A Complete Boolean A Igebra That Has No Proper A tomless Complete Subalgebra

ThomasJech*
Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802

and
Saharon Shelah ${ }^{\dagger}$

School of Mathematics, The Hebrew University, Jerusalem, Israel, and Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Communicated by Leonard Lipshitz
R eceived July 11, 1995

> There exists a complete atomless Boolean algebra that has no proper atomless complete subalgebra. © 1996 A cademic Press, Inc.

An atomless complete Boolean algebra B is called simple [5] if it has no atomless complete subalgebra A such that $A \neq B$. We prove below that such an algebra exists.

The question whether a simple algebra exists was first raised in [8] where it was proved that B has no proper atomless complete subalgebra if and only if B is rigid and minimal. For more on this problem, see $[4 ; 5 ; 1$, p. 664].

Properties of complete Boolean algebras correspond to properties of generic models obtained by forcing with these algebra. (See [6, pp. 266-270]; we also follow [6] for notation and terminology of forcing and generic models.) When McA loon [7] constructed a generic model with all sets ordinally defined he noted that the corresponding complete Boolean algebra is rigid, i.e., admitting no nontrivial automorphisms. In [9] Sacks
*The first author was supported in part by an NSF Grant DM S-9401275. E-mail address:jech@ math.psu.edu.
${ }^{\dagger}$ The second author was partially supported by he U.S.- I srael Binational Science Foundation, Publication No. 566. E-mail address:shelah@ math.huji.ac.il.
gave a forcing construction of a real number of minimal degree of constructibility. A complete Boolean algebra B that adjoins a minimal set (over the ground model) is minimal in the following sense:

> If A is a complete atomless subalgebra of B then there exists a partition W of 1 such that for every $w \in W, A_{w}=B_{w}$, where $A_{w}=\{a \cdot w: a \in A\}$.

In [3], Jensen constructed, by forcing over L, a definable real number of minimal degree. J ensen's construction thus proves that in L there exists a rigid minimal complete Boolean algebra. This has been noted in [8] and observed that B is rigid and minimal if and only if it has no proper atomless complete subalgebra. McAloon then asked whether such an algebra can be constructed without the assumption that $V=L$. In [5] simple complete algebras are studied systematically, giving examples (in L) for all possible cardinalities.

In [10] Shelah introduced the (f, g)-bounding property of forcing and in [2] developed a method that modified Sacks' perfect tree forcing so that while one adjoins a minimal real, there remains enough freedom to control the (f, g)-bounding property. It is this method we use below to prove the following Theorem:

Theorem. There is a forcing notion \mathscr{P} that adjoins a real number g minimal over V and such that $B(\mathscr{P})$ is rigid.

Corollary. There exists a countably generated simple complete Boolean algebra.

The forcing notion \mathscr{P} consists of finitely branching perfect trees of height ω. In order to control the growth of trees $T \in \mathscr{P}$, we introduce a master tree \mathscr{T} such that every $T \in \mathscr{P}$ will be a subtree of \mathscr{T}. To define \mathscr{T}, we use the following fast growing sequences of integers $\left(P_{k}\right)_{k=0}^{\infty}$ and $\left(N_{k}\right)_{k=0}^{\infty}$:

$$
\begin{equation*}
P_{0}=N_{0}=1, \quad P_{k}=N_{0} \cdots \cdots N_{k-1}, \quad N_{k}=2^{P_{k}} \tag{2}
\end{equation*}
$$

(hence $N_{k}=1,2,4,256,2^{2^{11}}, \ldots$).
Definition. The master tree \mathscr{T} and the index function ind:
(i) $\mathscr{T} \subset[\omega]^{<\omega}$,
(ii) ind is a one-to-one function of \mathscr{T} onto ω,
(iii) ind $(\rangle)=0$,
(iv) if $s, t \in \mathscr{T}$ and length $(s)<\operatorname{length}(t)$ then ind $(s)<\operatorname{ind}(t)$,
(v) if $s, t \in \mathscr{T}$, length $(s)=$ length (t) and $s<_{\text {lex }} t$ then $\operatorname{ind}(s)$ $<\operatorname{ind}(t)$,
(vi) if $s \in \mathscr{T}$ and $\operatorname{ind}(s)=k$ then s has exactly N_{k} successors in \mathscr{T}, namely all $s \frown i, i=0, \ldots, N_{k}-1$.
The forcing notion \mathscr{P} is defined as follows:
Definition. \mathscr{P} is the set of all subtrees T of \mathscr{T} that satisfy the following:

