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We prove that compactness is equivalent to the amalgamation property, provided the 
occurrence number of the logic is smaller than the fust uncountable measurable cardinal. We 
also relate compactness to the existence of certain regular ultrafilters related to the logic and 
develop a general theory of compactness and its consequences. We also prove some com- 
binatorial results of independent interest. 

0. Introduction 

Abstract model theory, after its promising successes due to Lindstrom, Barwise 
and Feferman’, is widely considered to be in a crisis. Indeed, the expectations 
were high. The theory should give us more information on why which model 
theoretic properties hold in what logics, should characterize most logics or 
logic-families as ‘natural’ or should explain to us why certain properties of logics 
are rare. But instead, counterexamples emerged refuting many reasonable conjec- 
tures. 

Many more logics appeared on the scene like Shelah’s various compact quan- 

tifiers [32, 261, stationary logic first introduced by Shelah [32] and extensively 
studied in [4, 221, Souslin-logic [lo], infinitary propositional connectives [12, 151 
and topological logics [36, 231. Many researchers turned pessimistic: There 
seemed no hope for positive results. In particular one problem (PI) remained 
open, whether Craig’s Interpolation theorem and compactness characterize first- 
order logic (cf. [13, 251). It turned out that though this problem is still unsolved, it 
did contribute quite a bit to the positive development of abstract model theory. In 
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264 J.A. Makowsky, S. Shelah 

this paper we present a rather satisfying theory of compact logics. Let us trace its 
development. 

In [25] we had proved that (under some strange set theoretic hypothesis) some 
version of Robinson’s Consistency lemma (RCL 1) together with a Feferman- 
Vaught-type theorem for pairs of structures implies compactness. In the light of 
(Pl) it is still possible that this is an ‘empty’ theorem, i.e. the hypothesis is only 
satisfied by first-order logic. 

A preprint of D. Mundici [30] drew our attention to a different version of 
Robinson’s Consistency lemma (RCL) and we realized, while proof-reading [25] 
in spring 1979, that, under the same set-theoretic hypothesis as before, RCL was 
equivalent to compactness together with Craig’s Interpolation theorem. 

Unsatisfied by the set-theoretic hypothesis we started to search for improve- 
ments, new properties were singled out to be crucial and finally a rather pleasant 
picture evolved. 

Friedman [14] already had observed that compactness implies, that every 
formula depended essentially only on a finite number of non-logical symbols. This 
lead us to define the occurrence ,number OC(L) of a logic L to be smallest 
cardinal K such that every L-sentence depends on less than K many non-logical 
symbols (if it exists). With the help of this one realizes that the amalgamation 
property (AP) for L-embeddings is both a consequence of either compactness or 
RCL. But assuming the existence of extendible cardinals, there are logics which 
have AP and are not compact. However, here is a surprise: If there are no 
uncountable measurable cardinals, no such logic exists: Then compactness is 
equivalent to AP. In fact, it suffices to assume the logic L has occurrence number 
OC(L) < kO, the first uncountable measurable cardinal. Another surprise: This 
result solves an open problem of Malitz and Reinhart [29]: The logics Lti,,(Q,) 
with the quantifier ‘there exist at least K many’ (K infinite) do not satisfy AP. 

Already from [25] we knew that ‘chopping up compactness in (A, K)- 

compactness’ was not a good idea. We introduced there the notion of K-r.c. 
(~-relative compact) which we generalize here to [K, h]-compactness and denote it 
[K, h]-compactness following the literature in topology [l, 351. It turns out that 
this is a very natural notion and we develop a general theory connecting it with 
certain regular ultrafilter (and ultrapowers over them) introduced by Keisler [18]. 

More consequences of compactness, such as the upward Lowenheim-Skolem 
theorem and non-existence of maximal models (in both relativized and non- 
relativized versions) are examined. Here [o, o]-compactness and again the exis- 
tence of measurable cardinals play an important role. The latter comes via a 
theorem of Rabin and Keisler [19] on elementary extensions of complete struc- 
tures. 

The paper is organized as follows: In Section 1 we collect the preliminaries, 
define the central concepts and discuss their obvious interrelations. 

In Section 2 we discuss consequences of compactness and their interrelations. 
The results are collected in Fig. 1, at the end of Section 2.4. 
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Positive results in abstract model theory 265 

In Section 3 we develop the general theory of [K, h]-compactness and (K, h)- 

regular ultrafilters. We define the class of ultrafilters UF(L) related to a logic L 
and show that L is [K, A]-compact iff some (K, h&regular ultrafilter D is in UF(L). 

An ultrafilter D is related to a logic L if, roughly speaking, some generalization of 
Los’ lemma for ultrapowers over D holds for L. This correspondence theorem is 
the key to results like [K+, A+]-compactness implies [K, K]-compactness for every 
K or [cf(K), cf(K)]-compactness implies [K, K]-compactness. 

In Section 4 we introduce the occurrence number OC(L) of a logic L. Our main 
result here is (assume there are no uncountable measurable cardinals): If L is a 
logic which is [K, K]-compact, then OC(L) = w. We conclude this section with a 
combinatorial result of independent interest: We characterize uncountable cardi- 
nals bigger than the first measurable in terms of co-continuous functionals. 

In Section 5 we prove finally our main theorem: If OC(L)< p0 (the first 
uncountable measurable cardinal) and L satisfies AP, then L is compact. We also 
consider the Joint Embedding Property (JEP) and RCL. The main theorem relies 
on the results from Sections 2, 3 and 4. But behind it is a theorem which 
can be stated and proved independently of the previous chapter (Theorem 5.3) 
and for which the main tool in the proof is the construction of ‘homogeneous’ 
models of some non-elementary class K. In spirit, though not in detail, this is 
similar to the method Shelah deals with abstract elementaty classes in [33]. 

The order of the sections is dictated by their interdependence. Although proofs 
are rather detailed every section is independently readable (provided one believes 
the quoted results). In fact the casual reader may want to read Section 5 first and 
then backtrack for the needed material. For the case of finite occurrence Section 5 
is independent of the rest of the paper. 

We hope to convince the reader that abstract model theory is still a 
challenging branch of model theory and logic and that this paper positively 
supplements the work presented in [25-271. 

Postscript November 1982 

The present paper was completed in September 1979 and circulated as a 
preprint. The first author has presented the whole paper in the seminar of the 
“Model Theory Year 1980/81” in Jerusalem and is indebted to all the particip- 
ants for various suggestions and corrections of inaccuracies, but especially to J. 
Baldwin and M. Magidor. We are also indebted to D. Kueker, P. Schmitt, R. 
Grossberg and S. Buechler for their careful reading and their valuable comments. 

In the time between completion and revision of the present paper a book has 
been prepared under the untiring editorship of J. Barwise and S. Feferman [3] 
which puts much of what we tried to say in the introduction into a larger 
perspective. What should be mentioned here is that Chapter 18 of [3] is to some 
extent based on this paper. 
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1. Freliiaries 

1.1. The framework 

We work again the framework of abstract model theory as described in [2] and 
[28, 2.5, 261. In many respects this paper is an expansion and continuation of [25, 
461. We follow closely [2] for notation with one exception: We denote by L 
vocabularies (called languages by Barwise), by L logics (hence omitting the star in 
L” of Barwise) and we use L(L) to denote the class of L-formulas in the logic L. 
Furthermore, we assume in most of the cases, unless otherwise mentioned, that 
L(L) is a set whenever L is a set. To avoid confusion we nevertheless write L,,, 
to denote predicate calculus and to denote the set of first-order L-formulas. But 
the context will always make clear if we are thinking of the L-formulas or the 
logic. We use: 

A, B, C, M, N for L-structures, 
A, B, C, A4, N for their underlying sets, 

Lo, LI, . . * for vocabularies, 

4 A, F., V, . . . for cardinals, 
a, /3, y, 6, . . . for ordinals. 

Other letters are used freely, but their usage should be clear from the context. 

1.2. Compactness properties 

A logic L is (K, h)-compact if, given a set 2 of L-sentences of cardinality K such 
that every &c X of cardinality <h has a model, then .Z has a model. A logic L is 
compact cfully compact) if L is (K, o)-compact for every K. A logic L is [K, A]- 

compact if given any set X of L-sentences and a set Z, of L-sentences of 
cardinality K such that for every J&c & with card(&)<& &US has a model, 
then Z1 U 2 has a model. Here Z plays the role of the diagram (or a fragment 
thereof) of a given structure. Note that [K, K]-compactness, was called K-r.c. in 
[25]. Clearly, [K, h]-compactness implies (K, h)-compactness, compactness implies 
[K, h]-compactness for every K 5 A, and some trivial monotonicity properties hold 
as well. Less trivial consequences may be found in Sections 2 and 3, in particular 
Theorem 2.8, 3.11 and 3.12. 

1.3. Elementary embeddings 

Let L be a logic and A, B be two L-structures. We say that A and B are 

L(L)-equivalent and write A =B(L(L)) if for every L(L)-sentence cp A kL cp iff 
B kL cp. We denote by Th,,,(A) the set {cp E L(L) : A l=L cp}. 

We say that A is an L(L)-substructure of B and write A CUE) B if A is a 
substructure of B and (A, a E A) = (B, a E A) (L(L,)) where LA is the vocabulary 
L augmented by names for each element of A. Note that for L = L,,, A CL B 

implies that A = B. 
We say that a logic L has the Amalgamation Property (AI’), if whenever A, B1, 

B2 are L-structures such that A cLBi (i = 1,2), then there is an L-structure C 
such that Bi <,C amalgamating A. 
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We say that L has the Joint Embedding Property (JEP) if whenever Al, A2 are 
L-structures such that A,=A,(L(L)), then there is an L-structure B such that 

Ai <L(L) B (i = 1,2). 
Proposition 5.1 gives some easy consequence of these definitions. 

1.4. The Robinson consistency lemma 

Let .Z be a set of L(L)-sentences. We say that Z is complete if given two models 
A, B of _Z we have A =B(L(L)). We also say L(L)-complete if the context is not 
clear. 

Let L be a logic. We say that L satisfies the Robinson Consistency Lemma 

(RCL) if the following holds: Let & (i = 0, 1,2) be vocabularies such that 
L, = L, n L,, and let ,Zi (i = 0, 1,2) be sets of L&)-sentences. If _& is complete 
and so U & and &, U & have models, then &U & U& has a model. 

We say that L satisfies RCLl for the case where 2, and Zz are finite. 
Proposition 5.1 shows that RCL implies AP. Trivially RCLl is a consequence 

of RCL. If L is compact, then RCL is a consequence of Craig’s Interpolation 
theorem (cf. [25]). 

1.5. Models of arbitrary large cardinality 

Let L be a logic. L is said to satisfy the Upward Lowenheim Skolem theorem 

(ULS) if every set of L-sentences which has an infinite model, has arbitrary large 
models. 

This is equivalent to the following: Given an infinite L-structure A, there are 
L-structures B of arbitrary large cardinality, such that A <L(L) B. 

Note that for many-sorted structures the cardinality is defined as the sum of the 
cardinalities of its sorts. The logic L is said to satisfy the Relativized ULS (RULS) 
if, given an L-structures A with distinguished unary predicate PA, PA infinite, 
there are L-structures B with PB of arbitrary cardinality such that A<,(,,B. 
Trivially RULS implies ULS. These notions are studied in Section 2. 

1.6. Maximal models 

Let L be a logic and A an L-structure. A is L(L)-maximal if there is no proper 
L-extension B of A. 

