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THE JOURNAL OF SYMBOLIC LOGIC
Volume 65. Number 4. Dec. 2000

APPLICATIONS OF PCF THEORY

SAHARON SHELAH

Abstract. We deal with several pcf problems: we characterize another version of exponentiation: max-
imal number of k-branches in a tree with A nodes. deal with existence of independent sets in stable theories.
possible cardinalities of ultraproducts and the depth of ultraproducts of Boolean Algebras. Also we give
cardinal invariants for each 4 with a pcf restriction and investigate further Tp(f). The sections can be
read independently. although there are some minor dependencies.

Annotated content. §1. 7, via true cofinality.

[Assume D is a filter on &, 4 = cf(u) > 2%, f € *Ord, and: D is X,-complete
or (Vo < u)(e™ < u). We prove that if T (f) > u (i.e., there are fo <p f
for @ < u such that f, #p fp for a < f < u) then for some 4 € D" and
regular ; € (27, f(i)] we have: u is the true cofinality of [],_, 4; /(D +4). We
end summing up conditions equivalent to T 4(f) > u for some 4 € A1.]

§2. The tree revised power.

[We characterize more natural cardinal functions using pcf. The main one
is A®!" the supremum on the number of x-branches of trees with 4 nodes,
where  is regular uncountable. If A > "' it is the supremum on max pcf{6; :
{ < k} for an increasing sequence (0; : { < k) of regular cardinals with
{ < k= 2>maxpcef{b : e < (}.]

3. On the depth behaviour of ultraproducts.

[We deal with a problem of Monk on the depth of ultraproducts of Boolean
algebras; this continues [Sh:506, §3]. We try to characterize for a filter D
on k and A; = cf(4;) > 2%, and u = cf(u), when does (Vi < w)[L; <
Depth*(B;)] = u < Depth™ ([],., B:/D) (where Depth* (B) = | J{u" :in B
there is an increasing sequence of length x}). When D is X;-complete or
(Vo < p)[e™ < u] the characterization is reasonable: for some 4 € D and
Ap =cf(A}) < 4; we have u = tef [],_, 4;/(D + A4). We then proceed to look at

Depthgf) (closing under homomorphic images), and with more work succeed.
We use results from §1.]
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APPLICATIONS OF PCF THEORY 1625

§4. On the existence of independent sets for stable theories.
[Bay has continued work in [Sh:c] on existence of independent sets (in the sense
of non-forking) for stable theories. We connect those problems to pcf and shed
some light. Note that the combinatorial Claim 4.1 continues [Sh:430, §3].]
§5. Cardinal invariants for general cardinals: restriction on the depth.
[We show that some (natural) cardinal invariants defined for any regular A(>
No), as functions of A satisfies inequalities coming from pcf (more accurately
norms for X;-complete filters). They are variants of depth, supremum of length
of sequences from *1 (increasing in a suitable sense) and also the supremum
of sizes of A-MAD families. Contrast this with Cummings Shelah [CuSh:541].
Also we connect pcf and the ideal /[1]; see 5.19.]

86. The class of cardinal ultraproducts mod D.
[Let D be an ultrafilter on x and let

reg(D) = Min{0 : the filter D is not §-regular},

so reg(D) is regular itself. We prove that if x4 = u™&?) 4 25 then u can be

represented as | [],_, A;/D|. and for suitable u’s get u-like such ultraproducts.]
We thank Todd Eisworth for doing much in corrections and improving presentation,
and Andres Villaveces similarly for §4.

§81. T via true cofinality. We improve here results of [Sh:506, §3] but do not
depend on them. See more related things in §6. Our main result is 1.6, which we
will use in §3 in our analysis of ultraproducts of Boolean Algebras.

Cramm 1.1. Assume
) J is an X|-complete ideal on
) f €*0rd, each f (i) an infinite ordinal
) T3(f) > A=cf(2) > u >k (see 1.2(1) below)

)

()~ (i) ifa C Reg, and
(V0 €a)(u<0<Ai&u<0<supf(i))
<K
and |a| < &, then | pef(a)| < u

(i) | /7] < 2

(iii) 2" < A.
Then for some A € J* and ). = (A; 1 i € A) such that u < A = cf(4;) < f(i) we
have [];c, 4i/(J I A) has true cofinality A.

REMARK 1.2. (1) Remember T3(f) = Min{|F| : F C [],_. f (i) and for every
g € [lie.. f (i) for some g' € F we have —(g #, g')}. See [Sh:506, §3] on the
relationship of relatives of this definition; they agree when > 2%. The inverse of the
claim is immediate, i.e., the conclusion implies that 2 < T3 (f).

(2Q)If Ay ={i< k: f(i) > A} € J* then the conclusion is immediate, with A; = A.

(3) Noteif Ay = {i < K : f(i) < (2%)*} € J* then T3(f) < 2%. If in addition
k\Ay € J then any 1 satisfying the conclusion satisfies A < 2%,

(4) We can omit the assumption clause (d )~ (iii) and weaken (here and in 2.7) the
assumption “|u"/J| < A” (in clause (d)~) and just ask:
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1626 SAHARON SHELAH

there is F C " u of cardinality < 1 such that for every g € "u we can
Jud H ) 4 H
find F' C F of cardinality < p such that for every A € J* for some
feEF wehave{i € A:g(i)= f(i)} €J*, oreven
1., we require the above only for all g € G, where G C *u has cardinality
JuA
< Aand: if {0, 1 i < K) is a sequence of regulars in [Ny, u] and
g €1lic. Oi then for some g" € G we have g' <; g" <; (0; 1 i < k).

Considering (d)~ (iii) in the proof we weaken g, | A € N to “for some g’ € G,
A Crwehaveg, | A=;g" A

(5) Also in 1.6 and 1.7 we can replace the assumption ). > 2% by the existence of
a u satisfying . > pu > k such that (d)~ as weakened above holds.

(6) Note that we do not ask (Vo < A)[|a|<*eV) < J].

(7) Of course, we can apply the claim to J | A for every A € J* hence {A]J :
A € J*, and for some & = (J; : i € A) such that u < J; = cf(%;) < f (i) we have
[TiciAi/(J | A) has true cofinality A} is dense in the Boolean Algebra % (k)/J.

REMARK 1.3. The changes in the proof of 1.1 below required for weakening in 1.1
the clause |u"/J| < Ato D, ; from 1.2(4) are as follows.

As Ju, A € N there are F C *u, G C "u as required in @;M belonging to N
(hence C N). After choosing g"' and B, apply the assumption on G to g™ € "u
when g"3 | B, = (g"2 | B,) and g"* | (k\B,) is constantly zero and 0 = (0; : i < k)
where 0; = cf(g,(i)) ifi € B, and 0; =X ifi € k\B,.

So we get some g"* € G such that g"? <; g"* <; (0; i < K). A5G € N,
|G| < A clearly G C N hence g"* € G. Let F! be a subset of F of cardinality < u
such that: for every A € J* for some f € F)wehave {i € A: g"*(i) = f(i)} e J".

Now continue as there but defining g, use g"* instead g"> and choose P!, as

{{i<k:g")=f@)}: feF}

The rest is straight.
Remember
Fact 1.4. Assume

() N <(Z(x).e,<})andp <A< yand{u, A} €N,

(b) N N Aisan ordinal,

(c) i* < u, and for i < i* we have a; C Reg\u™", |a;| < u,0; € pcfla;) N A and
(a;,0;,) € N,and leta =J._,. a;.

Then

(*) for every g € Ila there is [ such that:
() g< f €la
(B) f 1byla;]l € N,andif 6; = max pcf(a;) we have f | a; € N.

Proor. By [Sh:g, Chapter 11,3.4] or [Sh:g, VIIL,§1]. .

i<i*

Proor or 1.1. Note that assuming 2 < A somewhat simplifies the proof, in
this case we can demand g4, = g, [ A. Assume toward contradiction that the
conclusion fails. Let y be large enough, and let N be an elementary submodel of
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APPLICATIONS OF PCF THEORY 1627

(#(x), €.<}) of cardinality < 1 such that {f, 2, u} belongs to N and N N 1 is an
ordinal and if we assume only clause (d)~ then'

forevery g € “uthereis g’ € N N*u such that g = g’modJ (if J € N this is
immediate).
So we shall prove F =: (], f(i)) N N exemplifies that T7(f) < |F|(< ). thus
giving a contradiction
So it suffices to prove

(*) forevery g €[], f (i) for some g’ € F we have —(g #, g’) i.e..
{i<w:g'(i)=gli)}eJ*.
Assume g € [],_, /(i) exemplifies the failure of (x).

We now define by induction on #n < w the function g, and the family %, such
that:

(i) go=f.g. €*0Ord,and g < g,

( ) gn+l < &n mod J

(ili) 2, is a family of < u members of J*

(iv) if 4 € P, theng, | A € N hence A € N but if 2* > ] we just assume that
for some g, € [[;c, /(i) we have g4, = g, | AmodJ and g, € N hence
AeN

v) P = {x}
(vi) if 4 € #, and B C 4 and B € J* then for some A’ € £, we have
A CA&ANBeJT

(vii) g < g, modJ

(Vlll) g(i) < gu(i) andg(l) < gn( ) = gn+l( ) < gn( ) andg(i) = gn(i) = g(’) =
gn1(i) (not necessary for 1.1).

If we succeed, as “J is X|-complete (see assumption (a))” then by clause (ii) we get

a contradiction as < is well founded. Also the case n = 0 is easy by (i)+(v).

(Note: Clause (vii) holds as g € ], f(i)). So assume we have g,. %, and we
shall define g, 1, %,,1. In N there is a two-place function e, written ¢s(i) such that
e5(i) is defined if and only if § € {a : & a non-zero ordinal < sup,_, f(i)}. and

i < cf(5), and if § is a limit ordinal, then {es(i) : i < cf(6)) is strictly increasing

with limit 6 and e, (0) = a; of course, Dom(e, 1) = {0}.

We also know by assumption (d) or (d)~ (i) that

® for every 4 € P, we have, letting a”, =: {cf(g4.,(i)) : i € AY\u". the set
pef(a”) has at most x4 members.

So% = {(4,07,0) : A € P,and 6 € AN pef(a’)} has at most | %, | x u <

LX U= ,umembels(as |%,| < wand |pefa’y| < u by®dbove) solet {(4”,a",0"):

e < g} list them with e < u. Clearly a” € N (as g4, | A" € N), and since

u+1 C N and |pef(a”)| < u, we have % C N. Foreache < g we define 4 € Ila
by

R (0) =Min{l < 0 : ifi € AL, g(i) < g,(i), and
0 = cf(g,(i)) then g(i) < e, ;)({)}.

"'Note we did not forget to ask J € N, we just want to help reading this as a proof of 1.5 too. for the
case 2I71 > 2, so there J/ does not necessarily belong to N.
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[Why is A well defined? The number of possible i’s is < |4?| < k < pu, for each
relevant i, every { < 6 large enough is OK as (e, ;)({) : { < 0) is increasing
continuous with limit g,(i). Lastly, 0 = cf(0) > u (by the choice of a”) so all the
demands together hold for every large enough { < 6.]

Leta, =, <er a and let 4, € Ila, be defined by

h,(0) = sup{h!(0) :e <efand 0 € a’},
it is well defined by the argument above. So by 1.4 there is a function g”! € ITa,
such that:
(a) h < gn 1
(B) "' 1 by:[aZ] € N (and 6 = max pef(al) = by [a?] = al).
Also we can define g2 € * Ord by:
g"(i) = Min{¢ < cf(g,(i)) : e,,y() > g(i)}

So letting B, = {i : 1 < cf(g,(i)) < u} clearly g™ | B, € % u. Now if assump-
tion (d) holds, then x*/J < A, hence u* C N so we can find g"* € N such that
g"? = g™ mod (J + (k\B,)); if assumption (d) fails we still can get such g”* by X
above. Lastly, we define g, € © Ord:

o) (8" (cf(ga(7)))  if  cf(g,(i)) > pand g,(i) > g (i)
gu+l(i) = eg,,(i) (gnj(Cf(gn(i)))) E Cf(gn(l)) € [1,/1] and gn( ) g(i)
gn(i) if g(i):gn(i)

and #,,| = (20,

n+1

n+l )\J where
PO

i = {{i € AL cf(gnn(i)) € bp[al]} 16 <&}
and
92’n+| ={{i e 4" cf(gun(i)) Su}: 4" € 2}
(Note: possibly (0, U2}, )N J # 0 but this does not cause problems.) 8
So let us check clauses (i)—(viii).

