, then bEM,~, so 

there is a finite B _C A, ~. such that tp (/~ U~(o~, , , , .  M ~  does not split over B (B 

exists as O ~ is a good system). As 5r /~EN0, we can choose B CN0. So 

B C A ~ A N o  ~" _ = A ~,.,o> and 

tp (/~, U {M<~,~ :(s, l) ~ J - {(t, 1)}}) _C tp (/~, U {Ms : s ~ J ( 0 ) -  {t.}}), 

hence it does not split over B. 

Case b: Not case a. 

Now let 1(0)= {s : ( s , 0 ) ~  J}, so if case a fails J = 1(0)• 2, and let 1 (1)=  

{s ~ I(0): for no t ~ 1(0), s < t}, so as 1 is finite, 1(1) is not empty.  Choose 

t ,~ I (1 )  and let I(2)=I(O)-{to}, J(1)=J-{( to ,  1)}; so by the induction 

hypothesis (on I I  I), {M~,,~):(s, l) ~ I(2) x 2} is a good system. 

Let /~ ~ M~,,~>, and we shall prove that 

(*) for some finite B C_ A<,,.~), tp (/~, U M<,.~>) does not split over B. 
(t,l)~J(|) 

As we have proved condition (~) of Claim 3.7, A~,.t> is a good set, hence we 

can find a finite B _C A-<~,,~ such that tp (/~, A<~.,) does not split over B. 

Now we have to prove that tp (/~, U {M<,,t> : (s, l) E J - {(to, 1)}}) does not split 

over the finite B C A(~.~. So let ~o ~ M(~.o~, 61 ~ M~.o~, do, d~ E U{M~,.t~ : s E 

I ( 0 ) - { t o } , l = 0 , 1 } ,  tp(60 ^do, B ) = t p ( 6 j  ^d j ,B ) ,  and we should prove 

tp (go ^ do, B U/~) = tp (61 ^ d,, B U/~), and this suffices. (Note that any sequence 

d E U {M<,.,> : (s, l) E J - {(to, 1)}} can be represented by 60 ̂  do, as ment ioned 

here, and that not necessarily even /(6o)-- 1(60.)* 

Choose /~* ~ M~.I~, B 13 b-^6o^?~ _c/~*, such that t p ( / ~ * , A ~  does not split 

over /~* n A ,,, ~ --/~* n A(~,.~ (possible as /~^ Co- ̂  6~ E N~ < (H(~) ,  E ), 5 a a good 

system). Clearly we can find d~, d ~ ~ U,<~ Ms = A ,~o such that 

tp(do^ dl, b * n A ~)=tp(d~^ d'l, b* n A ~  

(because 50 is a good system, hence (A ,o, ~' U {M~ : s E I(0), s,~ to}) satisfies the 

* Really there is no need that two sequences from M~,.o~ U U {M~,.j~: s E I(0)- {to}, l = 0, 1}, 
which realize the same type over B, will have such representations. But the change does not affect the 
proof. 
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Tarski-Vaught condition). Moreover, we can assume d~ ̂  d']EN], because 
G* ~ N I <  (H(h) ,  E) ,  and Ms E N ]  for every s. So d~^d~E Us<~M~s.]~. 

By the choice of /~* (and as 5r is a good system), t p (b* ,U{M,  :s E 

I(O),s~ to}) does not split over b*N A,~o, hence we have: 

(,), tp(ao ^dl ^ b * , ~ )  = tp(d~ ^ d', ^ b*,QS). 

By the choice of /~* and by (*)1 it suffices to prove 

(*)2 tp (6o ̂  d~, B U/~) = tp (61 ^ d~, B U/~). 

Similarly, because tp(6o ̂  do, B)  = tp(6] ^ dl, B)  and B _C/7", the following 

holds: 

(*)3 tp (60 ̂  d~, B) = tp (61 ^ d~, B). 

But 60, 61CM(~.o~, d~, d~CA[onN1. So clearly 

5r (*)4 C0, 61, d~, d'] C M~.o)tO (A ,o n N1) = A~.I). 

By (*)2, (*)3, (*)4, and the definition of splitting, it suffices to prove that 

tp(G,A~.l)) does not split over B. But this is how B was chosen. So we finish 

proving (/3), hence (5)(a). 
(5)(b) A similar proof to (5)(a). 

CONCLUS]Or~ 4.6. Suppose 90 = {Ms : s E I} is a [fully] good (h, /)-system. If 

the ( < h, n (I) + 1)-goodness property holds, we can define M7 (a < h ) such that 

(a) M7 is increasing, continuous, [[MT[[ = no+l  a [, Ms = U~<~MT; 

(b) 5 r = {M~: s ~ I} is a [fully] good ( ~ 0 + l a  J,/)-system; 
(c) for a < / 3 ,  5r ~'~ is a [fully] good (No+Ja[,I• where 

(s,~ = M~ (3' = a , /3) .  

CONCt.USION 4.7. The (No, n)-goodness property implies the (h, n)-goodness 

property for every h. 
We can replace I% by any regular /z =< h.* 

P~oov. By Theorem 4.5(3)(a), (b), (c), let /z = No; if (h, n)-goodness fails 

then, by (1)(b), (1%, n)-goodness fails. 

w Transferring the positive properties among cardinals 

The main aim of this section is to prove that excellent K has models in all 

cardinals, and more generally to present the nice properties of such classes. As a 

* Similarly for the strong properties. 
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bonus we get the categoricity theorem (Theorem 5.9) for them: such a class is 

categorical in all or no uncountable cardinal. The notion "excellent" is parallel 

in some sense to totally transcendental. 

We define K to be excellent if it has the (No, n)-goodness property for every n. 

By Conclusion 4.7 the ()t, n )-goodness property holds for every )t; now by 

Theorems 5.1 and 5.2 also the (A, n)-existence and ()t, n)-uniqueness properties 

hold for every A. Theorems 5.1 and 5.2 are important also for non-excellent 

classes. They give the positive properties which hold (and are complemented in 

Theorem 6.1). As for non-excellent classes we want to build many models in 

N,(r) where n ( K ) =  Min {n: the (No, n)-goodness property fails}; we need to be 

able to build at least one model. 

Later we prove that excellent classes have also the strong positive properties, 

and in fact over any good system there is a primary model, and using it the 

categoricity theorem will be proved. 

THEOREM 5.1. (1) Suppose h > No and the ( <  h, < n + 1)-uniqueness and 

goodness properties hold. Then the (h, n)-uniqueness property holds. 

(2) A similar assertion holds for the strong properties. 

REMARK. In fact only the ( < h, n + 1)-uniqueness and (No, n)-goodness prop- 

erties are necessary. A similar remark holds for Theorem 5.2. 

PROOF. (1) Let 6e = {Ms : s E ~-(n)}  be a fully good (h, ~-(n))-system, and 

assume for I = 0, 1 that M~n is full over An, 1[ M~n 1[ = h. So we can complete 6e to a 
fully good (h, ~(n))-system Set by letting Mr,  = M~,. Now we apply Conclusion 

4.6 to Set and get models M~ '~. Checking the proof we see that w.l.o.g, for 
s ~ - ( n ) ,  M ~ '~=M~'. Now we define by induction on a < h  an 

isomorphism f~ from M ~ onto M~ '~, f~ increasing, f~ r A ~ = id. For a = 0 we use 

the (<) t ,  n)-uniqueness property, and for a limit we take the union. For 

a =/3 + 1, let g~ be the extension of f~ by the identity mapping on A ~, g~ is 

elementary (as 5el '~ is a fully good ~ - ( n  + 1)-system (by Conclusion 4.6), A ~, 

M~ ~, A~ is in stable amalgamation, so use Lemma 2.10(1)). So clearly g~ is an 

~'g'~ -- s'f'~ ~so by the ( < h, n + 1)-uniqueness property, isomorphism from A,+a onto .~ ~§ 

we can extend g~ to an isomorphism [~ from M ~176 onto M~, '~ as required. Now 

f~ = 1,3~<~]'~ is as required. 

