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There exists a complete atomless Boolean algebra that has no proper atomless
complete subalgebra. Q 1996 Academic Press, Inc.

w xAn atomless complete Boolean algebra B is called simple 5 if it has no
atomless complete subalgebra A such that A / B. We prove below that
such an algebra exists.

w xThe question whether a simple algebra exists was first raised in 8
where it was proved that B has no proper atomless complete subalgebra if

wand only if B is rigid and minimal. For more on this problem, see 4; 5; 1,
xp. 664 .

Properties of complete Boolean algebras correspond to properties of
Ž wgeneric models obtained by forcing with these algebra. See 6, pp.

x w x266]270 ; we also follow 6 for notation and terminology of forcing and
. w xgeneric models. When McAloon 7 constructed a generic model with all

sets ordinally defined he noted that the corresponding complete Boolean
w xalgebra is rigid, i.e., admitting no nontrivial automorphisms. In 9 Sacks
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A COMPLETE BOOLEAN ALGEBRA 749

gave a forcing construction of a real number of minimal degree of
constructibility. A complete Boolean algebra B that adjoins a minimal set
Ž .over the ground model is minimal in the following sense:

If A is a complete atomless subalgebra of B then there exists
a partition W of 1 such that for every w g W , A s B , 1Ž .w w

� 4where A s a ? w : a g A .w

w xIn 3 , Jensen constructed, by forcing over L, a definable real number of
minimal degree. Jensen’s construction thus proves that in L there exists a

w xrigid minimal complete Boolean algebra. This has been noted in 8 and
observed that B is rigid and minimal if and only if it has no proper
atomless complete subalgebra. McAloon then asked whether such an

w xalgebra can be constructed without the assumption that V s L. In 5
Ž .simple complete algebras are studied systematically, giving examples in L

for all possible cardinalities.
w x Ž .In 10 Shelah introduced the f , g -bounding property of forcing and in

w x2 developed a method that modified Sacks’ perfect tree forcing so that
while one adjoins a minimal real, there remains enough freedom to control

Ž .the f , g -bounding property. It is this method we use below to prove the
following Theorem:

THEOREM. There is a forcing notion PP that adjoins a real number g
Ž .minimal o¨er V and such that B PP is rigid.

COROLLARY. There exists a countably generated simple complete Boolean
algebra.

The forcing notion PP consists of finitely branching perfect trees of
height v. In order to control the growth of trees T g PP, we introduce a
master tree TT such that every T g PP will be a subtree of TT. To define TT, we

Ž .` Ž .`use the following fast growing sequences of integers P and N :k ks0 k ks0

P s N s 1, P s N ? ??? ? N , N s 2 Pk 2Ž .0 0 k 0 ky1 k

Ž 211 .hence N s 1, 2, 4, 256, 2 , . . . .k

DEFINITION. The master tree TT and the index function ind:

Ž . w x- vi TT ; v ,
Ž .ii ind is a one-to-one function of TT onto v,
Ž . Ž² :.iii ind s 0,
Ž . Ž . Ž . Ž . Ž .iv if s, t g TT and length s - length t then ind s - ind t ,

Ž .3Ž . Ž . Ž . Ž .v if s, t g TT, length s s length t and s - t then ind sl e x
Ž .- ind t ,
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Ž . Ž .vi if s g TT and ind s s k then s has exactly N successors in TT,k
Lnamely all s i, i s 0, . . . , N y 1.k

The forcing notion PP is defined as follows:

DEFINITION. PP is the set of all subtrees T of TT that satisfy the
following:

for every s g T and every m there exists some t g T , t > s,
4m Ž .such that t has at least P successors in T .indŽ t .

ŽWe remark that TT g PP because for every m there is a K such that for
m Pk .all k G K, P F 2 s N .i k

When we need to verify that some T is in PP we find it convenient to
Ž .replace 4 by an equivalent property:

Ž .LEMMA. A tree T : TT satisfies 4 if and only if

Ž .i e¨ery s g T has at least one successor in T ,
Ž . Ž .ii for e¨ery n, if ind s s n and s g T then there exists a k such Ž .5

Ž . nthat if ind t s k then t g T , t > s, and t has at least P k
successors in T.

