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Introduction

In the introduction we first explain the results of Keisier and Kunen from [6],

ﬂmn explain our results, and then show some applications.

et T be a {complete ﬁrs* order) theory with a tree (called in [6]
ie <y is a patial order, »n which {x:x=, y} is totally ordered for eve
rapk function whose mﬂ 2 is ordered by =<, Now by [5, Theorem B, .
$w,. T is countable, and T satisfies some TIeS {thm ar ¢
courdabla model of 77 has an end extension with respect to the s
elements are smaller than an old one), then T has an R;-like model {
tree {x: R{x)=, v} is countable for eauh v} suc:h that every o iw?,vr

The results are generalized to & "like trees, when k =&~

{see D“ﬁmnon 7) (it is satisfied by set theories). ,
; }et us phm our results Lthw are actually somewhat mfore gm erall,

v Theorem 6 the existence of models with X;-like tree is dm@h‘i% 5¢
haxe a prooi with &y, 'we can prove without it. Is Theorem 8 we reprove
result on & -like trees under the ﬁg.,ht h‘vpcﬂhc%m In Theorem 12 we prove that
for A regular, X" =T}, T not necessarily countable. T has a model of cardinali
A" in which no tree has an undefined branch. ;

S(;?ma of xhc:; resulis will be imporved in ;,tij Let us trn to appl

Appimamn Al We can eliminate Oy from most results ¢
u)ns;sium theory oxtcnduw ZF, has an ‘\‘ “iak(* modei in which &l po

, ar* def nable‘ ‘

fEs die( i-fi

ThL mihor wants to thank thc 1§ m’e‘d Statas-Tsrael Bmatxmw Scier
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“same holds for the w-logic of L(O).

‘¢, R are as above, P = w, << orders the ordinals and P:'S, ~» ¢ Q. pariia

74 8. Shetak

Application B. If every model of T has an end extension (by T,< is an order of
the universe), and T has Skolem functions, then some model of T Ims definable
end e\tenmn {see [13, 2.21] for a pmoﬂ

Application C. For every mode] N of ZFC, we can define naturally its numbur
theorv model P{N}. It was asked which models M are P N} for some NEZFC,
and shown that they should satisfy the consequence of ZFC (in the language of
number theory) and, be recussively saturated {(see Barwise and Schlipf [1],
Theorem 2. For countable M those necessary counditions are sufficient.
Kaufman deals with the problem of whether the pecessary conditions ave
sufficient in general, and gives a negative answer under Oy, by showing:

(1) In every model P{N), the tree of functions from a “natoral number” to
{0, 1} {i.e. subsets} has an undefined branch.

{2) (Imitating [5, Theorem B1.) There is a recursively saturated model satisfy-
ing the above mentioned conditions, with no undefined branch.

We can eliminate Oy, by Theorem 6 (as being remr:ﬁvefy saturated can be
expressed in L, .} or deduce (2} from Theorem 12(2) (et X = (%) =Ny, so
we get an My-caturated counterexemple}.

Application D). A compact logic stronger than first-order for countable models
exists, '

Friedman asked for the existence of a logic which is compact but stronger than
first order logic even for countable models. In [9] we give such an example by a
generalize guantifier: an order has a Dedekined cot whose cofinaties belongs to
{w, x}, when r is weakly compact, or using the diamond. So we still do not have
an example in ZFC,

Now we can introduce the quantifier (Qp.x, v){@(x, ¥), @20, ¥}, es{x, v} which
means the triple of formulas is a tree, which has no branch.

(D1} Now L{Qg,) is compact by Theorem 12.

{D2) Let us show L(Qg,) is stronge: than first order logic for countable models,
ordinal o let us define a model M, ={w U S,, &, R) whete § is the set
ng sequences of ordinals <e, £ the relation of bung aninitial segment
on S,, K&, —»w s 3 partial function giving the Ieng,th of the sequence. Let S, be
{aw, ...y ey k<o and for some k(0) a=ap= " * = G2 > 0o > Aoy >

Ce g and M be %ﬁmd accordingly. For every large enough o < Wy My,
M}, are elementarily equivalsat in frst order logic but not m ;M(QB,.,,

Application E. We can answer the following question of T . Stavi: whether if for a
generalized, quantifier Q, 1L(Q) is compact then in L, ,(Q) we cannot define
weli-ordering (as a pseudo-elementary class.) We give a counterexample. The

where S,
function,

We use Quy, 0f course. We define Ny =((a-+1)US,, LR D, P <)
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l i:‘aa- %,ht, “Iﬁ‘ct of mo

T‘m': appe'ns i [3 afﬂtj we hope it
schematically. So suppose we can constr
with universe ., such that there is no S¢
o M |=e(1+a), and in stage o k
mii be auﬂlcxent Suppose we do sim ;
S< M, in its turn but this may come in some f ;
not appear in M, we can do it Those whic
wy~branch we shall finish.

ed results

- tremm oo
r form Yo, B

is the universe of the model M, [A] the
(x. 9) @M, &) ={beM|: M ¥ o[b, al.