> for every $s \in T$ and every m there exists some $t \in T, t \supset s$, such that t has at least $P^{m_{i n d}(t)}$ successors in T.
(We remark that $\mathscr{T} \in \mathscr{P}$ because for every m there is a K such that for all $k \geq K, P_{i}^{m} \leq 2^{P_{k}}=N_{k}$.)

When we need to verify that some T is in \mathscr{P} we find it convenient to replace (4) by an equivalent property:

Lemma. A tree $T \subseteq \mathscr{T}$ satisfies (4) if and only if
(i) every $s \in T$ has at least one successor in T,
(ii) for every n, if $\operatorname{ind}(s)=n$ and $s \in T$ then there exists a k such that if $\operatorname{ind}(t)=k$ then $t \in T, t \supset s$, and thas at least $P^{n}{ }_{k}$ successors in T.

Proof. To see that (5) is sufficient, let $s \in T$ and let m be arbitrary. Find some $\bar{s} \in T$ such that $\bar{s} \supset s$ and $\operatorname{ind}(\bar{s}) \geq m$, and apply (5)(ii).

The forcing notion \mathscr{P} is partially ordered by inclusion. A standard forcing argument shows that if G is a generic subset of \mathscr{P} then $V[G]=$ $V[g]$ where g is the generic branch, i.e., the unique function $g: \omega \rightarrow \omega$ whose initial segments belong to all $T \in G$. We shall prove that the generic branch is minimal over V, and that the complete Boolean algebra $B(\mathscr{P})$ admits no nontrivial automorphisms.

First we introduce some notation needed in the proof:

$$
\begin{equation*}
\text { For every } k, s_{k} \text { is the unique } s \in \mathscr{T} \text { such that } \operatorname{ind}(s)=k \text {. } \tag{6}
\end{equation*}
$$

If T is a tree then $s \in \operatorname{trunk}(T)$ if for all $t \in T$, either $s \subseteq t$ or $t \subseteq s$.

If T is a tree and $a \in T$ then $(T)_{a}=\{s \in T: s \subseteq a$ or $a \subseteq s\}$.
Note that if $T \in \mathscr{P}$ and $a \in T$ then $(T)_{a} \in \mathscr{P}$. We shall use repeatedly the following technique:

Lemma. Let $T \in \mathscr{P}$ and, let l be an integer and let $U=T \cap \omega^{l}$ (the lth level of T). Let \dot{x} be a name for some set in V. For each $A \in U$ let $T_{a} \subseteq(T)_{a}$ and x_{a} be such that $T_{a} \in \mathscr{P}$ and $T_{a} \vdash \dot{x}=x_{a}$.

Then $T^{\prime}=\bigcup\left\{T_{a}: a \in U\right\}$ is in $\mathscr{P}, T^{\prime} \subseteq T, T^{\prime} \cap \omega^{l}=T \cap \omega^{l}=U$, and $T^{\prime} \vdash \dot{x} \in\left\{x_{a}: a \in U\right\}$.

We shall combine this with fusion, in the form stated below:
Lemma. Let $\left(T_{n}\right)_{n=0}^{\infty}$ and $\left(l_{n}\right)_{n=0}^{\infty}$ be such that each T_{n} is in $\mathscr{P}, T_{0} \supseteq$ $T_{1} \supseteq \cdots \supseteq T_{n} \supseteq \ldots, l_{0}<l_{1}<\cdots<l_{n}<\ldots, T_{n+1} \cap \omega^{l_{n}}=T_{n} \cap \omega^{l_{n}}$, and such that
for every n, if $s_{n} \in T_{n}$ then there exists some $t \in T_{n+1}, t \supset s_{n}$, with length $(t)<l_{n+1}$, such that thas at least $P^{n}{ }_{\text {ind }(t)}$ successors in T_{n+1}.

