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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 66, Number 3, Sept. 2001 

FORCING MANY POSITIVE POLARIZED PARTITION RELATIONS 
BETWEEN A CARDINAL AND ITS POWERSET 

SAHARON SHELAH AND LEE J. STANLEY 

Abstract. A fairly quotable special, but still representative, case of our main result is that for 2 < n < co, 

there is a natural number m(n) such that, the following holds. Assume GCH: If A < u are regular, there 

is a cofinality preserving forcing extension in which 21 = ju and, for all a < 2 < n < q such that 

(sIn-)< 'U, 

This generalizes results of [3], Section 1, and the forcing is a "many cardinals" version of the forcing 

there. 

?0. Introduction. In [3], the first author proved (with, in what follows, ,u in the 
place of our A, and A in the place of our a) the consistency of: 

A < n < q are all regular,22 = , q -* (q, [r; ,d]) 

The forcing can be thought of as a "filtering through" n of adding n many Cohen 
subsets of A. Then, {R, s, a} can be thought of as a three element set K of regular 
cardinals used for defining the forcing; the elements of K are taken, in the ground 
model, to be sufficiently far apart. An important technical notion, related to the 
idea of "filtering through", is the possibility of viewing p < q as split up, in various 
ways, into "pure" and "apure" extensions. Schematically, but fairly accurately, the 
pure extensions have completeness properties, while the apure extensions have chain 
condition properties: see (1.7) for the former and (1.8), (1.9) for the latter. 

It is natural to attempt to allow the set K of regular cardinals to be larger, and to 
simultaneously obtain many such, and stronger, partition relations, for example, by 
increasing the "dimension" (from 2 to n) and the number of blocks (from 2 to U). 
These will all be aspects of our treatment here, see (B), below, and (c) of our main 
Theorem. 

More specifically, we start, in V, from 

(A) cfA = A = A<2 < y = fu = cfi. 

and we fix: 

(B) K C [R, u], a set of regular cardinals, with i, ,u E K. 
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1360 SAHARON SHELAH AND LEE J. STANLEY 

In ?1, we define a forcing Q = QK which generalizes the forcing of [3], ?1, and we 
prove its important properties, culminating in (1.11) and (1.12), whose statements 
are incorporated into our main Theorem, below (everything except item (c)). 

In order to prove that Q preserves cofinalities we need to assume that for all 
cardinals, 0 c [X,,u], 20 = 0+, so the reader who is so inclined may simply assume 
GCH holds (in V) and make the typical GCH simplifications. Very frequently, 
this involves direct substitutions, such as substituting 0,, for (2<K). However, as is 
usually the case, the assumption of GCH is mainly for notational convenience and 
to be able to state results in a simple compact form. The technical lemmas of ? ? 1, 
2 are stated in a form which makes no assumptions about cardinal exponentiation, 
and which indicates how the statement of the Theorem could be modified so as 
not to appeal to GCH at the price of allowing cardinal collapse between certain 
cardinals and their weak powers. 

The definition of Q and the proofs of its properties do not require any further 
assumptions on K, but the proof that the polarized partition relations hold in the 
extension does require that we take the elements of K to be sufficiently far apart. 
In particular, for each 2 < n < c, there will be a natural number m (n) such that 
(among other things), if 1 < 2 are successive elements of K, then IK2 > ?m(n)-1)- 

Thus, for given n, the "densest" possible set K consists of every (m(n) - 1)-th regular 
cardinal, starting from A, and, once again, the reader who is so inclined is invited to 
think only about this specific K. The statement of the result in the Abstract, above, 
adopts this convention on K, but the main Theorem will be stated in somewhat 
more general terms. 

The reason for this requirement on K is that, combined with our hypotheses on 
cardinal exponentiation, it will guarantee that if K, < K2 are successive elements 
of K, u < A, then we can find x, - with K x < < <? K2 such that whenever 
s <si, I 

-* (4xjn) Indeed, this will hold if we take Ki x and c = K2, and the 
statement of the result in the Abstract reflects these choices of x and -r. See (c) of 
the main Theorem, below, where these ideas are precisely formulated, in somewhat 
more general form. 

Before stating the main theorem, it remains to define the partition symbol which 
figures therein. Assume that T is a cardinal, and that (Xi: i < a) is a pairwise 
disjoint family of sets each of cardinality (at least) -r. Let X U{Xi: i < u}, 

and let D be the set of n-element subsets of X which meet each Xi in at most one 
element. For a c D, let a' {i < a: a n xi X 0}. Then, 

((Q ),7) -> ((/.,),)(Mn) 

holds if for all such (Xi: i < a), whenever F is a function from D to x, for i < a, 
there is Y1 C Xi, of cardinality (at least) K such that, letting Y = UJ Yj: i < a}, 
if a, b E D n [yY], and a' = b', then F(a) = F(b) (i.e., (Y : i < a) is canonical 
for F). 