8.

Motation.

and formuls 28

FUEIL

&

H H

Let us write de A nstead 5o, .. J» do....E A,

”«mmv ﬁenm 13%3:35 1’)” t({,} M ), “mi We ¢
(ii} << is a total order of DE(E), M) and for every d e ;’f 5’
M & =y(b, d, ) is totally ordered by =i,

(i) R ”z #; £} is a rank function from Di{t{é‘}, A onto DEG{E, M), e, the
{universal c.imur@} of the following formulas are satisfied by M.

Rif, 0, O)y—ite D&, Mia b‘*Drx{i’\(’\’“ M;,

- £
Rxf", 3 C}f\ R{‘!fﬁ U’), )"“”“ InEt (=

RO 5 ) A tiBE ’zfl,‘R(u;, By; c}«»n TR
Vi s DL, M)}{{Eu&l}gif@}, MnAds, e 3,08y, MY}

qu;, By f)i\ R(ily, B3 & nn:«(zi,b fin B
R{idy, o % YR, T €) f\,\iwl, ity; B) > =

"Ihﬁ func’uon will be denoted by R¥®;-

Remark. Whe 24 no wnfmmn amaes we omit 1 M, {:‘ (&)}, Ix the
e.g wiite DY, -
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Definition 2. Let £M(:§} be the’interpretaﬁan of the tree in Mifor 7L

Deﬁmhﬁn 3. {1) A branch of the free f”’{c,) isaset Bo f’”’(r{L M)such that: (i)
is (totally) ordered by <i@; (i) #/E®eB and b<i®a—HEPeB; i)
{R{iifE“f“): GE¥® & BY is an unbounded subset of DE(H{(#), A ‘
{2} A branch is deiinable if there is a formula of L, with parameters from M,
defining it in M (Le. defining d ¢ M- & E{¥ ¢ B). Notice that a branch is definable
iff it has a cofinal definable subset; if i DI(8), M) there is a last element every
branch is definable.

Remark 4. (1) We will not gain generality by dealing with 1{Z) which for some
fe|M| define a tree, as this is a fixst order demand = (3} on ¥ and we can
replace #(Z) by {5, f—>=,, R), s0 when ME4[¢] we get a frivial tree.

Convension 5. (2) For notational simplicity, we shall deal only with trees (%)
satisfying: &, © are u, v, the uquwaknu, relations Ef¥ are the equaiiw on their
domains md Dy (1(8), M) (1 =1, 2} are disjoint (80 we can write =< instead =) and
remember the function R is onto.

This has two justifications:

(i} The pmofs are almost the same {only in Theorem 10 we have to deal also
with the number of cquivalence dlasses 1on).

{if) We can replace each model M by M as in {12, I 8§6], and use the
theorems here on it

We call a tree £M(2) trivial if in DL{(8), M) there i8 a last elbnlbﬂt {by =N,

3) If ac‘Di{zi‘cL M) b={PR'®(a), we assume there is an element albe

D{1(@), M), a| b=si® q, and R"(a|b)=>b (of course, it is unique) {again, we do
not wose generality).

Theovem 8. For every ¢rel, (Q) (Q denotes the quantifier “there are uncounia-
bly many, L countable) the answer 1o ‘
M ¢ has a model M of cardinality N, such that: for any-tree &) (first
order) if D2,(t{€), M) nas cofinality Ry {(by <i0, then all the branches
of the tree are d )
is absolute i.c. there is a suiiable completeness theorem,
Mure concretely, we construct § Htence :ir*éLiffM,,‘{Ol (1% some counta+
ble extension of 1., Q the quantifier “there are uncountably many™), such that (%)
holds-iff ¢* has a model (rhe latter is absoéamf By Keisler[S]).

Remark. (1) We can of course, make l[l*ELw‘m , -
(2} We could add also the quannﬁer OF, (the coﬁnaht\' oi ih f-:zrd@r is Ro).

Proof. Lot ¢* be: th, confunction ot the fmiomn (’mi “) is 1
point) S o :
(1) A (Qx *(x =x).
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' la alement.