If PA is a unary predicate on A, we say that PA is L-maximal if for every 
L-extension B of A PB = PA. 

We say that L satisfies MAX if there is no infinite L-maximal models. L satisfies 
RMAX, if there are no infinite L-maximal predicates in any L-structure. 

Trivially ULS implies MAX, RULS implies RMAX and RMAX implies MAX, 
and all of them are consequences of compactness. Section 2 is devoted to the 
study of these properties. 

Let A be an L-structure. The complete expansion A# of A is the structure with 
universe A and for every Xc A” which is not the interpretation of some n-place 
relation symbol there is a new predicate symbol Px whose interpretation is X. 
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Note that in the many-sorted case we do not add sorts to form the complete 
expansion. 

We say a structure is complete if A = A#. 
The following is a version of the Rabin-Keisler theorem (cf. [17]) which we 

present here with an outline of a proof: 

Theorem 1.1. Let A be a complete structure of cardinal@ h < CL,-,, where pO is the 
first (countable) measurable cardinal, PA be a countable predicate of A and B a 

proper L,,, - extension of A. Then PA !$ PB. 

Proof. Let c E B -A and put F = {Xc A : B l=Px(c)}, where Px is the predicate of 
A representing X. Clearly F is an ultrafilter. Now assume PA = PB. We want to 
show that F is countably complete to conclude that card(A)zpO. So let 
{X,,:nEti} be a family with X,,EF for every GEE. Let P*={a,:nEm} be an 
enumeration of PA. Since A is complete there is a predicate F* (with predicate 
symbol F) such that F* c PA XA and {a EA : Al=F(&, a)} = X,, for each n E o. 
Now we use PA = PB and conclude that BkVx(P(x) + F(x, c)) and hence 

I-I,,,X, EF. •I 

Note that if card(A) > pO, card(P*) < I*,, and F is a FL,-complete ultrafilter on 

pO, then n A/F = B is a proper L,,, -elementary extension of A, but PA = PB. 

Corollary 1.2. Let L be a logic and PA a countable L-maximal predicate in some 

structure A of cardinality h <pO. Then there are arbitrarily large L-maximal 
structures B of cardinality <pO. 

The following proposition is easy: (cf. [ll]). 

Proposition 1.3. Let L be a logic. The following are equivalent: 
(i) L is not [w, o]-compact, and 

(ii) there is a countable L-maximal predicate. 

Corollary 1.4. If L is not [o, w]-compact, then there are arbitrary large L-maximal 
structures of cardinal@ less than <pO. 

The reader should compare these results with Lemmas 2.5, 2.6 and Theorem 
2.7. 

2. Some consequences of compactness and their interrelations 

2.1. Characterizing cardinals 

Let L be a logic and A an infinite cardinal. 

Definition. A cardinal A is cojinally characterizable in L if there is an expansion 
A of (A, E) of the form A = (A, WA, E*, . . .) of the vocabulary L such that: 

(i) (U*, E* 1 U)=((h, E), and 
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(ii) whenever B is an L-structure and AcLcL) B then (U*, E* r U) is cofinal in 
( UB, EB 1 U), i.e. for every b E UB there is a E U* with Bl=E(b, a). 

A cardinal A is cardinallike characterizable in L if there is an expansion A of 
(A, E ) of the form A = (A, U*, E*, . . .) in the vocabulary L such that: 

(i) (U^, E* 1 U)=(A, E), and 
(ii) whenever B is an L-structure and A<LcLj B, then (Us, EB 1 U) is a A -like 

ordering. 
We shall say that A is cofinally (cardinallike) characterizable in L via A. 

In [25] we have proved: 

Proposition 2.1. (i) L is [A, Al-compact, h regular, if h is not cojinally characteriz- 
able in L. 

(ii) L is compact in no infinite A is cojinally characterizable in L. 

Note that (ii) follows immediately from (i). 

Proposition 2.2. o is cofinally characterizable in L ijf w is cardinallike characteriz- 
able in L. 

Proof. If o is cofinally characterizable in L, L is not [o, w]-compact, hence, by 
Proposition 1.3, w is cardinallike characterizable. The other direction follows 
from the fact that no proper elementary extension (in L,,,) of (0, E) is o- 
like. 0 

Note that [A, Al-compactness is essential here. If we want similar theorems for 
(A, A)-compactness, we have to replace the complete theory of (A, A) in L by a 
theory of cardinality A. 

Definition. A is strongly cofinally (cardinallike) characterizable in L if A is 
cofinally (cardinal-like) characterizable in L via A such that A = U*. 

We shall use strong characterizability in Section 2.3. 

2.2. 7’he existence of maximal models 

We first characterize the properties RMAX and MAX for a logic L: 

Theorem 2.3. L satisfies RMAX ifl L is [w, w]-compact. 

Proof. Assume for contradiction L is not [o, o]-compact. By Propositions 2.l(ii) 
and 2.2, w is cardinallike characterizable via A, for some L-structure A. Clearly 
then A has an expansion with a unary predicate U = w which is L-maximal. So L 
does not satisfy RMAX. 

To prove the other direction let B be a structure with an infinite L-maximal 
predicate R. Expand B to 1 with a new unary predicate PB c RB and PB 
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countable and let {Bi : i E o} be an enumeration of the names of elements of PB. 
Let Z be the L-diagram of fi and Z1 = {cf I+ : i E o}U{P(c)} where c is a new 
constant symbol not in the language of @. By [w, w]-compactness ,Z U& has a 
model C which extends fi since PC properly extends PB, hence it extends RP. q 

To characterize MAX we introduce a new definition: 

Definition. Let L be a logic and A a cardinal. L satisfies MAX(A) if all L-maximal 
models have cardinality <A. Clearly MAX(o) is the same as MAX. 

Proposition 2.4. If L is [A, XI-compact, #hen L satisfies MAX(A). 

The proof is similar to the proof of Theorem 2.3 and is left as an exercise. 

Lemma 2.5. Let A0 be an infinite cardinal, and let L satisfy MAX(&). Then L is 
[x, x]-compact for some infinite cardinal x. 

Proof. We prove the contrapositive. Assume, by Proposition 2.1(i), all regular 
cardinals A are cofinally characterizable in L via some structure B(A), which we 
assume without loss of generality of minimal cardinality g(A). Let p be the first 
cardinal such that: 

(i) if V< CL, Y a cardinal, then g(v)<@; 
(ii) A,<p; 

(iii) cf(l*) = w. 
We prove that such a CL exists: Define CL,, inductively by pO=w, p,+i = 
(C {g(A) : A < pn}) + pz, p = 2 pn. Note that here we use the replacement axiom. 
Let B be the complete expansion of the structure (CL, E). We claim that B is 
maximal. For otherwise, let C be an L-extension of B. If C is a proper extension, 
there is c E C-B. Remember cf(k) = o and let {b,, : n E w} be a cofinal sequence in 
B. Since w is cofinally characterizable in L, g(o) <F and B is a complete structure 
{b,,:nEo} is also cofinal in C. So C!=c~b, for some kEu. Now let dgB be the 
smallest (with respect to E) element in B such that Ck c E d. So d is an ordinal. Let 
6 = cf(d) and (4 : i < 6) be a sequence cofinal to d in B. Again since g(6) S p and 
8 is cofinally characterizable in I., (4 : i < 6) is cofinal to d in C. So there is j < S 
with Cl=c E dj, which contradicts the minimality of d. By our definition of CL, 
Aosp, so we proved that L does not satisfy MAX(A,). 0 

Lemma 2.6. Let L be a logic and let A0 be the first cardinal such that L is 
[A,, A,,]-compact. Then A0 is measurable (or =w). 

Proof. By Proposition 2.1(i) each regular A <A, is cofinally characterizable in L 

via a structure B(A) with ?/h the cardinality of B(A). Therefore all ordinals 
less than A0 are not extended. Let p be defined by 
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and let B be the complete expansion of the structure (CL, E). By [&]-compactness 
B has an L-elementary extension C with some c E C-B and such that C !=c E hf. 
Since A0 is minimal we have for no A < A0 that Cl=c E AC. We now define an 
ultrafilter F on A,, by 

where X is the name of the set X in B. Clearly F is an ultrafilter. We propose to 
show that F is &,-complete. Let {X, :a <p <A,} be any family in F. The 

function f with f(a) =X, is a function in B with name, say, f. Put now X= 
n,<,&. So BkVx (Vi<a! (x~f(i) j x ~r)f(i))) and aB =CY, and therefore 
Ckc E X since f is a function of C with f” 1 B = f”. So XcF and therefore F is 
k-complete. An easy induction now gives that A, is measurable. q 

We are now ready to characterize MAX. 

Theorem 2.7. Assume there are no uncountable measurable cardinals. Then a logic 

L satisfies MAX ifl I. satisfies RMAX ifi L is [w, w]-compact. 

Proof. It suffices to show that L satisfies MAX if L is [o, o]-compact, by 
Theorem 2.3. So one direction is Proposition 2.4 and the other direction is 
Lemma 2.5 and 2.6. 0 

From the Lemma 2.6 we get in fact more: 

Theorem 2.8. Assume w is the only measurable cardinal. If L is [A, Al-compact for 
some A 20, then L is [o, o]-compact. 

Let us end this section with a counter-example. 

Example 2.9. Let pO be the first uncountable measurable cardinal and let 
Qxy(cp(x), t+?(y)) be a binary quantifier (of type (1,1)) which is defined by 
A!=Qxy(cp(x),$(y)) if {aEA:Akcp(a)} is finite and {aEA:Ak+(a)} is of cardi- 
nality bigger than 2&o. 

Let L be the logic L,,,(Q). Clearly L does not satisfy RMAX, since there is an 
expansion of ((2@0)‘, E) in which (0, E) is L-characterized. Now if A is an 
L-structure of cardinality <2“0, Q is trivially false, so every L,,-extension of A 
of cardinality less than 2’“o is an L-extension. If card(A) ;2*0, let F be a 
PO-complete ultrafilter on pO and form n A /F = B. Since pO is small for (2”0)+ B 
is a proper L-extension of A where definable sets of cardinality ~2~0 are 
preserved. Since F is PO-complete, finiteness is preserved, so B is an L-extension 
of A, hence L satisfies MAX and is [CL,,, @J-compact. 
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With this we get: 

Theorem 2.10. The following are equivalent: 

(i) For every logic L MAX holds ifi RMAX holds. 
(ii) There exists an uncountable measurable cardinal. 

Proof. Theorem 2.7 and the example above. 0 

2.3. The upward Lowenheim-Skolem theorems 

Let us first characterize the properties ULS and RULS for a logic L. 

Theorem 2.11. Let L be a logic. Then 
(i) L satisfies RULS if no infinite cardinal is cardinallike characterizable in L. 

(ii) L satisfies ULS if no infinite cardinal is strongly cardinallike characterizable 
in L. 

Proof. (i) Clearly, if K is cardinallike characterizable in L via A, then lJA has 
cardinality K and so has UB for every B which is an L-extension of A. This 
contradicts RULS. In the other direction let A be an L-structure with UA 
contradicting RULS, i.e. for every B with A CL(L) B card(UB) < K for some 
cardinal K. Put 

S(A)={~~K : there is B, A <E(L) B A card( U”) = p}. 

If S(A) has a last element K~, then K: is cardinallike characterizable in L (in some 
structure C coding the situation). Otherwise let K~ = S(A). Then K~ is cardinallike 
characterizable in L. The details and the proof of (ii) are left to the reader. 0 

2.4. Some examples 

Example 2.12. Let Q, be the quantifier ‘there exist at least K many’. Let L be 
L,,,[Q,] with K > 2”. Since o is small for such a K, Los’s lemma holds for L for 
any ultra-filter over w (cf. also Section 3, Example 3.5) so L is [o, o]-compact, 
hence satisfies, by Theorem 2.7, RMAX. Obviously ULS does not hold 
for L. 