In addition to the above considerations, the dependence of m(n) on n is related 
to the results of [5]. The precise formulation of these results is deferred until (2.1), 
where we begin to apply them. For now, we merely formulate: 

(C) Given 2 < n < co, there is m = m(n) < co, sufficiently large that there is a 
system as in (2.1), below. 
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FORCING MANY POSITIVE POLARIZED PARTITION RELATIONS 1361 

THEOREM. If, in V, iXA, K are as in (A), (B), above, then there isQ = QK (QQ <) 
such that the empty condition of Q forces 22 > u, andforcing with Q adds no sequences 
of length < A. Further, assuming that in V, 20 = 0+ for all cardinals 0 E [R. u]: 

(a) card Q =u. 
(b) Forcing with Q preserves cofinalities, and therefore cardinals. 
(c) Suppose that the cardinals CiK,a I, x, %, A 2 satisfy the following: K1, K2 are 

successive elements of K, and a < X, < rl <? x =t < I < K2. Let 
2 < n < co and let m = m(n) be as in (C), above. If, in V, -> (Es)%, then, in 

VQ, ( (4 ) a )> ( ( 1;)a ) % 

REMARKS. 

(1) Regarding s, clearly the most interesting case is when K = 'i; unfortunately 
at this point, it is unclear whether our methods, or a small variant thereof, will 
suffice to handle this case. We are continuing to investigate this question and 
also the question of whether we can allow a = A, at least under the additional 
assumption that A is not strongly inaccessible. 

(2) In order to handle all n < co simultaneously, it is natural to use measurable 
cardinals and and the obvious attempt to do so works in a straightforward way. 
Some significant use of large cardinals is necessary. 

(3) We treat only the extremely dispersed case, where, in the n-tuples in the domain, 
each coordinate comesfrom a different one of the a many blocks (the superscript 
((i)n)). It would be very desirable to allow pairs, or more, from the same block. 
This paper does not address this question, but for one pair, see [1], [2], [3], ?2, 
[4], [6] and [7]. 

(4) We began work on this paper in 1986, using essentially the same approach as 
presented here; this work has been subject to various interruptions which has 
made us decide to finally present it in its present form rather than attempt to 
polish off various of the small questions indicated above and to optimize the 
results. 

(5) When forcing, we take p < q to mean that q gives more information. Therefore, 
strictly, we should speak of cofinal sets instead of dense sets, but we will stick 
to the more usual terminology, modulo a reversal of the partial ordering. In 
particular, a predense set is one whose upward closure is a final segment of the 
partial ordering. 

?1. The forcing. We present the forcing Q and develop its basic properties. As 
mentioned above, Q is a "many cardinals" generalization of the forcing of [3], ? 1. 

1.1. Context and preliminaries. Let A = )<X, ,u = u2, X,,u both be regular. Let 
K C [i, u] be a set of regular cardinals with i, iu C K. For the remainder of this 
paper, , ,u, K are fixed. 

For n E K, let E,< be the equivalence relation on ,u defined by i E,< j if i + n 
j+ n. ForXA < n < u, defineE<F, as idUU{Eo: 0 G Kns}. For such n, if 
n V K, let E, = E<,. For i < a, A < n < a, let [i], = the E,, -equivalence class of 
i, and for A C u, let A/E, = {[i],,: i E A}. For such i, A, [i],< is represented in A if 
A n [i],< + 0. If A C B C a, then [i], grows from A to B iff 0 A n [i],, + B n [i]t 
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1362 SAHARON SHELAH AND LEE J. STANLEY 

1.2. REMARKS. 

(1) If 0 < n, both in K, then E0 refines E,, and, in fact, each E," class is the union 
of n many E0 classes. 

(2) For all i, j < a, i EH, j. Thus, the following definition makes sense: 

if i < j < y, 1(i, j) = the least n z K such that i E,, j. 

1.3. DEFINITION AND REMARK. Suppose n E K. We define 0,, to be the least 
regular cardinal which is > U[(K n n) u {A}]. Thus, in particular, 0O A, if 0 < n are 
successive elements of K then 0,, = 0, if U(K n,) is singular, then 0,= (U (K n 
while if U(K n ,) is inaccessible, then 0,, = U(K n ,). 

1.4. DEFINITION. q z Q = QK iff q: dom q - {O 1, 1,dom q C u and: 

(a) for i < u, r, z K, card([i],, n domq) < 0,, (note: taking , = u, we have 
card dom q < 0,)). 