Clause (i). Trivial.
Clause (ii). By the definition of g,,,(i) above it is < g, (i) except when g, (i) =
g(i), but by clause (vii) we know that g < g, mod J hence necessarily

{i<k:g,(i) =gli)} € J soreally g,1 < g, modJ

Clause (iii). |2, 11| < |P,| + |g}| + N and |#,| < u by clause (iii) for n (i.e., the
induction hypothesis) and during the construction we show that |e}| = |%| < u.
Clause (iv). Let 4 € £, so we have two cases.

Casel. A€ P, .

So for some € < ¢ we have (0 € 2N pcf(a”) and)
A =:{i € A] : cf(g.,(7)) € by[al]}.
Let g1 € [;c /(i) be defined by g,1,,41(i) = g,,,,,,,(e)( " (ef (g (i)
By the choice of g! € Ila, we have:
g"' I'bglall € N.
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Now the set 4 is definable from A{, g4, and by.[al]. all of which belong to N
hence A € N. Also A2 € N and clearly g, is definable from the functions
g™ 1 b, [al], 8™, g1, AL and the function e (see the definition of g, by cases),
but all four are from N so g4,+1 € N. Lastly, goy1 [ 4 =5 gunt1 a8 i €
A& garn(i) = guli) & gu(i) > g(i) = gn41(i) = ganr1(i) and each of the three
assumptions fail only for a set of i € A that belongs to J.

CASE2. 4 € P} .

So for some A* € &, we have
A={i<k:i€ A" and cf(gs,(i)) < u}.

Let gAn+l (Z) = eg,.;,,, (g"“z(Cf(gA*.n(i)))' Again, gAn+l1 S N, gAnt+1 =J gn+l r A
Looking at the definition of g .., clearly g, is definable from g" € N, g 4+, and
the function e, all of which belong to N.

Clause (v). Holds trivially.

Clause (vi). Assume 4 € &, and B C A satisfies B € J* (soalso 4 € J*), we
have to find 4’ € &, ,suchthat /' CA& A'NBeJt.

Casel. By = {i € B : cf(gy,(i)) <u}eJ .

In this case A’ =: {i € 4 : cf(g4,(i)) < u}e P, C P and A'NBeJ" by
the assumption of the case.

CasE 2. For some € < ¢ we have 4 = 4! and
B2.5 = {i €B: Cf(gA.n(i)) € b()g[ag]} € J+'

In this case 4" =: {i € 4 : cf(g..,(i)) € bp:[a?]} € J* belongs to F), | € P,y is
C A and By, N A’ € J* by the assumption of the case (remember g <; g,).

CasE 3. Neither Case 1 nor Case 2.

So By = B\B) € J" and let A; = cf(g,4.,(i)).

We shall show that [],.p cf(g..(i))/J is A-directed. This suffices as letting
Ai =1 cf(gqn(i)) € (u, f(i)], by [Sh:g, I1,1.4(1),pages 46,50] for some A =
Cf(/ll/) < A;, we have lim ian[BJ <ﬂ.; NS Bz) = liminf”& <)., NS Bz) and
A =tef[];,cp 4;/(J | B3) and this shows that the conclusion of 1.1 holds. contra-
dicting our initial assumption, so the A-directedness really suffices.

Now i € B\B| = 4; = cf(g,(i)) > w: and if [], . 4;/J is not A-directed, by
[Sh:g].L§1 for some By C Bs and 6 = cf(0) < A we have: By € J* and [];cp, 4i/J
has true cofinality 0. Hence 6 € pcf{cf(g,.,(i)) : i € 4 and cf(g,(i)) > u}, and as
0 > u, forsomee < e} wehave 4 = A" and 0 = 07 so A’ = {i € A : cf(g4,(i)) €
by, [a”]} is as required in Case 2 on B, . (note: we could have restricted ourselves to
0’s like that).

Clause (vii). By the choice of g"!,g"? and g" clearly i < k & g(i) < g,(i) =
2(i) < gu1(i). As g < g, mod J it suffices to prove B =: {i : g(i) = g,+1(i)} € J.
If not, we choose by induction on £ < n+1amember B, of % suchthat B,NB € J*.
For ¢ = 0let B, = k € P, for £ + 1 apply clause (vi) for £ (even when £ = n we
have just proved it). So B,;, ;N B € J* and g, | (B,,1NB) =g | (B,;1NB)
hence =(g,41 | Buyt #7 &1 | Bar1) but g1 | Byy1 € N so we have contradicted
the choice of g as contradicting ().

Clause (viii). Easy. s
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Cram 1.5. Assume

(a) J is an ideal ® on x
(b) f €"0rd, each f (i) an infinite ordinal
(€ THf)>A=cf(A) >u>k
d) u=(2%)" or at least
d)~ (i) ifaC Reg, and
(V0 ca)u<O0<i&pu<0<f(i))
and |a| < & then | pef(a)| < u
(i) |u~/J| <AV (Vg €ru)llig/J| < A] and u is regular

(e) a<i=laf® < A
Then for some A € J* and . = (4; 1 i € A) such that u < cf(A;) = 4 < f(i) we
have ;¢ 4i/J has true cofinality A.
PrOOF. We repeat the proof of 1.1 but we choose N such that N C N, (possible

by assumption (e) as 4 is regular), and let ¥ =: (I],_, /(i)) N N. If 2* < A then
clearly

(
(

F = {g € Hf(i) : for some partition (4, : n < w) of k and

<K

gn € NN ][ /(i) wehaveg = | J(gn [An)}-

i<k n<w

Then assume (x) (from the proof of 1.1) fails and g € [],_,. f (i) exemplifies it and
welet J' betheideal ) = {4 Cr:g | A=g | Aforsomeg’ € F}.

Clearly J' is N|-complete, J' C J (as g is a counterexample to (*) and the
representation of F above) and we continue as there getting the conclusion for J’
hence for J.

If2° > A let F/ = NNJ],., f(i). then

& forg €[], f(i)and 4 € J* we have (i) < (ii) where:

(i) there are g, € F’ for n < w such that

{i<k: \/ =g/ (i)} 2 AmodJ

n<w
(ii) forsome g’ € F' wehave {i <k :g(i) =g'(i)} D Amod J.

[Why? <« is trivial; now = holds as g, € N also (g, : » < w) € N hence
({gui) :n <} i< k) € Nandusew"/J < pur/J <A (orjust @, from
1.2(4)]

Let g € I],., f(i) be such that g’ € N N[, f(i) = g #, ¢’. Now we
repeat the proof of 1.1 with our &, f, A, N, F, g this time using the demands in clause
(viii) (i.e., g(i) < g,(i)). The proof does not change except that we do not get a
contradiction from n < w = g, <; g,. However, for each i < &, {g,(i) : n < ®)
is non-increasing (by clause (viii)) hence eventually constant and by that clause
eventually equal to g(i). So clause (i) of ) above holds hence clause (ii) so we are
done. s

>Compared to 1.1 we are omitting “J is ¥;-complete.”
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CONCLUSION 1.6. Assume J is an ideal on &, f € *Ord,i < k = f(i) > 2%,
A =cf(l) > 2%, and

(*) J is R -complete or (Vo < A)(|e| < 4).
Then (a) < (b)  (b)" < (¢) & (c)* where

(a) forsome 4 € J* we have T7,,(f | 4) > A

(b) forsomed € J*and; = cf(4;) € (2%, f(i)] (fori € A)wehave [, ,4i/(J |
A) is A-directed

(b)* like (b) but [T, , 4i/(J | 4) has true cofinality A

(c) forsomed € J©,and7 = (n; : i < k) € " and ideal J* on 4* =
Uiea({i} x n;) satisfying

(VBCA)Be s | J{i}xn) e
i€B

and regular cardinals A, € (2%, f(i)] we have [ (imyear Miny/J " is A-directed
()" asin (c) but [](; e e Ain)/J* has true cofinality A.

Proor. Clearly (b)* =(b), (b)=-(c),(b)* =(c)* and (c)* =(c). Also (b)=(b)*
by [Sh:g, Chapter II, 1.4(1)], and similarly (c)=-(c)*. Now we prove (c)=(a); let
Zi = max{,) : n <n,} and let g; be a one-to-one function from [],_, 4. into
A; and let (fo : o < ) be a <,--increasing sequence in [] , ¢ 4~ A(in)- Define

Fi € Tlieq 2 by £20) = g (fa | ({7} x n1)). Soif a < B, then

{icari=ri0f = {is A suln) = rytin)|

n<n;

so by the assumption on J* and the choice of (f, : a@ < 1), for a < f < 1 we get
fo#y f/’; hence {f : @ < A} is as required in clause (a).

Lastly (@) = (b) by 1.1 (in the case J is Rj-complete) or 1.5 (in the case (Vo <
2)(Ja|® < 1)). We have gotten enough implications to prove the conclusions. ;4

ConcLusioN 1.7. Let D be an ultrafilter on . If |I],.,. f(i)/D| > 4 = cf(1) >
2% and (Va < A)[|a|™ < 1], then for some regular A; < f(i) (for i < k) we have
= tef ([T, 4i/D).

REMARK 1.8. On |I],.. Ai/D]|, see [Sh:506, 3.9B] and §6 here.

<K
§2. The tree revised power.
DEerINITION 2.1. For « regular and 4 > & let

A = sup{|lim,(T)| : T a tree with < A nodes and « levels}
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where lim, (T') is the set of k-branches of T: and let when A > u > k and 8 > &
A0 — Min{ 2 if T is a tree with A nodes and « levels,
then there is # € [[T]"]"

such that # € Iim(T) = (34 € P)(n C A)}.
Alm) —plms)
Recall [4]* =: {B : B C A and |B| = x}.

REMARK 2.2. (1) Clearly A40) < jrtt < J{80) 4 g2 < J(s0) 4 g5,

(2) If k = N then obviously A= = A~

(3) Of course, 25" < cov(A, 0%, kT, k) and k < 0 < o < A = A0 <
259 4 cov(A. 0T, kT, k). (See[Sh:g, Chapter II.§5) if these concepts are unfamiliar.)

THEOREM 2.3. Let k be regular uncountable < A. Then the following cardinals are
equal:

(i) Alm)

(i) A+ sup{maxpcf(a):a C RegNi\k,a = {0; : { < x} strictly increasing.
and if & < k then max pef({0; : { < &}) < 6: < 1}

REMARK 2.4. We can add
(1)~ like (ii) but we demand only max pef({0; : { < &}) < A.

Proor. First inequality. Cardinal of (i) (i.e., A{*)) is < cardinal of (ii).

Assume not and let u be the cardinal from clause (ii) so 4 > 1. Let T, a tree
with « levels and 1 nodes, exemplify A%*) > . Without loss of generality T C *> A
and <7= < [ T. Let y = y(u) and {T,k, A, u} € B, < (Z(x),€<})u+1C
B, [|B,l| = u, forn < w, B, € B,.1,B, < B,y and let B = (J,_, B,
So & =: B N[T]=* cannot exemplify (i). So there is # € lim,(T) such that
(VA e P){n1¢: <k} L 4]

We choose by induction on n, N2, N such that:

(a) N <N} <%3,.

(b) N{ = Sk, ({C: L < ®}U{n [ {:{ <k} U{k.p. A T}) and
N§ = Skog,({¢ : ¢ < kYU {k, . 2, TY}).

(©) IN:Il = &.

(d) N,? S %nﬁ»l'

(e) Ny =Sky,(NJU{n|{:{<k}).

(f) 0 € A* NRegNNN\k" = sup(N?,, N6) > sup(N) N 0).
(Here “Sk” denotes the Skolem hull.)

Let us carry the induction.

For n = 0: No problem.

Forn + 1: Leta” =: N)NRegNit\x".s0a" € B, and a” is a set of cardinal-
ity < k of regular cardinals € (x, A1).

Let g" € ITa" be defined by g"(0) =: sup(N,! N ). Let
(*); I"={bCa": forsome f € (ITa") N B, wehave g" | b < f},
so we need to show a” € I".

An easy induction on pcf(a”) tells us that
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(*)2 J<y[a"] C I" (in particular all singletons are in I").
Fact. Thereis f* € 8B, N1la" such that:

= {0ead: f*0)<g"0)}

satisfies
[6"]<" C J<;[a"]
(ves! not J<,[a"]).

PrOOF. In 9B, there is a list (a,. : € < k) of NO. Foreachv € T let v be
of level { and let N}, = Skos, ({(@,c,v [ €) : € < {}). So the functlon v — N,
(i.e., the set of pairs {(v, N ):v € T}) belongs to B, Clearly (N ,] < K)
is increasing continuous with union N!. Let g! ¢ I(a" N N,!,) be defined by
g (0) =sup(0NN},), so{(a" N N,,l,g,,l) cveT}eB,,. Nowlla"/J,[a"]
is A*-directed, hence as | 7| < A there is f* € Ila” such that:

(*)3 veT = g,g_‘. <o) f*, that is

{60 € Dom(g,,) : (g, (0) < £*(0))} € J<s[a"].

and by the previous sentence without loss of generality f* € 9,,;. Note that for

0 € a" the sequence (g,:‘,i 1£(0) : { < k) is non-decreasing with limit g (6).
Letc={0 €a": f*(0) < g"(0)}, now note

(*)4 if @ € c then for every { < & large enough, f*(0) < g" Wi (0).