Example 2.13. Let Q cfaK~y(p(x, y) be the quantifier which say that cp is a linear 
ordering of its domain of cofinahty >K, K a regular cardinal. Let 
Qx:yz(cp(x), $(yz)) be the quantifier which holds in A iff A!=lQ,,cp(x) and 

AtQ cfsUw “+!~(yz) where p0 is the first uncountable measurable cardinal. Put 
L = L,,,,(Q). Obviously L does not satisfy RULS. We want to show that L satisfies 
ULS. Again, as in Example 2.9, if A is an L-structure of cardinahty less than 2@0 
the quantifier is trivially false on A, hence every B with A <,,_B, is an 
L-extension of A. So w.1.o.g. card(A) > 2*0. Let cp be a L-formula in two variables 
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x, y and parameters from A, cp = q(x, y, ii). We define cf(cp, A) to be the cofinality 
of the linear ordering defined by cp in A. If cp does not define a linear ordering we 
put cf(cp, A) = 0. If cf(cp, A) = 6, let {c(cp, A, y) : y < 6) be a witnessing cofinal se- 
quence in A. Now let F be a kO-complete ultra-filter on p0 and form B = n A/F. 

Claim 1. If cf(cp, A)< p. or cf(cp, A)>2@o, then 6 = cf(cp, A) = cf(cp, B) and 
{c(cp, A, 7) : y < 6) is cofinal in cp in B. 

To prove the claim we use that p0 is small for each K > 2’“o and that F is 
po-complete. 

Claim 2. If cf(++ A)S2@0, then cf(cp, B) ~2~0. 

Again we use that p0 is small for K > 2”o. 

Claim 3. If cf(cp, A) = cf(cp, B) = 6 and {c(cp, A, r): y < S} is cofinal for cp in B 

and C = n B/F, then {c(cp, A, y) : y <S} is cofinal for cp in C and hence cf(q, C) = 6. 
Proof. Let fgB, and put X, ={i~p~:Bkq(c((~,A, -y),f(i))} and assume for 

contradiction that X, E F for each y < S. Now B b cp(c(cp, A, a), f(i)) for some cx < 6 
since {c(cp, A, r) : y < S} was cofinal for cp in B. Put now g(i) = c(q, A, ai) where oi 
is the smallest index such that f(i) sc(cp, A, ai). This defines a function g EA~O 
with {iEpo:Akq(c(cp,A, r), g(i))}=&. S ince each X,, E F we conclude that 
{c(cp, A, y) : y < 6) is not cofinal for cp in B. 

Claim 4. L satisfies ULS. 
Proof. Clearly we get from Claims 1, 2 that A CL B. Now let (Y be any ordinal 

and put A, = A, Ai+l = n AJF and A, = lJBcs A, for i <a and 6 limit, 6 < CX. 
From Claims l-3 we get that {A@ : /3 <S} is an L-chain. Choosing (Y big enough 
we prove that L satisfies ULS. 

Eample 2.14. Now we put L = &,,+[QCfah] for each h <(1,,)’ = K and o 
small for A, i.e. we add all these quantifiers simultaneously to I,,,,. Clearly L is 
not [or, o,]-compact. We put 

with cpl says that “q~ is a linear ordering”, (p2 is -QCf”K~ycp(~, y) and $A is 

Q Cf%y(P(x, y). 
Using similar arguments as in Example 2.13 we prove RULS for L. The details 

are left to the reader. 

2.5. 7’he equivalence of RULS and ULS 

Let us discuss here if RULS and ULS could possibly be equivalent, as this is the 
case for MAX and RMAX if there are no uncountable measurable cardinals 
(Theorem 2.7). For this we digress a bit to the theory of ultrafilters. 

Look at the following assumption, where A is an infinite cardinal. 
A(h): If F is a uniform ultrafilter on A, then F is CL-descendingly incomplete for 

every p < h. 

We denote by A(a) the statement “for every h A(A)“. 
Jensen and Koppelberg [16], Magidor [20] and Donder [9] have studied this 
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assumption. The following theorem resumes their results: 

Theorem 2.15. (i) (Jensen-Koppelberg). Assume TO*. Then for every regular 

cardinal h we have A(h). 
(ii) (Donder). Assume there is no inner model of ZFC with an uncountable 

measurable cardinal. Then A(m). 
(iii) If A(w) holds, then there are no uncountable measurable cardinals. 
(iv) Assume there are supercompact cardinals. Then it is consistent with ZFC 

that A(q) fails. 

The assumption A(m) is intimately connected with compactness properties, as 
we shall see in-Section 3. 

Theorem 2.16. Assume A(m) and L is a logic. Then L satisfies ULS iff L satisfies 
RULS. 

To prove Theorem 2.16 we first state two lemmas. 

Lemma 2.17. Let L be a logic which does not satisfy RULS. Then there is an 
L-structure M = (M, PM, . . .), PM infinite, and a unary predicate symbol P such 
that for each L-structure N with M-C, N we have card(P”) = card(PN). 

Proof. Let M be an L-structure which is a counter example to RULS, i.e. 
M=(M,P”,...)and 

{K E Card : 3N(M Cr. N) A card(PN) = K} = S,. 

is bounded. If S, has a maximal element there is nothing to prove. So we can 
assume that S, = {K E Card : K < a} for some limit CY. We then construct a structure 
N = (N, <, P, . . .) such that S, = {a} by coding all So in it. q 

Lemma 2.18. Let L be a logic which satisfies ULS, and M be an L-structure. Then 
there is an L-structure N, M cLN and in N there is a sequence {ai : i <card(M)‘} 
of elements such that for each first order-formula cp(x, y) in two variables and each 
i < j, k < 1 we have that Nl=.cp(q, %) ifl Nkcp(ak, al). 

Sketch of proof. Take N to be large enough so one can apply a Ramsey-type 
argument, as they are now standard in model theory, cf. [7]. 

Proof of Theorem 2.16. Let L a logic which satisfies ULS but not RULS. By the 
hypothesis we can apply both lemmas. 

Fix M as in Lemma 2.17 and let M# be the complete expansion of M and 
p = card(M)+. Now let N and {u+ : i <F} be as in Lemma 2.18 applied to Ms. We 
define an ultrafilter F. on M. If Xc M let Rx be the unary predicate symbol of 
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M# whose interpretation is X. Then we put FO = {Xc M: NkR,(a,)}. Clearly FO 
is an ultrafilter. Let A E FO be a set of smallest cardinality and define an ultrafilter 
F on A by F = FJA. F is a uniform ultrafilter on A. 

Claim 1. card(A) > card(P”). 
Assume card(A) ZG card(P”). Then there is a l-l-function f : A -+ PM. Let F be 

the function symbol of M# representing f and R, the predicate symbol represent- 
ing A. Since A E F the domain of F in N contains a0 and hence all the ai for i < p. 
But since M# <L N, F is l-l in N, so we conclude that card(PN) a CL. But by our 
assumptions (Lemma 2.16) card(PN) = card(P”) < l_~, a contradiction. Now let K 

be the smallest cardinal such that card(PN)” > card(PN). Put Y = card(PN)“. 
Ckzirn 2. K <card(A). 
Trivially K S card(PN) = card(P”) < card(A) using Claim 1. 
Now we apply our hypothesis A(A) for A = card(A) and conclude with Claim 2 

that 
Claim 3. F is not K-descendingly complete. 
Let {Ai : i < K} be a decreasing sequence of elements of F with ni+ Ai = @. 

Now, since card(P”)” > card(P”), we can find Ci = (Cij : j < K} for each i < v with 
cii E PM and cij # clj for each j, i # 1. We now define functions fi : A -+ PM for i < v 
by fi(a) = c, where j is the least index such that a+& Aj. This is well defined, since 
ni<, Ai = 8. Let fi be the function symbol representing fi in M#. By the choice of 
the fi M#lVa(Fi(a)#e(a)) for if j. Since the domain of Pi is A we have 
NkP(E;,(u,)) and Nl=fi(a,) #e(a) for if j. So v <card(PN), a contradiction. Cl 

Fig. 1 gives a synopsis of the situation. 

3. Compactness and ultrafilters 

3.1. Introduction 

In this section we present a general theory of compactness of logics L, centering 
around the notion of [A, PI-compactness and relating it to (h, CL)-regular ultrafil- 
ters. This section shows clearly that [X, PI]-compactness is a natural notion, in fact 
much more natural than (h, CL)-compactness. We reprove, with different methods, 
most of the results of [25, 061 and improve some of them. For non-defined 
notions on ultrafilters we refer to the reader to the monograph [8]. 

In Section 3.2 we collect some facts about ultrafilters. In Section 3.3 we prove 
our main theorem of this chapter. And in Section 3.4 we apply this to study 
[h, I*.]-compactness. 

3.2. (h, CL)-regular ultrafilters 

The following notion was introduced in [18], but his notation is reversed. (The 
reader should think of the brackets as unordered pairs.) 
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Theorem 2.16 

, /&ample 2.12 
/ / / / 

7, 
I/’ 

Theorem 2.7 assuming there are no 

t 
uncountable measurable cardinals 

Theorem 2.3 

I 

I 
1 Example 2.9 

I 
I 

[WI ~compactness 

Theorem 2.8 assuming there are no 
uncountable measurable cardinals 

Fig. 1. Drawn lines show implications which hold, broken lines such which do not hold. 

Definition. Let F be an ultrafilter on I, and A, I* be regular cardinals with A 3 CL. 
(i) F is said to be (A, p)-regular if there is a family {X,, a! <A}, X, E F such that 

if S is a subset of A of cardinality p, then florEs X, = 8. The family {&, (Y <S} is 
called a (A, y)-regular family. 

(ii) A (A, w)-regular ultrafilter on A is called regular. 

(iii) F is A-descendingly incomplete if there exists a family {X, : a <A}, X, E F 

with X, c X, for (Y <p <A such that nolCh X, = 8. 
(iv) F is uniform on A if every XE F has cardinality A. 

Lemma 3.1. (i) If F is (A, b)-regular and p S k1 <A, <A, then F is (A,, pl)- 

regular. 
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(ii) If A is a regular cardinal and F is A-descendingly incomplete, then F is 
(A, A)-regular. 

(iii) If F is uniform on A, then F is (A, A)-regular. 
(iv) If F is (cf(A), cf(A))-regular, then F is (A, A)-regular. 

Proof. (i) is obvious. 

(ii) Let {X, : a <A} be a decreasing family with empty intersection. Since A is 

regular {X, : (Y < A} is a (A, A)-regular family. 

(iii) Follows from the fact that F is uniform on A iff for every Xc A such that 

card(A -X)< A we have that XE F, cf. [‘7, Exercise 4.3.21. 

(iv) Let {X, : CY <cf(A)} be a (cf(A), cf(A))-regular family and {pi : i <cf(A)} 

cofinal in A. Put now Ye = Xpa for every .$ with pi s 6 < pi+l. Then {Ye : 6 <A} is a 

(A, A)-regular family. q 

This is essentially Lemma 7.10 in [8] and due to [18]. The next lemma is from 

[17, Corollary 2.41 and [8, Corollary 8.361. 

Lemma 3.2. (i) [17]. If F is uniform on A+ and A is singular, then F is (A+, A)- 
regular. 

