JOURNAL OF ALGEBRA **182,** 748-755 (1996) ARTICLE NO. **0199**

A Complete Boolean Algebra That Has No Proper Atomless Complete Subalgebra

Thomas Jech*

Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802

and

Saharon Shelah[†]

School of Mathematics, The Hebrew University, Jerusalem, Israel, and Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Communicated by Leonard Lipshitz

Received July 11, 1995

There exists a complete atomless Boolean algebra that has no proper atomless complete subalgebra. © 1996 Academic Press, Inc.

An atomless complete Boolean algebra *B* is called *simple* [5] if it has no atomless complete subalgebra *A* such that $A \neq B$. We prove below that such an algebra exists.

The question whether a simple algebra exists was first raised in [8] where it was proved that B has no proper atomless complete subalgebra if and only if B is *rigid* and *minimal*. For more on this problem, see [4; 5; 1, p. 664].

Properties of complete Boolean algebras correspond to properties of generic models obtained by forcing with these algebra. (See [6, pp. 266-270]; we also follow [6] for notation and terminology of forcing and generic models.) When McAloon [7] constructed a generic model with all sets ordinally defined he noted that the corresponding complete Boolean algebra is *rigid*, i.e., admitting no nontrivial automorphisms. In [9] Sacks

*The first author was supported in part by an NSF Grant DMS-9401275. E-mail address:jech@math.psu.edu.

[†]The second author was partially supported by he U.S.–Israel Binational Science Foundation, Publication No. 566. E-mail address:shelah@math.huji.ac.il.

0021-8693/96 \$18.00

gave a forcing construction of a real number of minimal degree of constructibility. A complete Boolean algebra B that adjoins a minimal set (over the ground model) is *minimal* in the following sense:

If A is a complete atomless subalgebra of B then there exists a partition W of 1 such that for every $w \in W$, $A_w = B_w$, (1) where $A_w = \{a \cdot w : a \in A\}$.

In [3], Jensen constructed, by forcing over L, a definable real number of minimal degree. Jensen's construction thus proves that in L there exists a rigid minimal complete Boolean algebra. This has been noted in [8] and observed that B is rigid and minimal if and only if it has no proper atomless complete subalgebra. McAloon then asked whether such an algebra can be constructed without the assumption that V = L. In [5] simple complete algebras are studied systematically, giving examples (in L) for all possible cardinalities.

In [10] Shelah introduced the (f, g)-bounding property of forcing and in [2] developed a method that modified Sacks' perfect tree forcing so that while one adjoins a minimal real, there remains enough freedom to control the (f, g)-bounding property. It is this method we use below to prove the following Theorem:

THEOREM. There is a forcing notion \mathcal{P} that adjoins a real number g minimal over V and such that $B(\mathcal{P})$ is rigid.

COROLLARY. There exists a countably generated simple complete Boolean algebra.

The forcing notion \mathscr{P} consists of finitely branching perfect trees of height ω . In order to control the growth of trees $T \in \mathscr{P}$, we introduce a *master tree* \mathscr{T} such that every $T \in \mathscr{P}$ will be a subtree of \mathscr{T} . To define \mathscr{T} , we use the following fast growing sequences of integers $(P_k)_{k=0}^{\infty}$ and $(N_k)_{k=0}^{\infty}$:

$$P_0 = N_0 = 1, \qquad P_k = N_0 \cdot \dots \cdot N_{k-1}, \qquad N_k = 2^{P_k}$$
 (2)

(hence $N_k = 1, 2, 4, 256, 2^{2^{11}}, \dots$).

DEFINITION. The master tree \mathcal{T} and the index function ind:

- (i) $\mathscr{T} \subset [\omega]^{<\omega}$,
- (ii) ind is a one-to-one function of \mathcal{T} onto ω ,
- (iii) ind $(\langle \rangle) = 0$,
- (iv) if $s, t \in \mathcal{T}$ and length(s) < length(t) then ind(s) < ind(t),
- (v) if $s, t \in \mathcal{T}$, length(s) = length(t) and $s <_{lex} t$ then ind(s) (3) < ind(t),

(vi) if $s \in \mathcal{T}$ and ind(s) = k then s has exactly N_k successors in \mathcal{T} , namely all $s \cap i$, $i = 0, ..., N_k - 1$.

The forcing notion \mathcal{P} is defined as follows:

DEFINITION. \mathscr{P} is the set of all subtrees T of \mathscr{T} that satisfy the following:

for every $s \in T$ and every *m* there exists some $t \in T$, $t \supset s$, such that *t* has at least $P^{m}_{ind(t)}$ successors in *T*. (4)

(We remark that $\mathcal{T} \in \mathcal{P}$ because for every *m* there is a *K* such that for all $k \ge K$, $P_i^m \le 2^{P_k} = N_k$.)