(2) A similar proof. 

THEOREM 5.2. (1) Suppose A > No, and the ( < A, <= n + 1)-existence and the 

( <  A, < n )-goodness properties hold. Then the ()t, n )-existence property holds. 

(2) The same holds [or the strong properties. 
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PROOF. We  concentrate on (1). Let fie = { M s : s E  ~-(n)}  be a (A, ~- (n) ) -  

system, and let M7 (a < A, s E ~ - ( n ) )  be as in Conclusion 4.6 (for I = ~ - (n ) ,  

n ( I ) =  n -  1), so the ( <  A, _-< n(I)+ 1)-goodness property holds. 

Define, by induction on a < A, a model M~ such that: 

(a) M~ is increasing and continuous (in a) ,  

(b) A ~ _C M~, M ,  ~ is full over A ~, M~ has power I% + ] a  I, 

(c) A] ,  M], A,  is in stable amalgamation, 

(d) for each 6 E M~, and stationary p E De, the stationarization of p over 

M~U A~ +1 is realized in M~ +1. 

For a = 0, we use the ( < A, n)-existence property to define M ~ and Lemma 

2.10(2) to take care of (c) too. For limit a, we take the union and by Lemmas 

2.11(3) and 2.12 the conditions are satisfied. 

For a =/3 + 1 successor we know by Theorem 4.5(3) that fie~'~ is a fully good 

system. We also know M~ is full over A~, and A~, M~, A~ is in stable 

amalgamation, remembering that by the ( <  h, n)-goodness property, A~ is a 

good set. Let, for s ~ ~ - ( n  + 1), M* be: M~ if s C ~ - (n ) ,  M~ if s = n, and 

MT_~,r if n E s E ~ (n + 1). So {M* : s ~ ~ - ( n  + 1)} is a fully good system by 

Claim 3.7. Hence by using the ( < A, n + 1)-existence property we can define M~ 

to satisfy (a), (b), and also (d) (for this remember we get a weakly full model over 

M ~ U A ~  and by Lemma 2.10(2), to satisfy (c) too. M, is U,<~M~. M, is 

weakly full over A,  by Lemma 2.12(2)(iii). Although formally (d) above is 

somewhat weaker than what we need there (there, the stationarization of p over 

M~ U A,  is realized in M~+~), by Lemma 2.10(4) this follows. 

LEMMA 5.3. Suppose n > 1, the (h, n)-non-uniqueness property fails, but the 
(A, n)-existence, (h, 1)-existence and (h, 1)-uniqueness properties hold. Then for 
some fully good (h, ~- (n  ))-system fie, over A ~ there is a universal model (of power 
X). 

PROOF. Let fie = {M~:s ~ ~'-(n)} be a fully good (h, ~-(n))-system which 

exemplifies that the (A, n)-non-uniqueness property fails. By the (h, n)-existence 

property there is at least one N weakly full over A,, II N II = A. Clearly N is full 

over O, hence by the (h, 1)-existence property there is N* weakly full over N, 

II N* II = We now show that N* is universal over A,. 

So let A,  C_ M, II M [[ = h, then (by the choice of fie) there are M* weakly full 

over A,, N < M* and an elementary embedding f0, of N* over A, into M*. We 

can w.l.o.g, assume IIM* 1[ = A. Clearly M* is full over O, hence by the 

(A, 1)-existence property there is M** weakly full over M*, II M** I[ = ;~, and so 

M** is full over N. So by the (h, 1)-uniqueness property there is an isomorphism 
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g from M** onto N* over N. So gfo:M---~ N* exemplifies M can be elementar- 
ily embedded into N* over A,, so N* is universal over A,. 

DEFINmON 5.4. A class of models K is excellent if for every n it has the 

(N,,, n)-goodness, (No, n)-existence and (No, n)-uniqueness properties. 

We note 

CLAIM 5.5. Let K be our class from Theorem 1.i. 

(1) K is excellent iff for each n, it has the (No, n)-goodness property. 
(2) I f  K is not excellent, then, for some n =, n (K)>-2, K has the (No, < n)- 

goodness, (No, <- n)-existence and (No, < n)-uniqueness and (No, n)-non- 
uniqueness properties. 

PROOF. (1) By Lemma 4.2(1) K has the (No, n)-existence properties for each 

n. As for (No, n)-uniqueness, use Lemma 4.2(3). 

(2) Let n = n (K) be the first n such that the (No, n)-goodness property fails. 

By Claim 5.5(1), n(K)  exists (i.e. < o~), and by Lemma 4.2(2), n _->2. By the 

choice of n, the (No, < n)-goodness property holds, so by Lemma 4.2(1), (3) the 

(No, =< n)-existence property and the (No, < n)-uniqueness property hold, but 

the (No, n)-uniqueness property fails. 

However, we need something stronger: that the (No, n)-non-uniqueness 

property holds, which is the main point. As the (No, < n)-uniqueness property 

holds, by 4.3(1) and (2) there is, up to isomorphism, a unique (No, ~-(n))-system 
5e={Ms :s E ~ - ( n ) }  which is fully good. So if the (No, n)-non-uniqueness 
property fails, it fails for 9 ~, hence by Lemma 5.3, over A ff there is a universal 
model, hence by Claims 2.3 and 2.4, A f  is good; so by the uniqueness of 5r the 
(No, n)-goodness property holds, which contradicts the choice of n. 

REMARK. The following is an open problem: Does there exist a sentence 
~1 ~. L,ol,~ which satisfies our assumptions, i.e., I(N~, @)< 2 M,, and its class K 

(from Theorem 1.1) is not excellent? We believe the answer is yes. 

THEOREM 5.6. I f  K is excellent, then 

(1) it has the ()t, n )-goodness, (~, n )-existence and (~, n )-uniqueness properties 

for each n, 
(2) K has one and only one (up to isomorphism) full model in A, for each ~. 

PROOF. (1) By induction on A. For ,~ = No this is the hypothesis. For )t > No, 
use Conclusion 4.7 for goodness, Theorem 5.2 for existence and Theorem 5.1 for 
uniqueness. 

(2) By the ()t, 0)-existence and (2t, 0)-uniqueness properties. 
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LEMMA 5.7. Suppose the (No, <-_ n )-goodness property holds. Then the strong 

(No, --< n )-goodness, strong (No, _-< n )-existence and strong (No, <= n )-uniqueness 

properties hold. 

PROOF. We prove by induction on m -< n that the strong (No, m) properties 

hold. For m = 0, 1 there is no problem; so suppose m > 2 and we have proved 

for each m ' <  m. By Lemma 4.2(1) the strong (No, m)-existence property holds 

and the strong (No, m)-uniqueness property follows from the strong (N., re)- 

goodness property (Lemma 4.2(3)) so we have to prove only the last. 