(ii) [31, 61. If F . 1s uniform on A+ and A is regular, then F is A-descendingly 
incomplete, and hence (A, A)-regular. 

We now proceed to give a model theoretic characterization of (A, p)-regular 
ultrafilters. Let H(A) denote the set of sets hereditarily of cardinality <A, and E 
the natural membership relation on H(A). 

Lemma 3.3. For an ultrafilter F on a set I the following are equivalent: 
(i) F is (A, p)-regular. 

(ii) In the structure 

N=g W(A+), E)/F 

there is an element a= a/F where a: I -+ H(A+) such that 

N!=acAN& card(a)<pN 

but for every (Y <A 

Proof. (i)+(ii). Define a:I-,H(A+) by a(t)={a!EA:tE&} for tEI and 
{X, : (Y <A} a (A, @)-regular family. Now X, = {t E I: a E a(t)}, so N!=E E a, since 
for each (Y <A, X, E F. But a(t) has cardinality less than p for each t E I, since 
{X, : a E A} is (A, CL)-regular, so Nk’card(G) < CL’. Trivially, Nl= ~2 c h. 

(ii) -+ (i). Let H = a/F be the required element in N. Define a’ by: a’(t) = a(t) if 
a(t)EP,,(A) and (b otherwise. 
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Obviously a/F = a’/F since Nk ai E h and N!=card(ti) < t.~. We want to construct a 
(h, CL)-regular family. We put X, = {t E I : a E a’(t)}, for each a! <h. Now suppose 
that for some {ai : i CF.), ni<, X, # (a. So there is t E I such that for each 
i < p (Yi E a’(t), which contradicts the fact that a’(t) E P,,(h). 0 

Definition. Let Fi be ultrafilters on Ii (i = 1,2). F2 is a projection of F, if there is 
map f : II -+ I2 which is onto and such that F2 = {X c 1, : f-‘[Xl E F,}. 

This is also known as the Rudin-Keisler order on ultrafilters. 

Lemma 3.4. If X is regular and F is an (A, A)-regular ultrajilter on I, then there is a 
uniform ultrafilter F on A which is a projection of F. 

Proof. We use Lemma 3.3 for h = CL. Let N# be the complete expansion of 
N = n, (H(h+, E ))/F and a : I +N(h+) as in Lemma 3.3. Put now b(t) to be the 

supremum of the set u(t), so b(t) E h since h is regular and card (a(t)) < A ; 
moreover N 18<6. Thus b : I + A is well defined. We now define F = 
{S c A : N#k be S} where S is the name of S in N#. Clearly F is an ultrafilter on A. 

Claim 1. F is uniform. 
Assume for contradiction S EF, but card(S) < A. So S is bounded by some 

as E A and for every 6 in N such that N#bp > ci, we have N#hp& S. But 
N#l= Es E ii < 6, hence N l= pq! S a contradiction. 

Claim 2. F is projection of F by b : I -+ A. 
Clearly SEF iff NIXES iff {tEI:b(t)ES}EF iff b-l(S)EF. q 

Remark. In Lemma 3.3 we can find F on A also if w <cf(A), like in the proof of 
3.4, but F need not be uniform. The function ii in Lemma 3.3 is from [18]. 

3.3. Ultrafilters and compactness 

The key definition of this section is motivated by Lemma 3.3. 

Definition. (i) Let L be a logic and F be an ultrafilter over 1. We say that F 
is related to L if for every T and for every r-structure A there exists a 
T-structure B extending n, A/F such that for every formula q EL[T], q = 

cP(xi, X2,...,Xi,-*.)i<a and every fi E A’, i <a we have: 

B k d_fJF, f,lF, . . . , A/F> . . .) 
iff 

(ii) We define UF(L) to be the class of ultrafilters F which are related to L. 

Remark. Note that B is always an elementary extension of n, A/F. 
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Before we continue let us look at some examples: 

Examples 3.5. (i) Every ultrafilter is in UF(L,,,). 
(ii) Let L be L,,,(Q,), i.e. first-order logic with the additional quantifier ‘there 

exist at least K many’. Then every ultrafilter on o is related to L, provided w is 
small for K. This follows from the ultrapower theorem for L as stated in [5, 
Chapter 13, Theorem 2.21. 

In the above examples N = n, Mr/F. In general, as we see in the proof of the 

theorem below, this is not the case. 

Proposition 3.6. L is compact ifl every ultrafilter is related to I_.. 

Proof. Let M be an L-structure and F an ultrafilter on a set 1. For every f E M’ 
let c, be a new constant symbol not in L. Put 

T = G&& cf$ . . .):cp~L(L)/\{t~I:M~cpCfi(t),f~(t), . . .)}EF} 

Obviously every finite subset of T has a model: We just expand M appropriately. 
So let N be a model of T. Clearly 

and by the definition of T, N satisfies the requirements for FE UF(L). The 

converse is trivial if we code ultraproducts in ultrapowers of modified 
structures. Cl 

Example 3.7. There are many compact logics, the simplest being the logics with 
the cofinality quantifiers, cf. [26] and [32]. 

Remark. If all ultrafilters are in UF(L) and N =fl A/F for every FEUF(L), then 
L.=L,,, , since, by the Keisler-Shelah ultrapower theorem (cf. [7]) elementarily 
equivalent structures (in L,,,) have isomorphic ultrapowers, and hence by the 
isomorphism axiom (L does not distinguish between isomorphic structures) and 
Proposition 3.6 the claim follows easily. 

Lemma 3.8. UF(L) is closed under projections. 

Proof. Let f : I-+ I’ be the projection of F onto F’. Choose g be such that fg is 
the identity on I’. g induces a map g” from A" into A’ such that g*(h’) = h for 
hg = h’ and g” is compatible with filters, since f is a projection. q 

We are now in position to state and prove our main theorem, the Abstract 
Compactness Theorem. 
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Theorem 3.9 (Abstract Compactness Theorem). Let L be a logic, A, u be 
cardinals and A 3 p. The following are equivalent: 

(i) There is (A, u)-regular ultrafilter F on I = P,,(h) which is in UF(L). 

(ii) For every expansion A of H(h+) there is an L-extension B and an element 
b E B such that B kard(b) < ~~ but for every CY < A we have B b a B E b. 

(iii) L is [A, p]-compact. 
If A is regular, then the following are equivalent: 

(iv) There is a uniform ultrafilter F on A which is in UF(L). 

(v) L is [A, Al-compact. 
In-particular we have: 
(vi) If there is a (A, u)-regular ultrafilter F on any set I which is in UF(L), then L 

is [A, u]-compact. 

Proof. (i) + (ii). Let F be a (A, p.)-regular ultrafilter in UF(L) and let M be any 
expansion of (H(A+), E). Put NO to be the ultrapower & M/F and Nt the 
extension of NO as required for FEUF(L). First we observe that N,<N1(L,,,) 
and, by Lemma 3.3, there is an element a in No with the required properties. But 
then the same element a has the same properties also in N1 since N,<N,(L,,,). 
But by the definition of N1, M<N,(L), so we are done. 

(ii) --, (iii). Let 2, X1 be L-sentences satisfying the hypothesis of [A, CL]- 
compactness. We define an expansion M(,Z, 2,) of (H(A’), E) to apply (ii). For 
this purpose let {S, : (Y <P,,(A)} be an enumeration of all the subsets of .& of 
cardinality less then CL, A, be a model of 2 U S, and {c, : a < Acw} an enumera- 
tion of all the subsets of A of cardinality less than p. Finally we put Y = 
(sup, (card(A,))) + A+), and define A, = card(A,). 

We now define M(.Z, 2,) to be (H(v), d,, E, R, P)a<*+,PcL such that d, is the 
name of CY <A+ and E is membership, R is a binary predicate not in L and the 
range of R is A. We arrange it such that for each a! <A the set R, = 
{x E H(v) : (UT, x) E R} has cardinality A, and such that (R,, P&=A_. In other 
words put all the models A, into M(Z, Z,) in way, that when we now apply (ii) we 
shall get a model for 2 U I&. More precisely, we observe that for each formula 
CpE-Z 

(a) M(S, ISI) kard(c) < d, + cpR= 

and for each p <A and for & = {qi : i < A} an enumeration of & we have 

(b) M(2, &) t=(d,Ec r\card(c) < d,) -+ pRcs. 

Now let N, a E N be as in the conclusion of (ii) n M(& 21)/F. 
Claim. (R,, P&.kX UZr. 
This follows from the definition of (a) and (b). 
(ii) -+ (i). So assume L is [A, PI-compact but no (A, CL)-regular ultrafilter on A’+ 

F is related to L. So for every such F there is a L,-structure AF exemplifying this. 
We now proceed to construct an ultrafilter FO on A’@ which contradicts the 

Sh:116



Positive results in abstract model theory 281 

choice of the A,‘s. For this we construct first a rich enough structure M such that 

(1) For each AF there is a unary predicate PF in M with (PF, P&=AAF. 

(2) M is a model of enough set theory to carry out the argument. 

(3) M is an expansion of (H(A+), E). 

Let M# be the complete expansion of M and put _Z = ThLP(M#), the first-order 

theory of M# where L# is the vocabulary of M#. Furthermore put 

Clearly 2 and x1 satisfy the hypothesis of [A, PI-compactness using the model 

M#. So JZ U& has a model N. We want to use A to construct our filter FO. First 

we observe that M# CL N. Let a, be the interpretation of c in N. We define F0 on 

P,,(A) by F0 = {R E P<,(A) : Nk a, E RN}. This makes sense, since M# is a com- 

plete expansion and hence every subset of A of cardinality <CL corresponds to a 

predicate in M# (remember (H(A+), E) is present in M#). 

To complete the proof we have to verify several claims: 

Claim 1. F,, is ultrafilter. 

Obvious. 

Claim 2. F0 is (A, p)-regular. 

Let X, = {t E P,,(A) : a E t} for (Y <A. Now X, E FO, for if X, corresponds to &, 

then Nk a, E R, iff N+ da E a,, which is true for all (Y <A by the definition of a,. 

Now let {X, : i < CL} be a subfamily of the A,‘s. Clearly, ni+_, X, = 8, since each t 

in some X, has cardinality <F. 

Now consider the product n Me/F0 = No. If g is an element of N,, then g is an 

F,-equivalence class of functions g : P<,(A) + M#. So g corresponds to a function 

gM in M# with name g, (since M# is the complete expansion) and a, E Dom(gM). 

So we define an embedding f : No + N by g/F,,+f $(a,). 

Claim 3. f is well defined and l-l. 

Let g/F, = g’&. We want to show that this is equivalent to N kg(u,) = g’(u,), iff 

Y = {t E P<,(A) : g(t) = g’(t)} E F,. But the latter is true iff a, E YN which is equiva- 

lent to g(u,> = g’(u,). 

So we have shown that f is an embedding of No into N. 

Now let S = {g,/F, : i < a} be in No. 

Claim 4. For every L-formula q we have N bcp(g) iff 

Y={tEP<,(A):M~cp(gl(t), g&L.. ->}ER,. 

Now YEF, iff YN contains a, iff Nl=q(g,(u,), g,(u,), . . .). 

Now look at A,. By assumption there is no N’ extending n A,/F, satisfying 

Claim 4. But (P& P)p.bo is such an N’ by construction. 

(iv) --, (v). This follows from the previous together with Lemma 3.l(iii). 

(v) + (iv). The proof is similar to (iii) + (i), but instead of F,, we construct F1 on 

A by 
F0 = {R c A : R is an initial segment of h and Nt= a, E RN}. 
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To get F1 uniform we use Lemmas 3.4 and 3.8. 