Ž .Proof. To see that 5 is sufficient, let s g T and let m be arbitrary.
Ž . Ž .Ž .Find some s g T such that s > s and ind s G m, and apply 5 ii .

The forcing notion PP is partially ordered by inclusion. A standard
w xforcing argument shows that if G is a generic subset of PP then V G s

w xV g where g is the generic branch, i.e., the unique function g : v ª v
whose initial segments belong to all T g G. We shall prove that the
generic branch is minimal over V, and that the complete Boolean algebra
Ž .B PP admits no nontrivial automorphisms.
First we introduce some notation needed in the proof:

For every k , s is the unique s g TT such that ind s s k . 6Ž . Ž .k

If T is a tree then s g trunk T if for all t g T , either s : t or t : s.Ž .
7Ž .

� 4If T is a tree and a g T then T s s g T : s : a or a : s . 8Ž . Ž .a

Ž .Note that if T g PP and a g T then T g PP. We shall use repeatedlya
the following technique:

l ŽLEMMA. Let T g PP and, let l be an integer and let U s T l v the lth
. Ž .le¨el of T . Let x be a name for some set in V. For each A g U let T : T˙ a a

and x be such that T g PP and T & x s x .˙a a a a
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A COMPLETE BOOLEAN ALGEBRA 751

� 4 l lThen T 9 s D T : a g U is in PP, T 9 : T , T 9 l v s T l v s U, anda
� 4T 9 & x g x : a g U .˙ a

We shall combine this with fusion, in the form stated below:

Ž .` Ž .`LEMMA. Let T and l be such that each T is in PP, T =n ns0 n ns0 n 0
T = ??? = T = . . . , l - l - ??? - l - . . . , T l v ln s T l v ln,1 n 0 1 n nq1 n
and such that

for e¨ery n , if s g T then there exists some t g T , t > s , withn n nq1 n 9n Ž .length t - l , such that t has at least P successors in T .Ž . nq1 indŽ t . nq1

Then T s F` T g PP.ns0 n

Ž .Proof. To see that T satisfies 5 , note that if s g T then s g T , andn n n
Ž .the node t found by 9 belongs to T.

We shall now prove that the generic branch is minimal over V:

w x w xLEMMA. If X g V G is a set of ordinals, then either X g V or G g V X .

˙Proof. The proof is very much like the proof for Sacks’ forcing. Let X
˙be a name for X and let T g PP force that X is not in the ground model.0

Hence for every T F T there exist T 9, T 0 F T and an ordinal a such0
˙ ˙that T 9 B a g X and T 0 B a f X. Consequently, for any T F T and1

T F T there exist T X F T and T X F T and an a such that both T X and2 1 1 2 2 1
X ˙ X ˙ X ˙T decide ‘‘a g X ’’ and T B a g X if and only if T B a f X.2 1 2

Ž .` Ž .` lnInductively, we construct T , l , U s T l v , and ordinalsn ns0 n ns0 n n
Ž .a a, b for all a, b g U , a / b, such thatn

Ž .i T g PP and T = T = ??? = T = . . . ,n 0 1 n

Ž .ii l - l - ??? - l - ??? ,0 1 n

Ž . ln lniii T l v s T l v s U ,nq1 n n

Ž .iv for every n, if s g T then there exists some t g T ,n n nq1
Ž . Ž .t > s , with length t - l , such that t has at least 10n nq1

P n successors in T ,indŽ t . nq1

Ž . Ž .v for every n, for all a, b g U , if a / b then both T andn n a
˙ ˙Ž . Ž . Ž . Ž .T decide ‘‘a a, b g X ’’ and T B a a, b g X if andn b n a

˙Ž . Ž .only if T B a a, b g X.n b

When such a sequence has been constructed, we let T s F` T . Asns0 n
Ž .9 is satisfied, we have T g PP and T F T . If G is a generic such that0