So let 5 ~ = {M, : s E ~ (m)} be a (No, ~-(m))-good system (not necessarily 

full, of course). Let k(,9 ~ be the number of l < m such that for some s, l E s and 

Ms is not full over As. We prove A"  is good by induction on k(~) .  If k(5r is 

zero, 5r is a fully good (No, ~-(m))-system, so our hypothesis implies this. So 

assume we have proved the statement for k < k(~) .  As k(5 ~) > 0, there are l., s, 

loEs, and Ms is not full over As; w.l.o.g, lo= m -  1. Now we define I as 

~ - ( m )  U {t U {m} : m - 1 E t E ~-(m)} (it is easy to check I is as required). Let 

( s ( i ) : i < 2 " - l )  be an enumeration of ~ - (m) ,  and ( s ( i ) : i< i* ) ,  i * =  

2 " - 1  + (2" 1_ 1), be an enumeration of L Now we define countable M~I~) so 

that {M~o) : j < i*} is a good system. For i < 2" - 1 they are defined. Suppose we 

have defined for i < i ,  and we want firstly to define g =gs~o. Let s ( i ) =  

{ io , . . . , i ~_ , ,m-a ,m}  (so ts( i)[=a+Z<-_m),  and ] s ( i ) l , = a + l ,  and for 

t E n - ( a + 1 ) ,  g(t)={io : fl E t, fl < a }  U {m : a E t} U {m -1}.* 
Now { M s , ) : t E ~ - ( a + l ) }  is a good (No,~ (a+l ) ) - sys tem,  and a + l <  

a +2  = ]s(i)l < m + 1 so a + 1 < m, therefore by the induction hypothesis there 

is Ms,), full over A,~;) = U {Mg,): t ~ ~ (a + 1)}, such that A,o ,  Msl~), U;<;Ms~;~ 

is in stable amalgamation. 

Let J = { s E I : m - l E s  ~ m E s } ;  it is easy to check 5 ~ ' = { M S : s E J } i s  

also a good (No, J)-system, J is isomorphic to ~ (m), and k(5r k(5r So 

U~ejM~ is a good set but trivially it is equal to U~tM~. It is also clear that for 

any N, A,  C N, we can embed U ~ M ~  into N' over A,  for some N', N < N'. 

[By 3.5 (A ~, U ~e~-Mr, ) satisfies the Tarski-Vaught condition, so apply 2.10(2), so 

w.l.o.g. N'  U Us~M~ is an atomic set; as it is countable, we finish.] Hence every 

p E DA~ has the form q I A ~, q E Du,~,u,, so DA~ is countable. 

This implies A,  is good, as required. 

CONCLUSION 5.8. Suppose K is excellent. 

(1) The strong (A, n )-goodness, strong (A, n )-existence, and strong (~,n)- 

uniqueness properties hold for every n, A. 

* So m~g(t) iff a@t. 
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(2) Over every good (h, /)-system over U~,M, there is a primary model 

(I finite). 

(3) For every fully good (h, /)-system {Ms : s E I} over U,~t  M~ there is an 

F"-constructible model M which is full over it, [IM [[--A. 

PROOF. (1) Similar to the proof of Theorem 5.6(1) using Lemma 5.7. 

(2) Prove by induction on h. 

(3) Prove by induction on h. 

THEOREM 5.9. Suppose K is excellent. If K is categorical in at least one 

uncountable cardinal, then K is categorical in every uncountable cardinal. 

PROOF. Suppose A > No is the first such that K is not categorical in A. By 

Theorem 5.6(2) there is a model M E K of power h which is not full. By the 

definition, there is a stationary p ~ S " (B), B C_ M finite, and A C_ M, B _C A ,  

1A t < h, such that the stationarization of p over A (call it q) is not realized in M. 

Let [A l_- < / z  < h. Now we can define an increasing continuous sequence of 

M , < M  It M, A CM,,, M,~M,+,. For each i choose 

a, EM~+.-Mi, ~ EM~, tp(a,,M~) is the stationarization of tp(a,,/~). 

Without loss of generality there exist /~,, a~, and r--tp(a~,,/~,) such that 

S = {i </~+: tp (a,,/~) = r} is a stationary set. 

[Let S' ={8 </x+:t~ limit ordinal}; this set is closed unbounded. Now we 

define a function f : S ' ~ / ~ + ,  

f(i) = min {j : tp (a,, M~ ) is the stationarization of tp (a,, Mj)}. 

By Theorem 1.4(1)(a) there exists a finite set /~ _C M~ such that tp (a~, M~) is the 

stationarization of tp(a,,/~); since i E S' there exists j < i such that this set is 

included in Mj. Hence f is a regressive function so we apply Fodor's theorem and 
get S C_ S', a stationary set of ordinals < / z  +, a finite sequence /~,E M~,, and a 

type r over/~,, such that S = {i:/~ = b~ and tp (a~,/~) = r}. Hence S = {i:/~ =/~, 

tp(a i , /~)=r}  is stationary.] And w.l.o.g. /~EM0, to C_S. We can easily find 

countable N , < M ,  (n <to) ,  N,+1A M, =N. ,  a. EN.+a, b~ENo, BC_No and 

every N, does not realize the type q* = q I ( A n  No). 

Let X > 1% be any cardinal. Now we define by induction on i < X, N~, a~, such 

that: II N~ II = l i I + Mo, j < i f f  Nj < N, a~ E N~+~ realizes the stationarization of r 

over N,, and for i => to, N~+~ is primary over N~ U {a~}. 

It is quite easy to prove that N~ does not realize q*. [By 1.4(4), U~N~ is 

constructible (see 1.5) over N, U {ai : to < i < X}: just combine the constructions 

of the ~+~. So for every tTEU~N~ for some n, m and i , > . . . > i o = > t o ,  

tp(6, N,. U {a~, : l  =< n}) is isolated hence for some 6 ' E  N~, 
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tp(6 ' (a~ , . . . ,  a,.), N,,) = tp (U ^ (a,.+o, ' '  ", a,,+.), N,,), 

hence ~ does not realize q.] 

CLAIM 5.10. I f  N tA {a} is atomic, then over it there is a primary model. 

PROOF. By induction on 3. = H NH. 

For A = N,~ we know the result (as N LI {a} is a good set by Lemma 2.2(2), and 

apply Lemma 2.2(0)). 

For A > ~,,, let N~ (i < A) be increasing continuous, [I N~ II = I i [ + no < A, 

N =  U~<~N~, and t p ( a , N )  does not split over some finite B C_No. Now we 

define by induction on i < A a model M,, such that: M~ is increasing, continuous, 

a E Mo, M, f3 N = N~ and N,, N, M~ is in stable amalgamation, and M~+~ is 

primary over M~ U N~.~. II M, II -- [i 1+ N,,. 

For i = 0 use the case A = N,,, and note that as Mo is constructible over 

No U {a}, for every ~ ~ Mo, tp(~, No tA {a}) F tp(~, N t3 {a}) as the first is isolated. 

So by Lemma 2.10(2), No, N, Mo is in stable amalgamation. 

For i limit, M, = I..Jj<,Mj, and by Lemma 2.11(3), N, N, M~ is in stable 

amalgamation. 

For i = ] + 1, M~ primary over Mj U N~ exists by Conclusion 5.8(2), and as for 

the case i = 0, N~, N, M~ is in stable amalgamation. It is easy to check I.J~<~ M~ is 

as required. 