‘“z({}r“ (x), {3 x:P\ h%, a 1{"1 =" orders Foinoa deng

“potal ordering

{3} (the sentences saying that }
segment is countable; thers i
each element, i for some i 4

{4} For each <*-iimit element a, {#
submodel (in first order language L},
%) Let £,(¥) (n < @) enumerate the ros
element a, and (hib<
FRRE 4
(6) For each 1, (£}, oit
D.(e (&), and ",;?
D.(1,(E)), its range is anbouus Lcd {bv <§‘35} and x<
and for a limit @, XIUFCih: b<F el G (x: 7 3
(7) For sach n and & the (partial) funcdon H.(x; &) ha
D&y : R“:“"(Ezf} is the range of G.(x; &}, I ‘uto P, and 4
H.(a; 8)<"H,{b, & (when both are defined). Now, in this ¢o
H.(a, &)= H,(h; &) iff letting ¢ be the =%-last limit element a
formula o(x; Vel and parameter d efa’: o’ <" ¢}, such that:

nent, each &

2=

{9y x1x<"b, olx; Ai={x e D{HE)  x<Fh

Tev W2

bmnch ot f“' {(,) ’Notxce fﬁso that 1f p* ”Z:v i limit,

{x:x<*b, o', dW={xeD(EN, 1 x <*b, x=<{b} then o'(x d)=0lx;d)
(remember {x:x<"5*} is {the universe of) an L-clementary : el

Remark. Part (7) says that the trees are similar to special

the existence of detmablg branches.

Now we come 10 th@ proof.

The *if” part. Tet M* b a model of ¥, m,n M be it
prove that M exemplifies (). By {1)' M is an uncou ﬁabk“ mode
FelMl, n>wo. It M*E ”1?,‘;{(3), then D,at(c‘;. M. has. cofinality ¥, {wi

{proved by {6); P & countable by (,2)}7 hence tne demand in ()
So, we can assume M7E P, (7), and‘suppbse B3 DL{{E), M) 15 a bran
y={beB: R ‘

(7). by, b’)CBh hﬁ«‘ Dy H, (D, ) ""3}1;1{1'9@: &) As P

N;-like, there are b¥€ B, and d* *‘P‘l such that’ b"“”“‘*}: :

We apply the sec rase in (f1 so-letting b be the I

. For every b

b} su h ﬂmi N ”’Za o (x, db);

e e e
[ LR SR
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As gM;, =) 5 R Jz}\f:, some @,.d are g, dy for Ny #%, s0 @iy, d) define the
branch B fin fact, each ¢, {x, &) is sufficient, and the cardinality consideration is
ﬁnﬁacessarj}. e ‘

.

The “only if” part. Suppose M is a model of ¢ of cardinality Ny in which every
tree with cf(D,{#(Z), M)} =N, does not have undefinable branches. We can find an
increasing and co wtxnu@us sequence M, {a <@} of countable elementary sub-
models of M such that if & €M the xoﬁnalﬁ}, of I2,(1(7), M) {as ordered by <),
is Ry, then there is 2 & D,(1{&), M.} which is an upper bound of Da(#{(F), M) {by
<Fhy,

By change of names we can assume |M,|=w{l+a).

Now we want to expand M 1o a model N s ahxiym {D-(7). We tet PY =g,
where =% denotes the nataral order on w,, <" denotés an order of w of order
type of the rationals, P,(&) holds iff (I2,(z,(€)), <%}, has cofinality @, if] P,(¢) let
Gn(‘ii Z) be a function from o onto an unbounded subset of {Dy(1, (E)), < SRR
P8 let G{x, €) be a function from o, into D5, (&) \w, define by induction on
x, such that G,{x, &} is bigger by ‘»‘ég @ than any y<<*x {possible as if x is a
successor), then G,(x, ¢} should be <x -+« and bigger by </ @then G, (x~1, &),
and possibly x—1, if x is limit, use the choice of the M, 's). ‘

For notational simy plicity we assume we have just one tree fp e, f, =t and ¥ is
empty). Let Dy= D1, M), etc; and D; =the range of Gy Di={acD:R'(a)e
IR

\Iﬂ / w«_ shall define a generic extension V' of the universe (of sets) 'V, such

at Ry «»2\ and in V' the required function H, exists; this will finish the

oy aGE,
The set P of forcing conditions is the set of functions fi from Bnite subsels o
i into O »sm‘, that
{I} i does not contradict the demands of Hy in (7). When b is vegarded as a
part of H,.