Then $T=\bigcap_{n=0}^{\infty} T_{n} \in \mathscr{P}$.
Proof. To see that T satisfies (5), note that if $s_{n} \in T$ then $s_{n} \in T_{n}$, and the node t found by (9) belongs to T.

We shall now prove that the generic branch is minimal over V :
Lemma. If $X \in V[G]$ is a set of ordinals, then either $X \in V$ or $G \in V[X]$.
Proof. The proof is very much like the proof for Sacks' forcing. Let \dot{X} be a name for X and let $T_{0} \in \mathscr{P}$ force that \dot{X} is not in the ground model. Hence for every. $T \leq T_{0}$ there exist $T^{\prime}, T^{\prime \prime} \leq T$ and an ordinal α such that $T^{\prime} \Vdash \alpha \in X$ and $T^{\prime \prime} \Vdash \alpha \notin X$. Consequently, for any $T_{1} \leq T$ and $T_{2} \leq T$ there exisst $T_{1}^{\prime} \leq T_{1}$ and $T_{2}^{\prime} \leq T_{2}$ and an α such that both T_{1}^{\prime} and T_{2}^{\prime} decide " $\alpha \in \dot{X}$ " and $T_{1}^{\prime} \Vdash \alpha \in \dot{X}$ if and only if $T_{2}^{\prime} \Vdash \alpha \notin \dot{X}$.

Inductively, we construct $\left(T_{n}\right)_{n=0}^{\infty},\left(l_{n}\right)_{n=0}^{\infty}, U_{n}=T_{n} \cap \omega^{l_{n}}$, and ordinals $\alpha(a, b)$ for all $a, b \in U_{n}, a \neq b$, such that
(i) $T_{n} \in \mathscr{P}$ and $T_{0} \supseteq T_{1} \supseteq \cdots \supseteq T_{n} \supseteq \cdots$,
(ii) $l_{0}<l_{1}<\cdots<l_{n}<\cdots$,
(iii) $T_{n+1} \cap \omega^{l_{n}}=T_{n} \cap \omega^{l_{n}}=U_{n}$,
(iv) for every n, if $s_{n} \in T_{n}$ then there exists some $t \in T_{n+1}$, $t \supset s_{n}$, with length $(t)<l_{n+1}$, such that t has at least $P^{n}{ }_{\text {ind }(t)}$ successors in T_{n+1},
(v) for every n, for all $a, b \in U_{n}$, if $a \neq b$ then both $\left(T_{n}\right)_{a}$ and $\left(T_{n}\right)_{b}$ decide " $\alpha(a, b) \in \dot{X}$ " and $\left(T_{n}\right)_{a} \Vdash \alpha(a, b) \in X$ if and only if $\left(T_{n}\right)_{b} \Vdash \alpha(a, b) \in X$.
When such a sequence has been constructed, we let $T=\bigcap_{n=0}^{\infty} T_{n}$. As (9) is satisfied, we have $T \in \mathscr{P}$ and $T \leq T_{0}$. If G is a generic such that $T \in G$ and if X is the G-interpretation of X then the generic branch g is in $V[X]$: for every $n, g \upharpoonright l_{n}$ is the unique $a \in U_{n}$ with the property that for every $b \in U_{n}, b \neq a, \alpha(a, b) \in X$ if and only if $(T)_{a} \Vdash \alpha(a, b) \in X$.

To construct $\left(T_{n}\right)_{n=0}^{\infty},\left(l_{n}\right)_{n=0}^{\infty}$, and $\alpha(a, b)$, we let $l_{0}=0$ (hence $U_{0}=$ $\left\{s_{0}\right\}$) and proceed by induction. H aving constructed T_{n} and l_{n}, we first find $l_{n+1}>l_{n}$ as follows: If $s_{n} \in T_{n}$, we find $t \in T_{n}, t \supset s_{n}$, such that t has at least $P^{n}{ }_{i n d(t)}$ successors in T_{n}. Let $l_{n+1}=$ length $(t)+1$. (If $s_{n} \notin T_{n}$, let $l_{n+1}=l_{n}+1$.) Let $U_{n+1}=T_{n} \cap \omega^{l_{n+1}}$.