REMARK. We can also deal with/-systems which are not (A, /)-systems, but 

there is no real need. 

w Transferring the negative properties up 

Up to now we have dealt almost exclusively with the "structure", "positive", 

"algebraic" part of the theory. Now we shall deal with the "non-structure" part 

parallel to ch. VIII in [14]; but here failure of amalgamation and related 

properties replace instability requirements. Hence this part has a combinational 

character. So here we assume K is not excellent, and want to prove mainly that 

K has many non-isomorphic models in some cardinality. Lemma 5.5 has done 

some of the work, saying that 2 =  < n ( k ) <  co; K has the (1%, < n(k))-goodness, 

(No, =< n (k ))-existence, (No, < n (k ))-uniqueness and (No, n(k))-non-uniqueness 

properties. As the (N.(k)-~, 0)-uniqueness property follows, we naturally expect to 

build many non-isomorphic models in N,(k). For this we first (Theorem 6.1) prove 

that the (/~, n + l)-non-uniqueness property implies the (/~+, n)-non-uniqueness 

property (under reasonable assumptions) using the weak diamond (equivalently 
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2" <2 '~) .  This fits nicely with Theorems 5.1 and 5.2, where the positive 

properties were transferred up. We may expect to arrive at l'l,~kl-~ and then 

imitate the proof of Theorem 1.3, but we are stuck at h =d~fl~,~k)_2. In Lemma 

6.2(1), (2) we sum up what we obtain: (h, /)-uniqueness, (h, m)-existence for 

l -- 0, 1, m = 0, 1,2, and (A, 2)-non-uniqueness. 

In Lemma 6.2(3) we try a more direct attack assuming the h +-amalgamation 

property fails for full models (this is stronger than "the (h +, 2)-existence property 

fails" as even amalgamations which are not stable are forbidden). Immediately, 

the proof of Theorem 1.3 gives quite many models, but we do not have the 

parallel of "for  every N there is N', N < N'  (both countable) such that the set of 

types over N '  realized is maximal". We circumvent this by a partition to two 

cases imitating an answer to the existence of such N': we ask whether (for a full 

model of power 3. +) for every N < M there is M',  extending M such that any 

two extensions of M'  can be amalgamated over N. The proof is suitable for more 

general contexts, as discussed in [17]. 

By Lemma 6.2 we can assume the 3. +-amalgamation properties for full models, 

and in Lemma 6.3, using again the weak diamond, we use it to strengthen the 

(3., 2)-non-uniqueness property. 

Theorem 6.4 is the main work - -  we use our knowledge on models of power 3. 

to build many non-isomorphic models of power 3. ++, using the weak diamond on 

3.+ as well as on 3.++. To help the reader the proof is preceded by a long 

motivation of the way the proof goes, and then we give a proof from a stronger 

set theoretic assumption: diamonds on 3.+ and 3. ++. 

Unfortunately, in Theorem 6.4 we do not prove I(3.++,K)= 2 ~++ just that 

there are many (e.g., 1(3. ++, K)  M'' -- 2 ~++) (and more). In Theorem 6.14 we prove 

I(3. ++, K ) =  2 ~*~ if the ideal of non-small subsets of 3. + is not h ++-saturated. In 

both cases, a failure of our hypothesis seems a non-trivial set theoretic problem, 

involving large cardinals. 

THEOREM 6.1. Suppose n >= 2, tx regular, 2 ~ < 2  "~, and the (IX, <= n )-goodness, 

(Ix, <= n + 1)-existence, (Ix, <= n )-uniqueness and (Ix, n + 1)-non-uniqueness prop- 

erties hold. Then the (Ix+, n )-non-uniqueness  property holds but the (Ix+, < n )- 

goodness, (tz +, <-n)-existence and (Ix+, < n )-uniqueness hold. 

PROOF. Some parts of the conclusion follow by Conclusion 4.7, anc] 

Theorems 5.1 and 5.2, so we have to deal with the (Ix~,n)-non-uniqueness 

property only. 

We let 3. = / z  +, and we first almost repeat the proof of Theorem 5.2. Let 

5e = {M, : s E ~-(n)},  M7 (a < 3. ) be as there, and we can assume [[ MT[[ = ~ for 
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each a < A, s E ~ - (n ) .  W.l.o.g. U ,  I MTJ is the set of odd ordinals </x(1  + a) .  

We now define by induction on a < h, for each ~ E ~2, a model M," such that: 

I: 
(a) M~ is increasing (i.e., for/3 < 10?), M ,  ~r~< M~) and continuous (i.e., for 

limit a, M ~ =  U a < ~ M :  ~ when l ( ~ ) =  a) ,  and IMP1 =/z(1 + I07)). 

(b) M~ is full over A ~'). 

(c) A."'~, M~, A, is in stable amalgamation. 

(d) For each g E M 2  fo, a =/3 +1,  ~/E~2,  and stationary p E D~, the 

stationarization of p over M,~r~W A~, is realized in M~. 

II: 

(a) For ~7 U s 2 (/3 < A) there is no model M, M~ to A ~+1 _C M, and elementary 

mappings ft from M ,  n̂ <~> into M, f~ r (M,  n u A ~+t) = id (for I = 0, 1). 

We define by induction on a. For a = 0, a limit, the proof is as in Theorem 

5.2. For a =/3 + 1, ~7 U~2, again 5e ~'" is a fully good system, and if we add M," 

we get (after renaming) a fully good (/x, ~ - ( n  + 1))-system. Now we use the 

(tz, n + 1)-non-uniqueness property* to get, for l = 0, 1, M ,  "̂ <~> weakly full over 

M," tO A :, such that there are no M weakly full over M," tO A ~, and elementary 

embeddings of M~ into M over M~ U A ~. 

Now we show that over A,  there is no universal model. As all fully good 

(h ,~-(n))-systems are isomorphic (see Conclusion 4.4), by Lemma 5.3 this 

implies that the (A, n)-non-uniqueness property holds. 

Let N be universal over A. (so [[ N II = A). Then for each ~7 ~ 2 there is an 

elementary embedding f, of M~ into N over A,. By [3] (see here Theorem 1.3, 

and [3] 6.1, 7.1) there are ~7, v E ~2, a < A, 77 ~ a = ~, I a, ~7(a) = 0, ~,(a) = 1, and 
a =/za ,  f ,  I M ,  "r" = f. I M~, r", so we get a contradiction to condition II(a). 

LEMMA 6.2. Suppose K is not excellent, and h = I~.~K~_2 (see Claim 5.5(2)) and 
2", (l _-< n (K) - 2) is strictly increasing. Then : 

(1) K satisfies the (h,l)-existence and (h, m)-uniqueness properties for l =  
0, 1,2, m = 0, 1 but satisfies the (A, 2)-non-uniqueness property. 

(2) K satisfies the (A +, O)-uniqueness, (A +, O)-existence and (A +, 1)-existence 
properties, hence has a full model in A ++. 

(3) K has the h +-amalgamation property for full models provided that 2 ~+ < 

2 ~§247 and I(h ++, K) < 2 ~ ++ (i.e., if M~ are full models of power A +, Mo < M~, Mz, 
then there is a full model M, Mo < M and elementary embeddings of M~, M2 into 

M over Mo). 

' Remembering that there is, up to isomorphism, a unique such system. 
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PROOF. (1) By Claim 5.5(2) and Theorem 6.1. 

(2) Easy. 

(3) Our proof splits into two cases. 

Case I: There are full models N < M in K of cardinality A +, such that for 

every M' E K, if I] M' II = 3, § and M < M' then there are models M~ (l = 0, 1), 

M'  < M~ ~ K, II M~ II = )t +, such that M0, M~ cannot be amalgamated over N (i.e., 

there is no N', N < N'  E K and elementary embeddings/~ : M~ -~ N', j~ F N = 

id). 

In this case we define by induction on a < )t ++ for each ~ E "2 a model M, 

such that: 

(a) M, has cardinality h *, /3 < 1(7/) ~ M, r0 < M~, and for limit 1(7/), Mr - 

Uo<,,)M,r~, and M< )= M (( ) is the unique sequence of length zero); 

(b) for each r/, M,^~o>, M , ~ ,  cannot be amalgamated over N;  

(c) M,^m is full over M,. 

There is no problem in the definition. 