When we need to verify that some T is in \mathscr{P} we find it convenient to replace (4) by an equivalent property:

LEMMA. A tree $T \subseteq \mathcal{T}$ satisfies (4) if and only if

- (i) every $s \in T$ has at least one successor in T,
- (ii) for every n, if ind(s) = n and $s \in T$ then there exists a k such that if ind(t) = k then $t \in T$, $t \supset s$, and t has at least P_k^n successors in T. (5)

Proof. To see that (5) is sufficient, let $s \in T$ and let *m* be arbitrary. Find some $\bar{s} \in T$ such that $\bar{s} \supset s$ and $ind(\bar{s}) \ge m$, and apply (5)(ii).

The forcing notion \mathscr{P} is partially ordered by inclusion. A standard forcing argument shows that if *G* is a generic subset of \mathscr{P} then V[G] = V[g] where *g* is the *generic branch*, i.e., the unique function $g: \omega \to \omega$ whose initial segments belong to all $T \in G$. We shall prove that the generic branch is minimal over *V*, and that the complete Boolean algebra $B(\mathscr{P})$ admits no nontrivial automorphisms.

First we introduce some notation needed in the proof:

For every k,
$$s_k$$
 is the unique $s \in \mathscr{T}$ such that $ind(s) = k$. (6)

If *T* is a tree then $s \in \text{trunk}(T)$ if for all $t \in T$, either $s \subseteq t$ or $t \subseteq s$.

If T is a tree and $a \in T$ then $(T)_a = \{s \in T : s \subseteq a \text{ or } a \subseteq s\}$. (8)

Note that if $T \in \mathscr{P}$ and $a \in T$ then $(T)_a \in \mathscr{P}$. We shall use repeatedly the following technique:

LEMMA. Let $T \in \mathscr{P}$ and, let l be an integer and let $U = T \cap \omega^l$ (the lth level of T). Let \dot{x} be a name for some set in V. For each $A \in U$ let $T_a \subseteq (T)_a$ and x_a be such that $T_a \in \mathscr{P}$ and $T_a \vdash \dot{x} = x_a$.

Then $T' = \bigcup \{T_a: a \in U\}$ is in $\mathscr{P}, T' \subseteq T, T' \cap \omega^l = T \cap \omega^l = U$, and $T' \vdash \dot{x} \in \{x_a: a \in U\}.$

We shall combine this with *fusion*, in the form stated below:

LEMMA. Let $(T_n)_{n=0}^{\infty}$ and $(l_n)_{n=0}^{\infty}$ be such that each T_n is in \mathscr{P} , $T_0 \supseteq T_1 \supseteq \cdots \supseteq T_n \supseteq \ldots, l_0 < l_1 < \cdots < l_n < \ldots, T_{n+1} \cap \omega^{l_n} = T_n \cap \omega^{l_n}$, and such that

for every *n*, if $s_n \in T_n$ then there exists some $t \in T_{n+1}, t \supset s_n$, with length $(t) < l_{n+1}$, such that *t* has at least $P^n_{ind(t)}$ successors in T_{n+1} . (9)

Then $T = \bigcap_{n=0}^{\infty} T_n \in \mathscr{P}$.

Proof. To see that T satisfies (5), note that if $s_n \in T$ then $s_n \in T_n$, and the node t found by (9) belongs to T.

We shall now prove that the generic branch is minimal over V:

LEMMA. If $X \in V[G]$ is a set of ordinals, then either $X \in V$ or $G \in V[X]$.

Proof. The proof is very much like the proof for Sacks' forcing. Let \dot{X} be a name for X and let $T_0 \in \mathscr{P}$ force that \dot{X} is not in the ground model. Hence for every $T \leq T_0$ there exist $T', T'' \leq T$ and an ordinal α such that $T' \Vdash \alpha \in \dot{X}$ and $T'' \vDash \alpha \notin \dot{X}$. Consequently, for any $T_1 \leq T$ and $T_2 \leq T$ there exist $T'_1 \leq T_1$ and $T'_2 \leq T_2$ and an α such that both T'_1 and T'_2 decide " $\alpha \in \dot{X}$ " and $T'_1 \Vdash \alpha \in \dot{X}$ if and only if $T'_2 \Vdash \alpha \notin \dot{X}$.