(ﬂ} if a LDom . and g% is the first limit slement, such that for some eel,

sy

4

={x:x<*q, x=ial

3 is the << .minimal tl»mEﬂt such that be D{, a* b and b=

then beDon
Ws order P by in on. We shall choose a generic P'g P, and let Hy=
Uk he P This wil 1 the proof provided we prove
Fact A: theP: ais in the domain of h} iy dense in P for every a e D}
Fact B: P suiisfies the ’mxmaim chain f*w“imon

Proof of E‘act B. Suppose {h.: « <anlg P oare p&irwixe contradictory.. w.Lo.g
Dom by|=n for each o <w,. We prove the assertion by induction on n-let
Dom.h, ={a5,..:; a5}, h,(al)y=q% e P"; and as PV is countable, w.lo.g g5 =
(178 ’ L : " - s P .
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f n=1,necessar
{ae Di. for some
‘and de M, for some

So suppose > 1.
Naotice 123 has (by =) order-type
can assume that for some m, 5‘1;;

{aXfor 1< mR%as)=R
and =) v, € Di{a<e)
for m =<

(B) for i<k a¥=a5 a

For a<B<eo,, f, U hg# P
Hence (1) fails, so &Isam 8rE
exemplify i

Mg by, Bpe P oand as gf =4,
clear that agy. m. czm( gy A

Let D bc: uniform fiiter over ;. »‘ycs for eac

{&1ef(, 1} such that S,={f<w
ﬁ?{mm\! aq.;m, iff s(a) =1} e D. Simile '3: here a;

H
»—m

S={a<<wplo)=p gla)=g, s{a)=

bupp{isc first s=0; 30 when acb, s{a)=0, and by Definition |
a,,,eg,, 8.} are pfm“wznf: =i-comparable, so necesaarily. thoy are in
‘mamh, and {as they are pairwise disting 1) form an unbounded set, but al,
h B h*%kz, conbradiction.

Sc; assume s=1, s0 for every o, ye 8, choose B8, M5, el 9o aj
a} <{af, so again by Definition 1(i) a3, g} are =i -compa ‘“s{f)ic, 50 uff L
unbmmded in some branch, which is necessarily definable by sciae ¢(x, d)

&M be limit {(by <*} de{x:x<a*}; and w.log for every & and

a*{:ﬂs.

X

So necessarily for some {<m ai=] a; forevery ce 8 so for BesNs, a< g,
h, U ha & P, implies h, £ P, contradiction.
Proof of fact A is left to the reader.

Definition 7. (1) A set W of pairs of formulas (in some fived L) {p
called a set of cardinality withesses,
2y A (A, W)-model is a model M such that {p{x, §
implies fo(M, a)|=Kbe[M|: M=q¢[b, dlH<A. Lﬁa vaa‘\ me
MEy[al implies o(N; a) < [M]).
{3). The. set Wis T-closed if:
S B o) ’:ﬁx}ux" V) ((Hlx} means there is'a Umqm, x such that . | ), then
\ff-‘(’c‘ 9), H(FeWw. R L
() I (elx ), :&}U)V W for l<n and g
V;,‘,,. ;p,(x $i), z,!:{v}“ A b1 (31, tizen § o{x: %), c;’r{)ﬁf

= ‘Wf% )
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Theorem 10. Assume A =A~* and V=1. Quppme T is a complere fi

8]0 . S. Simiﬂ}z‘

7 i

{1} Suppose (¢ v, 2, dn{y, Epe W oand {e(x,
plies: '

aﬁ
v
et

e W and T im-

oz, B @) v DAy, ),
BAx)ei(x; v, D> ¢aly, I,

P2 A2

Then {¢{x, £}, u{&}\s: W, {This means that the union of a “small” family of
“small” sets is “small™.) ‘

{4) The T-closure of W, cl{W) is the smallest T-closed W', Wo W', (clearly
it always exists.

(5) The formula ¢f{x, &) is called W-small (in M) if M=4¢{a] for some ¥
satistving {o(x, ), #{FNecl AW A type p in M is small if Ag is Wesmall for
some finite g & p.

Definition 8. (T, W) satisfies the Chang condition i whenever M{i<w) is
increasing by <, each M, is A-compact, then every W-small l-type over
MNica M of cardinality <X is realized.