Next we consider, in succession, all pairs $\{a, b\}$ of district elements of U_{n+1}, eventually constructing conditions $T_{a}, a \in U_{n+1}$, and ordinals $\alpha(a, b)$, $a, b \in U_{n+1}$, such that for all $a, T_{a} \leq\left(T_{n}\right)_{a}$ and if $a \neq b$ then either $T_{a} \Vdash \alpha(a, b) \in \dot{X}$ and $T_{b} \Vdash \alpha(a, b) \notin \dot{X}$, or $T_{a} \Vdash \alpha(a, b) \notin \dot{X}$ and $T_{b} \Vdash$ $\alpha(a, b) \in \dot{X}$. Finally, we let $T_{n+1}=\bigcup\left\{T_{a}: a \in U_{n+1}\right\}$. It follows that $\left(T_{n}\right)_{n=0}^{\infty},\left(l_{n}\right)_{n=0}^{\infty}$, and $\alpha(a, b)$ satisfy (10).

Let B be the complete Boolean algebra $B(\mathscr{P})$. We shall prove that B is rigid. Toward a contradiction, assume that there exists an automorphism π of B that is not the identity. First, there is some $u \in B$ such that $\pi(u) \cdot u=0$. Let $p \in \mathscr{P}$ be such that $p \leq u$ and let $q \in \mathscr{P}$ be such that $q \leq \pi(p)$. Since $q \nless p$, there is some $s \in q$ such that $s \notin p$. Let $T_{0}=(q)_{s}$.

Note that for all $t \in T_{0}$, if $t \supseteq s$ then $t \notin p$. Let

$$
A=\{\operatorname{ind}(t): t \in p\}
$$

and consider the following property $\varphi(x)$ (with parameters in V):

$$
\begin{align*}
& \varphi(x) \leftrightarrow \text { if } x \text { is a function from } A \text { into } \omega \text { such that } x(k)<N_{k} \\
& \text { for all } k \text {, then there exists a function } u \text { on } A \text { in the ground } \\
& \text { model } V \text { such that the values of } u \text { are finite sets of integers } \tag{11}\\
& \text { and for every } k \in A, u(k) \subseteq\left\{0, \ldots, N_{k}-1\right\} \text { and }|u(k)| \\
& \leq P_{k} \text {, and } x(k) \in u(k) \text {. }
\end{align*}
$$

We will show that

$$
\begin{equation*}
p \Vdash \exists x \neg \varphi(x), \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { there exists a } T \leq T_{0} \text { such that } T \Vdash \forall x \varphi(x) \text {. } \tag{13}
\end{equation*}
$$

This will yield a contradiction: the Boolean value of the sentence $\exists x \neg \varphi(x)$ is preserved by π, and so

$$
T_{0} \leq q \leq \pi(p) \leq \pi(\|\exists x \neg \varphi(x)\|)=\|\exists x \neg \varphi(x)\|,
$$

contradicting (13).

In order to prove (12), consider the following (name for a) function $\dot{x}: A \rightarrow \omega$. For every $k \in A$, let

$$
\dot{x}(k)=\dot{g}\left(\text { length }\left(s_{k}\right)+1\right) \text { if } s_{k} \subset \dot{g}, \quad \text { and } \quad \dot{x}(k)=0 \text { otherwise. }
$$

Now if $p_{1}<p$ and $u \in V$ is a function on A such that $u(k) \subseteq\{0, \ldots$, $\left.N_{k}-1\right\}$ and $|u(k)| \leq P_{k}$ then there exists a $p_{2}<p_{1}$ and some $k \in A$ such that $s_{k} \in p_{2}$ has at least P_{k}^{2} successors, and there exist in turn a $p_{3}<p_{2}$ and some $i \notin u(k)$ such that $s_{k} \cap i \in \operatorname{trunk}\left(p_{3}\right)$. Clearly, $p_{3} \vdash \dot{x}(k) \notin$ $u(k)$.