(vi) For this we just observe that in the proof of (i) + (ii) we did not use the 

special form of the set 1, as Lemma 3.3 does not depend on it. 

This proves Theorem 3.9. 0 

Note that, in this proof, expansions may include extensions of the universe. 

3.4. The compactness spectrum 

Let INC(L) ={A E card:L is not [A, Al-compact} and RCOMP(L) =- 

reg - INC(L), where reg is the class of regular cardinals. 

Theorem 3.10. INC(L) is closed under successor (A E INC(L) + A+ E INC(L)) and 

cofinality (A E NC(L) + cf(A) E INC(L)). 

Proof. Successor: Assume for contradiction L is [A+, A+]-compact. So by 3.9(v) 

there is uniform ultrafilter F on A+ with FE UF(L). Now we have two cases: 

A regular: By 3.2(ii) F is (A, A)-regular, hence by 3.9 L is [A, A]-compact. 

A singular: By Lemma 3.2(i) F is (A+, A)-regular and by Lemma 3.1(i) (A, A)- 

regular. So we can apply 3.9(vi). 

Cofinality: This is Lemma 3.l(iv). 0 

Theorem 3.11. Let A, CL, I, be cardinals and L a logic. The following are 

equivalent: 
(i) L is [II, p]-compact for every regular cardinal v > t.~ 2 A. 

(ii) L is [k, @]-compact for every cardinal v > t.~ 2 A. 
(iii) L is [EL, Al-compact for every cardinal v > TV 3 A. 

Proof. (i) -+ (ii). Assume Al. is singular and A <CL < v. By (i) L is [pL+, /.L’]- 

compact. Now by Theorem 3.9(iv) and (v) there is a uniform ultrafilter F on P+ 

which is in UF(L). So by Lemma 3.2(i) F is (t.~+, @)-regular and by 3.9(i) and (ii) 

L is [F+, CL]-compact and therefore, using the monotonicity properties, [CL, p]- 

compact. The other implications are similar using Lemma 3.1 and Theorem 

3.9. 0 

The last result which we would like to state here concerns the structure of 

RCOhW(L). The following was proven in [25, Lemma 6.41: 

Lemma 3.12. Let A > p be two regular cardinals and L be a logic such that 
A E RCOMF’(L) but t.~$ RCOMP(L). Then there is a CL-descendingly complete 
ultrafilter on A. 

From this we obtain immediately: 

Theorem 3.13. Assume A(m) holds (cf. Section 2.5). Then RCOMP(L) is an 
initial segment of the regular cardinals, i.e. A E RCOMP(L) and p <A implies that 
p E RCOMP(L) . 

Note that the hypothesis A(m) implies that there are no uncountable measura- 

ble cardinals (cf. Theorem 2.15(iii)). 
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4. The occurrence number 

283 

4.1. Introduction 

This section is entirely devoted to the notion of the occurrence number of a 
logic L. In Section 4.2 we give the precise definitions and review previous results. 
We also state the main theeorem (4.3), the Finite Occurrence Theorem. In 
Section 4.3 we prove a sequence of lemmas (4.5-4.9) to establish a connection 
between the existence of certain ultrafilters and the occurrence number. Section 
4.4 is purely set theoretic, establishing some new results about certain ultrafilters 
and measurable cardinals. Finally, in Section 4.5 we show that our results are best 
possible. We study there an example in detail. 

It should be noticed that there is a side theme evolving here: The role of the 
existence of uncountable measurable cardinals in abstract model theory. We have 
seen this already in Sections 2.2 and 3.4 and we shall see it again in Section 5.2. 

4.2. The occurrence number: definition and main theorem 

In his unpublished notes Friedman [14] proved the following easy, but funda- 
mental, theorem (cf. [ll]): 

Theorem 4.1. Let L be a logic which is compact. Then each L(L)-sentence cp 

depends only on finitely many non-logical symbols of L. 

Let us define the notions involved in the theorem precisely: Let L be a logic, L 

a vocabulary and cp an L(L)-sentence. Let LOc L. We say that cp depends on L, 

only, if for any two L-structures A and B such that A 1 Lo = B f L, we have A I= cp 

iff Bkcp. 

We say that cp depends on Lo (properly) iff there are L-structures A, B such that 
A 1 L-L,=B 1 L-L, but Akcp and Bt=lcp and cp does not depend on L,, if it 
depends on L -Lo only. 

We define the occurrence number OC(L) of a logic L to be the smallest cardinal 
p such that for every vocabulary L (which is a set) and every L(L)-sentence cp 
there is a subvocabulary LOc L of cardinality less than p such that cp depends on 
Lo only. 

The occurrence number OC(L) need not exist. In this case we stipulate 
OC(L) = co, e.g. L,,, has no occurrence number. The next example illustrates an 
other point: 

Example 4.1. Let K be a cardinal and F an ultrafilter on K. We define a logic L,,, 

by adding to first order logic L,,, the following formation rule: If {cp, : i <K} are 

sentences of L,,, so is AF{qi : i < K} and for a structure A we define 
AkL,,I\w{(Pi:i<K} to hold iff {iEK:Ak(pi}EF. 

Obviously, OC(L,,,) S K+, but if Lo c L, card(L) = K, card(L,) < K and we 
change in an L-structure A all the interpretation of symbols in Lo, then validity in 
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A for L,,, is not changed. In other words a L,,(L)-sentence cp depends on 
L -L, only, but cp may be chosen such that whenever cp depends on Lr c L only, 
then card(L,) = K. Hence the occurrence number is K+. We conclude that in L,,, 

there is no semantical version of the occurrence axiom, i.e. given a L,,(L)- 

sentence cp, it is not necessarily true that there is a smallest L, c L such that cp 
depends on L, only. Nevertheless, if we are concerned with ‘physical’ occurrence 
such an Lo does exist. 

Here is a generalization of Theorem 4.1. In Section 4.5 we shall see that 
Theorem 4.2 is best possible. 

Theorem 4.2. If L is (A, K)-compact and OC(L) GA+, then OC(L) < K. 

Proof. Let L be a vocabulary, K <card(L)<h and cp be a L(L)-sentence. Let L, 

and L, be two disjoint copies of L and denote for each constant symbol c, 
function symbol f and relation symbol R in L the corresponding symbols by 4, fi, 
Ri (i = 1,2) respectively. Put L3 = L, U Lz. Assume for contradiction that q 
depends on at least K many symbols of L. then for every L, c L with card(L,) < K 

there are L-structures A, B such that 

(1) A\% Bl=lcp and A 1 Lo=B 1 L,. 

Look at the following set of sentences: 

z = 2, u 22 u 23 u{cp,, 791 

with 
X1 = {cr = c2: c a constant symbol of L}, 

Z2 = {VXcfI(X) = fi(X)) :f a function symbol of L}, 

X3 = {VZ(R,(Z) f, R2(X) : R a relation symbol of L}, 

and cpi is the L(h)-sentence obtained from cp by substituting b for L. Clearly 

card(Z) 6 h. Now let X0 c Z:, card(&) < K. By (1) & has a model. But any model 

of 2 would violate the isomorphism axiom. 0 

Our main theorem in this section is the Finite Occurrence Theorem: 

Theorem 4.3 (Finite Occurrence Theorem). Assume a logic L is [o, o]-compact 
and OC(L) G pO, where p,, is the first uncountable measurable cardinal (or <m if 

no such cardinal exists). Then OC(L) = w. 

As an immediate corollary from Theorem 2.8 we get 

Corollary 4.4. Assume a logic L is [A, h]-compact for A < tie and OC(L) s po. 
Then OC(L) = o. 
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The proof of Theorem 4.3 is rather involved. We need a series of lemmas 
manipulating the occurrence number and a main lemma on the existence of 
measurable cardinals. 

4.3. The lemmas 

Let us fix a [A, Al-compact logic L, a vocabulary L and a sentence q E L(L). We 
want to study subsets of L on which cp does not depend. 

Lemma 4.5. (i) For every L1 c L with card(L,) G A there is a LO= L with 
card(L,) < A such that cp does not depend on L1 - L,,. 

(ii) There is a p <A such that for every L1 c L with card (LJ GA there is a 
LO c L1 with card(L,) < p such that cp does not depend on L, - LO. 

Proof. (i) For card(L) = A this follows from Theorem 4.2, otherwise put XL, to be 
Z of the proof of Theorem 4.2 and 

for L - L1 instead of L. Now use [A, Al-compactness. 
(ii) If A is a successor this is equivalent to (i). So let A be a limit cardinal. 

Assume for contradiction that for every p <A there is L’; c L with card(Ly)< A 

making the lemma false. Put L, = U,,, L;“, so card(L,)<A. Now by the previous 
lemma there is L,c L1 with card(L,)<A such that cp does not depend on L,-- LO. 

But then for every p <A cp does not depend on Lr- (LO fl Ly), by the definition 
of L,. But this contradicts the definition of L’$. q 

The next lemma is one of the three lemmas used in the proof of Theorem 4.3. 

Lemma 4.6. There is a L, c L with card(L,)<A such that for every LO c L - L, 

with card(L,) < A, cp does not depend on LO. 

Proof. Let CL be as in Lemma 4S(ii). We define by induction on a <CL+ 
vocabularies L” c L with card(L”) < A : 

Lo= !ZJ and L* = U Lp if 6 is limit. 
PCS 

For p = cx + 1 we first apply Lemma 4S(ii) to L”. So there is Lye L” with 
card(Ly)<p and cp does not depend on L” -Ly. 

Assume for contradiction that the lemma is false, so in particular it is false for 
L1 = Ly. Hence there is Lgc L - Ly with card(L;) <A such that cp depends 
properly on LG. Clearly Ly f~ L,” = $4. As cp does not depend on L” - Ly w.1.o.g. 
L” - Ly= $3. So we put LB = L” U Lg. Since pLf<A and card(LC”‘) <A, we can 
apply Lemma 4S(ii) to LW”. Hence there is Lr’ c LFLt with card(Ly’) < CL and cp 
does not depend on L@“’ - Ly’. But cf(p+) > p acard(Lr’) so for some a! < pf we 
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have Ly’c L” and 

L;; c J_,a+l -L” c L’“‘- LY’ 

so cp does not depend on Lg, a contradiction. q 

The second lemma used in the proof of Theorem 4.3 gives us the connection to 
ultrafilters. Here we use some material from Section 3.3, in particular the 
definition of UF(L). 

Lemma 4.7. Let L be a logic and cp a L(L)-sentence which depends on L,c L but 
for each L, c L, with card(L,) oh, cp does not depend on L1. Then there is a 

function f : P(L,) + (0, l} such that: 

(i) f is non-constant. 

(ii) For every K,, K2c L1 with card(K, A K2) GA we have f(K,) = f(&). 
(iii) For every ultrafilter FEUF(L) (on some /J) f is F-continuous. 

Recall that lim, is defined as follows: If {i, :CY < CL} is a sequence, then lirnm 
i,=i iff {a<p:i,=i}EF; if cf,. . a < p} is a family of functions, then lim, fa is 
defined pointwise and if {I& : a < p} is a family of sets, then lirn~ & is defined via 
the limit of its characteristic functions. 