If p, q c Q, we set p < q if 

(b) p Cq, 
(c) For all ri e K, {A e u/E,,: A grows fromdom p to dom q} has power < 0". 

Q = (Q, <). 
1.5. DEFINITION. For n cz K andp, q c Q, let: p <Pr q ifp < q and: 

(d) no E, -class represented in dom p growsfrom dom p to dom q, 

and let: p <apr q iff p < q and: 

(e) (dom q)/EK = (dom p)/E,<. 
1.6. PROPOSITION. 

(a) For all n cz K, <P?4, <aPr are partial orderings of Q. 
(b) If Pi, P2 c Q and they are compatible as functions, then P1 U P2 C Q; further, 

letting q P 1 U P2, if (c) of (1.4) holds between pi and q, for i = 1, 2, then q is 
the join, in Q, of Pi and p2. 

(c) If p < q, n c K, then there are r, s E Q such that: 
(1) p <pr r<Prq 

(2) p <afpr S < pr q and 
(3) q=rUs. 

(d) <=<apr (except that if 0 :& q c Q, then 0 < q, but 0 apr q for any ri C K). 

(e) If Kro < '1l <? I2, all E K, then: 
<pr c <pr <apr c <apr 
-/KI - -/KO -/K - -1K2- 

(f) If ( E K& s <a?p, t & s <pr v), then t Uv G Q and: 

s < (t U v), t <,pr (t U v), v <<pr (t U v). 
(g) If r E K, p <, qi (i = 1, 2), where * E {pr, apr} and qj, q2 are compatible in 

Q, then p <? (qi U q2). 
(h) If p <?,r qj, q2 and if 

(*) if (i z domq1 \ dom p & j z dom q2 \ dom p) then ([i]<,< y4[j]<, or 

[i]<, n dom q, = [j]<,< n dom q2)) 
then also qk <? qi Uq2,k = 1,2. 

(i) If p <"' qi < r for i = 1, 2, then, for such i, qj <?apr q, U q2. 

PROOF. (a) and (b) are clear. For (c), let r = q [ x, where 4 E x iff E dom q 
and (d E dom p or [fj, n dom p = 0). Also, let s = q [ y, where Cz y if 

z cdomq and[4, n dom p 74 0. Clearly p <?pr r, p <apr s; clearly q = r U s. We 
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FORCING MANY POSITIVE POLARIZED PARTITION RELATIONS 1363 

verify that r <,p q and s <Pq. For the first, suppose that c z dom q \ x. Then, 
4 dom p and [4], n dom p :& 0. Then certainly [a, n x 7 0, i.e. 4 C U dom r/E,. 

For the second, suppose c z dom q \ y, but []n y & 0. Then, 4 z x \ dom p, 
so [aj, n dom p 0. If Ez [c , n y, then [ nd 0 dom p 7 0, but Kh 
contradiction. 

For (d), recall that ,u [i],1, for all i < ,u. For (e), if p <P' q and x is an 
EKO -class represented in p, let x* be the E,, -class such that x C x*. Then, x* is 
represented in p and since x * does not grow from dom p to dom q, neither can x. 
Similarly, if p <apr r and 4 cz dom r, there is C E, such that C c dom p. But then, 
C EK2 C, So K K2' 

For (f), we first show that (dom t \ dom s) n (dom v \ dom s) = 0; then, by (b), 
t U v G Q. It will then be clear that s < (t U v). So, if ~ Edomrv \ doms, then 

[a, n dom s = 0, so 4 V U dom s/E,, and dom t C U dom s/E,. 
Next, we show that t, v < t U v; by (b), it will suffice to show that (c) of (1.4) holds 

between t and t U v and between v and t U v. We prove the former first. So, suppose 
that - c K and first suppose that 0 + dom t n [i], and j G (dom v n [i]i) \ dom t. 
Then, certainly j V dom s, so since s <P" v, we clearly must have that - > K. Now, 
let I E [i]i n dom t. Since s <?~P t, there is a c dom s such that a E,, 1. But then, 
since -c > K (actually, > would suffice here), a ET i, so 0 :4 dom s n [i]i - dom v n [i]i. 
And, since s < v, there are fewer than O, many such [i]T, and we have proved that 
(c) of (1.4) holds between t and t U v. 

To show that (c) of (1.4) holds between v and t U v, let - be as above, and, this 
time, suppose that 0 4 domv n [i]T and that j c (domt n [i]i) \ domv. Then, 
certainly j V dom s, and so, since s <aP", [ji], n dom s 4 0. Thus, [j],, grows from 
dom s to dom t, and, since s < t, there are at most 0,. many such [j],.. We consider 
separately the cases - > K and - < K. In the first case, 0,. < 0, and we have 
found one of at most 0,. many [j],. inside every [i], which grows from dom v to 
dom t U v, so clearly there are at most O. many such [i]T, as required. Thus, without 
loss of generality, we may assume that - < K. In this case, we shall argue that 
0 :& dom s n [i],. Clearly this will suffice since then [i], grows from dom s to dom t, 
and again, since s < t, there are at most O, such [i]f, as required. 