Hence ¢’ € [c]<® = ¢ € J<;[a"] as required in the fact.

(Why the implication? Because if ¢’ C ¢, |c| < x then by (x)4 for some { < & we
have f* | ¢ < g,’,,,”g I ¢/ which by (x); gives ¢’ € J<,;[a"]); so let b" = c. Aract

Now if b" is in J<,[a"], by (*); + (x)2 above we can finish the induction step.

If not, some t* € Reg \u" satisfies t* € pcf(b”); let (¢ : { < k) be an increasing
continuous sequence of subsets of a” each of cardinality < « such that b" = UC < S
and so (by the fact above) { < k = t* > 1 > maxpcf(c;). We know that this
implies that for some club E of x and 0; € pef(c;), for{ € E, t* € pcfn complete (107
{ € E})and (0; : { € E) is strictly increasing and max pcf{6: : { € EN¢&} < 6;
for & € E, by [Sh:g, Chapter VIII, 1.5(2),(3), page 317].

Now max pef{f. : e € { N E} < maxpcf(c;) < Asou < t* < the cardinal from
clause (i) of 2.3, against an assumption. So we have carried out the inductive step
in defining N, N}

So N?, N!are well defined for every n, clearly U" wNINA=U
[Sh:g, Chapter IX.3.3A, page 379]) hence | J,_, NN T =

some n, N? N {;7 I ¢ : { < k} has cardinality «. Now

I
oy NN A (e
N!'N T, hence for

n<w

= {v e T: forsome p we have v < p € N’}

belongs to B,1 N[T]* and {# | { : { < k} C A, contradicting the choice of . -
Second inequality Cardinal of (ii) < cardinal of (i).

By the proof of [Sh:g, I1,3.5]. K
DEFINITION 2.5. (1) Assume I C J C P(k),I an ideal on &, J an ideal or the
complement of a filter on &, e.g., J = P~ (k) = P(k)\{x} stipulating / #, g &
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{i<k:f(i)=g(i)}eJ. Welet

T} (f,4) = sup{|F|* : F € F1,(f, )}
and

Trs(f,4) =sup{|F|: F € F1,(f. M)},
where

Fra(.3) = {F clr@:r#gecF=r+#¢

andAeI:lzl{f[A:feF}l}.

(2) For J anideal on k,6 > x and f € *(Ord \{0}), we let
U, (f.0) = Min{|#| : # C [sup Rang(f)]’ and for every g € Hf(i)

<K
for somea € # wehave {i <k : g(i) €a} € J*}.
If 6 = k (= Dom(J)), then we may omit 6. If f is constantly A we may write 1
instead of f.

(3) For I C J, 1 ideal on «,J an ideal or complement of a filter on k, u > 0 > &
and f € "(Ord \{0}) let

U[‘J(f> 0,/1) = SUP{UJ(E 0) F S .97,_(](,/1)}
where

Fr (fow) = {F tF C Hf(i)andA eEl=p>|{f14:fc¢ F}|}
and
U,(F,0) = Min{|#| :2 C [sup Rang( /)]’ and for every f € F
forsomea € P wehave {i <k : f(i) €a} e J"'}.

FacT2.6. Let 1> 0 > k = cf(k) > V.
(1) /lK'tr = Tjgdg»(n) ()., /1) and /1<K‘U> S UJLMI(/I, (9)
2) If/1 > u, L}_Z_e_ﬂlln‘[r > #mtr and A<5> > #<K>-
3) Artr — /1<K) —|—K','°‘tr.
4) Assume I C J are ideals on k. Then T, (f, ) > u if:
(i) each f (i) is a regular cardinal 2; € (k, 1)
(i) 1., f(i)/J is pu-directed
(iil) for some A; C k for { < {* < Minj<. f(j) we have:
maxpef{f(i):i€ A} <A
(hence cf([T;.,. f(i)) < A) and {A; : { < {*} generates an ideal on
extending [ but included in J.
(5)U;(A) <U;(A,0) < U, (A)+cf([01°,C) < U;(A)+0%and T;(f) < Ui (f)+
28and Upy (f,A) < Try(f, A) S Uy (f, ) + 2" where I C J are ideals on k.
Also obvious monotonicity properties (in I,J, 1,0, f') hold.

(
(
(
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Proor. (1) Easy. Let us prove the first equation. First assume
F € Fmo-(x)(4,4),
and we define a tree as follows: for i <  the ith level is
T;={f1li:f€F}
and

T = U T;, with the natural order C .

i<k

Clearly T is a tree with & levels, the ith level being 7.

By the definition of Fju g (o (4, 4) as i < & = {j : j < i} € JX, clearly
|T;| < 4. Now for each f € F, clearly t; =: ((f | i) : i < k) is a k-branch of T,
and f| # f2 € F = t;, # ty, so T has at least |F | k-branches.

The other direction is easy, too. Note that the proof gives =" i.e., the supremum
is obtained in one side if and only if it is obtained in the other side.

(2) If T is a tree with u nodes and & levels then we can add 4 nodes adding A
branches. Also the other inequality is trivial.

(3) First A= > 1(%) because if T is a tree with A nodes and  levels, then we know
[lim,(7)] < A=Y, hence & = {t : t is a k-branch of T'} has cardinality < A" and
satisfies the requirement in the definition of 1<%>.

Second A > & by part (2) of 2.6.

Lastly, A= < A<F> 4 g™ because if T is a tree with A nodes and & levels,
we know by Definition 2.1 that there is % C [T]* of cardinality < A<*> such
that every s-branch of T is included in some 4 € &£, without loss of generality
x<ryeEAEP = x¢€ A;s0

[lim,(7)| = |{z : ¢ a k-branch of T'}|

= | U {t C 4:tak-branch of T'}|
AeP

< ) lim(T | 4)|
AeP

S },@‘ + K.‘c.tl' S /1<K> + ,{m[r.

(4) Like the proof of [Sh:g, Chapter I1,3.5].
(5) Left to the reader. 6

LEMMA 2.7. Assume

(a) I CJ areideals on &

(b) I is generated by < u* sets, u* > K

(c) TH(f,4) > p=cf(u) > p* > Ty (p*, 5)

(d) & is not the union of countably many members of I .
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Then We can find Ay € A1 C --- C A, C ... from I'" with union k, such that for
each n thereis (A7 1i € A,), u* < A = cf(A7) < f (i) such that:

H AT is u-directed

€A,

AC A, A eI:>cf<H/1?> <A

ied

REMARK 2.8. The point in the proof is that if I is generated by {B, : y < y* <
Wy, and {ne : o < u't} are distinct branches and f € 4(4 + 1\{0}), 4 C & and
i € A= cf(f(i)) > u*, then for some g < f for every y < y* and o < u*,
{i<ytifnai) < fi) thenna(i) < g(i)} = ymod J,+(f [ ).

PRrROOF. Similar to the proof of 1.1 adding the main point of the proof of 2.3, the
“fact” there. -

We can further generalize

DEFINITION 2.9. For I C J C %(k), function f* € ® Reg and 1, we let

Firan {Fch 1if 4 € J then

<K

AT f e F}|}

(so I is without a loss of generality an ideal on x and if I = {(} this is just

7 (f*.4)

?iz)(f )—{FCHf :if A € J, and f, g € F are distinct

<K

then {i € A4: f(i) = g(i)} € 1}
‘Z'}.J.z.(i)(f*) - {F & Hf*(i) Hif 4 € J, then for some
i<k
G C H[f*(i)]”" of cardinality < A we have
ied

(Vf e F)3g e Glfi cA: 1) ¢ gli)} 1]}.

If 2 is a set of such tuples, then we let F£ (f*) = Nyez o (f*). Ifin all the tuples A
is the third element, we write triples and f*, A instead of f™*.

For any 7+ we let T4(f*) = sup{|F|: F € FL(f*)}
i i (f) exemplifying
Uij(f,A) > u:ie, U (F ) > p. Theny € F satisfies (VA € P)[{i : n(i) € A} €
J]. We choose N?, N! satisfying (a)—(f) with y, = 1.

n?
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§3. On the depth behaviour of ultraproducts. The problem originates from Monk
[M] and see on it Roslanowski Shelah [RoSh:534] and then [Sh:506, §3] but the
presentation is self-contained.

We would like to have (letting B; denote Boolean algebra), for D an ultrafilter

onk:
Depth (H Bi/D) >

i<k

H Depth(B;)/D l .
i<k
(If D is just a filter, we should use T instead of product in the right side). Because of

the problem of attainment (serious, see Magidor Shelah [MgSh:433]), we rephrase
the question:

® for D an ultrafilter on &, does 4; < Depth™ (B;) for i <  imply

11 /D. < Depth" (H B; /D)

i<k <K

at least when A; > 2°;
&' for D a filter on « does A; < Depth® (B;) for i < k imply (assuming A; > 2%
for simplicity):

u=cf(u) < Th, ,((4 i< k) forsome 4 € D*

= u < Depth” <HB,</(D + A)) for some 4 € D*.

1<K
As found in [Sh:506], this actually is connected to a pcf problem, whose answer
under reasonable restrictions is 1.6. So now we can clarify the connections.
Also, by changing the invariant (closing under homomorphisms, see [M]) we get
a nicer result; this shall be dealt with here.
The results here (mainly 3.5) supercede [Sh:506, 3.26].

DEFINITION 3.1. (1) For a partial order P (e.g., a Boolean algebra) let
Depth* (P) = min{4 : we cannot find a,, € P
for @ < Asuchthata < f = a, <p ag}.
(2) For a Boolean algebra B let
D) (B) = Depth;, (B)
= sup{Depth* (B’) : B’ is a homomorphic image of B}.

(3) Depth(P) = sup{u : there area, € P fora < u
suchthata < f < = a, <p ag}.
(4) Depth,, (P) = D, (P) = sup{Depth(B’) : B’ is a homomorphic image of B}.

(5) We write D, or Dy, or Depth, if we restrict ourselves to regular cardinals. Of
course we could have looked at the ordinals.
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DEerINITION 3.2. (1) For alinear order .7, let the interval Boolean algebra, BA[.7]
be the Boolean algebra of subsets of .# generated by {[s,?)r : s < t are from
{—o0} U S U {+00}}.

(2) For a Boolean algebra B and regular 0, let com.y(B) be the (< 6)-completion
of B, that is the closure of B under the operations —x and \/,__ x; for & < 6 inside
the completion of B.

<o

Fact 3.3. (1) If B is the interval Boolean algebra of the ordinal y > w then
(a) DS (B) = |y|*
(b) Depth*(B) = |y|*.
(2) If B’ is a subalgebra of a homomorphic image of B, then D;" (B) > D/} (B’').
(3) If D' 2 D are filters on k and for i < k, B! is a subalgebra of a homomorphic
image of B; then:
() [lic. B}/D'" is a subalgebra of a homomorphic image of |
(ﬁ) DI;L(H:‘Q: Bi/D) 2 D;(Hi<ﬁ B:‘//D/)'

(4) In parts (2), (3) we can replace D, by D if we omit “homomorphic image.”
Proor. Straightforward. -
Cramv 3.4. (1) If D is a filter on & and for i < k, B; a Boolean algebra, ); <

Depth,, (B;) then

(a) Depthy, ([T, Bi/D) > supp,~p (tef ([T, /1,~/D1))+ (i.e., sup on the cases tcf
is well defined )
(b) Depthy ([, Bi/D)is > Depth; (2(x)/D) and is at least

sup{ [tcf (H if»/D1>

(2) u < Depth; (B) if and only if for some a; € B for i < p we have that:
a< pf<pun<ow,andoy < Py < pforl < ntogether imply that

B = “(ag —a,) — U(aw —ag,)>0."
i<n
(3) Let A € D" (D a filter on k). In [],_, Bi/D there is a chain of order type T
ifin [1;., Bi/(D + A) there is such a chain. If Y = A, ¢f(1) > 27 also the inverse is
true.
(4) If u < Depth' (], Bi/D) and cf(u) > 2%, then we can find A € D" and
Sfo € 1licx Bi for o < u such that letting D* = D + A:

B; /D, hence

i<k

: Ai < Depth®(B;), Dy D D}.

a<f<pu= (H B,/D*) = fo/D" < fp/D* moreover fo <p- f.
i<k
(5) Like (1) replacing Depth; by Depth", Dy D D by {D +A: A€ D*}.
Proor. Check, e.g.:
(2) The “if” direction:
Let I be the ideal of B generated by {a, —ap : o < f < u},h : B — B/I the
canonical homomorphism, so {a,/I : o < p) is strictly increasing in B/I.
The “only if” direction:
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Let 4 be a homomorphism from B onto By and (b, : a < u) be a (strictly)
increasing sequence of elements of B;. Choose a, € B such that h(a,) = by, so
a< B = a,\az € Ker(h) but a, ¢ Ker(h), moreover f < a = a, — ag ¢ Ker(h).