Now for each ~ E ~*+2 let M~ = U~<~+* M,t~ so each such M, is a full model 

of cardinality A ++. If ~/# u E ~**2, then M~, M~ are not isomorphic over N (if 

f : M~ ~ M~ is an elementary embedding, f rN = id, let a be minimal such that 

~/(a) # u(a);  then, letting 6 = 7/r a, M,̂ <o~, M,^m could be amalgamated over N 

by using f, contradicting (b)). Now as 2 ~** > 2 ~*, I(A ++, K)  = 2 ~** (easy, by [14] 

VIII 1.3). 

Case II: Not case I, so, for every full model M of cardinality )t § there are 

M~, l -- 0, 1, M < Mt full of cardinality A § such that they cannot be amalgamated 

over M and for every M t, l =0 ,1 ,  Mo< M ~ of power )t+, M ~ and M ~ can be 

amalgamated over M;  and the same requirement for every M t, M~ < M ~. Now 

by induction on a < )t++, for r / ~  ~2 define M r (the fullness at limit stages is 

preserved by Lemma 2.12(2)): 

(1) M, full, and I M~ t = A +(1 + 1(~7)); 
(2) u ~ r  I ~ M~ <M,,; 

(3) for l (n)  limit, M~ = Uo<,,)M~to. 

If l(r/) =/3 + 1, choose M~f~^,>, l = 0, 1 such that they cannot be amalgamated 

over M,r~ and if M~r~^<o>< M', l = 0, 1, are of power A § then M ~ and M ~ can be 

amalgamated over M,,r~; similarly for M,r~^m. 

For r / ~  ~§ define M, = U~<,++ M,t~. 
The construction is trivial, using that in )t + up to isomorphism there is a unique 

full model. 

By 2 ~§ < 2 **+ and [3] 3.2, applying Ulam's theorem, let {& : a < )t ++} be a 

partition of a, ++ to non-small subsets. Assume 6 < )t ++ such that )t +6 = 6, let r/, 
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v E ~2, and h : M,  --~ M.  be an elementary embedding. Now define a function F: 

F(17, u, h) = 1 if the diagram 

M,o (o) 

UI 

M~ ~ M~,,~ 
h 

can be amalgamated; otherwise F(r/, v, h) = 0. By the weak diamond there exists 

p~ E ~*2 for a < )t *+ such that for each a < • ++ for every r / E  ~++ 2, u E ~++~2, 

h : A++---~)t ++, the set {8 ~S~ :F(~/r~ ,  u l8 ,  h r 6) = p.(6)} is stationary. 

For each I C_ ;t++ define r/, ~ ~+*2 such that ~,(i) = p~ (i) provided i E S~, 

a U/ ,  otherwise "ql (i) = 0; notice that it is well defined since {So : a < ;t +§ are a 

partition. 

We are going to prove that for eve ry / ,  J C_ )t ++, I ~  J ~ M , , ~  M,~. Let Ie '  J 

and assume there exists h : M,, ~ M~,, an elementary embedding, and choose 

E I - J .  The set C ={8 < )t ++ : h r6 is a function into 8, ;t+6 = 8} is closed, 

unbounded; denote 

S ; =  {t~ ES~ :F(rl, r3, r/j rts, h r t s )= p~(ts)} N C. 

Choose 6 E S ~ and denote r / =  r h r 8, u = rij r 8. From the definition of r/j it is 

clear that r / j (6)=  0. Now we shall check the two possibilities: 

If  "01(6) = 0: then p~(8) = 0 and since 3 E S'~ we have F(n, u, h 1 8)  - 0, but by 

the choice of h we know that the diagram 

M,^(o) 

UI 

M, * M.̂ (,,> 
h|,5 

can be amalgamated. This contradicts the definition of function F. 

If  rl~(g)= 1: then p , ( 8 ) =  1 and also F(~/, u, h I 8 ) =  1. Using F 's  definition, 

the diagram 

Mn^(o) 

Ul 

M. ~ M~o~ 
hi8 

can be amalgamated. 
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On the other hand, the diagram 

M*/^(1) 

UI 

M~ > M~̂ ~o~ 
hr~ 

can be amalgamated. By the diagram before the last, M r is embeddable into M~ 
(by h) and there is a model M1, M~̂ ~o~ < M1 of power A § such that M~^<o~ is 

embeddable into M1 by some hi D h F 8. By "the choice of h there is an ordinal 

8 + 1 < y < A §247 denote M2 = M ~ ,  s.t. M~^~I~ is embeddable into M2 by a 
mapping extending h r 8. Now by our choices M,̂ ~o~ < M~ for l = 0, 1, therefore, 

by the construction, Mo, M~ can be amalgamated over M~ and this contradicts 

the assumption that M~^,~, l = 0, 1 cannot be amalgamated over M,. 

LEMMA 6.3. Suppose the conclusions of Lemma 6.2 hold and 2 ~ < 2  ~§ 

Suppose further that Mo< M1 < M~, Mo< M2 and Mo, M2, M'~ is in stable 

amalgamation, M2, M~ are full over Mo, Mo is full over 0 ,  M~ is full over M~, and 

each has cardinality A. Then for every N, A = II N II, M1 < N, M2 < N, M~, N, M~ 
are in stable amalgamation, there are N ~, N 2 of power A such that t M'tt U [ N t c 
N ~, but N ~, N 2 cannot be amalgamated over ]M~ It3 M2. 

REMARK. This is a strengthening of the (A, 2)-non-uniqueness property. 

PROOF. Suppose not, and N is a counterexample, and w.l.o.g. N is weakly 

full over I M~I U I M2 ]. Notice that by the (A, 1)-uniqueness property, this N is a 

counterexample for all possible M~. Now we define by induction on a < A § 
models M ~ M~ such that 

(a) ]1M~ II = A, M~ is full, M~ is full over M ~ M ~ = M, MoJ = M~, 
(b) for limit a, M~ = Ua<~ M~, 
(c) the quadruples (M ~ M~, M~ M~§ and (Mo, M~, M2, N) are isomorphic 

(note the order; it has significance). 

Let M ~  ~ M~,=U~<,+MI~, and w.l.o.g. I M ~  

;~ (1 + I M' I = I M~ u {3i + 1- i < A (1 + a)}. Clearly M .  ~ is full and M'. is 

full over M ~ and M ~ M ~ M~ is in stable amalgamation for each a. 

Now we define by induction on a < ;t § for each r / E  ~ 2, a model M~ with 

universe {3i,3i + 2 :  i < A(1 + a)} such that 

(i) for/3 < l(r/), M~t~ < M,, 
0 o (ii) M~ is full over M,~) and M, , ) ,  M,, M.~ are in stable amalgamation, 

(iii) M,^<o~, M,^~ cannot be amalgamated over I M~ t U I M~+~ I- 
This is provable by the (A,2)-non-uniqueness property. 
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Let, for 7/E*+2, M. = I.] .<, .M.r~. As by Lemma 6.2(3) K has the h +- 

amalgamation property for full models, for each 7 /E *+2, M ~ M~., M. can be 

amalgamated, so there are N., (,, IN. ] = ,t +, Ml. < N., and f .  is an elementary 
o embedding of M. into N. over M . .  

Suppose for some a, ~7, v the following hold: 

(,~) n r ~  = v r~ ,  n ( ~ ) = 0 ,  v ( ~ ) =  1, a < a  +, o~ = x ~ ;  
(/3) N~ =d 'N.  r a = N~ [ a < N~, N~ and M l, MI., N~ is in stable amalgama- 

tion; 

(7) fn [ M,,~ = f~ F Mnt~ is into N~. 