Lemma 9. (1) M <N iff for every Wesmall formula ¢(x; @) in M, (N, &)< M|,
(2} Suppose for every {olx, §), ¢(Fhe W there is 8{x, £} such that: f; F M is a model

of T, Megldl, and n<a, b, b, & (M, &) then for some Fe g, (M, W,
small), M, &=, ..., b} Then (T, XI\’I m;mf:w(izan& condition. (t: Suppose we
work in 8% (see 12, I, §671 ie. there are names for equivalence classes) and i
{o{x, I, W) e W, x, Elx, = u oz, Az, )= 0{xy, 2,. . J=8(x,, 2,, .. )], then
{Hax=x,/ES), ${ThHe W. Iiz e Chang condition holds.

it gy [EETIRIRI &

med in the proof of Chang’s two cardinal theorem, see e.g [31

Definition 18, Lot 7 be a complete first order theory. W a set of cardinality
witnesses in L{T). Fora ma‘f%ei Mof T, if <{x, v, & orders {x:(FyY<{x, v, O}, we
say <{x,y, &) has Wesmall cofinality if for some W-small formula @(x, b) in M
and 6(x, y,d), M sa,mﬁes.
Bvi<(xy, O {@)0x

8{x, z, @) @lz, b,

olz, u)-«~>(3*a}(<51v}\(‘@ ¥, ANV, 3, 8> 0{xy, 2, @)

arder theory
in L=L(T) |T]sA W a set of witnesses for L, W.=clp(W), and (’f W satisfies
Chang C(H"{fifitb‘}‘% Then T has amodel M satisfyirg

G) IMli=A", M is A-compact. '
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with fﬂwzm wrder propertics 1

lo{M, s :
?7 \{X. ¥y si} {)?‘ds"’f.s ‘,r y
<X i x{\: v ay has a Wesmall cofii

(V) if (&) = 1(& MY s a wos free In M, ond - < ﬁ;f’
zszeﬁm ble ﬁza;%{“n.

Remark. By [11, 2.2] Chang's conditions can

L by .‘;‘epsm {41 fo
=8 and frees i {
=5 8N8= 5 bi

]

surh that

Now we define by ind %u"?irzﬂx on <A mo

{AY M, has umiverse A{l+a) and s A-coz ;mac t for a ;

(B) for B<e Mg= W?vfm it deM, olxd) B not Wen
@e{M,, @} 7 oMy, &), and if <{x, v, &) orders WEMy My =Ey)<{x, v, 7
does not have Wesmall cofinality, then for some ae M, — M, for eve
w-\\u @, c)/\\% )* UZ, ,v)

{C) M, omits pg for n\a,

5'{)} 3, has mn form {a <% xae 8, when S, s a
is not defined in M, p, Is contradictory

u want).

@;S £

e

[
ety

’I‘her\d are no ditficulties: note that the fypes we owmit has the prope
<A formulas in the type there is aformula in the type inplying .:fi
2] '

i..':{'*’.i‘/‘"
Conclusion 11. If T is countable, W a set of cardinality witnesses, 2
conclusion of 10 holds without assuming V=1

Proot. By 10 and 16.

Theorem 12. (1) Suppose A is regular A7 =|T|, T a comp
Then T has a model of cardinatity A%, i which no tree
branch. :
{?} In the model above we can demand év
element, has cofinality A™, and if x = max{r:1AT

Proof. (1) For simiplicity we assume A 2|T]+N,. We cho
stationary sets Sy S{8<ATref 8 =2 far fatree (inL)ce
implies F&d. We dé:nne by indu ‘tz{m mz a< X’ 11«3035*1 z‘{ with universe A{1
such- that I :
{A) for B< a, My~ M};
{B} § 88, andin D
some-a & DEHE), My

ey, Mw there s w‘v {ast afiem
O Mg bb<" g for every be DifH
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fa#xaeMU{el i

o
]

S, Shelah

)i S<a, & a lmit poimt of Sy deDTEA, M) and  B=
{be DFHE), M) M Fb < ad is 2 branch of D,{(t(&), My), then it is definable in
M. :
Now M= {J,cro M, is as required; clearly IMl=A", suppose B is an un-
defined branch of some tree (& M), =y has cofinality A™. then §=
{a<A* (M., BOIMD < (M, B), £ M.} is closed snd unbounded, so some e S
is in S, and even a limit point of it, contradiction by (B) and ().