˙T g G and if X is the G-interpretation of X then the generic branch g is
w xin V X : for every n, g ° l is the unique a g U with the property that forn n

˙Ž . Ž . Ž .every b g U , b / a, a a, b g X if and only if T B a a, b g X.n a
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Ž .` Ž .` Ž . ŽTo construct T , l , and a a, b , we let l s 0 hence U sn ns0 n ns0 0 0
� 4.s and proceed by induction. Having constructed T and l , we first find0 n n
l ) l as follows: If s g T , we find t g T , t > s , such that t has atnq1 n n n n n

n Ž . Žleast P successors in T . Let l s length t q 1. If s f T , letindŽ t . n nq1 n n
. lnq 1l s l q 1. Let U s T l v .nq1 n nq1 n

� 4Next we consider, in succession, all pairs a, b of district elements of
Ž .U , eventually constructing conditions T , a g U , and ordinals a a, b ,nq1 a nq1

Ž .a, b g U , such that for all a, T F T and if a / b then eithernq1 a n a
˙ ˙ ˙Ž . Ž . Ž .T B a a, b g X and T B a a, b f X, or T B a a, b f X and T Ba b a b

˙Ž . � 4a a, b g X. Finally, we let T s D T : a g U . It follows thatnq1 a nq1
` `Ž . Ž . Ž . Ž .T , l , and a a, b satisfy 10 .n ns0 n ns0

Ž .Let B be the complete Boolean algebra B PP . We shall prove that B is
rigid. Toward a contradiction, assume that there exists an automorphism p
of B that is not the identity. First, there is some u g B such that
Ž .p u ? u s 0. Let p g PP be such that p F u and let q g PP be such that

Ž . Ž .q F p p . Since q g p, there is some s g q such that s f p. Let T s q .0 s
Note that for all t g T , if t = s then t f p. Let0

A s ind t : t g p ,� 4Ž .

Ž . Ž .and consider the following property w x with parameters in V :

w x l if x is a function from A into v such that x k - NŽ . Ž . k
for all k , then there exists a function u on A in the ground
model V such that the values of u are finite sets of integers 11Ž .

� 4and for every k g A , u k : 0, . . . , N y 1 and u kŽ . Ž .k
F P , and x k g u k .Ž . Ž .k

We will show that

p B ' x!w x , 12Ž . Ž .

and

there exists a T F T such that T B ; xw x . 13Ž . Ž .0

This will yield a contradiction: the Boolean value of the sentence
Ž .' x!w x is preserved by p , and so

T F q F p p F p ' x!w x s ' x!w x ,Ž . Ž . Ž .Ž .0

Ž .contradicting 13 .
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Ž . Ž .In order to prove 12 , consider the following name for a function
x: A ª v. For every k g A, let˙

x k s g length s q 1 if s ; g , and x k s 0 otherwise.Ž . Ž . Ž .Ž .˙ ˙ ˙ ˙k k

Ž . �Now if p - p and u g V is a function on A such that u k : 0, . . . ,1
4 < Ž . <N y 1 and u k F P then there exists a p - p and some k g A suchk k 2 1

that s g p has at least P 2 successors, and there exist in turn a p - pk 2 k 3 2
Ž . L Ž . Ž .and some i f u k such that s i g trunk p . Clearly, p & x k f˙k 3 3

Ž .u k .
Ž .Property 13 will follow from this lemma:

LEMMA. Let T F T and x be such that T forces that x is a function˙ ˙1 0 1
Ž .from A into v such that x k - N for all k g A. There exists sequencesk

Ž .` Ž .` Ž .` Ž .`T , l , j , U and sets z , a g U , such thatn ns1 n ns1 n ns1 n ns1 a n