We can choose / 3 = h / 3 < h  +, such that ] N ~ [ U [ M ' ~ §  

] N~ I u f M'~+~ t C_ N~ I/3 < N~ and f ,  [ M.r(~+l) is into N~ r/3 and fo t M~,~+~) is 

into N~ I/3. Now by (c) and the choice of Mo, M~, Mz and N, the models N. t/3, 

N~r/3 can be amalgamated over IN~[to [M~ (using, say, g,, g~), but then 

M,r(~+,), M~t(~+~)can be amalgamated over [M,r~ [tO IM~ (by g.f. and &f~) 
contradicting (iii). But there are such a, "0, v by [3] 7.1 (see w here). 

THEOREM 6.4. Assume the conclusions of Lemma 6.2 hold, and also 2* < 

2 ' * < 2  ~*. Then I(h++,K)>=tz(n(k)). * 

PROOF. We divide the proof into cases, according to set-theoretic pos- 

sibilities; in fact, not all cases are necessary but as our aim is also to exemplify 

the techniques, we do not economize. In most cases we get 2'*+ models, no one 

elementarily embeddable into another, but we do not get it always. 

EXPLANATION. The natural plan to build 2 *++ non-isomorphic models of 

cardinality h++, is to build a tree of full models M ~ (rl E**+-~2 = ~_<,++~2) 

such that ]M" I = h*(1 + l(rl)), r I <~ v :~, M" < M ~, by induction on l('q), and 

then to find many non-isomorphic M"  (~ E *+'2), maybe imitating the proof of 

Theorem 1.3. 

It is natural to make M "̂ ~~ M "^m not isomorphic over M", but this of course 

is not sufficient as K has the h +-amalgamation property for full models, so it may 

well occur that for some v, ~/^(1) <~ v, and M n̂ <~ can be elementarily embedded 

in M ~, and even that for some v ~, rl^(l)<~ v r ~*+~2, M ~~ M ~' are isomorphic 

over M". We shall try to prevent the first possibility (hence the second). 

The natural way to define M ~^") seems to be the following: we let M ~  

* We define, for 2 _-< n < to,/~ (n) as [..J {X § : Unif (N., X, 2 ""% 2 N~ fail}. On the definition of Unif 
see [16] XIV 1.1 and (2) of the notation after it (on p. 463). By [16] XIV 1.10, p. 467 if X < 2% 
Unif(N,, X, 2N"-~, 2~-~) holds, then X "0 = 2x.. Moreover, there is a family of 2 A subsets of X, each of 
power N,, the intersection of any two finite ones. 

We stipulate t*(1)= 2 ~'. 
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IIM II = ,X,/3 < 3' M ~ <  M.~, M~ = U~<~M.~ for limit/3 (for any 

v). So M ", M~ are given, and we want to define M "^">. We do it by defining 

M~ ~<~> by induction on/3, such that M J  <'> A M ~ = M~, and M~3, "̂ <'> Ms , M73+, is in 

stable amalgamation. As K satisfies the ()t, 2)-non-uniqueness property, for each 

/3 = 7 + l we have a real choice in defining MJ">;  we can define it in two ways 

which cannot be amalgamated over M~ U M.~ ̂ <'. So we can define a tree of those 

possibilities ~ , , m  . ,~<,> .... p (pE*+->2) increasing and continuous in p ,  Mo A M  = 
71 ̂ (1) • ,f  r /^(  I ) n r /^(  I ) M~'(o) and Mo^,>, ~-,p^<o> cannot be amalgamated over M,p)+, U Mp . 

Now if M" < N, IINII = a +, let N = Ua<,+N~,, No < -increasing and continu- 

ous, IIN  II = a, so C ={/3 n Ma} is closed unbounded. By the 

diamond (or weak diamond), for some p E*+2, M~ '̂ <'> cannot be elementarily 

embedded into N over M" (like in w 

However,  we are not given specific N;  we rather have to choose p E *~2 which 

is good for every N = M ~, 7/^ (0)_~ v, necessarily, most of those M ~ will be 

constructed after M "^<'>. So a reasonable solution is to take on ourselves some 

obligation to be fulfilled by every M ~, r/^(0) _~ v. Let us first try to see how (and 

whether) we can continue o~ < h + steps. So let r /^(0) 'g v, l(rt) = ~, l ( v ) =  ~ + c~. 

The reasonable assumption is: 

M~ r(~+~ n M ~"*+i~ = M~ r(e+j) for/3 < A +, j < i < a. 

If ~** holds, we can assume that, defining p(8),  we are given an elementary 

embedding g, of ,,,A'r'̂ <'or8 into M ~, over M~ (i.e., a "guess" for them). For "most"  

's, g~ is into M~; so by choosing the right p( i )  we need to know how M~'+,, M;  

are amalgamated, and a reasonable way to make this known is to predetermine 

A.~or~ M~ r(H) are amalgamated (for another reasonable way how, for each i < a . . . .  ,+,, 

see case II). 

For this, let F be as defined later (in Convention 6.7) and we demand (for 

i - < a )  

A / f  vf(~2+i + ' ) _  A / f  v f ( { + i + ' )  A , f  v | ( / ~ + i + ' )  (*) *', a+l _ F(M~r(e+o, Aar~r(e+/) ~1"~t 8 ) 1vat 8 +1 , arqt 8 + 1  ] .  

Unfortunately, this causes us another problem. Maybe v(~ + 2 )=  i, then trying 

to define M~ )(*+)~<' we see that we lack the freedom we have used: we just 

"promise"  to use a specific way for amalgamating (in (*)). So what do we do.'? 

We use Lemma 6.3. 

By Lemma 6.3, though we have determined how ~,~){,+l) M~F(,+2) ~,, 8+, , are 

amalgamated we still have the free choice to amalgamate M ~"e+'~a+= , Mg"e+aL What 

about M~r{e+~ Here we can use the freedom we have for amalgamation 

,-.,+,+,A*~"e+0, M~ " . Generally, for each v we have a function f~ : a +--+ a keeping 

track how far our promise goes. 
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But all this was when a < h+; but for a < A § do we go bankrupt having made 

too many promises? We made them modulo D~* (the filter of closed unbounded 

sets) and succeed in continuing. 

DEFINITION 6.5. In our proof let (/Q,f) denote a pair, where / ~ - -  

(M~ : i < h +), Mi increasing and continuous, II Mi II = A, M , ,  full over M~, and f is 

a function from h + to h +. We let M~+ = U ,<~* M~. We say (1~7/,, fl) _< (/VT/:, f2) if: 

(a) {i < h + : f'(i) <= if(i)} ~ D~+ ( = the filter over h + generated by the closed 

unbounded sets); 

(b) for some S ~D~+, for every a ~ S ,  and i < A  +, if a <= i <=~ +ft(a) then 

M~ ~ M~* = MI and MI, M~, M]* is in stable amalgamation and M]+ < M]*. 

CLAIM 6.6. (1) <_-- is a quasi-order (among those pairs) (i.e., transitive and 

(s f)  <-_ (~ ,  f)). 
(2) Any increasing sequence of pairs of length < h +* has a least upper bound. 