(3) The first implication is trivial, the second follows from part (4).

(4) First, assume u is regular. Let (f,/D : a < ) exemplify

u < Depth* (H B,-/D) .

Thena < f<pu= fo <p fp&-(fa =p fp),so foreach a,
{i<r:foli)=fp)}/D:B<u,Bp>a)

is decreasing and |2 /D| < u = cf(x) hence for some B, € (a, u) we have

(VB)(fa < B<u={i<k:fali)# f5 (i)}
={i<k: foli) # fp(i)} mod D

(as f,/D is increasing). So ({i : fo(i) = f5 (i)}/D : a < p) is decreasing and
|25 /D] < 2% < u, hence for some A* C & the set

E={a<u:{i<r:fali) < fp (i)} = A" mod D}

is unbounded and even stationary in u. Let D* = D + A*,sofora < f < u we
have f <p fp hence f, <p- fp.buta € E & B > o = fo #p+ fp. Hence
someis E' C {6 € E: (Va <3 NE)(B, <)} is unbounded in u and clearly
Va.p)la<p&acE &PeE = fo<p [p)

So {fa : a € E'} exemplifies the conclusion.

Second, if u is singular, let 4 = ZC <cf(u) Mo e > 255 g strictly increasing
and each uq is regular. So given (f, : a < u), for each { < cf(u) we can find
E, C #3 of cardinality lué and 4, € Dt suchthata € E, & fc E; &a< f =
fo <pia. fp. For some A, cf(u) = sup{¢ : 4y = A}; so 4 and the f,’s for
a € U{E\{Min(E;)} : { < cf(u) is such that 4; = A} are as required. 34

We now give lower bound of depth of reduced products of Boolean algebras B;
from the depths of the B;’s.

FIRST MAIN LEMMA 3.5. Let D be a filter on « and (%; : i < k) a sequence of
cardinals (> 2%) and 2" < u = cf(u). Then:

(1) (a) & (&)t & (B) & (B)~ = (y) and (y)* = (y) = (9).

(2) If in addition (Vo < u)(a™ < u) V (D is Ri-complete) we also have (y) <
()t < (9) so all clauses are equivalent, where:

() if B; is a Boolean algebra, J; < Depth* (B;) then u < Depth* ([]
(B) there are cardinals y; < A; for i < k such that, letting B; be

B;/D)

<K

BA[y;] = the interval Boolean algebra of (the linear order) y;,
we have i < Depth™ ([],.,. Bi/D)
(y) thereare ({Aiy:n < mn;):i< k) wherel;, = cf(di,) < A; and anon-trivial
filter D* on \J,_,({i} x n;) such that:
(]) U= th(H(In) )-i.m/D*)'

This content downloaded from 188.72.127.63 on Sun, 15 Jun 2014 11:46:20 AM
All use subject to JSTOR Terms and Conditions


http://www.jstor.org/page/info/about/policies/terms.jsp

Sh:589

1640 SAHARON SHELAH

(ii) for some A* € D we have

D+ A4 = {A C & : the set U({z} X n;) belongs to D*}
i€
(6) for some filter D' = D + A, A € D% and cardinals 1. < ; we have
< Tl 21 < )
(B)' like (B) we allow y; to be an ordinal
(B)~ letting B; be the disjoint sum of {BA[y] : y < A;} we have:

u < Depth” (H B,~/D>
<K
(y)* for some filter D* of the form D + A and 1. = cf(A)) < A; we have
H= tef (Hi<n /lﬁ/D*)
(a)* if B; is a Boolean algebra, J; < Depth® (B;) then for some A € D we have,
setting D* = D + A, that u < Depth™ ([],.,. Bi, <p+); moreover for some
fa €11, Bi for o < pu we have

a < /3 = {I . B; i= fa(l') < f/;(l)} =rkmod D",

Proor. (1) We shall prove (a) < (8) = (B) = (B)” = (B) = (y) = (B) and
()" & (@) and ()" = (y) = (9).

This suffices.

Now for (a)” = (a) note that if (1;, B; for i < x are given and) 4 € D,
(fa @ < ) exemplify (a)" then letting f/, = (fo [ 4) U0 4 ie. f5(i) is
fali) wheni € 4 and Op, if i € k\A4, easily (f/, : a < 1) exemplifies (). Next
(o) = ()" by 3.4(4).

Now (8) = (B)’ = (B)~ holds trivially and for (8)" = (y) repeat the proof
of [Sh:506, 3.24, page 35] or the relevant part of the proof of 3.6 below (with
appropriate changes, the case there is more complicated). Also (8)~ = (B)' is
proved in the proof of 3.6 below. Easily (y)* = (B); also () = (a) because

(i) if y; a cardinal < Depth™(B;), the Boolean Algebra BA[y;] can be embedded

into B;, and

(i) if B} is embeddable into B; for i < k then B’ =[]

into [[,_,. Bi/D

(iii) if B’ is embeddable into B then Depth* (B’) < Depth* (B).

Now (o) = () trivially. Also (y)™ = (y) trivially and (y) = (J) as in the proof
of the implication “(¢) = (a)” in the proof of 1.6. Also we note () = (5), as
if B; = BA[y;] and y; < 4; and u < Depth" (I1B;/D), then by 3.4(4) there is a
sequence (f, : o < u) satisfying f, € [],. Bi and 4* € D" such that o < f <
U= fo<pia fp. So{fa:a< u}exemplifies that Tp, 4((|B;|:i < k)) > u, as
required in clause ().

(2) Assume (Vo < u)(a™ < p).

Now 1.6 gives (6) = (y)* hence (y) & (y)" < (6). s

Now we turn to the other variant, D'

SECOND MAIN LEMMA 3.6. Let D be a filter on k and (4; : i < &) be a sequence of
cardinals (> 2%) and 2* < u = cf(u). Then (see below on (a),...):

<Kk

B}/D can be embedded

i<K
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(1) (@) & (@) & (B) & (B) < (B)” < (y) and ()" = (7) & (B) = ().
(2) If (Vo < u)(a™ < u) we also have (B) < (y) < (y)t < () (so all clauses
are equivalent); where:
(o) if B; is a Boolean algebra, A; < Depth; (B;) then u < Depth; (]
(B) there are cardinals y; < A; for i < k such that, letting B; be
BA[y;] = the interval Boolean algebra of (the linear order) y;, we have
u < Depth (TT,.., Bi/D)
(y) thereare ((Ain :n < m;):i<k)whereli, =cf(d;,) < A; and a non-trivial
Sfilter D* on \ J,_ {i} x n; such that:

B;/D)

<K

u= tcf(H l,-,,,/D*) and D C {A C K : the set U{l} x n; belongs to D*}

(in) icd

(8) forsomefilter D* 2 D and cardinals ., < A; wehave u < Tp«((A; : i < K))

(B) like (B) but allowing y; to be any ordinal < 2;

(B)~ letting B; be the disjoint sum of {BA[y] : y < X;} (so Depth” (B;) = ;) we
have:

u < Depth (T],_,, Bi/D)

(y)t there are X} = cf(Al) € (2, A;) for i < k and filter D} 2 D such that
[L;cq A/ D* has true cofinality u

(@)* if B; is a Boolean algebra, }; < Depth, (B;) then for some filter D* O D
we have u < Depth;, ([, Bi/D*).

PrOOF. Now (f) = (B)’ trivially and (B)" = (B)~ by 3.3(3) as BA[y;] can be
embedded into B;, and similarly () = («) by 3.3(3), and (a) = (f) trivially. Also
(o) = (a)* trivially and (a)* = («) easily (e.g., by 3.3(3)).

Also (y)* = (p) trivially and (f) = () easily (as in the proof of 3.5).

We shall prove below (y) = (8), (8)’ = (y) and (8)~ = (B)’. Together we have
(@) = (@) = (a) = (B) = (B) = (B)~ = () = () = (B) = (a) and
(y)* = (y) = (6); this is enough for part (1).

Lastly, to prove part (2) of 3.6, by part (1) it is enough to prove (§) = (y)* asin
the proof of 3.5, that is we use 1.6. -

) =(8)

So we have 4;, (for n < n;,i < k), D* as in clause (y) and let (g, : e < u)
be <p--increasing cofinal in []; ) 4i» but abusing notation we may write g.(i,n)
for g.((i,n)). Lety; =: max{4;, : n < n;} and B; =: BA[y;], clearly y; < ;. a
(regular) cardinal as by assumption A;, < A; < Depth" (B;) is regular for n < n;.
In B; we have a strictly increasing sequence of length y;. Without loss of generality
{Ain : n < n;} is with no repetition (see [Sh:g, I, 1.3(8)]) and Ao > Ay > -+ >
li.n,’—l .

So for each i we can find a;,, € B; (for n < n;) pairwise disjoint and (a;,; : { <
Ain) (againin B;) strictly increasing and < ;.

Let b € B; be U,., @ing(in (it is a finite union of members of B; hence a
member of B;). Let b, € [],.,. Bi/D beb, = (b;. :i < k)/D. Let J be the ideal of
B =:[],.. Bi/D generated by {b. — b; 1€ <{ < u}. Clearlye < { < u = b, <
by mod J, so by 3.4(2) what we have to prove is: assuming ¢ < { < u,k < w and
em < {m < pform <k, then B |= “b; — b. —J,,,.(be, — by,) #0".
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Now
Y = {(i,n) :ge(in) < g(i,n)

and g, (i,n) < g, (i,n) form =0,1,....k — 1}

is known to belong to D*, hence it is not empty so let (i*,n*) € Y. Now
B,‘* |= b,‘*,é n Aixpx = a4

i*,n*,gg(i*,n*)5
for every ¢ < u, in particular for £ among €, {, e, {m (for m < k). As (i*,n*) € Y
we have

B~ I=( i* C_ i* E)Hal n* > b« LN aix — bj- e Najx px

= A —a >0

i*n* g (i*.n*) i*n*ge(i*,n*)

(as g¢(i*,n*) > g.(i*,n*) since (i*,n*) € Y) and similarly
Bj- |= (bix e, — bi- «2,) Najspe = 0.

Hence

Biv |=“bpn g — bine — U (bi+ e, —big,) #0.”
m<k

As this holds for every (i*,n*) € Y and Y € D*, by the assumptions on D* we
have

{i* < K : Bjx l: “b,‘*.g — bjxe — U (bi*,Em - bi*,(,,,) 7é 0”} eDt
m<k
hence in B, b; — b, ¢ J as required.

BY = (y)

Let B; be the interval Boolean algebra for y;, an ordinal < A;.

To prove clause (y) we assume that our regular x is < Depth;! ([],.. Bi/D), and
we have to find n; < w,4;, < 4; for i < k,n < n; and D* as in the conclusion of
clause (y). So there are f, € [],., Bi for @ < u and an ideal J of the Boolean
algebra B =: [[,_,. B;/D such that f,/D < f3/DmodJ fora < f5.

Remember u > 2%. Let (i) = UZ<n(a,i)[ja,i,2€:ja,i,2£+])Whereja.i,Z < Jajitr1 <
y; for £ < 2n(a,i). As u = cf(u) > 2%, without loss of generality n(a,i) = n;
for all o < u. By [Sh:430, 6.6D] (better yet, see [Sh:513, 6.1] or [Sh:620, 7.0]) we
can find 4 C 4* =: {(i,£) : i < k,£ < 2m;} and (y}, : i < K,£ < 2n;) such that
(i,£) € A = y}, is a limit ordinal of cofinality > 2* and

(*) forevery f € [](;4)eq 7 and @ < p thereis f € (e, u) such that:
(i,£) € A"\A = jpie = Vi
(i,2) e A= f(i,0) < jpie <7
For (i,£) € A* define f}, by

ﬁ:@ =: Sup{y:m : (l’m) € A" and y:m < Y:Z
and m < 2n; (actually m < £ suffices)}.
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Now g}, < y}, as the supremum is on a finite set, except the case 0 = f, = y/,
which does not occur if (i,£) € A. Let
Y={a<u:if(il) € A*\A then j,;r =7/,
and if (i,£) € A then ) < jaie < i}

Clearly {f : @ € Y} satisfies (x), so without loss of generality ¥ = u.
Clearly

()1 (v}, : € < 2n;) is non-decreasing (for each i).