For e =0, o limit there are no problems. For a+1 of a¥ A or as 5., and

<5 has a last element (in ML) the proof is just easier than in the remaining ¢

However, in order to carry the proof, we have also 1o choose for each d& 84
which is a limit point of Sf{;\. elements al , (<A, n<w) in M;,, and demand
(D) if k<o, SO <8I < and {a2¥ o < X, n<w} are defined for Ik,
then for every e M, {o: for sach Ik {aS¥:n <w} is an indiscernible set over
ed unboundad subse ;

= My, and a<$®al, for
3 fe

&
-

FUat0 i< n<wll belongs to D, (mm‘.,iuw\ ;
£5 x

e [N ER NS

{E) each al, belongs to D,

s Afc‘; a ’J:\,G

a € D,{#(&), M;). So we assume M, is ddxxxed.. 5€ 8, =5 has no last element
(helow evervthing is modale CDM)).

We define by induction sets I} {i<<A| of formulas such that
{a) I} is a set of formulas from L{T) with paramsters from M, and only the
variables

.1 <<it appear in it;
i\jﬁ arj<iae M}U{b<{xs:8 dven, be D(1{&). M,)} is finitely

O intention is that if the awiumr*m x> ¢; satisfes [ o T i some N,
then M, <N, and the submodet of N with universe |M, | U{g: z\)& is suitable to
be M, {m ¢o shows B holds), We can take care of the requirements (D) (E) in
stages w e +n{n<w) as in [11, §1, §2] so we concentrate on the rsst. We have
naturally A assignmends, so we can fulfil all of their in A steps, provided we can do
it for each one. We assume below w.lo.g, i is odd.

sqquived for Tl we finish. Otherwise as (2), (€} cannot fail, (b)
1€ M.} U{g} is inconsistent (= not finitely satisfiable in M,).
t hence I'fUla¥#x:aeM,} is consistent hence I'fuJ
’sf, hence 7.=0 Uiel s as required.

{ll} M, <N: For this supposs Ex)e{s, § b)is a formula, Vediy j<ik By (D
we can assume (3x) elx. ¥, el sud we fistwry 1o define 11, as LU
{o(, 7. D), so . we  again can. asswine (b So l“*‘u {elx; ¥, BRU
lav x; a e M,} s inconsistent, so I H, e(d,F S =y for some n<w,.
aye M. If for some I, I't U{e(a, ¥, b)) is consistent. Lot it be [} 1, Otherwise we
get: I't is consistent, (@x)elx, ¥, B)e =1, s elx, 3, hE \[; s =Y, and
r=1e(a, ¥, b), for each [<n an easy contradmtmn‘

(HI) (C) {from the list of demandq on MY is sansimd we can assume iis edd

Now 1% is com

faals
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So iup}mgﬁ §=
that in the en d

: It {xm Fw is suitable, we
Fugtu{as xrae M, is inconsis
Asmimmy wlog It # closed uod
order, we can assume this F ite

m<n{£)U{a; <“§’x,{m\"ﬂm} gve E‘ft {z.;r‘f.}},

n{Ete M, e.ely, ace D@, M), o

E’IJ

g

U=, ¥ Hu{&)— 1<, and
number of g}'}) is }’?'2 - ¥,
[SFUME @, nd let (&) =n+1, let

"; Za ‘%"M?b E}:{f’ )}f\ ye ?4\8( ;/\ gm\d){
=YA {‘f;’);{.’a' T 55;.; o “}nz<‘n,r“—tm

r ,
PREA S RIS S ) N B o o .
2;\{1”‘.5“ 2By m{1, m{2y<n, r{(<sy<nl=3}
i
A A olxiox? vl Y A g') e DY s P 25 E
VA el X L XA A (R EIRIHEN A Eigmy |
el () rela{n) i HED i

Now

Fuct o For each §<<A, M, E(E™" 2)8(z, b.).

For suppose we have distinet z, e M (k=sa(#)) M, F0{z, b1, fo
k= k(0), 7.0 € {a] : 1< n} Looking at the definition o' 4, for this
as v the clement ag € Dy{(#(8), M) {see above) and we get that some
the long conjunction. Again, as the sets {xl,:m<n} for r<n{s
disjoint, at least one of them is disjoint to {af: < n}, say for r=r(0}.
get I'f is consistent (x17 (m<n), zup stand for xemim<n), &

note (1) = gl (;Gﬂ‘{r“{dmt{ﬂﬁ

Fact ;3: H M. < f“v £<A, the assigmment xj->¢ (<)
- R* () <5 @ p, and eiemﬁnt ¢ satzaf.ymg NER @(c)y= o ncsi®
&(M., be). ; ~
 Note that when b; ﬁ:i“”Rs““ic } sad} ce N exists and s uniqmz {by “whs
tree, hew:‘; If ¢c& M, the 3asrgnmwt Xiy™> Cigmy (M2 )X > ¢ shows [ s
tent contradiction: §¢ suppose ¢ € Ma, and we show ME ﬂ{(,, Bl The 4
conjunctions hold eaﬂiy solet ve e M, be Mbm'ars We now choose A;T{*
M, by induction on r, so that the rulc‘\f ant parm of the conjunction iold

s
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have defined up to ¢ in N there are suitable elements (o .. o) SO 83 M, <0
there are in M. . ‘

Fact v: T M, EO{z, VIAz SI9 2 ARz =y, then M, F{z,, y1).