Inductively, we construct $(T_n)_{n=0}^{\infty}$, $(l_n)_{n=0}^{\infty}$, $U_n = T_n \cap \omega^{l_n}$, and ordinals $\alpha(a, b)$ for all $a, b \in U_n$, $a \neq b$, such that

- (i) $T_n \in \mathscr{P}$ and $T_0 \supseteq T_1 \supseteq \cdots \supseteq T_n \supseteq \ldots$,
- (ii) $l_0 < l_1 < \cdots < l_n < \cdots$,
- (iii) $T_{n+1} \cap \omega^{l_n} = T_n \cap \omega^{l_n} = U_n$,
- (iv) for every *n*, if $s_n \in T_n$ then there exists some $t \in T_{n+1}$, $t \supset s_n$, with length $(t) < l_{n+1}$, such that *t* has at least $P^n_{ind(t)}$ successors in T_{n+1} , (10)
- (v) for every *n*, for all $a, b \in U_n$, if $a \neq b$ then both $(T_n)_a$ and $(T_n)_b$ decide " $\alpha(a, b) \in \dot{X}$ " and $(T_n)_a \Vdash \alpha(a, b) \in X$ if and only if $(T_n)_b \Vdash \alpha(a, b) \in \dot{X}$.

When such a sequence has been constructed, we let $T = \bigcap_{n=0}^{\infty} T_n$. As (9) is satisfied, we have $T \in \mathscr{P}$ and $T \leq T_0$. If *G* is a generic such that $T \in G$ and if *X* is the *G*-interpretation of \dot{X} then the generic branch *g* is in V[X]: for every $n, g \upharpoonright l_n$ is the unique $a \in U_n$ with the property that for every $b \in U_n$, $b \neq a$, $\alpha(a, b) \in X$ if and only if $(T)_a \Vdash \alpha(a, b) \in \dot{X}$.

To construct $(T_n)_{n=0}^{\infty}$, $(l_n)_{n=0}^{\infty}$, and $\alpha(a, b)$, we let $l_0 = 0$ (hence $U_0 =$ $\{s_0\}$) and proceed by induction. Having constructed T_n and l_n , we first find $l_{n+1} > l_n$ as follows: If $s_n \in T_n$, we find $t \in T_n$, $t \supset s_n$, such that t has at least $P^n_{ind(t)}$ successors in T_n . Let $l_{n+1} = length(t) + 1$. (If $s_n \notin T_n$, let $l_{n+1} = l_n + 1$.) Let $U_{n+1} = T_n \cap \omega^{l_{n+1}}$.

Next we consider, in succession, all pairs $\{a, b\}$ of district elements of U_{n+1} , eventually constructing conditions T_a , $a \in U_{n+1}$, and ordinals $\alpha(a, b)$, $a, b \in U_{n+1}$, such that for all $a, T_a \leq (T_n)_a$ and if $a \neq b$ then either $T_a \Vdash \alpha(a, b) \in \dot{X}$ and $T_b \Vdash \alpha(a, b) \notin \dot{X}$, or $T_a \Vdash \alpha(a, b) \notin \dot{X}$ and $T_b \Vdash$ $\alpha(a,b) \in \dot{X}$. Finally, we let $T_{n+1} = \bigcup \{T_a: a \in U_{n+1}\}$. It follows that $(T_n)_{n=0}^{\infty}, (l_n)_{n=0}^{\infty}, \text{ and } \alpha(a, b) \text{ satisfy (10).}$

Let *B* be the complete Boolean algebra $B(\mathcal{P})$. We shall prove that *B* is rigid. Toward a contradiction, assume that there exists an automorphism π of B that is not the identity. First, there is some $u \in B$ such that $\pi(u) \cdot u = 0$. Let $p \in \mathscr{P}$ be such that $p \leq u$ and let $q \in \mathscr{P}$ be such that $q \leq \pi(p)$. Since $q \leq p$, there is some $s \in q$ such that $s \notin p$. Let $T_0 = (q)_s$.

Note that for all $t \in T_0$, if $t \supseteq s$ then $t \notin p$. Let

$$A = \{ \operatorname{ind}(t) \colon t \in p \},\$$

and consider the following property $\varphi(x)$ (with parameters in V):

 $\varphi(x) \leftrightarrow \text{if } x \text{ is a function from } A \text{ into } \omega \text{ such that } x(k) < N_k$ for all k, then there exists a function u on A in the ground model V such that the values of u are finite sets of integers (11)and for every $k \in A$, $u(k) \subseteq \{0, \dots, N_k - 1\}$ and |u(k)| $\leq P_k$, and $x(k) \in u(k)$.