Property (13) will follow from this lemma:
Lemma. Let $T_{1} \leq T_{0}$ and \dot{x} be such that T_{1} forces that \dot{x} is a function from A into ω such that $x(k)<N_{k}$ for all $k \in A$. There exists sequences $\left(T_{n}\right)_{n=1}^{\infty},\left(l_{n}\right)_{n=1}^{\infty},\left(j_{n}\right)_{n=1}^{\infty},\left(U_{n}\right)_{n=1}^{\infty}$ and sets $z_{a}, a \in U_{n}$, such that
(i) $T_{n} \in \mathscr{P}$ and $T_{1} \supseteq T_{2} \supseteq \cdots \supseteq T_{n} \supseteq \cdots$,
(ii) $l_{1}<l_{2}<\cdots<l_{n}<\cdots$,
(iii) $T_{n+1} \cap \omega^{l_{n}}=T_{n} \cap \omega^{l_{n}}=U_{n}$,
(iv) for every n, if $s_{n} \in T_{n}$ then there exists some $t \in T_{n+1}, t \supset s_{n}$, with length $(t)<l_{n+1}$, such that t has at least $P^{n}{ }_{\text {ind }(t)}$ successors in T_{n+1},
(v) $j_{1}<j_{2}<\cdots<j_{n}<\ldots$,
(vi) for every $a \in U_{n},\left(T_{n}\right)_{a} \Vdash\left\langle\dot{x}(k): k \in A \cap j_{n}\right\rangle=z_{a}$,
(vii) for every $k \in A$, if $k \geq j_{n}$ then $\left|U_{n}\right|<P_{k}$,
(viii) for every $k \in A$, if $k<j_{n}$ then $\left|\left\{z_{a}(k): a \in U_{n}\right\}\right| \leq P_{k}$.

Granted this lemma, (13) will follow: If we let $T=\bigcap_{n=1}^{\infty} T_{n}$, then $T \in \mathscr{P}$ and $T \leq T_{1}$ and for every $k \in A, T \Vdash \dot{x}(k) \in u(k)$ where $u(k)=\left\{z_{a}(k)\right.$: $\left.a \in U_{n}\right\}$ (for any and all $n>k$).

Proof of Lemma. We let $l_{1}=j_{1}=$ length $(s), U_{1}=\{s\}$, and strengthen T_{1} if necessary so that T_{1} decides $\left\langle\dot{x}(k): k \in A \cap j_{1}\right\rangle$, and let z_{s} be the decided value. We also assume that length $(s) \geq 2$ so that $\left|U_{1}\right|=1<P_{k}$ for every $k \in A, k \geq j_{1}$. Then we proceed by induction.

H aving constructed T_{n}, l_{n}, j_{n}, etc., we first find $l_{n+1}>l_{n}$ and $j_{n+1}>j_{n}$ as follows: If $s_{n} \notin T_{n}$ (Case I), we let $l_{n+1}=l_{n}+1$ and $j_{n+1}=j_{n}+1$. Thus assume that $s_{n} \in T_{n}$ (Case II).

Since length $\left(s_{n}\right) \leq n \leq l_{n}$, we choose some $v_{n} \in U_{n}$ such that $s_{n} \subseteq v_{n}$. By (4) there exists some $t \in T_{n}, t \supset v_{n}$, so that if ind $(t)=m$ then t has at least P_{m}^{n+1} successors in T_{n}. Moreover we choose t so that $m=\operatorname{ind}(t)$ is big enough so that there is at least one $k \in A$ such that $j_{n} \leq k<m$. We let $l_{n+1}=\operatorname{length}(t)+1$ and $j_{n+1}=m=\operatorname{ind}(t)$.

N ext we construct $U_{n+1},\left\{z_{a}: a \in U_{n+1}\right\}$, and T_{n+1}. In Case I, we choose for each $u \in U_{n}$ some successor $a(u)$ of u and let $U_{n+1}=\left\{a(u): u \in U_{n}\right\}$. For every $a \in U_{n+1}$ we find some $T_{a} \subseteq\left(T_{n}\right)_{a}$ and z_{a} so that $T_{a} \Vdash\langle\dot{x}(k)$: $\left.k \in A \cap j_{n+1}\right\rangle=z_{a}$, and let $T_{n+1}=\bigcup\left\{T_{a}: a \in U_{n+1}\right\}$. In this case $\left|U_{n+1}\right|=$ $\left|U_{n}\right|$ and so (vii) holds for $n+1$ as well, while (viii) for $n+1$ follows either from (viii) or from (vii) for n (the latter if $j_{n} \in A$).