Proof of Lemma 4.7. Let L2 = {Pi : i < K} where Pi are predicate symbols only for 
notational simplicity. Since cp depends on L2 there are L,-structures, A, B on the 
same universe A, A = (A, Ri)i<K) B=(A, Si)i<K with At=cp and B!=lcp. Let H be a 
structure rich enough to contain H(K+), A and B. Let Qi (i <K) be new relation 
symbols with one place more than Pi. We interpret Qi on H such that the new 
variables range over the power set P(K) and put for each X c K : 

Hl=Q,(X,ii) iff iEX and GE& or i not in X and dgSi. X serves as a new 
parameter. We put (px to be the result of substituting Qi(X, -) for Pi(-) in cp. We 
are now ready to define f. For Xc K we put f(X) to be the truth value of (px in 
H. 

Claim 1. f is not constant. 
Clear, since g depends on L2 and therefore f(g) = 0 and f(K) = 1. 
Claim 2. If Xi, X, and card(X, A X,) =Z h, then f(X,) = f(X,). 

This is true, since cp does not depend on any Lo c L1 with card(L,) s h. 
Claim 3. f is F-continuous for any F E UF(L). 

Let X= lim, Xi for some ultrafilter F on lu. in UF(L). We have to show that 
f(X) = lim, f(X,). For this we use the definition of UF(L). Let N be the extension 
of jJ G/F as required for FE UF(L). Since X is an element of H, so it is of N, and 
Hk(pX iff Nl=cpX, and similarly for each Xi (i <CL). Put X=(X,, Xi,. . *)i<,JF. 
Now we have for each cy E K that 

(*) Nl=acX iff NkaeX, 

since X = lim, Xi. Next we observe that 

(**) Nk(pX iff Nl=cp” 
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because (px is obtained from cp by substituting Qi(X, -) for Pi(-) and similarly for 

‘px and for every a E K we have N I= Qi(X, -) ifl N k Qi<X, -) by (*). 
Finally we have that 

(***) N@ iff {i E p :Hl=(pXt}EF 

by the property FEW’(L). 
Now clearly lirn, f(X,) = 1 iff N k cpz (by (***)) and f(X) = 1 iff N I= cpx by the 

definition of f, so (**) gives the claim. Cl 

The third lemma, used in the proof of Theorem 4.3, gives us the connection to 
measurable cardinals: 

Lemma 4.8. If F is a uniform ultrafilter on w and f : P(K) + (0, 1) satisfies (i)-(iii) 
of the previous lemma, then there is an measurable cardinal pO such that W--C 

/LOSK. 

Lemma 4.8 is a special case of Proposition 4.9 in the next section. But we are 
now ready to prove Theorem 4.3. 

Proof of Theorem 4.3. Assume I, is [o, o]-compact and OC(L) > w. Then there is 
an L(L)-sentence cp which does not depend only on a finite subset of L. So 
card(L) 2 w, and if card(L) = w we are done by Theorem 4.2. So card(L) > w. By 
Lemma 4.6 (for h = o) we can assume that cp does not depend on any countable 
subset of L. Now we apply Lemma 4.7 to construct the function f and by 3.9 and 
4.6 we know that f is F-continuous for some uniform ultrafilter on o. So by 
Lemma 4.8 we know that card(L) 2 I,L~, the first uncountable measurable cardinal. 
But this shows that OC(L) 3 pO. Cl 

4.4. Some set theory 

Let us now prove the needed facts about measurable cardinals: 

Proposition 4.9. Let I be a set and S U T = P(I) a partition of the power of set I 

such that 

(i) YES, IET. 
(ii) If A E S and card(A A A’) CO, then A’ E S. 

(iii) S and T are closed under o-limits (monotone unions and intersections). 

Then card(I) is bigger than the first uncountable measurable cardinal. 

Proof of Lemma 4.8. f gives rise to a partition by f(A) = 0 iff A E S and f(A) = 1 
iff A E T. Now (i) and (ii) of the hypothesis of Proposition 4.9 are trivially satisfied 
by the hypothesis on f, and (iii) is weaker then F-continuity. So the result 
follows. 0 

Sh:116



288 J.A. Makowsky, S. Shelah 

Proof of Proposition 4.9. Claim 1. There is A* E T such that for each B c C c A* 
C E S implies that B E S. 

For assume we have {A,, : n E co} such that AZ, E T and Aznil E S and A,+1 c 

A,,. If the sequence is proper, we get a contradiction since by (iii) n,,, A,, E T 

and n,,, Azntl E S but n,,, AZ,, = n,,, AZncl. So for some n E w the sequence 
stops. Let A* be the last A,, E 7’. Obviously A* has the required property. 

Now, w.1.o.g. we can assume that A* = I, for if we put 

S*={AGA*;AES}, T*=P(A*)-S”, 

properties (i)-(iii) are preserved. 
Now let W c S be a maximal ideal. Clearly W is closed under countable unions, 

by (iii) and the maximality of W. We now need a sublemma: 

Sublemma 4.10. If there is no measurable cardinal p, o < p s card(I), then there 

are {B,cl:nEu}, {C,,cl:nEu} such that 

(i) B, E P(I) - W, C,, E W, 

(ii) B,+l c B,, G c C,,+I, 
(iii) B, U C,, E T, B,,,, U C,, E S. 

Proposition 4.9 now follows immediately, for if there is no such measurable 
cardinal, then A= n (B,,UC,,)= n (B,,+,UC,,) so AESI~T=@, a 
contradiction. 0 

Proof of Sublemma 4.10. We define B,, C,, (n E w) by induction on n E w. For 
n=O we put B,=I, Co=@. 

For n+ 1 we first define B,+l. Assume no B,+l exists satisfying conditions 
(i)-(iii). Then for all Xc B, we have 

(*> 
if X& W, then XUC,ET, 

if XE W, then XUC,ES. 

(Here we use that W is an ideal and W c S.) 
Claim. 1. The quotient space P(B,)/[P(B,) n W] is an infinite boolean algebra. 
For otherwise we get a countably complete ultrafilter on a subset of 1, contrary 

to our assumptions. 
So by Claim 1, there are Dk c B,, (k E o), pairwise disjoint, Dk$ W. Now put 

Ek = Uk=sl<w a, SO cn = nk<o (Ek UC,,), hence, as C,, ES and T is closed under 
w-limits, for some kOE o Ek,, U C,, E S. But Ek,$ W, so by (*) Ek, U C,, E T, a 
contradiction. We conclude that there is Bntl satisfying (i)-(iii), in fact, we put 
B ?I+1 = Eb. 

Now we define C,,,. Since W is a maximal ideal in S, there is E E W and 

D = E,+, such that DUE E T. So we put C,,,, = C,, U E. Clearly the conditions 
(i)-(iii) are satisfied. 0 
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We finish this section with three propositions which improve some of our 
lemmas and may be of independent interest. 

Proposition 4.11. Let I be a set, card(I)<pO, the first uncountable measurable 
cardinal, f : P(I) -+{O, l} a map which is nontrivial and commutes with o-limits. 
Then there is a finite Jc I such that for all A c I f(A) = f(A nJ>. 

Proposition 4.12. If f is as in Proposition 4.11, then f is F-continuous for any 
ultrafilter F on a < F~. 

Proposition 4.13. If f : P(I) +- (0, l} is F-continuous for an ultrafilter F on K, F 

~-complete (hence K is measurable). Then there is (Y < K and a partition 4 (i <a) of 
I and there are ultrafilters Fi on 4 (i <a) such that 

(i) f(A) depends only on the truth value of A rl& EF~ (i < a). 
(ii) The characteristic function of Fi on P(I,) is F-continuous for all i <a. 

Remark. Proposition 4.11 is proved in a similar way as the lemmas in Section 4.3. 
Proposition 4.12 follows easily from 4.11: Let F be an ultrafilter on (Y < pO and Ai 
(i < cx) be a monotone sequence of subsets of I. We define an equivalence relation 
Eon I by (x,y)EE iff for all i<cx xEAi@yEAi. Now apply 4.11 to I/E. 

Proposition 4.13 is similar to 4.9, but uses more machinery from combinatorics 
(Ramsey’s theorem). 

4.5. An example 

In this section we return to Example 4.1 in Section 4.2. But we assume that 
each L,,,- formula has less then or. free variables. 

Theorem 4.14. Let F be an p-complete ultrajilter on CL. Then LF,o is [h, A]- 
compact for every h < CL. 

To prove 4.14 we first prove a lemma: 

Lemma 4.15. Let D be any ultrafilter on h <CL and {Ai : i <h} a family of 
L-structures. Let cp be a L,,,(L)-formula and fi (js V< p) be functions in n Ai. 
Then the following are equivalent: 

(3 H AiD+PCfi, fz . . . ,A, . . .ljsv, 
(ii) {i EA :A, !=cpcfi(i), fi(i), . . . , h(i), . . .]+,}ED. 

Proof. This is like the proof for first-order logic by induction over the complexity 
of cp. Here we only show the case for cp = & $. We use [f] and [f(i)] as the 
obvious abbreviations. 
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Assume (ii), so 

Put 
X, ={i<h:A,kcp[f(i)]}~D 

fi =G<p :Ai k+[f(i)jJ 

So, for each i E X_ we have fi E F by the definition of cp, hence F = nicq 6 E F 

since F is p-complete and A < F. So for each j E F, n A,/Dl= $j(f) by the induction 
hypothesis and since FE F we have n Ai/Dkqr[f], which proves (i). Now assume 
(ii) is false, hence X,$D and, since D is an ultrafilter, h -X, ED. But 

h--X, =X7, ={i<A:A,kl(p[~]}. 
Put 

E =G<p:Aibl+[f(i)l). 

Since F is an ultrafilter, for each i E X, Fi E F and therefore F = l&_ Fi E F. So 

for each jEF, ];IA,/Dk&[f] by the induction hypothesis, hence nA,/Dkcp[T] 
since FEF and F is an ultrafilter. This proves that (i) is false. q 

To prove Theorem 4.14 we now apply Theorem 3.9. Cl 

Theorem 4.14 shows that neither Theorem 4.2 nor Theorem 4.3 can be 
improved. 

5. Amalgamation and compactness 

5.1. An easy theorem 

In this section we prove a few simple propositions and discuss some examples. 
The definitions were stated in Sections 1 and 2. 

Proposition 5.1. (i) Let L be a logic. Then (A) + (B), (B) -+ (C) and (D) +(B), 
where 

(A) L is compact; 

(B) L has JEP; 
(C) L has AP; 
(D) L has RCL. 

(ii) (Mundici [303 (B) implies that the class of cardinals A such that L is not 
[A, A]-compact is a set. More precisely, if for every countable vocabulary L 
card(L(L))<A,, then there are at most 2”o such cardinals. 

(iii) If we assume A(m), as defined in Section 2.5, then (B) implies compactness. 

Proof. (A)+(B). Let L be compact and B and C be two L-structures with 
B =C(L(L)). Let us assume that B n C = P, and that LB nL, = L. Put T = 
ThL(B, B) UTh,(C, C). It suffices to show that T has a model, so by compactness 
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that every finite subset To = T has a model. By Theorem 4.2 every L-formula 
depends only on some finite subset of LB U I+-, in particular only on some finitely 
many constants bl, . . . , b,,, q, . . . , c,,, from B U C. W.1.o.g. To is cp(6) A G(E). But 
Bi=q(h) and (IF+(Z), so, since B=C(L), B!=~~~(~Y(%)AI,!J(~)), hence B can be 
expanded to a model of T,. Note that we used closure under finite conjunction 
and existential quantification of L. 