Proof. Remember we assume that I'FU{d.}U{a# x; 1a e M,}) is inconsistent for
all £<A. ¢, is the disjunction of two formulas one a}f them is R¥“(x)<h, s0
FPU{R(x, )b Ulas x rae M} is inconsistent, as neither of the first tur
sets in this union contains a formula with X we can omif the 1ast set and still heve
an inconsistent set:

[=TUR D x,)<h

Look at the definition of (. z); by the inconsistency of I we can dmit there from
ixl, z, v) the second disjunct. is. replace o GARYD(z) =y,
No is clear that also z,, y; will satisfy {th i)
Now we almost finish, let &z v) be *&D AstdnnayeD {e{d))/\R“d‘{ ‘;_
y Ay, 20 (B(zn, v A 2T 2 A(F@908(x, v,). Tt is easy 1o check that 6(z, b
8,(z, i'a) are equivalent, 8, satisfies facts o, 8, v, and M, EVyE™2)8,(z, v). E};

fact viz{(Zv)8{z v)} form a subtree of :{s(d}, M;) and by faci 8 it suffices 1
prove ecach b*azaf,h of 15 intersection with M & deﬁﬁable in M;. As the number

of hram hes in =n this seems very reasonable.
y {D} the set A={beM:b=3b, for some £<A} is not definable in
M., o> & The important part of (D) is that it assures there are many a3, a3,
o in A m@ the other outside A and they belong ¢ an indiscernible set,
finable in M, fov o > 8, let us say by oy, ©), by (D) there is a sel
a5 . <<w} of indiscernibles over & {(and other pﬂf&ﬂlt&.lb) ajo€ A, a3, £ A, 5o
A0, €) but - :@(z‘t{;‘g £} a contradiction.
(1 hL other parts of (D) and (B) are needed to enable to keep the indiscernibility
ets through all the constinrtion, the way it is done and shown in [11].) For

[
Pt
o
e
u”'
e

8 (z) = @y)6:(z, "ff\ti'*’y"w\ i
Vy(3z, {}"ibm vy Ay ) 8,(zy, yodaz S {'“&1}}»

ok t“‘* for some yahqrif\fa} {ze M M, E6%2) A R¥D(z )%}Q}
the unicn of <=r chains, so each of them is definable in

Itia ﬁaqy 0 f'?

Mw and they are the by :

To be more concrete: N in {x:0%(x)} there arc no n-+1 pairwvise
incomparable elements (if there wers such nts we could find for big enongh
& continuations of them of weight by v have n+1 278 satisfying 60, by
contradicting fact &), Let us define by induction @nits seis A- xfﬁfia implies #%(x)
and there are no incomparable v, z satisfying 6™ so that x y and x*f”‘”z and
the elements of A; are pairwise incompar. able. We let Ay »7«@ ﬁ A s dgfmed we
check i there is an.x mcemmrabfe with all elements of A, and satisfyi ,if

q
]
H
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ach of the:'m wE »f'hx,a,k if it has Bue h incompa
than n--1 such steps we get 10 an elen ent w
have more thar @ incomparable element: satisfyir
Ay w g.*t AHL C ia 41'15, A,Wa /ﬁfx,m Een ba L

?/‘a

LT

i"fi ach

30 ew:r; bmmh g d z"nmh,
¥or a8 choove an element

we can get a maximal b satisfyi

2% L., 28 e 8(M,, vy) such that A" s z, =gl

braches, and by the induction hypothesis we £
We leave 1o the reader the proof
compactness totally makes no problem

model f F for 3\~2nq the pniformation of

w

Lenwoa 13, Suppose we are given countable sets A,
A # A, and countably many relations R{i< z@)
Fii<iy) from A, fo A, and functions F{i < i) from Al., toager O { ig, iy, !
such that

(%} If @Ro,....E"YY iz a comjunction of atomic formules (ie. Ry,
f“ﬁ. A ‘,} =¢ where c€ rg,,; and & ;_«_‘filfu W fgij and k= #,