Thus consider Case II. For each $u \in U_{n}$ other than v_{n} we choose some $a(u) \in T_{n}$ of length l_{n+1} such that $a(u) \supset u$, and find some $T_{a(u)} \subseteq\left(T_{n}\right)_{a(u)}$ and $z_{a(u)}$ so that $T_{a(u)} \Vdash\langle\dot{x}(k): k \in A \cap m\rangle=z_{a(u)}$.

Let S be the set of all successors of t (which has been chosen so that $|S| \geq P_{m}^{n+1}$ where $m=\operatorname{ind}(t)$); every $a \in S$ has length l_{n+1}. For each $a \in S$ we choose $T_{a} \subseteq\left(T_{n}\right)_{a}$ and z_{a}, so that $T_{a} \Vdash\langle\dot{x}(k): k \in A \cap m\rangle=z_{a}$. If we denote $K=\max (A \cap m)$ then we have

$$
\left|\left\{z_{a}: a \in S\right\}\right| \leq \prod_{i \in A \cap m} N_{i} \leq \prod_{i=0}^{K} N_{i}=P_{K+1} \leq P_{m}
$$

while $|S| \geq P_{m}^{n+1}$. Therefore there exists a set $U \subset S$ of size $P_{m}{ }^{n}$ such that for every $a \in U$ the set z_{a} is the same. Therefore if we let

$$
U_{n+1}=U \cup\left\{a(u): u \in U_{n}-\left\{v_{n}\right\}\right\},
$$

and $T_{n+1}=\bigcup\left\{T_{a}: a \in U_{n+1}\right\}, T_{n+1}$ satisfies property (iv). It remains to verify that (vii) and (viii) hold.

To verify (vii), let $k \in A$ be such that $k \geq j_{n+1}=m$. Since $m=\operatorname{ind}(t)$, we have $m \notin A$ and so $k>m$. Let $K \in A$ be such that $j_{n} \leq K<m$. Since $\left|U_{n}\right|<P_{K}$, we have

$$
\left|U_{n+1}<\left|U_{n}\right|+|U|<P_{K}+N_{m}<P_{m} \cdot N_{m}=P_{m+1} \leq P_{k} .\right.
$$

To verify (viii), it suffices to consider only those $k \in A$ such that $j_{n} \leq k<m$. But then $\left|U_{n}\right|<P_{k}$ and we have

$$
\left|\left\{z_{a}(k): a \in U_{n+1}\right\}\right| \leq\left|\left\{z_{a}: a \in U_{n+1}\right\}\right| \leq\left|U_{n}\right|+1 \leq P_{k} .
$$

REFERENCES

1. M. Bekkali and R. Bonnett, Rigid Boolean algebras, in "H andbook of Boolean A Igebras" (J. D. M onk, Ed.), V ol. 2, pp. 637-678.
2. M. Goldstern and S. Shelah, M any simple cardinal invariants, Arch. Math. Logic 32 (1993), 203-221.
3. R. B. Jensen, Definable sets of minimal degrees in "M athematical Logic and Foundations of Set Theory" (Y . Bar-H illel, Ed.), pp. 122-128, N orth-H olland, A msterdam, 1970.
4. T. Jech, A propos d'algèbres de Boole rigides et minimales, C. R. Acad. Sci. Paris Sér. A 274 (1972), 371-372.
5. T. J ech, Simple complete Boolean algebras, Israel J. Math. 18 (1974), 1-10.
6. T. Jech, "Set Theory," A cademic Press, New Y ork, 1978.
7. K. M cA loon, Consistency results about ordinal definability, Ann. Math. Logic 2 (1971), 449-467.
8. K. M cAloon, Les algèbres de Boole rigides et minimales, C. R. Acad. Sci. Paris Sér. A 272 (1971), 89-91.
9. G. Sacks, Forcing with perfect closed sets, in "A xiomatic Set Theory" (D. Scott, E d.), pp. 331-355, Proc. Symp. Pure M ath., V ol. 13, I, A mer. M ath. Soc., Providence, 1971.
10. S. Shelah, Vive la différence. I. Nonisomorphism of ultrapowers of countable models, in "Set Theory of the Continuum" (H. Judah et al., Eds.), pp. 357-405, M SRI, SpringerV erlag, New Y ork/Berlin, 1992.