PROOF. (1) Trivial. 
(2) W.l.o.g. the sequence is (M%fe), ~ < p., where tz is a regular cardinal 

< h +. For ~ < ff </z,  let Se.~ be a closed unbounded subset of h + exemplifying 

(a) and (b) hold for (f4%fe)<= (1~I%f~). First assume /x < h, let S C Ne<,<,S,.~ 

be a closed unbounded subset of A § such that a ~ S, ~: </z,  a < fl < a + f~ (a)  
implies /3ES. Let S ={a~ : i < h §  ai increasing. Notice that for every i, 

~ < ~ < lx ~ f~(a,)<-ff(a,). 
Now we define by induction on i an ordinal /3~:/3o=ao, for limit 8, 

/3~ = U~<~/3~ and /3~.~ =/3~ +sup~<,ff(a~) if it is >/3~, and /3~ +1  otherwise 

(clearly /3i is strictly increasing). Now we define M~, = U~<~M~,, and if 

0 < j < sup~<~,ff(a~) then for some ~o </z,  ~0 < ~ < /x  f f  j < fe(a~), and we let 

M~,+j = U~o<~<~M~,.j. Let ] ~ t = ( i ~ % : f l < h * ) ,  and f be defined by f(/3~) = 
sup~<,,f~(a~), f(/3~ + j ) =  0 for 0 < j < f(/3~). Clearly (/Q, f)  is as required. The 

proof for /x = X + is similar, using diagonal intersection. 

CONVENTION 6.7. Now let F be a function such that: 

(a) if IIM, IL--A, IM, InlM21=IMol, IM, IUIM2ICA, each M~ is full, 

tA - I  M, I U I M:I I = h, then F(Mo, M~,M2, A )is a model M, IMI = A, M, < M, 
M weakly full over [M,I U t M~ [, and Ml, M2 are in stable amalgamation in M;  

(b) if f o r i  = 0, 1, M~, Mil, M~, A i are as in (a), f is a one-to-one function from 

t M ~ ] U I M~ onto } M'~] U } M~ 1, and f [ M~ is an isomorphism from Ml[ onto M'l 
= F(Mo, M1, M2, A ~ for l 0,1,2, then we can extend f to an isomorphism from o o o 

onto F(M~, M~, M~, A ~). 
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DEFINITION 6.8. (AS/,f)--<e ( M ' , f ' )  if (a), (b) from Definition 6.5 hold, and 

(c) there is a sequence (]Q~, f~), ~: =< (, where ( < h ++, increasing (by <= ) and 

continuous (see Claim 6.6(2)), ( ,~",/") = (~/, f), (AT/~, f c ) =  (/~,, f,) such that for 

every ~ < ~ for a closed unbounded set of a ' s  for each /3, 

a </3 < fe(a) ,  r M~+, = F(M~,  "*~+' a,fe amr~+l , v . .  . . . .  . + , , I  I) .  = l v l  ,/3+1 

If in (c) ( = I, we say (/Q', f ' )  is an immediate F-successor of 0~,~, f). 

CLAIM 6.9. (1) =<e is a quasi-order. 

(2) For <-<-e, any increasing sequence of  length < A ++ has a least upper bound. 

PROOF. Similar to Claim 6.6. 

CLAIM 6.10. Suppose (~4,f)<=v ()~4',f') and this is exemplified by (IQe, fe) ,  
++ 

Let M ~  = [..J,<,+ N ,  ~ increasing and continuous, II N, ]l = A. Let ff + 1 = 

[,.J~<~+ A~, A~ increasing and continuous and I A~ I<= A. Then for a closed un-  

bounded set of i < A + the fol lowing holds : 

(*) 0, f lEA, ,  [ ~ : E A , - - - ~ + I E A ~ ] ,  Ni = ~..JCEA, M~; and ~:,,<~.EA~, i < = j <  

i + f ( i )  implies Me, '' = M~, (-1 rvt<, and M~',, M~,, rv1~,, is in stable amalgamat ion;  

and  for j, i <= j < i + f(i),  

M~+' = F(M~, ~t4 e+' M~+,, I M~:? I). j+l 

PROOF. Easy. 

So we have now finished the preliminaries and start to prove Theorem 6.4. 

Special Case: ~,+ and ~,+* 

REMARK. By Gregory [5], this holds in our context if G.C.H. + A ~ ~o.* 

The proof is quite similar to [15], so we do it in a somewhat informal way. We 

define by induction on a < A ++ pairs (~.4'~, f " )  ( r /E  ~2) with universe A+(1 + a )  

(i.e., [ m ~ + l = A + ( l + a ) )  such that for a = / 3 + 1 ,  rl E~2,  (M" , f " )  is an im- 

mediate =<e-successor of (~(./,r~,f,~), and for limit a we take the least upper 

bound (see Claim 6.9(2) above). 

In stage a, Q - -  "gives" us rl ~ ~ ~ 2, u ~ G ~ 2, and an elementary embedding g,, 

from M~': into M~t. We look at g, as an initial segment of some isomorphism 

from some [.J~<*** M~ t+~ onto U.<,** M~L ~, rt ~ <~ r / ~  ~++2, v ~ <{ ~ ~ ~+§ We 

If A has cofinality N,, this holds by [15]. 
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define ~ t~" (̂~ = )~/v.^,) in any reasonable way, f~)^<'~ = min{y : 3' > if~ (i) and g, 

maps MT" into M~~ and it suffices to find/V, (M',f ')<-_v (1~, f ' ) ,  which, for no 

v, u ~ < v E *++2 has an elementary embedding extending g~ into M~+. We define 

N~ (i < h +) by induction on i, N~ 13 M~+ = M L  For each i, such that (Vj < i) 

{ f ' ( j )  < i}, O,§ give us as a guess model Me (~: < ~ < h+), forming an increasing 

M o -  M [  ~ so that using the notation of Claim 6.10, letting elementary chain, ~ - 

(/~, f )  =~~ (]~"~ f"" ), for every possible (]Q', f'), (37/"~ f"~ _< v (/9/', f ' )  for a 

stationary set of i < h +, ( -M~ : ~ < ~) = (M~ : ~ E A~) (possible, by the definition 

of diamond, and a little coding). Now we have no choice in defining N~+j, 

j <= f ' ( i ) .  But for Nto)+t we have a free choice which, by Lemma 6.3, is enough to 

destroy the "guess" ( -Me : ~ < ~) as a candidate for a projection of (/~4~, f ") for 

which g~ can be extended to an elementary embedding of N, .  into M~+. 

So we can finish case I. 

CONVENTION 6.11. For each pair (~]t,f) (as in Definition 6.6) choose a closed 

unbounded set S C_ h + such that, if a E S, a </3 =< a + f (a ) ,  then /3 ~ S. 

Let S = {a~ : i < h +} be an enumeration of S. Now we define by induction on 

/3 < h * ,  for each ~ E~2,  a model M, such that: 

(a) M, 13 M,* = Mo ; moreover, the triple M~, Mn, M~+~ is in stable amalgama- 

tion. 

(b) M, is increasing and continuous (i.e., rt ~ v implies M,  < M., and if 

/3 = l(rl) is limit, then M, = U~<~M,f,) .  

(c) If a, <= [3 < a, + f(a~), rl E~+~2 then 

M, = F(Mo, M,I~, Mo+~, I M, I). 

(d) If a~<_-/3_-<a~+f(a~), r/~_ ~2. t,@ ~2 and ~ r a ~ = v [ a ,  then M , = M .  

(e) If / 3 = a ~ + f ( a ~ ) + l ,  t i E ~  v E o 2 ,  r / [ a ~ = v [ a ~  then ~(a~)=v(a~) 
implies M, = M~, but r/(a~)# v(a~) implies that M~, M~ cannot be amalgamated 

over Mnr=, U M0. 

The main point is (e), and we can do it by the conclusion of Lemma 6.3. 
We then let, for r / ~  *+2, M, = U~<,+ M,r~, hT/n = (M,r~ : i < h +). 

Of course, for (1~4', f ') we have M~, etc. 