So, suppose, towards a contradiction, that 0 = dom s n [i],. Let 4 E [i], n dom v, 
so [s],. [i],. But j E [i], n dom t, so j E [i],, n dom t. Since s <aP" t, this 
means that 0 4 [i],, n dom s. But then c z [i],, n (dom v \ dom s). This, however, is 
impossible, since s <pr v, which completes the proof. 

We proceed, now, to show that t <PZ t U v and that v <aP" t U v. For the former, 
suppose that 4 z dom v \ dom t. Then, 4 z dom v \ dom s, so [fl,, n dom s 0. We 
claim that [fj, n dom t 0. If not, and C c [fj, n dom t, then [c],, n dom s 4 0, 
but, once again, [c],. [s],.,contradiction. Thus, t <?P (t U v). 

To see that v <?apr t U v, suppose that 4 E dom t \ dom v. We need to show that 
[ nj, 0 dom v 7 0. This, however, is clear, because, since 4 E dom t, [j,. n dom s 7 0, 
so certainly [fj, n dom v :& 0, and we have finished proving (f). 

For (g), first note that if qj < r for i = 1, 2, then, letting s = qj U q2, for such 
i, qi < s < r. This is clear, because if - E K and [j], grows from dom qj to dom s, 
then certainly [j], grows from dom qj to dom r, and there are at most O, such [j], 
since qj < s. Further, if [j], grows from dom s to dom r, then either [j], grows from 

This content downloaded from 195.34.79.79 on Fri, 13 Jun 2014 16:08:49 PM
All use subject to JSTOR Terms and Conditions

Sh:608

http://www.jstor.org/page/info/about/policies/terms.jsp


1364 SAHARON SHELAH AND LEE J. STANLEY 

dom qI to dom r or [j], grows from dom q2 to dom r, and again, since q, q2 < r, 
there are at most OT such [j], for each case. 

Now suppose that * is apr. Thus, if 4 E dom s, then, for an i E {1, 2}, 4 E domqi, 
so n 0 dom p : 0. It is then clear that p <? s, as required. 

If * is pr and cE doms \ domp, then, letting i c {1,2} be such that 4 c 
dom qj \ dom p, then, since p <Pr qi, clearly [a, n dom p 0, as required. 

We prove (i), before proving (h). As in (g), let s = qi U q2. For i = 1, 2, we 
must show that qi <api S. We already know, from the proof of (g), that for such i, 
qj < So SO, let j = 1 + (2 - i), and suppose that oa E dom s \ dom qi. We need to 
show that 0 + [oa], n domqi. But oa E domqj \ domqi, so ao E domqj \ dom p, so 
0 :& [ae, n dom p, and the conclusion is clear. 

We conclude by proving (h). For this, let s = qj U q2. If we prove that q, and 
q2 are compatible in Q, then, by (g) and (i), we are finished. In fact, we will show 
directly that qj, q2 < s. By symmetry, it will suffice to prove that qi < s, and 
clearly, only (c) of (1.4) is at issue. So, let - E K. First note that, without loss of 
generality, we may assume that - < K. This is because, since dom qI \ dom p and 
dom q2 \ dom p both have cardinality less than 0,s, therefore so do dom qi \ dom q2 
and dom q2 \ dom qj. Then, if - > K, in particular, fewer than 0,, many ET classes 
grow from dom qi to dom s. 

So, suppose - > K. By hypothesis, if [i], grows from domqj to doms, then 
[i]i n dom qc = [i], n dom p :& 0, and so [i], grows from dom p to dom q2. However, 
since p < q2, there are fewer than O., such [i],. This concludes the proof of (h) and 
of the Proposition. 

1.7. PROPOSITION. 

(a) For all r, c K, (Q, <?P ) is n-complete. 
(b) Q is A-complete. 

PROOF. The proof is routine and left to the reader. 

In Proposition (1.8), which follows, we will have r, E K and p E Q, and we 
introduce QgPp = (Qa~P, <rcIP ), and QaP= {q: p <?asP q}. 

1.8. PROPOSITION. If r, E K, p E Q, then QCPJ has the (2<0)+ - c.c.. 

PROOF. We should note, here, immediately, that in virtue of (1.6), (i), qj, q2 C 

Q., compatibility in Q` is the same as compatibility in Q, so it is the latter that 

we shall establish, when our statement calls for the former. 