Letu; = {€ < 2n; : (Vm < £)[y},, < vi,1}-
For i < k,£ < 2n; define b, =: fo(i) N[}, 7},) € Bi. Let

w; =: {£ € u; : for every (equivalently some) oo < u we have
Bi = “IBi0svie) N fali)is # O and # [By,770)"}-
So

()2 fa(i)\ Uqew, bie does not depend on a, call it ¢;(€ B;).
Let for £ € w;

Uip =: {n < [Jaions Jaions1) 18 not disjoint to [B7%, y,ffg)

for some (equivalently every) a < ,u}.

Ag = {(i,[) i < Kk, € w; and for some n € u;, we have, for some

(= every) a < uthat joion < By < jaions1 < y;}}.

A= {(i,@) i < k,£ € w; and for some n € u;, we have, for some

(= every) a < pthat B < jaion <750 < Jaizntl }
Let
b = | (B 7i)) 1 £ € wiand (i,£) € Ao} € By
b = (B 7)1 € € wiand (i,£) € A1} € B;
¢/ = b Nb, cf =b)n(1-b),
¢ =(01-b)Nb), c=1-bn(1-b))
bo=:(b?:i<k)/DEB b = (b:i<k)/DcB
¢ ={c{:i<k)/DeB
¢ ={ci:i<k)/D € B, see (x),.
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Let J1 = {b € B : {((fa/D)Nb : a < u) is eventually constant modulo J, i.e.,
(Fa < w)(VB)a < p<u— (fo/D)Nb—(fp/D)Nb € J]}. AlsoB |=c < fo/D
hence ¢ € J;.

Clearly J, is an ideal of B extending J and 15 ¢ J;. Alsoif x € J;" then for some
closed unbounded E C u we have: ((fo/D)Nx : a € E) is strictly increasing
modulo J.

Hence by easy manipulations without loss of generality:

(*)3(a) if ¢, € J;F then ((fa/D) Ne; : o < ) is strictly increasing modulo J
(b) for atleast one 1, ¢, € J;.

By (x) we can find 0 < oy < a < @ < u such that:
(¥4 ifi < K, 2 < 2n;, /\a<# Vi > jaie and k < 2 then
SUP{ oyt * Jaity < Vg and £y <2ni} < jo,,, e
Now if in ()3, ¢4 € J;" occurs then
By fauli) 1 S i) 1 —
= H(Sao(@) 0 fa, (D) N[BT vEe) £ € w
and (i,£) ¢ Ao, (i,£) ¢ A}
= U 0p, = 05"
LEew;

(as for each £ € w; such that (i,£) ¢ Ay U A4, the intersection is the intersection
of two unions of intervals which are pairwise disjoint) whereas we know ( f,,/D) N
(far/D)Neca—c =y (fa,/D) Ny — ¢ ¢ J; contradiction.

Next if in ()3, ¢3 € J;" holds then

Bi E“(fa (i) Nl —¢) = (fa(i) N €} = i)
_U{ foq m[ﬁlf’ylf) fao(i)m[ﬁifby:j)):eewi and (lsE)EAl\AO}
= (J 05 =05"
LEw;

(as for each £ € w; such that (£, i) € A\ Ao the term is the difference of two unions
of intervals but the first is included in the right most interval of the second) and we

have a contradiction.
Now if in (%)3, ¢; € J* holds then

B E“(fa(i) e} =€) = (fa, (i) Nef —e) U(fa(i) N cf =€)
= U{((faz(l) - fou (l) Ufao(i)) N [[))ifza y:@)) s wy and (i, Z) S AO N Al}

= J 05 =05"

LEw;

and we get a similar contradiction.
So

(*)s in ()3, ¢2 € J}".
Without loss of generality
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(*)¢ for o < u,i < k and £ < 2n; such that (i,£) € 4 we have
Sup{ jaa.ie, : &1 < 2n; and jogie, < ¥e} < J2atiic-

Letv; = {€ € w; : (i,€) € Ao, (i,£) ¢ A1}, s0 c? =U{[BY.v5) : £ € vi}. As
£ € v; = (i,€) € Ay necessarily
(*)7 if £ € v; then £ is odd and jaie—1 = By < Jaizer1 <yl

Now for every a < u define f7, € [],.,. Bi by
faoli) = U[ﬂ;fesjza.i.zul D
LEv;

Clearly
Bil=“fali)Nec} —ci < fL30) < faari(i)Ne} —ci”
Let Y* =:{J,.,.({i} X v;) and we shall define now a family Dy of subsets of Y*.
For Y C Y*, and for a < u define fo.y €[], Bi by
fa.Y(i) = U{[ﬁfzupja.i.%ﬂ) 120 +1 € v; and (ia‘e) ¢ Y}'
Forg € G =:[[;pcy-[By: 7iy) define £ € I, B; by

fe@) = B g((0.0))),

LEw;
now
(*)s forevery a < u for some g = g% € G we have [/, = f,.
[Why? By the previous analysis; in particular ()7.]
Let

Dy = {Y C Y* : forsome g, € G for every g € G satisfying
[(i.,£) € Y = g(i,0) = ;] we have
fe/D — fg /D belongsto J, }

it is a filter on Y'*.
(*)9 ifgl,gg € G then
(a) g1 <p, 82 B (fo,/D)Ne2 < (fo,/D) N2
(b) g1 <p, &2 Bl (fy/D)Neca < (fo/D)Ne
(*)10 forevery g’ € G for some a(g’) < u we have g’ < &t (see (x)g).
[Why? By (*).]
Clearly
()11 if 4 € D then | J{{i} x v; : i € A} € Dy.
Now

X Cf(n(i.e)e v+ ¥ie/Do) > .

[Why? If not, we can find G* C G = [];cy-[B}y,77) of cardinality < u,
cofinal in HW)GY* 7%,/Do. Foreach g € G* for some a(g) < u we have g < Eaie)
hence o € [a(g), u) = g <p, g%, let a(x) = sup{alg) : g € G} so a(x) < u so
Ngea & <py 8,); contradiction, so @ holds.]
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So for some ultrafilter D* on Y* extending Do, u < tcf <HW)€Y* y,?fg/D*),
hence 4 < tef [](;4)ey- cf(7,)/D* and by [Sh:g, I1,1.3] for some 4}, = cf(;,) <
cf(y,) <7 < A wehave u = tcf (H(i.l)e)’* Ay /D*) as required (we could, instead
of relying on this quotation, analyze more).

So we have proved (8)" = (y).

- = (BY

Let B;, be the interval Boolean algebra on y for y < 4;,i < &, and we let B;fy be
generated by {a}‘y 1 J <y} freely except a;‘ly < a;fzy for j; < j» < y. So without loss
of generality B; is the disjoint sum of { B, : y < A;}. Lete;;, = 1p, ;50 (eiy 1 y < 4;)
is a maximal antichain of B;, B; | {x € B; : x < ¢;, } is isomorphic to B;, and B;
is generated by {x : (Iy < 4;)(x < e;;)}. Let (f4 : @ < u) and an ideal J of B
exemplify clause (f)~, thatis /o € [[,.,fianda < f = fo/D < f/D mod J;
for the proof of 3.5 we just fix J = {0z}.

Let I; be the ideal of B; generated by {e;, : y < 4;}, so it is a maximal ideal;
let I be such that (B, 1) = [],_.(Bi,I;)/D so clearly |B/I| = |2°/D| < 2* < cf (u)
(actually |B/I| = 2 if D is an ultrafilter on x), so without loss of generality
a<f<u= fof/D=fg/Dmodl. Wecanuse (fi1o/D — fo/D : o < p), s0
without loss of generality f,/D € I, hence without loss of generality f,(i) € I;
fora < pu,i<k.

Let fali) = Tail--  €ipaic) @ iarts), . Jean,, Where na; < o and 7o is a
Boolean term. As u is regular > 2%, without loss of generality 7,; = 7; and
nai =ni. Letyd, =y(a,ie) and y},, = j(a,i,e).

By [Sh:430, 6.6D] (or better [Sh:620, 7.0]) we can find a subset 4 of

A* ={(i,n,0):i<kandn < n;and £ < 2}
and (y/,, 1 i < k and n < n; and £ < 2) such that:
()A) (i,n. L) € A= cf(yf,,) >2°
(B) forevery g ¢ [ineyen ine for arbitrarily large o < u we have
(in.€) € ANA = y5,0 = Vine
(i,n.€) € A= g(i,n,0) < ygin < Vine-
Let
Bine = sup{yiw e in' <mi &' <2and o <y}
Without loss of generality
(inl)e A& a<p=yhi, € Blnevineg
(i,n,0) € ANA& < = 9550 = Vine-
Also without loss of generality
(*) fora < pand (i,n,£) € A we have
Vsastin > SUp{iasw 0 < k< 2" < mpandyg < vl
Let A; = {y},0: 7 <n; and (i,n,0) € A*\ A4} and

BI/ =BT Z{e,‘_y Ly e Al}
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We define /7, € [T, B/ by f4(i) = f2a+1(1) N (U, e, €iy) € B C Bi. Obviously
(fL/D :a < u)is <p-increasing.

Now easily f//D < fa+1/D and for a < pu, i < k we have f,(i) — 13;,
f2a11(i) — 1p are disjoint (in B;) hence (also in B)

f2a/D_fL/1/D SfZa/D_fZaJr]/DE]»

hence (f,/D : o < A) is strictly increasing modulo J. So (B} : i < k), (f}, 1 a < u)
form a witness, too. But B/ is isomorphic to the interval Boolean algebra of the
ordinal y; = Zye AV < Ai, so we are almost done. Well, y; is an ordinal, not

necessarily a cardinal, but we are proving (8)’ not (). 36

§4. On the existence of independent sets for stable theories. The following is mo-
tivated by questions of Bays [Bay] which continues some investigations of [Sh:a]
(better see [Sh:c]) dealing with questions on Pry(u), Pr}. for stable T (see Defini-
tion 4.3 below). We connect this to pef, using [Sh:430, 3.17] and also [Sh:513, 6.12]).
We assume basic knowledge on non-forking (see [Sh:c, Chapter II1,1]) and we say
some things on the combinatorics but the rest of the paper does not depend on this
section. For simplicity, we concentrate on the regular case.

Cram 4.1. Assume A > 0 > k are regular uncountable. Then the following are
equivalent:

(A) If u < X and a, € [u]<" for a < 1 then for some A € [A]* we have |
cardinality < 6 )

(B) if6 =cf(6) <k andny €°A fora < dand |{ns [i:a <A i<d} <A then
for some A € [A) the set {ny | i: o € A,i < S} has cardinality < 6.

REMARK 4.2. Ofcourse, if ay, is just a set of cardinality < w, by renaming a,, € [A]<F
and for some stationary S C A and o* < u,{a,\a* : a € S) are pairwise disjoint,
renaming o* = u < 4, etc., see more in [Sh:430, §2].

Proor. (A)=-(B). Immediate.

-(A)= ~(B)

Cask 1. For some u € (6, ) we have cf(u) < x and pp(x) > A. Without loss of
generality u is minimal. So

wed Qo has

(*) a C Regnu\b, |a| < k,sup(a) < u = maxpcf(a) < u.
Subcase 1a. A < ppt(u).
So by [Sh:g, Chapter VIII,1.6(2), page 321], (if cf (1) > No) and [Sh:430, 6.5] (if
cf (1) = No) we can find (4, : a < cf(u)), a strictly increasing sequence of regulars
from (6, u) with limit  and an ideal J on cf(u) satisfying be‘(‘ﬂ) C J such that

A = tef (HKCW) la/J) and max pcf{ig : f < a} < Aq. By [Sh:g, I1,3.5], there is

(f¢ £ < A) which is <,-increasing cofinal in [, () 4a/J with

{feTa: (<2} <.
Easily (f; : { < A) exemplifies +(B): if 4 € [4]* and B =: |J, ., Range(/;) has
cardinality < u let g € [], 4o be: g(a) = sup(dq N B) if < Aq, zero otherwise
and let g = Min{a < cf(u) : 2o > |B|}. Soap < cf(u) and{ € 4 = f; |
[, cf (1)) < g, contradiction to “ <;-cofinal.”
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Subcase 1b. cf(u) > Ng and pp* (u) = pp(u) = A. Note that by [Sh:g, Chapter
I1, 5.4, page 88-7] we have cov(u,0,k,8;) < A and let {b, : « < A} C [u]<*
exemplify this. Try to choose by induction on o < 4 a set a, € [1]"“ such that
(VB < a)(|laa Nbg| < cf(u)); arriving to a, by [Sh:g, Chapter VIII, Section 1]
and [Sh:g, Chapter II, 1.4(1)+(3), page 50] there is an increasing sequence (4; :
i < cf(u)) of regular cardinals > ¢ with limit 4, such that tcf(]],_, 4; /Jcbf‘(lﬂ) =
(lee| +10])" ", exemplified by (fe : € < (|| +60)*+) which is u-free. Necessarily for
some ¢ the set Range(f.) is as required.