CLAIM 6.12. For any (]VI, f )  there is ~q ~**2 such that for no (f . l ' , f ') ,  

( M , f +  1)<F ( f/l', f'), can we embed M,  into M ',* over M,+ (we use Convention 
6.11 and ( f+  1) ( i ) = f ( i ) +  1, and we are assuming 2* <2"+). 

PROOF. Left to the reader. 

CLAIM 6.13. We can define for every a < h++, u ~ ~2 a pair (M t~,ff) such 
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that: 

(a) (~-l",f") is increasing and continuous, i.e., 71 ~ v implies (iCdn, f')<-_ 

(ff/F,f ~) and even (fq',f")<=~ (/Q",f"); 
(b) M'~ ~ cannot be elementarily embedded into N over M2+, if 

(M,~<.>, f~^~o~) ~ (/~, f), N = N~+, so in particular if N~+ = M~+, n^(O) ~ v; 

(c) IMP'* I = A +(1 + l(r/)). 

NOTATION. For r/@ *-2,  M"  = U , < , -  M2 ~. 

PROOF. We define by induction on a < A§ 

For a = 0: M ~  is any full model of power A +, and we define MI ~ (i < )t +) 

such that II >11 = x, i < j f f  M~ > < M~ 7, M~ > is increasing continuous (i < )t +) 

and M,+ = U~<,+ M, So 1~# > = (M~ >: i < A) and f > is the function with domain 

)t + and constant value zero. 

For a limit: use Claim 6.9(2). 

For a = [3 + 1 successor: use Lemma 6.12, i.e., for v E ~ 2,we let M "^~> b e / ~ t  

for the 77 we get from Claim 6.12 for (hl , / )=(~7/" , f f ) ,  f~^~'=f~, and 

(1QK ~̂o~, f,^~o~) is arbitrary except that it is an immediate F-successor of (/~", f~ + 

1) and f,̂ <o~ = f ,  + 1. 

Now we can prove something on the number of non-isomorphic models. 

General Case: I(;t ++, K)  > X if Unif (A ++, (X,)t ++), .~ ++) 

PROOF. Suppose {M~ : i < / z  } is a list of all models from K of power A +§ (up 

to isomorphism), and w.l.o.g. I M~ [ = A ++. So for each r/~a§ 2 there is i n < /z  and 

an isomorphism f~ of M"  (from Claim 6.13) into M~. 

By [16] def. XIV 1.1 (p. 463), there are a <) t  ++, r / ~  ~+§ v ~ ~§ such that 

a = A * a  (so IM~r~"[=lM[~[=a),  r l [ a = v [ a ,  i , = L ,  f,  r a = f ~ I a  and 
~ ( a ) = 0 ,  v ( a ) = l .  Hence f ~ ( f ~ [ M [ ~  ~+') is an elementary embedding of 
M ~  ~+~) = M7! ~r(" into M ' ,  which is the identity on M[~ ~= ~v~'r"'~§ and by 

cardinality considerations it is into M" for some r/[ (a + 1) <~ p <~ r/, l(p) < A §247 

so 07 [ a )  ^ (0) _-< p, contradicting (b) of Claim 6.13. 

(1) Why cannot we have 2 x§ as in Theorem 1.3? We are missing the "M~ 

realizes a maximal set of distinct types". From another point of view the 

isomorphism from M" onto M", for many a < A*§ takes M~'~" onto M[  r+~, but it 

is mixing the levels too much, i.e., if f : )t + ~ A + is defined by f ( i )  = min {j : i < ], 

g maps M nt~" into MTt~}, it may be too big, i.e., bigger than f"" .  

(2) Originally, we stated here that I(A ++, K)  "~ = 2 x§247 without elaborating a 

proof of the set theoretic theorem we use. However,  we were urged to explain 

this (by Rami Grossberg) and the explanation grew to section 1 of [16] XIV. 
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THEOREM 6.14. Suppose that the conclusion of Lemma 6.2 holds, and that the 

ideal of small subsets of h + is not Z **-saturated [i.e., there are non-small S* C_ Z + 

(i < h++) such that the intersection of any two is small]. 

Then I(h ++, K)  = 2 ~ **. 

REMARK. The hypothesis is very weak. For instance, its negation implies the 

existence of inner models with large cardinals, and the smallness of {a < h +, 

c f a  < h }  when 3. is regular (which occurs when h = N,tk)-:). 

PROOF. Let ( S * : i  < h ++) be non-small subsets of h + [ i ~ j  ~ S* n S* is 

small]. As the ideal of small subsets of A + is normal, w.l.o.g. [ i ~ j  

IS* N S ' l <  A+]. O u r p o i n t  of departure from the proof of Theorem 6.4 is 

replacing the use of Definitions 6.5 and 6.8 by 

DEFINITION 6.15. (1) In our proof let ~/  denote a sequence such that 

~,1 = (Mi : i < A +), Mi increasing continuous. 

M~ is a full model of power A, and M~+~ is full over M, We let M,+ = U ~<~ + M~. 

(2) We say ~7/~ =* M 2 if for a closed unbounded set of a < A + the following 

hold: M]  O M~,+ = M~, M]+~ n M~+ = M1,~+1, and the triples Ml~, M], M~+ and 

M~+~, M]+I, M]+ are in stable amalgamation. 

(3) For S C_ A + we say M <=* ~/ '  if there is a sequence (/~t~ : ~ =< if) where 

< A ++, ~ o  = M, M'  = M~, the sequence is increasing and continuous, and for 

every ~, for a closed unbounded set of a < A+, 

~5 ~ a r~5+l  ,,t~+, = F(M],  ~ + ~  Ms+t, I I). t~ E S zz~ . . . . .  . . . ~  , 11"1 a + l  

If in (3) ~" = 1, we say ]~'  is an immediate -<*-successor of M. 

REMARK. So the definition of -<_* depends on the choice of the S. 

CLAIM 6.16. (1) _--__* is a partial quasi-order. 

(2) Any  <-_*-increasing and continuous sequence of length ~ < A ++ has a least 

upper bound. 

(3) I f  S~C_S2C_A + or even S , - $ 2  is not stationary, then f 4 < - * ~ 7 I ' ~  
~ <=*,~' ~ ~ <-_* ~ ' .  

(4) I f  (f'l~ : ~ < ~) is increasing and continuous by <=*, ~ < A ++, then its 

<=*-least upper bound is also its <=*-least upper bound. 

PROOF. Similar to the proofs of Claims 6.6 and 6.9. 

CLAIM 6.17. We can define for a < A ++, u ~ ~2, a sequence A4 ~ such that: 

(1) for *1 ~- v, f/l" <=* IVI"; 
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(2) I M2+ I = t+(1 + l (~) ) ;  
(3) /f a = l (v)  is limit, ~/1 ~ is least upper bound of (./~ r~ro :/3 < a);  
(4) g a = l (v )  = fl + 1 then 5S/I ~r~ <* ~,+_s~M~ ; 

(5) if fl < l (v)  then AS/~r~~ <*  ~,+_s~)M~; 

(6) ifc~ = l (v) ,  then there is no If'l* such that ~ l  ~^~" <*  t,*-s:)f4* and M~; ~~ can 

be elementarily embedded into M*+ over M [  ~+. 

PROOF. Straightforward, the main proof being that for ~, A~ (i < I+)  as in 

Theorem 6.1. for a closed unbounded set of i < A § there is at most one r E A, 

such that i E S* [this holds as I S~ M S ~ l -  < Z for sc~ r 

The proof of the theorem is now straightforward: for r /~  v E A++2. The models 
I_J~<,++ M~r+ ~ and U~<x~* M~ t+~ are not isomorphic over Ma+, so we finish as in 

Lemma 6.2(3), case I. 
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