We will show that

$$p \Vdash \exists x \neg \varphi(x), \tag{12}$$

and

there exists a
$$T \le T_0$$
 such that $T \Vdash \forall x \varphi(x)$. (13)

This will yield a contradiction: the Boolean value of the sentence $\exists x \neg \varphi(x)$ is preserved by π , and so

$$T_0 \le q \le \pi(p) \le \pi(\|\exists x \neg \varphi(x)\|) = \|\exists x \neg \varphi(x)\|,$$

contradicting (13).

In order to prove (12), consider the following (name for a) function $\dot{x}: A \to \omega$. For every $k \in A$, let

$$\dot{x}(k) = \dot{g}(\text{length}(s_k) + 1) \text{ if } s_k \subset \dot{g}, \text{ and } \dot{x}(k) = 0 \text{ otherwise.}$$

Now if $p_1 < p$ and $u \in V$ is a function on A such that $u(k) \subseteq \{0, \ldots, N_k - 1\}$ and $|u(k)| \le P_k$ then there exists a $p_2 < p_1$ and some $k \in A$ such that $s_k \in p_2$ has at least P_k^2 successors, and there exist in turn a $p_3 < p_2$ and some $i \notin u(k)$ such that $s_k \cap i \in \text{trunk}(p_3)$. Clearly, $p_3 \vdash \dot{x}(k) \notin u(k)$.

Property (13) will follow from this lemma:

LEMMA. Let $T_1 \leq T_0$ and \dot{x} be such that T_1 forces that \dot{x} is a function from A into ω such that $x(k) < N_k$ for all $k \in A$. There exists sequences $(T_n)_{n=1}^{\infty}, (l_n)_{n=1}^{\infty}, (j_n)_{n=1}^{\infty}, (U_n)_{n=1}^{\infty}$ and sets $z_a, a \in U_n$, such that

(i) $T_n \in \mathscr{P} \text{ and } T_1 \supseteq T_2 \supseteq \cdots \supseteq T_n \supseteq \cdots$,

(ii)
$$l_1 < l_2 < \cdots < l_n < \cdots$$
,

- (iii) $T_{n+1} \cap \omega^{l_n} = T_n \cap \omega^{l_n} = U_n$,
- (iv) for every n, if $s_n \in T_n$ then there exists some $t \in T_{n+1}$, $t \supset s_n$, with length $(t) < l_{n+1}$, such that t has at least $P^n_{ind(t)}$ (14) successors in T_{n+1} ,
- (v) $j_1 < j_2 < \cdots < j_n < \ldots$,

(vi) for every
$$a \in U_n$$
, $(T_n)_a \Vdash \langle \dot{x}(k) : k \in A \cap j_n \rangle = z_a$,

- (vii) for every $k \in A$, if $k \ge j_n$ then $|U_n| < P_k$,
- (viii) for every $k \in A$, if $k < j_n$ then $|\{z_a(k): a \in U_n\}| \le P_k$.

Granted this lemma, (13) will follow: If we let $T = \bigcap_{n=1}^{\infty} T_n$, then $T \in \mathscr{P}$ and $T \leq T_1$ and for every $k \in A$, $T \Vdash \dot{x}(k) \in u(k)$ where $u(k) = \{z_a(k): a \in U_n\}$ (for any and all n > k).

Proof of Lemma. We let $l_1 = j_1 = \text{length}(s)$, $U_1 = \{s\}$, and strengthen T_1 if necessary so that T_1 decides $\langle \dot{x}(k) : k \in A \cap j_1 \rangle$, and let z_s be the decided value. We also assume that $\text{length}(s) \ge 2$ so that $|U_1| = 1 < P_k$ for every $k \in A$, $k \ge j_1$. Then we proceed by induction.

Having constructed T_n , l_n , j_n , etc., we first find $l_{n+1} > l_n$ and $j_{n+1} > j_n$ as follows: If $s_n \notin T_n$ (Case I), we let $l_{n+1} = l_n + 1$ and $j_{n+1} = j_n + 1$. Thus assume that $s_n \in T_n$ (Case II).