Subcase 1c. cf (u) = Ny and 4 = pp* (1) = pp(u) = 4.

Let 4/ < A and a, € [¢']<" for @ < A exemplify =(A). We can find (as in
clause (b)) a sequence (4, : n < w) of regular cardinals in (0, u) and ideal J on
w containing the finite subsets of w such that [],_ 4,/J is (¢')**-directed, so we
can find f. € [],., An for e < u’, <,-increasing and {f. : e < u'} is u-free (see
[Sh:g, Chapter II, 1.4]). Define b, = [J{Rang(f:) : € € an} € [u]<" for a < /.
Easily also u, (b, : o« < A) form a counterexample to clause (A). Also in Case 2
below and the choice of u we have § < y < u = cov(y,0,k,8;) < 1 and we can
proceed as there.

CasEg 2. Not Case 1.

So by [Sh:g, Chapter II, 5.4, page 88-9], we have 0 < u < A = cov(u, 0,5, %) <
A.

As we are assuming —(A4), we can find o < A, a, € [1o]<" for @ < A such that
A € [A* = |U,e aal > 0, but by the previous sentence we can find 4, < 4 and
{bg : B < 1} C [1o]<Y such that: every a € [uo]<" is included in the union of
< Wy sets from {by : B < p1}. So we can find ¢, € [1]™ for @ < A such that
do € Upee, bp- Now for A € [A],if |, ¢, ol < 0 then

’U{aa:a EA}’ < ’U{ U b,;:aeA}'
BEca
= |U{b/; :pe U ca}

<min{o : g = cf(c) > |by| for f < u1}
+Jel" <0+0=0

a€d

contradicting the choice of (a, : o < 4).
So

(*) co €[u1]=™, fora < A, u; < dand 4 € [AV = |U, e Cal = 0.

Let 7, be an w-sequence enumerating c,, 80 (7, : @ < A) is a counterexample to
clause (B). 4.1

We concentrate below on A, 0, k regular (others can be reduced to it).

acA

DErFINITION 4.3. Let T be a complete first order theory; which is stable (€ the
monster model of T and 4, B, ... denote subsets of €9 of cardinality < [|€%]|).
(1) Pry(4, x, 0) means:
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(*) if 4 C €%9,|A4| = A then we can find 4’ C 4,|4’| = y and B’,|B’| < 6 such
that 4’ is independent over B’ (i.e., a € A’ = tp(a, B’ U (4’\{a})) does not
fork over B').

(2) Pry(A4, u, x, 0) means:

(**) if 4 C €% is independent over B where |A| = A and |B| < u, B C €% then
there are 4’ C A,|A’| = y and B’ C B satisfying |B’| < 6 such that tp(4’, B)
does not fork over B’ (hence A’ is independent over B’).

(3) Pri(4, x, 0) means Pri(4, 4, x, 0).

FacT 4.4. Assume A is regular > 0 > k,(T) then
(1) if y = Athen Prr(A, x,0) < Priy(A, A, %, 0)
(2) ifA> x> u>0then Prr(4,x.0) = Pry(A, u, x.0).
Proor. (1) The direction <= is by the proof in [Sh:a, III].
[In detail, let 4, B be given (the B is not really necessary), such that A = |4| >
|B| + K,(T) solet A = {a; : i < A}; define

A ={a;: j<i},S={i<Ai:cf(i) >k, (T)},

so by the definition of k,.(T) for a € S thereis j, < « such that tp(a,, 4, UB) does
not fork over 4;, U B so for some j* theset S’ = {0 € S : js = j*} is stationary,
now apply the right side with {a; : 6 € S'}, 4; U B, here standing for 4, B there].

The other direction = follows by part (2).

(2) This is easy, too, by the non-forking calculus [Sh:a, III, Theorem 0.1 + (0)—
(4), pages 82—84] but we give details. So we are given a set 4 C €% independent
over B, where |4| = A and |B| < u. As we are assuming Pry(4, y,0) there is
A" C A,|A') = x and B’,|B’| < 0 such that A’ is independent over B’. So for
every finite ¢ C B for some 4; C A’ of cardinality < &(T) (< k,(T)) we have:
A'\A; is independent over B’ U¢. So A* = |J{4; : ¢ C B finite} has cardinality
< k,(T) + |B|* < x so necessarily A4’\4* has cardinality y and it is independent
over J{¢ : ¢ C B finite} U B’ = BU B’. We can find a set B* C B of cardinality
< |B|* + k7 (T) such that ¢ € B’ = tp(¢, B) does not fork over B*. Now B*,
A’ \ A* are as required.] 44

Discussion 4.5. So in order to understand the model theoretic property it suffices
to prove the equivalence

Priy(A, u, 1, 0) < Pr(4, u, x, 0, k) with k = &,(T),
where

DEFINITION 4.6. Assume
(*) A > max{u, x} > min{u,x} > 0 > x > Xy and ¢ > 0 and for simplicity
4,0, k are regular if not said otherwise (as the general case can be reduced to
this case).
(1) Pr(4, u, 1, 0, k) is defined as follows: if uq € [1]<" for o < Aand ||, ., ua| <
w4 then thereis Y € [4]* such that |,y ta| < 0:
(2) Pr'"(4, u, x, 0, k) is defined similarly but for some tree T each u, is a branch
of T.
(3) We write Pr(4, < u, x, 0, k) for Pr(4, u*, x, 0, k) and similarly for Pr" and Pr7.
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FacT 4.7. Assume A, u, x, 0,k = k,(T) satisfies (x) of Definition 4.6. Then

(1) Pr(d, u, 3,0, 5,(T)) = Pry(A, pu, x,0) = Pr(A, u, x, 0, k,(T)).

(2) Pr(4, 4, x, 0, k. (T)) = Pry(4, 1, 0) = Pr'"(4, 4, 1,0, k,(T)).

(3) We have obvious monotonicity properties.

Proor. Straight.

(1) First we prove the first implication so assume Pr(4, u, x, 0, k,(T)), let k =
k,(T), hence (x) of 4.6 holds and we shall prove Pry(4, u, x,0). So (see Def-
inition 4.3(2)) we have 4 C €% is independent over B C €%,|4| = A and
|B| < u. Let A = {a, : @ < A} with no repetitions and B = {b; : j < j(x)}
s0 j(¥) < u. Foreach a < 4, there is a subset u,, of j(*) of cardinality < &,(T) = &
such that tp(a,, B) does not fork over {b; : j € u,}. So u, € [u]<* and
| U<y #al < 1j(¥)] < p hence as we are assuming Pr(4, u, x, 0, k), thereis Y € [AJ*
such that |(J,cyta] < 0. Let B = {b; : j € Upeytha}, A" = {as : @ € Y} 50
B’ C B,|B'| <0 and A’ C 4,|A'| = yx and by the nonforking calculus, tp(4’, B)
does not fork over B’ (even {a, : € Y} is independent over (B, B')).

Second, we prove the second implication, so we assume Pr*T(A, u, %, 0) and we
shall prove Pr'" (4, u, x, 0, k,(T)). Let & = &, (T).

Let T be a tree and for o < 4,u, a branch, |u,| < &, [U,; #a| < p. Without
loss of generality 7' = {J,.; #as 4 = U, 4, where 4y = {a : otp(us) = (}.
Without loss of generality 7' C *>u, T = {J,_, T where Ty = J{u, : @ € 4;} and

n € T\{()} = 7(0) =¢.

Now T; can be replaced by {# | C; : n € T;} where 0 € C;, otp(C;) = 1 +
cf(¢),sup(C) = {. So without a loss of generality

T=U{Ta:a€Regrm}
(Y#neT,=n0) =0

Without loss of generality 4 = (J{4, : ¢ € Reg Nk} and J,c, s = To. Itis
enough to take care of one o (otherwise a little more work is required). So without
a loss of generality:

a < A= otp(u,) = o.

Asc = cf(g) < s thereare A4; C €%suchthat (4; : i < ) increases continuously
and p € S(4,) and for each i < o the type p | 4;;1 forks over 4; say ¢(x,c;) €
p | Ay forks over 4; and 4; = {c¢; : j < i}, (recall we work in €°9).

By the nonforking calculus we can find (f, : # € T'), f,, elementary mapping

Dom(f',) = Agy(y)
(fy : n € T) nonforking tree, that is
v < = tp(Rang(f}), U{Rang(f/)) cpeT,pllglv)+1) 4n})

does not fork over 4,. For a < A, let

go=J{/v:ivea}, Aoa= | Rang(f)) = ga(4,) and po = ga(p).

VEUy
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Let b, € € realize p,, for a < A be such that:

tp (ba, U Rang(f,) U{bg: B # a}) does not fork over 4.

neT
Now we apply Pry(4, u, x, 0) on
A={by:a< i}

B = U Rang(f,).
neT

Sothereare 4’ C 4,]|A'| = yand B’ C B,|B’| < 0, tp(4’, B) does not fork over B’,
hence (for some Y € [A]*) we have 4’ = {a, : a € Y} independent over B’. So
thereis 7" C T, subtree such that |T'| = |B’|+o < 0 and such that B’ C {J 7/ 4.
Throwing “few” (< |B’|" +k,(T)) members of A’ thatis of ¥ we get 4’ independent
over B’ as by the nonforking calculus, if & € Y then tp(b,, | J{Rang(f,) :n € T'})
does not fork over UqET’ Rang(f,) hence u, C T". So clearly Y is as required.

(2) By part (1) and 4.4.

(3) Left to the reader. 47

Discussion So by 4.7(1) if Pr and Pr" are equivalent, k = ,(T) then Pry is
equivalent to them (for the suitable cardinal parameter), so we would like to prove
such equivalence. Now Claim 4.1 gives the equivalence when 0 = k,(T),A = y =
cf(1) and “for every 4 < 1.” We give below more general cases; e.g., if 1 is a
successor of regular or {6 < A:cf(6) =0*} € I(A) or...

FACT 4.8. Assume A, u, x, 0,  are as in (x) of Definition 4.6 and u* € [0, u) and
cf(u*) < k.

(0) Pr(A, u, x,0,k) = Pr"(4, u, x, 0, k) and if 2. > || for a < u, both hold.

[Why? Straight.]

(N Ifk < Aand u < X and cf(u) > k, then

Pr(d, u, x,0,k) < (Vuy < w)Pr(A, < uy, 2,0, K);

similarly for Pr".
(2) If pp(u*) > A then ~Pr'" (A, u, x, 0, &) (by [Sh:355, 1.5A4], see [Sh:513, 6.10]).
(3) If pp(u*) > Aand
(a) {6 < A:cf(8) =0} € I[A] or just
(a)~ for some S € I[A], (V6 € S)[cf(5) = 0] and
(a)s for every closed e C A of order type y,e N S # 0.
Iﬁﬂ! - Prtr(la M X 0, K’)'
[Why? As in [Sh:g, Chapter VIII,6.4] based on [Sh:g, Chapter 11,5.4] better still
[Sh:g, Chapter 11,3.5].]
(4) If A is a successor of regular and 0+ < A, then the assumption (a)~ of part (3)
holds (see [Sh.g, Chapter VIII,6.1] based on [Sh:351, §4]).
(5) If u < A and cov(u, 0, k,N1) < A (equivalently

(VT)[Q <t & Cf(T) <K — ple-comp/ele(T) < )']’

then —Pr(A, u™, x,0, k) implies that for some u; € (u, A) we have = Pr(4, u1, x, 0, %)
(as in Case 2 in the proof of 4.1).
(6) Pr(jﬂ lu’ X’ 8’ Nl) @ Prtr()" lua X’ 0; Nl )
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(7) Pr(4, u, 4,0, k) if and only if for every v € [0, u) we have Pr(4,< 1,4,7,K);
similarly for Pr".

(8) Pr(A, < u, A, 0, k) if and only if Pr" (A, < u, 4,0, k) (by 4.1).

CLamM 4.9. Under GCH we get equivalence: Pr(4, u, x,0,k) < Pr'" (A, u, 1, 0, k).

PrROOF. Pr = Pr" s trivial; so let us prove = Pr = = Pr", so assume
(a0 a < 2} C 4
exemplifies =Pr(4, u, x, 6, k). Without loss of generality
lao| = K* < K.

By 4.8(1) without loss of generality A = u = u, u}" = 1, so necessarily

(@) A=uj, ;1 >k >cf(u)or
(b) A=pul,k=A

Let T be the set of increasing sequences of bounded subsets of u each of cardi-
nality < k* of length < cf(u) < k*. For each a < Alet b* = (b, : € < cf(u)) be
a sequence, every initial segment is in 7" and a, = (J, <ef(u) boe, SO

ta = {b* 1 {1 C < of(u)}
is a cf (u)-branch of T, and it should be clear. -

REMARK 4.10. We can get an independence result by instances of Chang’s Con-
Jecture (so the consistency strength seems somewhat more than huge cardinals, see
Foreman [For], Levinski-Magidor—Shelah [LMSh:198]).