Suppose, now, that qi c QasP, for i < (2<Oc)+. We show there is I C (2<O?)+ with 
card Y = (2<0)+, such that for i, j z I, qi and qj are compatible in Q. In virtue of 

the preceding paragraph, clearly this suffices. 

For i < (2<0)+, let di = domqi \ dom p. We first show that carddi < 0,. 
Note that by (e) of (1.5), if oa E di, then [o],, grows from dom p to dom q, and so 

di E,, C {A e u/E,,: A grows from dom p to dom q}. By (1.4), (c), this last set 
has power < 0,. Finally, by (1.4), (a), for all A (E di/E, card(A n domqi) < 0, 
Then, since 0, is regular, the conclusion that card di < 0, is clear. 

Now, take Yi := di /E<, . Since each Yi has power < 0,s, it is quite straightforward 

to conclude, combining typical A-system arguments with appeals to (1.6) (b) and 

(h). 

We need a slightly more refined version of this. 
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FORCING MANY POSITIVE POLARIZED PARTITION RELATIONS 1365 

1.9. PROPOSITION. Suppose K E K, (2<O`K)+ < K, (si: i < i*) is a <P' -increasing 
sequencefrom Q, and suppose thatfor i < i*, si <asp ti, and thatfor j < i < i*, tj, ti 
are incompatible in Q. Then, i* < (2<O<)+. 

PROOF. If i* < n, we can take s = U{si: i < i*. Noting that for j < i*, 
s <?Kp (s U tj), we can then apply (1.8). Even if n < i*, we can essentially argue 
in this fashion, by redoing the proof of (1.8). So, let i* (2<0)+ < es. Let di = 
dom tj \ U{dom si: i < i*}. We obtain a contradiction. Then, di C dom tj \ dom si, 
and, arguing as in (1.8), card di < card(dom tj \ dom si) < 0,. 

As in (1.8), for i < i*, let Yj = di/E<,. Once again, we can find I C i* Y. 
d, and f such that cardI = i* and for i,j E I, Yi n Yj = Y, dijUY = d 
and ti [ d = f . The conclusion is then as in (1.8) that for i, j E I, tj and tj are 
compatible in Q and therefore in Q'P'. This contradiction completes the proof of 
the Proposition. 

1.10. LEMMA. If K E K, 2<0K < K, p E Q and p I Q " is an ordinal", THEN, 
there are q and (ri: i < i*), allfrom Q, such that: 

(a) i* < (2<0-)+, 
(b) p <P7 q 
(c) q <?Pr ri,forall i < i*, 
(d) for some ai, r I [-Q a - ai 
(e) {ri: i < i* is predense above q. 

PROOF. We shall obtain q as qi* = U{qi: i < i*}, where (qi: i < i*) is <P, - 

increasing, with qo = p. We work by recursion on i. Having obtained (qj: j < i) 
and (rj: j < i) such that (qj: j < i) is <P, -increasing, the (rj: j < i) are pairwise 

incompatible in Q, qj <aP" rj and there is aj such that r IF-Q " = a", note that 
we have the following properties: 

(1) for all ] < i, qi <?'P (qi U rj) (this is by (f) of (1.6) with s = qi, t = r, 

v = qi), 

(2) so, letting rj' qj U rj, {rj7: j < i} c Q;I. 

If {r5': j < i} is predense in Q'P', then we take i* i, q = qi, rj = r", for j < i, 

and we stop. Otherwise, there is q' E QeaP" such that q' is imcompatible with each 
rj7. Note that, in this case, we must have that q' is incompatible in Q with each r, 

by (g) of (1.6). In this case, we shall have i < i*, and we continue, so fix such q' 
and let q' < r' be such that for some a, r' F-Q "& = a". Applying (c) of (1.6), we 
get qi <pi. q* <?pr r'. We let qi+l = q*, r' = r'. By (g) of (1.6), the r' (j < i) are 
pairwise incompatible in Q. 

If i is a limit ordinal, i < K and the (qj: j < i), (r5: j < i) are defined satisfying 

the induction hypotheses, we let qi = U{q;: j < i} (so, by (1.7), qi E Q and 
is the <Pr -lub of the qj). We must now see that the process terminates at some 
i* < (2<0>)+. If not, and if (2<0K)+ < s, let q = U{qj: j < (2<OK)?}, and 

(using the above observations), for j < (2<0K)+, let rj = r5 U q. Then, the rj are 

a pairwise incompatible family in QP', contradicting (1.8). If (2<0K)+ < , it is 

straightforward to see that we must have i* < (2<0 )+, contradiction. This means, 
in particular, that i* < K and then we conclude by defining q and the rj as in the 
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1366 SAHARON SHELAH AND LEE J. STANLEY 

case where (2<0K-)+ < s, but everywhere replacing (2<0K)+ by i*. This completes 
the proof of the Lemma. 