(B)+(C). Let A<B(L), A<C(L) be three L-structures. By our hypothesis 

(A, A) =(B, A) -(C, A)(L(L,)). S o we can apply JEP to (B, A) and (C, A). 
(D)+(B). For A =B(L(L)) put T=Th,,,,(A) = Th&B) and T1 = 

Th,,,JA, A), Tz = TV (B, B) with LA n LB = L. By RCL TI U T2 has a model 
which proves JEP. This ends the proof of (i). 

(ii) We use Proposition 2.1. First we observe that if M(h) and M(p) are two 
L-structures characterizing cofinally A and p, then there is no joint embedding. 
Next we observe that, w.1.o.g. we can assume that there is a countable vocabulary 
L such that, whenever L is not [A, Al-compact, A regular, then A is cofinally 
characterizable in some L-structure M(A). We simply use constants to code many 
n-ary relation symbols by one (n + l)-ary relation symbol. To finish the proof we 
observe that there are only 2’0 many L-theories in L(L). 

(iii) This now follows from (ii) and Theorem 3.13. •i 

Note that (ii) and, since A(m) implies that there are no uncountable measurable 
cardinals, (iii) follow immediately from our Theorem 5.2 below. 

5.2. The main theorem 

Our main theorem is: 

Theorem 5.2. Let L be a logic with OC(L) = A,< p. (where k. is the first 
uncountable measurable cardinal), satisfying AI’. Then L is compact. In particular, 
if there are no uncountable measurable cardinals, and L is a logic with some 

occurrence number OC(L) = ho, satisfying AP, then L is compact. 

The theorem will follow from the apparently weaker Theorem 5.3, which we 
prove in the next section. For a logic L with finite occurrence, i.e. OC(L) = o, 

compactness follows without Theorems 2.8 and 4.3. 

Theorem 5.3. Let L be a logic with OC(L)sA, A regular, satisfying AP. Then L is 
[A, Al-compact. 

Proof of Theorem 5.2. By Theorem 5.3, L is [A,, A,]-compact. Since there are no 
uncountable measurable cardinals, by Theorem 2.8, L is [o, o]-compact, so by 
Theorem 4.3 OC(L) = o. Now we apply Theorem 5.3 again to get that L is 
[A, Al-compact for every regular A 2 o, hence, by Theorem 3.12, L is compact. q 
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Corollary 5.4. Assume there are no uncountable measurable cardinals and L 
satisfies RCL and OC(L) exists. Then L is compact. 

This improves Theorem 6.4 of [25] and Theorem S.l(iii). 

Corollary 5.5. The logics L” = L_(Q,) with the quantifier ‘there exists at least K 

many’, K infinite, do not satisfy AP. 

Proof. L” is not [K, K]-compact. q 

This solves Problem 1 in [29, p. 1551. 
Incidentally, Problem 3 [ibid] was already solved in [28], which gives another 

example of how abstract model theory can be used to solve concrete problems: 
There are logics L which are (0, o)-compact, not (wl, w)-compact and such that 
L“‘1 is not contained in L. Let Qxy any binary quantifier definable in A(L”‘1) but 
not in L”1, which is (wl, o)-incompact, e.g. Qxyq((xy) which says: ‘q is a linear 
w-like ordering’. L = L,,,(Q) is ( o, w)-compact, since A(L”1) is (0, o)-compact. 

Problem 2 [ibid] asks whether in the counterexample to AP for L” all the 
structures can be chosen to be isomorphic. As will follow from the proof in the 
next section, the answer is yes. 

Let us conclude this section with three examples which show that some 
assumptions on the occurrency number OC(L) are necessary for Theorem 5.2. 

Example 5.6. Look at the logic L,,,, which has no occurrence number. Since in 
L every complete theory is categorical, one easily verifies that L,,, satisfies 
RmdmL, hence has AP. But L,,, is not [h, Al-compact for any X. 

Example 5.7. Let Lz,, be the infinitary logic with conjunctions of length <K and 
both existential quantification of elements and relations of length <h. Magidor 
[21] has shown that LE,* is (00, K)-compact iff K is extendible. Obviously the 

occurrence number OC(Lz,3 = max(K, h). 

Proposition 5.8. Assume Lz,, is (w, K)-compact. Then Lz,, satisfies RCL. 

Proof. Let Ti (i = 0, 1,2) be theories satisfying the hypothesis of RCL. We have to 
show that every subset S c T = Ui Ti of cardinality less than K has a model. But 
such and S is equivalent to a single formula and the predicates and constants not 
in To can be quantified away. So any model of T, can be expanded to satisfy S 
since To is complete. 0 

Proposition 5.9. Let K be extendible. Then Lz,, is (CQ, K)-compact. 
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Proof. By [21] L:,, is (co, K)-compact. We propose to show that every Lz,,- 

formula is equivalent to an Lz,, -formula using additional predicates. The idea is 

to replace an existential quantification over less than K variables (or relation 
symbols) by a single quantification over finitely many relation symbols coding the K 
many. For this we need that in Lz,, the power set operation is absolute and that 

we have conjunctions over less than K many formulas. Also, every ordinal <K is 
describable in LE,, by a single sentence, which will give us the parameters. The 

details are left to the reader. From this (~0, w)-compactness follows 

immediately. Cl 

Example 5.7 shows that some large cardinals assumption on the occurrence 
number of L is needed in Theorem 5.2. 

Unfortunately extendible cardinals are even bigger than the first supercompact 
cardinal (cf. [21]) but Vopenka’s principle implies that extendible cardinals are 
stationary. For more results related to compactness of infinitary logics the reader 
may consult Stavi [34] and [24]. In the latter it is shown that Vopenka’s principle 
is equivalent to the assumption that every logic which is finitely generated has 
some [K, K]-compactness. 

Example 5.8. The logic L,,, satisfies AP trivially, since A <,_B implies that 

A =B, but does not satisfy RCL (cf. [25]). L,,, has no occurrence number and 
L -,g is not compact. 

5.3. Proof of the main theorem 

We give first an outline of the proof, to help the reader. We assume for 

contradiction that h is regular and L is not [A, h]-compact. Using Theorem 2.1 we 
construct a class K of linear orderings with additional predicates in which points 
of cofinality h are absolute. Inside K we show the existence of some sufficiently 
homogeneous structure N. In N we shall find Mi (i = 0, 1,2) being a counterexam- 
ple to AP for L. The occurrence number and the isomorphism axiom will be 
needed to show that MO -=+ Mi (i = 1,2) and the absoluteness of ‘cofinality h’ to 
show that there is no amalgamating structure. 

The counterexample to amalgamation is patterned after the following example: 
Let K be the class of dense linear orderings with an additional unary predicate 
Red such that both Red and its complement are dense. Let A -=& B hold if A is 
an elementary substructure of B and the universe of A is a dense subset of the 
universe of B. We shall show that K with this notion of substructure cK does not 
allow amalgamation: For this let A,, be the rationals properly coloured, and let Ai 
(i = 1,2) the rationals augmented by one element (say rr) coloured Red in AI and 
not coloured in A,. Clearly, AOcKAi (i = 1,2), but no amalgamating structure 
exists, since otherwise n is simultaneously coloured and not coloured. 

Now, let A aOC(L) be regular and L not [h, h]-compact. By Theorem 2.1, h is 
cofinally characterizable in L in a structure M. We need some more information 
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on M: Let 2, X1 = {cp, : a <A} be the counter-example to [&A J-compactness. Put 
~:“~={cpp:~<a} and M,b,ZUl?Q. W.1.o.g. the M,‘s are structures of some 
countable language L (coding more predicates with parameters), and have the 
same power Jo 5 A, M, = (M,, Q,, (n E 0)). 

We want to code all the M,‘s into one structure. So we let M to be such that 
(1) M = (M, -=q a,,, q(n E w, i E h)). 
(2) (M, <) is a linear order of cofinality A such that every initial segment has 

power p (of order type j.~*+ A, e.g.). 
(3) {cj : j <A} c M is increasing and unbounded. 
(4) If x<cj but x>q for every i<j, then (y~M:y<x}, an(x,-,-, . . . ,-))= 

M,. Let T = Th,(M) for some fixed M as described above. 

Claim. Then T cofinally characterizes A. 

This is proved like Theorem 2.1. 
For the rest of this section M is fixed. We now define a class of structures K(M): 

The vocabulary of K(M) is that of M without the constant symbols for cj but with 
two additional unary predicate symbols P and R and one additional binary 
predicate symbol E. Actually our main focus is on the order together with P, R, 

and E is used to code copies of M, which we need to guarantee the absoluteness 
of cofinality A. 

A model in K(M) is of the form A = (A, <, ai, P, R, E) with the requirements: 
(Kl) If x E P, then the cofinality of x in (A, <) is A with a witnessing sequence 

{cj(X) : j CA}. 

(K2) (a, x) E E implies that a <x. 
(K3) (a, x) E E implies that x E P and a$ P. 

(K4) P(x) implies that E(q(x), x) for every j E A. 
Put J: ={a EA : (a, x) EE}, and J> be the substructure of (A, <, ai) induced 

by J:. 

(K5) The structure (Jk, ci(x)) is isomorphic to M. 
(K6) R cP. 

We call a structure in K(M) pure if additionally 
(K7) ai is false where not defined by the previous requirements. 

Comments. Note that if A E K(M) is pure and P in A is empty, then A is just a 
linear ordering, i.e. all the other relations are empty, too, by (K7). 

If we add to M one point at the end, say x and let P = {x}, we get a structure in 
K(M). We denote this structure by M’l. 

In general the structures in K(M) are linearly ordered structures where every 
point in P has a copy of M attached to it in way that different points have almost 
disjoint copies of M, and M cofinally reaches its point in P. The choice of R can 
be any subset of P. More precisely: 
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Fact 1. For every A E K(M) and every a, a’ E A .li rl JL is bounded below both a, 

a’. 

This is proved using the fact that M is of order type p* + h. Note that this is first 
order expressible and could have been stated also as an axiom among (Kl-K7). 

Fact 2. If AEK(M) and a E PA and we form A’ by changing the truth value of 
a E R*, but leaving everything else fixed, then A’ EK(M). 

Next we define the notion of K-substructure, A cK B, for A, B E K(M) by: 
(K8) AcB. 
(K9) If x EP*, then J;=A. 
(KlO) If x E PB -PA, then {a E A : a < x} is bounded below x in B, i.e. there is 

b, E B such that b, <x and for each a E A with a <x we have a <b,. 
The idea behind this is that in B points are added to PB in a way that they are 

not limits of points from A, and that points in A are of cofinally A also in B with 
the same copy of M ensuring this as in A. 

This ends the definition of K(M) and of K-substructures. 
Before we proceed with the proof of Theorem 5.3 we collect some more facts: 

Deli&on. If Al, AZ E K(M) we define A1 + A2 to be the disjoint union of Al, A2 

with the linear ordering of A1 and A2 for their elements and a, < a2 for every 
a, EAT, azgA2. For the other relations we just take their unions. 

Fact 3. If Al, A,EK(M) SO A~+AZEK(M) and Ai CK A,+ A, (i = 1,2). 

This is clear from the definitions. 

Definition. Denote by 12 = {a E A : a <x} and by 12 the structure A 112. 

If BE K(M) and A c B we define a substructure C(A) of B by 

C(A)=B 1 IJ JEUA. 
LIEA 

This makes sense by Fact 1 and ensures that: 

Fact 4. For every BE K(M), A = B, C(A) cK B, but in general C(A) is not pure. 
Furthermore, if A is bounded in B by b, i.e. there is b c B with A = I:, so 
C(A) = 1; und C(Ik) = 1;. 

Fact 5. If A E K(M) and d E PA, then A r 12 cK A. 