§5. Cardinal invariants for general regular cardinals: restrictions on the depth.
Cummings and Shelah [CuSh:541] prove that there are no non-trivial restrictions on
some cardinal invariants like b, and 0, even for all regular cardinals simultaneously;
i.e., on functions like (b, : 4 € Reg). But not everything is independent of ZFC.
Consider the cardinal invariants Dpﬁ*, defined below, and also o’ (see 5.13, 5.14).

DEFINITION 5.1. (1) We are given an ideal J on a regular cardinal A.
If A > R let
op)" = Min{u : there is no sequence (C, : & < u) such that:
(a) C,isaclubofAi,
(b) p<a=|C\Cg| <4,
(€) Cas1 Cacc(Ca)},

where acc(C) is the set of accumulation points of C.
If 4 > Ny let

Dpﬁj = Min{u : there are no f, € *4 for
a<pusuchthata < f<u= fo <; fp}
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If 2 > Ny let

op3", = Min{y : there is no sequence (4, : @ < u) such that:
A, € J" and
a<f<u= [A/f\Aa eJt &Aa\A/g € J]}

IfJ=J fd, we may omit it. We can replace J by its dual filter.
(2) For £ € {1,2,3} let op¢ = sup{u : u < opt*}.
(3) For a regular cardinal 4 let

0, =Min{|F|: F C*2and (Vg € “})(3f € F)(g <jm /)}
(equivalently g < f)
b, = Min{|F| : F C*Aand ~(3g € "A)(Vf € F)[f <, gl}-

We shall prove here that in the “neighborhood” of singular cardinals there are some
connections between the 9p§*’s (hence by monotonicity, also with the b,’s).
We first note connections for “one 1.”

Fact 5.2. (1) If 2 = cf(2) > Ry then
b, <op;t <opit <opit.

(2) by, < opgt = opt.
(3) In the definition of 9p}*, Coyy C ace(C,) mod J2 suffices.
A A

Proor. (1) First inequality: b, < op}*.
We choose by induction on & < b;, a club C, of 4 such that

p<a=|C,\Cs| < Aand Cpyy C acc(Cp).

Fora =0let C, = A, fora = f+11let C, = acc(Cy), and for « limit let, for each
B <a,fy€*Abedefined by f(i) = Min(C,\(i +1)). So{fy : B < a}isasubset
of #1 of cardinality < |a| < by, so there is g, € *A such that f < o = f <ym &a-

Lastly, let C, = {6 < A : 6 a limit ordinal such that (V¢ < 6)[ga({) < 61},
now C, is as required. '

So (C, : @ < b) exemplifies b, < op}*.

Second inequality: dp}* < op?*

Assume u < opit. Let (C, : @ < u) exemplify it, and let us define for & < u
the function f, € *A by: f,({) is the ({ + 1)-th member of C,; clearly f, € *A
and f, is strictly increasing. Also, if f < « then C,\Cjy is a bounded subset
of A, say by d;, and there is §, € (61, 4) such that otp(d, N Cy) = J,. So for every
{ € [62,4) clearly f4(() = the ({ + 1)-th member of C; = the ({ + 1)-th member
of Cg\d; < the ({ + 1)-th member of C,. So f < a = f; <y fa. Lastly,
for a < u,C,y1 C acc(C,) hence f,(¢) = the ({ + 1)-th member of C, < the
(¢ + w)-th member of C, < the ({ + 1)-th member of acc(C,) < the ({ + 1)-th
member of C,y1. S0 f < a = fp <y fp S,;m fa>80 (fo: @ < 1) exemplifies

p<opit,
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Third inequality: op?™ < op3*

Assume ¢ < dp3* and let (f, : o < ) exemplify this.

Letc: A x A — A be one to one and let

Ao ={c((,&):{<Aand &< fo(0)}

Now (4, : a < u) exemplifies u < op3+.

(2), (3) Easy. 5.2

OBSERVATION 5.3. Suppose A = cf(1) > No.

(DI (fa:a<p*)is <J;a-increasingge_nwe can find a sequence (C, : o < p*)
of clubs of 4, such that a < f = |C,\Cp| < A and Cpyy C ace(C,) mod 4.

(2) op!* = op}? or for some p,oplt = pt, op2* = u** (moreover though there
isin (*4, < sw) an increasing sequence of length 4, there is none of length x + 1).

Proor. (1) Let
C* = {6 < A: 6 alimit ordinal and (VB < 6)f,+(B) <6

and &’ = § (ordinal exponentiation) };

this is a club of 4.
For each a < y* let

Co = 6+ .6 c C*andf < f,-(6)and f,-(8) < fa(6)}.

(2) Follows. 53
Now we come to our main concern.
THEOREM 5.4. Assume
(a) & is regular uncountable, ¢ € {1,2,3}
(b) (u; : i< k) is (strictly) increasing continuous with limit u,
Ai=ul, A=put
(€) 2" <wand ut < u
(d) D anormal filter on
(e) 0; < Dpij’ and 0 = tcf (], 0;/D) or just

0 < Depth* (H 6,~/D> .
i<k

Then 6 < opt*.

Proor. By 5.15, 5.16, 5.6 below for £ = 1, 2, 3 respectively (the conditions there
are easily checked). 5.4

REMARK 5.5. (1) Concerning assumption (e), e.g., if 2% = u!> and 2* = u*>,
then necessarily u+* = tof (], u*/D) for £ = 1,...,5and so \,_,, Dpﬁi* =2 =
op) = 2% and we canuse u; = (25)Y, A = uf, 0; = 3,0 = utS,

So this theorem really says that the function A — 09, has more than the cardinality
exponentiation restrictions.

(2) Note that Theorem 5.4 is trivial if T],_,, A = 2* = A, so (see [Sh:g, V]) it is
natural to assume E =: {D’ : D' anormal filter on k} is nice, but this will not be
used.
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(3) Note that the proof of 5.16 (i.e., the case £ = 2) does not depend on the longer
proof of 5.6, whereas the proof of 5.15 does.
(4) Recall that for an X-complete filter D, say on &, and f € *Ord we define

£ 1lp by 1/ llo = U{ligllp +1:g € "Ordand g <p f}.
(5) Below we shall use the assumption
(*) WAllp+a = A for every A € D*.
This is not a strong assumption as
(a) if SCH holds, then the only case of interest is if (y; : i < K) is increasing
continuous with limit y and ||(x;" 1 i < k)||p = x* for any normal filter D
on k; so our statements degenerate and say nothing,

(b) if SCH fails, there are nice filters for which this phenomenon is “popular”
see [Sh:g, V;, 1.13, 3.10] (see more in 5.17).

THEOREM 5.6. Assume

(a) D isan R -complete filter on k

) (i :i < K) is a sequence of regular cardinals > (2%)*
(€) |{Ai i< k)|psa = Afor A€ DT, Xregular

) i <opyt

) u=tcf(Tlu;/D) or at least

Then i < op3*.

Remark. Why not assume just || f||p = A for f =: (A; : i < k)? Note that
clag (f, A), see below, does not make much sense in this case.

We delay the proof of 5.6 until we complete some preliminary work.

FacT 5.7. Assuming 5.6(a), for any f € *(Ord \(2%)") we have: Tp(f) is smaller
or equal to the cardinality of || f || p remembering (5.5(4) above and )

rof) = swp{|F|: F S T[S and s #g € F = f 4o,

i<k

ProoF. Why? Let F be as in the definition of T (f'), note: f; #p f; & fi <p
fi= fi<p f;. Notethatasi < x = f(i) > (2°)*, necessarily |F| > 2~.
Now for each ordinal a let FI*) =: {f € F : ||f|p = a}. Clearly FI* has
at most 2* members, as otherwise some f; € FI® for i < (2%)* are pairwise
distinct so for some i < j, f; <p f; (by [Sh:111, §2] or simply use Erdds—Rado on
c(i, j) =min{l <k : fi(() > f;(OD).

So

11lp > sup{ligllp : g € F} > otp{a : FI*I 2 0}
> [{a: FI 4 0} > |F|/2% = |F|.

So||fllp > Tp(f). 5.7
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DEFINITION 5.8. For f € *®Ord (natural to be mainly interested in the case 0 ¢
Rang(f)) and D an X|-complete filter on & let

T17() = (& : Dom(g) = r, (1) > 0= £(1) < 7(0)
and /(i) = 0= g(i) = 0)
and
(1) cla(f,D)z{(g,A);gegf(i)andAew}
cla®(f,D) = {(g. 4) € cla(f, D) : ||g|psa = a}.

Here “cla” abbreviates “class.”
(2) For (g, 4) € cla(f, D) let

Jp(g.A)={B Cr:if Be(D+A)" then|g|(piass > lgllpra}-

(3) We say (g/,4") =~ (g", A") if (both are in cla(f, D) and) 4’ = A” mod D and
Jplg',A") =Jp(g" 4")and g’ = g" mod Jp(g', 4').
(4) For I an ideal on & disjoint to D we let

I«D={4Ck:forsomeX € Dwehave ANX € I},
(usually we have {k\d : 4 € D} CIsol+D =1)and let
cla;(f,D) = {(g,A) (g€ Hf(i) and 4 € (1 *D)*}.
i<k
(5) On cla; (f, D) we define a relation ~;
(g1, 41) ~1 (g2, 42) if:

(a) 4, = 4, mod D and
(b) thereis By € I such that: if By C B € I then

gl o+ a)+\B) = 1820l (D+-42)+(x\5) and

4+ 8) (&1 A1) = T (D1 a))4 e\ B) (825 A2).-

6) Jpi(g,41) ={A4 Cx forsome By [if ByC Bel
we have 4 € J(py4,)4(e\5) (€1, 41)}-

claf’(g, D) = {(h,A)/I ‘he ﬁg(l’),A cI+D)",

i<k

and for some By € 1 if By C B € I then ||hl|py (4 5) = a}.

(7) Let com(D) be the maximal 6 such that D is §-complete.
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Fact 5.9. For f € *Ord and D an X|-complete filter on k. and A € D+
(0)If f1 < fathencla(f 1, D) C cla(f2, D) andforg’,g" € [1i., f1(i). A€ D*
we have (g', A) ~ (g”, A) incla(f, D) if and only if (g', A) =~ (g, A) incla(f». D)
(s0 we shall be careless about this).
(1) Jp(g, A) is an ideal on K, com(D)-complete, and normal if D is normal.
(2) A does not belong to Jp(g, A), which includes {B C k : B = (mod (D + 4)}.
IfBeJj(g.A)then ANB € D* and ||g||p(anp) = [€llD+4-
(3) ~ is an equivalence relation on cla( f, D), similarly ~; on cla;(f, D).
(4) Assume
(i) (g.4) ecla®(f. D), g’ €1, f(i) and
(i) (a) g’ =gmod(D + A4) or
(b) forsomeB € Jp(g, A)wehave: () € B = g'(a) > ||gl||p(orjust ||gl|psa -
lg’llp+5) and (ii) g’ | (x\B) = g | (k\B) mod D.
Then (g'. 4) = (g, ).
(5) For each o, in cla®(f, D)/ = there are at most 2~ classes.
(6) For f € ®(Ord), in cla(f, D)/ =~ there are at most 2% + sup ,cp. | /1o
classes.
Proor. (0) Easy.
(1) Straight (e.g., it is an ideal as for B C x we have

lgllp =Min{||lgllp+a: 1€llps sy }s

where we stipulate [|g]|»(,) = 00, see [Sh:71]).

(2) Check.

(3) Check.

(4) Check.

(5) We can work also in cla®(f + 2, D) (this change gives more elements and
by (0) it preserves ~). Assume « is a counterexample (note that “< 22°” is totally
immediate). Let y be large enough; choose N < (#Z(x), €. <}) of cardinality 2"
suchthat {f,D,k,a} € N and*N C N. So necessarily thereis (g, 4) € cla®(f, D)
such that the equivalence class (g, 4)/ ~ does not belong to N, by the definition of
cla®, clearly ||g|pys = . Let B=:{i < :g(i) ¢ N}. =

CaAsEl. B € Jp(g, A).

Let g’ € [[,..(f (i) + 2) be defined by: g'(i) = g(i) if i € x\B and g'(i) =
f(i)+1ifi € B. By part (4) we have (g’, 4) =~ (g, 4) and by the choice of N we
have (g/,4) e Nas A € #(k) C N,g’ € N (asRang(g’) C N &*N C N) and, of
course, D € 4. Thus, thereis (g’, 4) € N such that (g’, 4) ~ (g, 4) as required.

CAsE2. B ¢ Jp(g, A).