Ž .i T g PP and T = T = ??? = T = ??? ,n 1 2 n

Ž .ii l - l - ??? - l - ??? ,1 2 n

Ž . ln lniii T l v s T l v s U ,nq1 n n

Ž .iv for e¨ery n, if s g T then there exists some t g T , t > s ,n n nq1 n
Ž . nwith length t - l , such that t has at least Pnq1 indŽ t . Ž .14

successors in T ,nq1

Ž .v j - j - ??? - j - . . . ,1 2 n

Ž . Ž . ² :vi for e¨ery a g U , T B x k : k g A l j s z ,Ž .˙n n a n a

Ž . < <vii for e¨ery k g A, if k G j then U - P ,n n k

Ž .viii for e¨ery k g A, if k - j then z k : a g U F P .� 4Ž .n a n k

Ž . `Granted this lemma, 13 will follow: If we let T s F T , then T g PPns1 n
Ž . Ž . Ž . � Ž .and T F T and for every k g A, T B x k g u k where u k s z k :˙1 a

4 Ž .a g U for any and all n ) k .n

Ž . � 4Proof of Lemma. We let l s j s length s , U s s , and strengthen1 1 1
² Ž . :T if necessary so that T decides x k : k g A l j , and let z be the˙1 1 1 s

Ž . < <decided value. We also assume that length s G 2 so that U s 1 - P for1 k
every k g A, k G j . Then we proceed by induction.1

Having constructed T , l , j , etc., we first find l ) l and j ) jn n n nq1 n nq1 n
Ž .as follows: If s f T Case I , we let l s l q 1 and j s j q 1.n n nq1 n nq1 n

Ž .Thus assume that s g T Case II .n n
Ž .Since length s F n F l , we choose some ¨ g U such that s : ¨ .n n n n n n

Ž . Ž .By 4 there exists some t g T , t > ¨ , so that if ind t s m then t has atn n
nq1 Ž .least P successors in T . Moreover we choose t so that m s ind t ism n

big enough so that there is at least one k g A such that j F k - m. Wen
Ž . Ž .let l s length t q 1 and j s m s ind t .nq1 nq1
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� 4Next we construct U , z : a g U , and T . In Case I, we choosenq1 a nq1 nq1
Ž . � Ž . 4for each u g U some successor a u of u and let U s a u : u g U .n nq1 n

Ž . ² Ž .For every a g U we find some T : T and z so that T B x k :˙nq1 a n a a a
: � 4 < <kgAlj sz , and let T sD T : agU . In this case U snq1 a nq1 a nq1 nq1

< < Ž . Ž .U and so vii holds for n q 1 as well, while viii for n q 1 follows eithern
Ž . Ž . Ž .from viii or from vii for n the latter if j g A .n

Thus consider Case II. For each u g U other than ¨ we choose somen n
Ž . Ž . Ž .a u g T of length l such that a u > u, and find some T : Tn nq1 aŽu. n aŽu.

² Ž . :and z so that T B x k : k g A l m s z .˙aŽu. aŽu. aŽu.
ŽLet S be the set of all successors of t which has been chosen so that

< < nq1 Ž ..S G P where m s ind t ; every a g S has length l . For eachm nq1
Ž . ² Ž . :a g S we choose T : T and z , so that T B x k : k g A l m s z .˙a n a a a a
Ž .If we denote K s max A l m then we have

K

� 4z : a g S F N F N s P F P ,Ł Ła i i Kq1 m
igAlm is0

< < nq1 nwhile S G P . Therefore there exists a set U ; S of size P such thatm m
for every a g U the set z is the same. Therefore if we leta

� 4U s U j a u : u g U y ¨ ,� 4Ž .nq1 n n

� 4 Ž .and T s D T : a g U , T satisfies property iv . It remains tonq1 a nq1 nq1
Ž . Ž .verify that vii and viii hold.
Ž . Ž .To verify vii , let k g A be such that k G j s m. Since m s ind t ,nq1

we have m f A and so k ) m. Let K g A be such that j F K - m. Sincen
< <U - P , we haven K

< < < < <U - U q U - P q N - P ? N s P F P .nq1 n K m m m mq1 k

Ž .To verify viii , it suffices to consider only those k g A such that
< <j F k - m. But then U - P and we haven n k

< <� 4z k : a g U F z : a g U F U q 1 F P .� 4Ž .a nq1 a nq1 n k
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