1.1 1. PROPOSITION. The empty condition of Q forces 22 > ju. 

PROOF. For i < ji, let ri be the following Q-name: {((y, k), p): y < A, k < 2, p E 
Q&p(Xi + y) = k}. Since OA i=, and for i < ju, [Ai, Ai + A) = [Ri], we clearly 
have that for p E Q, if io < il < jt, cardAj < A, for j = 0, 1, where, for such j, 
Aj = by < A: Xij + y E domp}. So, for such p, io, il, choosing E A \ (AO U Al)) 
and letting q = p U {(Xij + y, j): j < 2}, we have p < q and q I- rio 74 ri, and the 
conclusion is then clear. This completes the proof of the Proposition. 

1.12. PROPOSITION. (Assuming thatfor cardinals 0, with A < 0 < A, 20 = -+): 

(a) card Q = u. 
(b) Forcing with Q adds no sequences of length < A. 
(c) Forcing with Q preserves cofinalities, and therefore cardinals. 

PROOF. (a) is clear, and (b) follows easily, from (1.7), (b). For (c), assume, 
towards a contradiction, that r < a, where both are regular, but that for some 
q E Q, q IL cf a = -. By (b), we may assume that > A. Note that by (1.6), (d) and 
(1.8), with p = 0, Q has the (2<' )+-c.c. Further, under our additional hypotheses 
on cardinal exponentiation, (2<'p) < ju, so, clearly we cannot have a > 1u. But then 
there must be K E K such that 0,. < r < a. Suppose, now, that the Q -name f is 
such that q I f is monotone-increasing, maps r to a and has range cofinal in a. 
By (1.7), (a) and (1.10), applying (1.10) repeatedly to each of the names f(a), for 
a < r, we reach a contradiction, also using that (2<0K) < r. This completes the 
proof of the Proposition. 

?2. The partition relations. In this section, we address item (c) of the main 
theorem of the Introduction. We work, first, under the simplifying assumption 
that r < K2. For the convenience of the reader, we will recall the context, and 
restate (c) as a Lemma, with this additional assumption. After the proof of the 
Lemma is given, we will briefly indicate the small changes necessary to accommodate 
the case r - K2. 

So, let s1, K2 be successive members of K, let K < M ?< X = X < T < K2, let 
a < A. Assume that 2<'' < r (in the context of (c) of the main Theorem, this will 
follow from the Theorem's hypotheses on cardinal exponentiation). As stated in 
(C) of the Introduction, for all 2 < n < c, by examination of the methods of [5], 
there is sufficiently large m(n) < Co such that, assuming that, in V, r -* 

then, also in V, there is a system as in (2.1) below. 

LEMMA. For 2 < n <c, if in V, c o (K)7W~n, then, in Vn (())a) - 

PROOF. Let (Ai: i < C) be a sequence of sets of ordinals, each of order-type A, 
such that for i < j < a Ai < Aj. Let A := U{Ai: i < }. Let D := {a E 
[A]n: card(a n Ai) < 1, for all i < a}. We often view the elements of D as n-tuples, 
enumerated in their increasing order. Let c be a Q -name for a function from D 
to X. 

Let p E Q. Using the methods of ?1, we can find a <,P -increasing sequence 
from Q, p = (pj: j < q), with the following properties: 

(1) < ,andpo=p, 
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FORCING MANY POSITIVE POLARIZED PARTITION RELATIONS 1367 

(2) for each oa = (a,, . ,) E D, there is j = j- such that in Q` + , there is a 

predense set, I- of conditions deciding ca). 

2.1. The system of [51. Now, let v* be a sufficiently large regular cardinal. Fix 
<*, a well-ordering of H,*. For sequences (Xt: t E I), let u E J(Xt: t E I) 
iff u C U{Xt: t E I}, cardu < n and for all t E I, card(Xt nu) < 1. If 
u,v E J(Xt: t E I), we set u v if for all t E I, card(Xt n u) -card(Xt n v). 
By [5] (and our choice of m (n)), we have the following. 

PROPOSITION. There are Bi E [Ai]' (i < c), AX (u E J(Bi: i < c), and h, 
(u, v E J(Bi: i < a), u v) satisfying: 

(3) each JIu - (Hv*n,,<*,C, pX, lI2,K,Q,(I-: a E D) 
(4) letting Nu = XuI, Nu n (U{B: i<}) C Nu, cardNu Nu C 

Nu, 
(5) Nu n Nv C Nunv (large cardinals are requiredfor = in place of C), 
(6) (huv: u, v E J(Bi: i < a), u v) is a commutative system of isomorphisms, 

huv :Alu -* Xv, 
(7) If Uk Vk, for k = 1, 2, then huivi and hu2V2 are compatible functions, when 

both are defined. 