Filye, .. et
Fapldin, ..., dae1] then there are n=m{k)<m{k+1)<.... and b«

{r’\,n(y.}.;)'“.ﬁim(i}} "'{}l‘ k=l<n such that %‘QD{Q(), cevy ety 5;{, e éi”v_,,;j

Then we can find countable sets 7 (w<a<m,) S.Jd? that A {a < »;)
creasing, A, .1 # A, and extend the definition of R, F, f, 1o A, =1
RiA, is the “old” Ry) such that, for every limit 8 < wy:

) if efo, . ... %ouy) s a conjunction of atomic formulas 0= <<all)<
coeZaln)< 8, GelAjen—Aan): and ksn and Foeld, ..., 8., thes
every ,{3>a(k) there are B<BR)<Blk+1)< <Bn—1)<8 and
{Aggen—Apay) (or k=1<<ny such that belde, . .., iy bes.o.., b

(B) if @< oy <8, GelA ‘z+1\"Aa<n} fé’{%ew vy Bl
BOY<- < By <, b, &(Aggan— Aa) such that Folby, ..., b, 4l

© I ol&V) is a disfunction of conjunciions  atomic  for ,
VMOEV) (X, ), then A, F (¥X)EVo(X, §), and if A, YT %(Eyjyfk, ¥y fo
n, then A EVDEDe(, ¥y for-each . o

(@ If ¢, (1<) are dlsmr(nam of mm’zmg‘tiens of atomic formuls, and the
following - holds for o= w, then it holds for a= ﬁh-‘ if € Agpnns o< oo <
alk)<a, A, hp{ag, IR ih”n ‘there are i <, b €A, q & Aa ney atch
that A, %‘ dildos by, Eos o] ‘
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Proof, Quite straightf@rwﬁrd, We define” te<<w{1HE) by il}uﬂfflﬁﬂ on & so
that (a), (), (c) are. satisfied. For £=0 (A, :a <w) is given, for £ limit (here is
nothing to prove. For £=p+1, we define by induction on the formulas,
u (XS . L X0 S0 which are conjunctions of atomic mrmum\, increasing with n.
fe. Pues Includes ¢,,, =, AT, Z. € Apen. and there are B{n) »wm{)k\,
alD)< .., &elAagin— Asn) Feulfo . .., &) We define them so that by esse
tially A, sy 18 Auase together with {x7:m <<a, I<n}.

Theorem 14, Ler M be a model with a countable language L. 1Y is an Ni-like tree
{i.e. Do{t, M) is Ny-like by =}, and for every acD.{t M), {b:R{bY=a} is
countable), then there is a model N, elementary equivalent to M in L{Q), and the
tree 1~ has no undefinable branches.

Proof, We work in a variant of LIQ): MEQe(E, 4) means that there are N,
pairwise disjoint sequences & such that MEo{l, a) (this can be ﬂ\'p °S€=>—d in
L{Q)). W.lo.e sach formula of this logic is equivalence in M to a predicate. So
we cen assume every formula is equivalent to an atomic formula. We c:},fms.e
elementlary submodels M, of M, M, <M, ., such that: (for every formula ¢)

(1} ¥ deM, MeT(Qxlelx, @), then oM, d) s M. :

(2 ¥ aeM, and MEQR)e(R @), then for some he(lM, [~ |M), Mk

[b. @l : :

We choose A, =|M,l, C=Q (the rationals) with the natural RB’s (from the
model}, and clearly {*) from 13 holds for formulas without fi's. We shall choose
¢, & Ih{t, M) —1M, ] and define a function f iwm lae D M) :@mR{a)=c,}
to Q, such that: if Ria,)= ¢, Rl =, ay <1{ ay, then flay) < flas), and fla) =
flazy iff for some h &|Mvd, and @, olx, Zﬂ tzfines a branch of the tree, and
a5, az€ @(M,, b). The point is tc do it such that (=) will still Hold.

We do it in @ stages, in the ath stage only ¢o, . . . ; ¢,—; Where chosen, and [ is
defined for finitely many instances, f(a) defined implies R{a)a{ce . .., Gk \‘%3
nave to sssure () from 13 holds {encoding the relations by mﬂumn\

| not difficult. Now we use Theorem 13, We get a sequence (A, a \mQ
and let N be | If ﬂme were an zmdcfm ad branch {a; 1i «m;) in N then
{Fla:y: :<w{‘> WOt arn m:msmg sequernice of Iangth @, in the rationals, a
contradiction. Using 13 it is not hard 1o see that N satisfies the other demands as
well. ‘

H
o
%
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