Fact 6. If {Ai : i <a} is a sequence of structures in K(M) such that Ai cK Ai+l, 

then A = Ui<a Ai E K(M) and Ai =K A for each i <CL 
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Definition. If AI, A2 E K(M), Bi cK Ai (i = 1,2) and f : BI = B, is an isomorphism, 
we define AI +fA2 in the following way: Form the disjoint union of A, and A, 
modulo f (i.e. identify elements only via f). This makes it into a partially ordered 
structure where ai E Ai (i = 1,2) are comparable only if one of them is in the 
range or domain of f, or there is b between aI, a2 which has been identified. For 
incomparable aI, a2 we extend the order on AI +f A2 setting a, < a2. 

Fact 7. If AI, A2~K(M) and f:B, =BZ, Bi cK Ai (i = 1,2), then Ai +f A2 E K(M) 
and Ai CK Al +f AZ. 

The proofs of the facts are left to the reader. 
The next lemma is crucial for our construction: 

Lemma 5.9. If A EK(M) and B is a L-extension of A and (4 : j <A} is cofinal in 
.Tz for a EPA, then {di : j<h} is cofinal in J& 

Proof. Let a E PA, so Jz EM by (K5) and by our assumption on L and M, L 
cofinally characterizes A in M. Using relativization of L the structure J$ is an 
L-extension of M so M is cofinal in Jg, hence {di : j < h} is cofinal in Jg which 
proves the lemma. 0 

The next lemma is proved in the following section. But from it we can now 
complete the proof of Theorem 5.3. 

Lemma 5.10. There is a structure N in K(M) and d, < d2 < d3 in N with di E PN 

(i = 1,2,3), dI E RN, d, 6 RN such that 
(i) NrI$=NrI$=N11$. 

(ii) ~fAAc,NrI~(i=1,2)isboundedinNrI~,thenNrI~~Nr~j7overA 
(i = 1,2). 

%‘IOO~ of Theorem 5.3. Put Mi = N 1 13 (i = 1,2,3). We have to verify some 
claims : 

Claim 1. Mi cLM3 (i=1,2). 

Proof. Let cp be an I,(&&)-sentence. Since the occurrence number OC(L)s 
h, q depends on <A many constants, hence there is a E &Ii and all the constants of 
cp are in I&. So by Fact 4Mi 1 I& is a bounded K-substructure of both Mi and 
M,. SO by Lemma 5.1O(ii) (Mi, I$,) is isomorphic to (M3, I&) hence by the basic 
isomorphism axiom, (Mi, I&,) I=cp iff (M3, I&)kcp. 

NOW let f :M1 =M, be the isomorphism from Lemma 5.10(i) and gi :Mi +M, 
(i = 1,2) the L-embeddings from Claim 1. 

Since L has AP, let A be the amalgamation for g, :M1 -+ M3, gzf :M1 + M,. 
Claim 2. AkdI = d2. 
Proof. di E PM3 (i = 1,2) are both of cofinality h and g,(M,) is cofinal in 

M, r 123, and g2f: (Ml) is cofinal in M3 r I&, so by Lemma 5.9 also in A I 1% 
and A 1 I2, hence A b d 1 = d,. 
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But Claim 2 contradicts our assumption of Lemma 5.10 that d1 E R* and 
dztf R*. This completes the proof of 5.3. 0 

5.4. Proof of Lemma 5.10 

The proof of 5.10 is similar to the classical proof of the existence of homogene- 
ous structures. Compare this also with [33] or its expository version as chapter 20 
of [3]. The first step is the amalgamation lemma for K-extensions: 

Lemma 5.11. If A E K(M), dI, d, E PA, Bi cK A rI~(i=1,2)andf:B1~Bzand 
both Bi are either bounded or unbounded in A 1 I& then there are A’ E K(M) and 
Bi, B; and f’ such that 

(i) A cK A’, 
(ii) B1 c K 12, unbounded, 

(iii) B2 = 122 c K 12, unbounded, 
(iv) f = f’ with f’ : B’, = B$. 

Proof. There are two cases: 
Case 1: d, < d2. Put Ai = 12 (i = 1,2) and form A3 + A2 ff AZ. There are 

natural embeddings mi : A2 -+ A3 depending if A2 is identified with the first or 
second copy of A2 in A3. Let g : ml(Az) =.A2 cK A and form now A3 +g A = A’. 
There is a natural embedding h : A c K A’ which determines the value of d,, d, in 
A’. We have to define f’. The range of f’ is h(A,) and on h(B,) f’ is f, otherwise it 
is g-‘. So we have proved (i) and (iv). To prove (ii) and (iii) we have only to show 
that Bb = h(A,) is unbounded in I;(‘z’ and similarly for B’, = (f’)-‘(B;). In the first 
case this is trivial and in the second case this comes from f if B1 is unbounded and 
from g -’ if B1 is bounded. 

Case 2: d, < d,. the proof is similar, but put A3 = A2 tf Al. In both cases we 
use heavily Facts 4 and 6. q 

Lemma 5.12. Under the same hypothesis as in Lemma 5.11 we can even have 
B’, =11, and B$ =12. 

Proof. Use Lemma 5.11 countably many times with alternating roles of dI, d2 
and take unions of chains using Fact 5. •i 

Proof of Lemma 5.10. Let A be in K(M) such that PA is cofinal in A and both 
(P-R)* and R* are cofinal in PA. For instance take M and put M+’ and for x 
the new element set P(x) in the obvious way. We have freedom to choose both 
R(X) and 1 R(X). SO put Mi EM+’ with xE(P-R) if i is even and xgR if i is 
odd. Then form A,,1 = A,, +M,+l and A,, = M,,. Now put A = U,,, A,,. 

Now choose any d,, dZ, d3 with d, < d, < d3 in PA with d, E R*, d, E (P-R)*. 
Let (~~(4) :j<h} (i = 1,2,3) be cofinal witnessing sequences for 4 respectively 
and assume w.1.o.g. c,(d,) = cO(d2) = cO(d3). By Lemma 5.12 we can assume that 
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there is Bo, A cK B,, with I$,, all isomorphic over 12,‘“‘. We can achieve this using 
an iteration, alternating the roles of the 4’s in pairs. Iterating this we construct 
B ail extending B, such that Ikmi,;l? are all isomorphic over I&_‘d~’ for i = 1,2,3. 
For (Y limit we take unions. Clearly B, is the required model. 0 

References 

[l] P. Alexandroff and P. Urysohn, Memoire sur les espaces topologiques, Verhandlingen der 
Koninklijke Akademie van Wetenschappen te Amsterdam, Afdeling Natuurkunde (Eerste 
Sectie), XIV (1929) l-96. 

[2] K.J. Barwise, Axioms for abstract model theory, Ann. Math. Logic 7 (1974) 221-265. 
[3] K.J. Barwise and S. Feferman, ed., Model Theoretic Login. (Springer-Verlag, Berlin, to appear). 
[4] K.J. Barwise, M. Kaufmann and M. Makkai, Stationary Logic, Ann. Math. Logic 13 (1978) 

171-224. 
[5] J.L. Bell and A.B. Slomson, Models and Ultraproducts (North-Holland, Amsterdam, 1969). 
[6] G.V. Cudnovskii and D.V. Cudnovskii, Regular and descending complete ultrafilters, Soviet 

Math. Dokl. 12 (1971) 901-905. 
[7] C.C. Chang and J. Keisler, Model Theory (North-Holland, Amsterdam, 1977) 2nd ed. 
[8] W. Comfort and S. Negrepontis, The Theory of Ultrafilter, Grundlehren der math. Wissenschaf- 

ten, Vol 211 (Springer-Verlag, Berlin, 1974). 
[9] D. Donder, R.B. Jensen and B. Koppelberg, Some applications of the core model, Lecture Notes 

in Math. Vol. 872 (1981). 
[lo] E. Ellentuck, Foundations of Souslin logic, J. Symbolic Logic 41(l) (1976) 59-72. 
[ll] J. Flum, First order logic and its extensions, Logic Conference, Kiel 1974, Proceedings, Lecture 

Notes in Math, Vol. 499 (Springer-Verlag. Berlin, 1976) 248-310. 
[12] H. Friedman, Adding prepositional connectives to countably infinitary logic, mimeographed. 
[13] H. Friedman, Hundred four problems in mathematical logic, J. Symbolic Logic 40(2) (1974) 

22-26. 
[14] H. Friedman, Characterizing first order logic, mimeographed. 
[15] L. Harrington, Extensions of countable infinitary logic which preserve most of its nice properties, 

Arch. f. Math. Logic 20 (1980) 95-102. 
[16] R.B. Jensen and B.J. Koppelberg, A note on ultrafilters, Notices AMS 78T-E21. 
[17] A. Kanamori, Weakly normal ultrafilters and irregular ultrafilters, Trans. AMS 220 (1976) 

393-399. 
[18] J. Keisler, On cardinalities of ultraproducts, Bull. AMS 70 (1964) 644-647. 
[19] J. Keisler, Limit ultrapowers, Trans. AMS 107 (1963) 383-408. 
[20] M. Magidor, On the existence of descendingly complete ultrafilters, in preparation. 
[21] M. Magidor, On the role of supercompact and extendible cardinals in logic, Israel J. Math. lO(2) 

(1971) 147-157. 
[22] J.A. Makowsky, Quantifying over countable sets: positive vs. stationary log, Proceedings of the 

Logic Colloquium 1977 (North-Holland, Amsterdam, 1978) 183-194. 
[23] J.A. Makowsky, Topological model theory: a survey, Model Theory and Applications (Rome, 

1975). 
[24] J.A. Makowsky, Vopenka’s principle and compact logics, to appear. 
[25] J.A. Makowsky and S. Shelah, The theorems of Beth and Craig in abstract model theory I: The 

abstract setting, Trans. AMS 256 (1979) 215-239. 
[26] J.A. Makowsky and S. Shelah, The theorems of Beth and Craig in abstract model theory II: 

Compact logics, Arch. f. Math. Logic., 21 (1981) 13-35. 
[27] J.A. Makowsky and S. Shelah, The theorems of Beth and Craig in abstract model theory III: 

Infinite logic, in preparation. 
[28] J.A. Makowsky, S. Shelah and J. Stavi, A-logics and generalized quantifiers, Ann. Math. Logic 

10 (1976) 155-192. 

Sh:116



Positive results in abstract model theory 299 

[29] J. Malitz and W. Reinhart, Maximal models in the language with the quantifier “there exist 

uncountably many”, Pacific J. Math. 40(l) (1972) 139-155. 

[30] D. Mundici, Interpolation, compactness and JEP in soft model theory, Arch. f. Math. Logik 22 

(1982) 61-67. 

[31] K. Prilcry, On descendingly complete ultralilters, in: 1971 Cambridge Summer School in 

Mathematical Logic, Lecture Notes in Math. Vol. 337 (Springer-Verlag, Berlin, 1973) 459-488. 

[32] S. Shelah, Generalized quantifiers and compact logic, Trans. AMS 204 (1975) 342-364. 

[33] S. Shelah, Classification theory for non-elementary classes II, to appear. 

[34] J. Stavi, Compactness properties of infinitary and abstract languages, Logic Colloquium 77 

(North-Holland, Amsterdam, 1978) 267-274. 

[35] J.E. Vaughan, Some properties related to [a, b]-compactness, Fund. Math. 87 (1975) 251-260. 

[36] M. Ziegler, A language for topological structures which satifies a Lindstrom theorem, Bull. AMS 
82 (1976) 586-570. 

Sh:116