2.2. Completing the proof. In this subsection, we complete the proof of the 

Lemma. Note that our hypothesis that r < K2 guarantees that q < K2. This is 

the only use we make of the hypothesis that r < K2. 

So, let p* = U{p;: j < q}. Then, since here, we have that q < K2, p* E Q, and 

is the <pr least upper bound of the pj, by (1.7), (a). Also, let yi = min Bi (i < a), 

and let J := J({yi }: i < a),J: J(Bi: i < a). 

CLAIM 1. If q E Qr *, u E J, and q E NU, then (dom q) \ (dom p*) C Nu. 

PROOF OF CLAIM 1. (dom q) \ (dom p*) E Nu and it has power< <02 =i< ? C- 

Nu, so the conclusion is clear. 

CLAIM 2. There is r E Q, p* <?pr r such that: 

(1) dom r \ dom p* C U{Nu: u E J} 
(2) for all u E J, p* U (r [ Nu) E Nu; iffurther, cardu n, then p* U (r [ Nu) 

decides the value of c(u). 

PROOF OF CLAIM 2. Note that for the first part of (2), it suffices to have r [ Nu E 

Nu, since p* E N0. Note, also, that J has power a, and so we enumerate J as 

(u;: j < a). We shall define by recursion on j < a a sequence (rj: j < a) with 

ro :=p*, and all rj 
. 

Qr *. We shall have r := r. The following induction 

hypotheses will be in vigor, for j < a. The parallel with items (1) and (2) in the 

statement of the Claim should be clear. 

(a) if k + 1 < j then dom rk+1 \ dom rk C Nuk, 

(b) for all u E J and all k < j, rk [ Nu E Nu; if, further, k + 1 < j and card uk = n, 
then p* U (rk+1 NUk) decides the value of c(uk) 

(c) (rk: k < j) is <?pr increasing. 

Clearly (a) - (c) hold for j = 0 with ro = p*. At limit ordinals, 3 < a, we shall 

take rb = U{r: j < 3}. If 3 < c, then 3 < A < l = 0;2 . Thus, if 3 < a, by (1.7), 
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(b), rb E Q and is the < least upper bound of the rj. Then, clearly also it is the 
<K27 least upper bound of the rj. 

If 3 = a, then, since we are assuming a < A, we also have 3 < i, and so, the same 
arguments yield the same conclusions, in this case as well. 

Clearly this preserves (a), (c) and the second part of (b). We argue that it also 
preserves the first part of (b). So, let u E J. We must see that rb I N, E N,. But 
rb p N, = U{rk I N: k < 3}, and for all k < 3, by (the first part of) (b) for k, 
rk N, E N,. Finally, 3 < C, and N,6 C N, and so the conclusion is clear. 

So, suppose we have defined (rk: k < j) satisfying (a) - (c). We define rj+l and 
show that (a) - (c) are preserved. Since (b) clearly corresponds to (2), and since we 
take r = r, this will complete the proof, once we show how (1) follows from (a). 
This, however, is easy, since (dom r) \ (dom p*) = U{(dom rk+l) \ (dom rk) k < l}, 
and by (a), this last is indeed included in U{N,: u E J}. 

For (c) it will suffice to have rj <?ap rj+1, which will be clear from construction, 
as will the second part of (b). Thus, we must show that there is q satisfying: 

(a) r <apr q 
(8) (dom q) \ (domrj) C Nj, 
(y) if carduj = n, then q decides the value of c(uj), 
(3) for all u E J, q I N, E N, 
We first argue that it will suffice to find q satisfying (a) - (y), since any such q will 

automatically satisfy (3). For this, note that if q satisfies (a), then (dom q) \ (dom rj) 
has power <0;2 = 'l < X. Thus, for u E J, (q \ rj) I N, is a subset of N, of power 
< X and therefore, (q \ rj) E Nl. But q I N, = (q \ rj) I N, U r I Nu, and by 
induction hypothesis, (b), for j, r I N,, N. The conclusion is then clear. 

To find q satisfying (a) - (y) is trivial if carduj < n, so assume carduj = n. 
Applying induction hypothesis (b), with k = j and u = uj, we have rj I Nj E Nj. 
Since the maximal antichain in Q;' * deciding c(uj) is a member of N~1, and since 

p* E N~j, we easily find q' E N~j such that p* U (rj I N, ) <acP q' and such that 
q' decides the value of c(uj). Note that, again, since (dom q') \ (dom p * U (dom rj 
N~j)) has small cardinality, compared to the closure of N~j, we will also have 
(dom q') \ (dom p *) C N~j. But this makes it clear that if we take q:= q' Urj, then 
q is as required. This completes the proof of Claim 2. 