Since length $(s_n) \le n \le l_n$, we choose some $v_n \in U_n$ such that $s_n \subseteq v_n$. By (4) there exists some $t \in T_n$, $t \supset v_n$, so that if $\operatorname{ind}(t) = m$ then t has at least P_m^{n+1} successors in T_n . Moreover we choose t so that $m = \operatorname{ind}(t)$ is big enough so that there is at least one $k \in A$ such that $j_n \le k < m$. We let $l_{n+1} = \operatorname{length}(t) + 1$ and $j_{n+1} = m = \operatorname{ind}(t)$. Next we construct U_{n+1} , $\{z_a: a \in U_{n+1}\}$, and T_{n+1} . In Case I, we choose for each $u \in U_n$ some successor a(u) of u and let $U_{n+1} = \{a(u): u \in U_n\}$. For every $a \in U_{n+1}$ we find some $T_a \subseteq (T_n)_a$ and z_a so that $T_a \Vdash \langle \dot{x}(k): k \in A \cap j_{n+1} \rangle = z_a$, and let $T_{n+1} = \bigcup \{T_a: a \in U_{n+1}\}$. In this case $|U_{n+1}| = |U_n|$ and so (vii) holds for n + 1 as well, while (viii) for n + 1 follows either from (viii) or from (vii) for n (the latter if $j_n \in A$).

Thus consider Case II. For each $u \in U_n$ other than v_n we choose some $a(u) \in T_n$ of length l_{n+1} such that $a(u) \supset u$, and find some $T_{a(u)} \subseteq (T_n)_{a(u)}$ and $z_{a(u)}$ so that $T_{a(u)} \Vdash \langle \dot{x}(k) : k \in A \cap m \rangle = z_{a(u)}$.

Let S be the set of all successors of t (which has been chosen so that $|S| \ge P_m^{n+1}$ where $m = \operatorname{ind}(t)$); every $a \in S$ has length l_{n+1} . For each $a \in S$ we choose $T_a \subseteq (T_n)_a$ and z_a , so that $T_a \Vdash \langle \dot{x}(k) : k \in A \cap m \rangle = z_a$. If we denote $K = \max(A \cap m)$ then we have

$$|\{z_a: a \in S\}| \le \prod_{i \in A \cap m} N_i \le \prod_{i=0}^K N_i = P_{K+1} \le P_m$$

while $|S| \ge P_m^{n+1}$. Therefore there exists a set $U \subset S$ of size P_m^{n} such that for every $a \in U$ the set z_a is the same. Therefore if we let

$$U_{n+1} = U \cup \{a(u) : u \in U_n - \{v_n\}\},\$$

and $T_{n+1} = \bigcup \{T_a: a \in U_{n+1}\}, T_{n+1}$ satisfies property (iv). It remains to verify that (vii) and (viii) hold.

To verify (vii), let $k \in A$ be such that $k \ge j_{n+1} = m$. Since m = ind(t), we have $m \notin A$ and so k > m. Let $K \in A$ be such that $j_n \le K < m$. Since $|U_n| < P_K$, we have

$$|U_{n+1} < |U_n| + |U| < P_K + N_m < P_m \cdot N_m = P_{m+1} \le P_k.$$

To verify (viii), it suffices to consider only those $k \in A$ such that $j_n \leq k < m$. But then $|U_n| < P_k$ and we have

$$|\{z_a(k): a \in U_{n+1}\}| \le |\{z_a: a \in U_{n+1}\}| \le |U_n| + 1 \le P_k.$$

REFERENCES

- M. Bekkali and R. Bonnett, Rigid Boolean algebras, *in* "Handbook of Boolean Algebras" (J. D. Monk, Ed.), Vol. 2, pp. 637–678.
- M. Goldstern and S. Shelah, Many simple cardinal invariants, Arch. Math. Logic 32 (1993), 203–221.
- R. B. Jensen, Definable sets of minimal degrees in "Mathematical Logic and Foundations of Set Theory" (Y. Bar-Hillel, Ed.), pp. 122–128, North-Holland, Amsterdam, 1970.

- T. Jech, A propos d'algèbres de Boole rigides et minimales, C. R. Acad. Sci. Paris Sér. A 274 (1972), 371–372.
- 5. T. Jech, Simple complete Boolean algebras, Israel J. Math. 18 (1974), 1-10.
- 6. T. Jech, "Set Theory," Academic Press, New York, 1978.
- K. McAloon, Consistency results about ordinal definability, Ann. Math. Logic 2 (1971), 449–467.
- K. McAloon, Les algèbres de Boole rigides et minimales, C. R. Acad. Sci. Paris Sér. A 272 (1971), 89–91.
- G. Sacks, Forcing with perfect closed sets, *in* "Axiomatic Set Theory" (D. Scott, Ed.), pp. 331–355, Proc. Symp. Pure Math., Vol. 13, I, Amer. Math. Soc., Providence, 1971.
- S. Shelah, Vive la différence. I. Nonisomorphism of ultrapowers of countable models, *in* "Set Theory of the Continuum" (H. Judah *et al.*, Eds.), pp. 357–405, MSRI, Springer-Verlag, New York/Berlin, 1992.