Now, let: 

r* :=p*U U{huv((r\p*) Nu): u E J,v E Ju v}. 

We will show that r* E Q and that whenever u E J, v E J and u v, p* U hunv (r 
N,) < r*. We first note that this suffices for the proof of the Lemma in our special 
case, since then clearly r* forces that (By: i < a) is as required. 

The following is the heart of the matter, and is an easy consequence of (7) of 
(2.1), and the arguments for the first part of (2) of Claim 2, above. 

PROPOSITION. Suppose that for k = 1, 2, Uk E J, Vk E J and Uk Vk. Let 
Nk Nuk, N :=N1 n N2and letN = Nn12 (so that, by (5) of (2.1), N C N). Let 
hk hukvk. Then, (r \ p*) I N E N &hl((r \ p*) I N) = h2((r \ p*) IN). 

PROOF. To see that (r \ p*) I N E Nk, we argue as in the proof of Claim 2: 
(r \ p*) I N is a subset of Nk of small cardinality compared to the closure of Nk. 
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But then, since h1 and h2 are compatible functions, by (7) of (2.1), the conclusion 
is clear. 

COROLLARY. r* Qandwheneveru E J,v Jandu v,p*Uhuv(r N,) <r*. 

PROOF. It is immediate from the Proposition, that the p* U h,,v((r \ p*)) are 
pairwise compatible as functions. To complete the proof that r* E Q, we must 
verify (a) of (1.4). So, suppose i < ju, v E K. 

We consider separately the cases v > K2, V < K2, and the hardest case, v= K2. If 
V > K2, then K2 < Ov and we are taking the union of fewer than 0, conditions, so 
there is no problem. If v < K2, then 0, < K, < X, so for all v E J, either [i], C Nv 
or [i]v n Nv = 0, and then the conclusion is also easy. So, suppose that v= K2, i.e., 
v = ni. It is here that we use that s < si; this permits us to argue as in the case 

where v> K2: we are taking the union of fewer than 0,, conditions, and there is no 
problem. 

To complete the proof of the Corollary, we must see that (c) of (1.4) holds (since 
(b) is clear). So, once again, assume v E K. We must see that for all u E J, v E J 
such that u v, there are fewer than Ov many A E u/E,, such that A grows from 
dom(p* U hv(r [ Na)) to domr*. Once again, as in the proof of (1.4) (a), we 
consider separately the cases v> K2, V < K2 and v= K2. Once again, the hypothesis 
that s < M allows us to assimilate the case v= K2 to the case v > K2, since what 
is really at issue is that we are taking the union of fewer than 0,, conditions, and as 
before, when v= K2, O?, = s1. In the remaining case, where v < K2, once again we 
have that for all i < ,u and all w E J, either [i]v C Xw or [i]v n N, = 0, with the 
former holding if [i]v E Nw. 

So, suppose that v < K2 and fix such u, v, suppose i < ,u and [i]v grows from 
dom(p* U hv(r [ Na)) to domr*. But then there are t E J, w E J such that 
t w and [i]v n dom(p* U htw(r [ Nt)) (Z dom(p* U huv(r Na)). Then, 
[i], c Nv n Nw. But then [i],, C Nv n Nw . Therefore, letting b E NU, c c Nt be such 
that [i]v hu, (b) ht,w(c), we clearly have b = c and b C Nu n Nt. But then, 
letting x := (dom r \ dom p*) n b, x E Nu n Nt, since, once again, x is a subset of 
each, small in cardinality compared to the closure of each. So hu, (x) = ht(x), 
but this is a contradiction, since then, [i]v n dom(p* U hunv(r [ Nu)) = (([i]v n 
domp*) U hunv(x)) = (([i]v n domp*) U htnw(x)) = [i]v n dom(p* U htnw(r [ Nt)) 
This completes the proof of the Corollary, and therefore of the Lemma. 

To handle the case rc= K2, we take B := U{B1: i < c}, we replace D, above, by 
D' := {a E [B]n: card(anBj) < 1,foralli< ax},andwetakeour <Pr -increasing 

sequence from Q, p (pj: j < q), to satisfy: 

(1*) /?< ,andpo p, 
(2*) for each -a = (a 1 . an) E D', there is j = j- such that in Q"' + , there is a 

predense set, I- of conditions deciding c(oa). 

Now q 
< K < 1 < , and then the rest of the proof goes through easily, as above. 
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