Letg’ € *Ordbe: g'(i) = Min(NN(f (i )+1)\g(')) < f)ifi € B,g'(i) = g(i)
ifi ¢ B (note: f(i) € N,g(i) < f(z) so g’ is well defined).

Clearly g’ € N, (asRang (¢g’) C N and *N C N), and
(#(x).€ x € Hf A (Vi € k\B)(x(i) = ¢'(i))

A (Vi€ B)(x(i) <g'(D)) AlIxllpy(ans) = a>~
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(Why? Because x = g is like that, last equality as B ¢ Jp(g, 4).) So there is such
xin N, callit g”. Sog” € [1,..(f(i) + 1) and ||g”| p4(4np) = @ and for i € B we
have g’ (i) € g’(i) N N hence g (i) < g(i) by the definition of g’(i).

Sog” < gmodD+(AﬂB),butthiscontradicts " lp+anp) = @ = 1gllp+(4nm)-
the last equality as B ¢ Jp(g, 4).

(6) Immediate from (5). 5.9

Fact 5.10. Assume f € * Ord and D an R{-complete filter on k and I an com(D)-
complete ideal on k.

(1) If (g, 4) € cla;(f,D) then Jp (g, A) is an ideal on w, which is com(D)-
complete and normal if D, I are normal.

For some By € I, if B € (Jpi(g, A))" then ||g|lps(anm\sy) = 1€l psa\y)» and
D+ANB)NI=0.

(2) = is an equivalence relation on cla(f, D).

(3) If (g, 4) € cla(f. D) and g’ € [];_, f(l) and g’ = gmod Jp (g, A) then for
some A’ we have (g', A') =~ (g, A") so (g, A’) € cla(f, D) and ||g’||p+ar = ||g|lp+a’
(infactA' ={i € 4 :g’(i) =g(i)} is O.K.).

PrOOF. Easy. -

Fact 5.11. Let k, f, D be as in 5.10.

(1) If f¢ € *Ord, for { <8, cf(5) > & and for each i the sequence (f(i) : { <5)
is increasing (<) continuous then || fs||p = sup,.s || f¢llp-

(2) If 6 = || fllp, cf(0) > 2% then {i : cf(f(i)) < 2} € Jp(f. k).

BVIf|Ifllp=06.4€J(f, k) thenT];_. f(i)/(D + A) is not (cf(5)) " -directed.

W If||f|lp =0 and A € J5(f, k) then cf(6) < of ([, cf(f(i))/(D + A)).

B)If||fllp =06 and A C k, (Vi € A)cf(f(i)) > K and

max pef{f (i) : i € A} < cf(5)

(or just cf(6) > max{cf[];_. f(i)/D’ : D’ an ultrafilter extending D + A}) then
A€ JD(f’K/)

6) If | fllp =0, cf(8) > 2%, then [T f(i)/Jp(f, k) is cf(6)-directed.
(D I\ f |lp =6, cf(8) > 2, then for some A € JD(f k) we have

Hf (Ip(f, &) + (k\A)) has true cofinality cf(5).
i<k
(8) Assume || f||p = 4 = cf(A) > 2~.
Then (VA € DF)(|| fllp+a = 4) i _mﬂe_tcf(l—[,qf( i)/D) =
O) I 1 flp =9, cf() > 2% then tef T1;_,, f(i)/Ip(f, k) = Cf(5)
ProorF. (1) Let g <p fs,50 4 = {i < k : g(i) < fs(i)} € D, now for each
i € Awehave g(i) < f5(i) = Ba < 6)(g(i) < fa(i)) = thereis a; < & such
that (Va)[ay < @ < = g(i) < fo(i)]. Hence a(x) =: sup{e; : i € A} < J as
cf(6) > Kk, 30 g <p fa(x hence ||g]lp < [|faellp;: this suffices for one inequality,
the other is trivial.
(2) Let A = {i : cf(i) < 2%}, and assume toward contradiction that 4 €
J5(f. k). Foreachi € Alet C; C f(i) be unbounded of order type cf(f(i)) < 2~.
Let F = {g € T].(f(i) +1): if i € A4 then g(i) € C;, if i € k\A then
g(i) = f(i)}. So |F| < 2% and:
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(*) ifg<py4 fthenforsomeg’ € Eg <p,4 g,

hence & = || f|lp+4 = sup{||g|lp+4+1 : & € F} but the supremum is on < |F| <
cf(6) ordinals each < d because g’ € F = g’ <pi4 f as||fllp =6 = f #p 0.,
and J is a limit ordinal contradiction to cf(8) > 2*.

(3) Assume this fails, so ||f||p = d,.4 € J3(f. k) and []_, f(i)/(D + A4) is
(cf(5))* -directed. Let C C & be unbounded of order type cf(5); as || f|lpss =9
(because 4 € JS(f, 4))foreacha € C thereis fo <pi4 f suchthat| fallpia >
(even = a by the definition of || — || p14). AsT];., f(i)/(D+4)is (cf(5))* -directed
there is f’ <p,4 f such that « € C = f, <p.4 f'. By the first inequality
| fpiall <N fllp+a =0, and by the second inequality @ € C = a < || fallpia <
I/l p+4 hence d = sup(C) < || f’||p+4, a contradiction.

(4) Same proof as part (2).

(5) By part (4) and [Sh:g, Chapter I1,3.1].

(6) Follows.

(7) Toward contradiction assume that not; by part (2) without loss of generality
Vi[ef(f(i)) > 2%]; let C C 6 be unbounded, otp(C) = cf(§). For each o € C
and 4 € J}(f, k) choose fou <p f such that ||foullpta > a. Let fo be
fali) = sup{fauli) : A € J(f.6)}. As ([Tic, fali), <yp(rn)) I8 cf (6)-directed
(see part (6)), by the assumption toward contradiction and the pcf theorem we
have [];_. /(i)/Jp(f. &) is (cf(6))"-directed. Hence we can find /* < f such
that € C = fo <y f*- Let B = sup{||f*|p+s : B € J5(f.4)}, it
is < 6 as cf(6) > 2°; hence there is a, f < a € C, so by the choice of f* we
have fo <;,(sx) f* andlet 4 =: {i < & : fo(i) < f*(i)} so 4 € J(f.K),
80 faua < fo <pia f* hence a < || faullpia < |fallpra < N f*lpia < B
contradicting the choice of a.

(8) For every a < A we can choose f, <p f such that ||f4]lp > a. Leta, =
{Ilfallpra:4€ D} asd € DY = a < | fallp < |fallpea < fllpsa =4,
clearly a, is a subset of A\, and its cardinality is < 2 < A. So we can find an
unbounded E C Asuchthata < g € E = sup(a,) < . Soifa < f,a € E,f € E,
let 4 ={i <k : foli) > fp(i)}, and if 4 € D*, then || f4llpia < [ fallpia <
sup(a,) < p, contradiction. Hence 4 = Omod D, thatis fo <p fjy. Also if
g<p f,thena =: {||g|lpy4 : A € D*} is again a subset of 1 of cardinality < 2~
hence for some f < A, sup(a) < 3, so as above g <p fj. Together (f : a € E)
exemplify A = tef(T1f (i), <p).

(9) Similar proof (to part (8)), using parts (6), (7). Hs.11

REMARK 5.12. We think Claims 5.9, 5.10, 5.11 (and Definition 5.8) can be applied

to the problems from [Sh:497] probably saving some uses of niceness so weakening
some assumptions; but we have not checked.

PRrOOF OF 5.6. Fix f € “Ord as f(i) = 4; and let ~, ~; be as in Definition 5.8.
Foreachi < klet X' = (X : o < u;) be a sequence of members of [1;]% such that

a<B<p=X\Xje M &X\X] ¢ T

(it exists by assumption (d)).
Let §* = (g/ : { < p) be a <p-increasing sequence of members of [[;_, wi, it
exists by assumption (e) or (e)~.
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Let I =: {B C k:if B € D" then || f|p+p > A}, it is a com(D)-complete ideal
on « disjoint to D, i.e., I = JD(Z,/-z) D {k\4 : 4 € D}, and =, ~ are equal
because I is the ideal on x dual to D which holds by assumption (c). For any
sequence X = (X; : i < k) € [, [Li]", let

i) = {Ihlosshe [[ X and a e 17}
<K

and

Y[X] = {(h,A)/ ~ he HX,- and (h, A) € cla®(Z, D) for some a < l}.
<K
Note: Y[X]C Aand ¥ [X]C % * = U,.;cla®(L, D)/ ~.
Note that by 5.9(6)
X Y =, cla®(f, D)/ ~ has cardinality < A.
(*)o for X € [[,..[4:]", the mapping (g, 4)/ =+ ||g|lp+a is from % [X] onto
Y[X] with every a € Y[X] having at most 2* preimages
[Why? By 5.9(5)]
(*)1 if X € T],_.[4/]% then [ X] has cardinality A (hence also Y* has).
[Why? By the definition of || — || for every a < A for some g € [],_, 4i/D we
have |g||p = a; as sup(X;) = 4; > g(i) we can find g’ € [],_,. (X:\g(i)) such that
g<g <{ii<r),soa=|glp <|glp < |l{4:i<r)|p = A Clearly for
some o’ and 4, (g', 4) € claa/(f,A), sodelt CD anda <o =|g'|lpia <
| fllpya=A(as A4 €I). Soa’ € Y[X]hence Y[X] € a; as a < 1 was arbitrary
and 4 is regular, clearly Y[X] has cardinality > A, by K equality holds hence (by
(*)o) also Z[X] has cardinality A.]
(*)2 if X', X" €[], [A4]". and {i < & : X/ C X{'mod J?*} € D then
(a) Y[X']C Y[X"]mod JM
(b) Z[X']\%[X"] has cardinality < A.
[Why? Define g €[], 4 by g(i) = sup(X/\X/") if
i€A*={i<k:X/ CX'modJM}

and g(i) = 0 otherwise. Let a(x) = sup{||g|lp+a+1: 4 € I}, as Aisregular > 2~
clearly a(x) < 4 (see assumption (c) or definition of ). Assume f € Y[X']\c(*)
and we shall prove that € Y[X"], moreover, % [X']N(cla?(X, D)/ ~;) C ¥ [X"],
this clearly suffices for both clauses. We can find f* € T],_, ((X/ N X/") U{0}) such
that [/ [p > . _

So let a member of Z[X'] N (cla?(4, D)/ ~) have the form (h, 4)/ =, where
Aelt hell., X and p = |h|pssandlet 4, =: {i < & : h(i) < g(i)}. We
know B = [[hllp+a = Min{|[2llp1(ana,)s 12D (avap} Gf AN A = Omod D, then
||| p+4na4, can be considered co).

If B = |Alpi(ana,) then note h <p,(4n4,) & hence B = [|hllpy(ana) <
lgllps(ana) < @(+), contradicting an assumption on . So B = ||h]lpy(aa)
and AN A, € Jp(h,4). Now define ' € [],_, f(i) by: h'(i) is h(i) if i € A\A,
and h'(i) is f*(i) if i € \(4\d)). So h' € [],, f(i) and ' =p,(p\a, h
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hence ||4'[|pyava) = 1l psavay) = B, and clearly = [[h'||py a4 € YIX"],
as required for clause (a), moreover (h, 4) ~ (h’, 4) so ((h',4)/ =) € ¥[X"] as
required for clause (b).]

(*)3 IEX, X" € [[,;[A)" and {i < & : X/" ¢ X! mod J?} € D then?

Z[X"\%[X'] has cardinality /.
[Why? Let a < 4, it is enough to find B € [, 4) such that

(¥ [X"\¥[X']) N (cla? (f, D)/ =) # 0.
We can find g € [],_, A/ such that ||g||p = . Define g’ € [],_, X/" by: g'(i) is
Min(X;"\ X/\g(i)) when well defined, Min(X/’) otherwise. By assumption g <p g’
and, of course, g’ € [],.. X/ C [l;c.. Ai-s0 [lg’llp > a. So
(¢ k)] =) e ¥[X"]
but trivially ((g’, x)/ =) ¢ ¥[X'], so we are done.]

Together (x)g — (x); give that (?[(Xg’,}(i) 10 < k)] { < u)is asequence of
subsets of ' * of length u (see (%)), |%* |~ = A, which is increasing modulo [% *]<*
(by (*)2), and in fact, strictly increasing (by (x)3, see choice of (g} : { < u) in the
beginning of the proof). So modulo changing names we have finished. (In fact,
also (Y[(X/. ) : i < &)]: { < p) is as required.) 5.6

A related theorem

i<k

DEFINITION 5.13.

a), = Min{,u : there is no % C [A*

of cardinality u 4 # B € & = |[AN B| < l}.

THEOREM 5.14. Assume
(a) D isan X|-complete filter on
) (A :i < k) is a sequence of regular cardinals > (2%)*
) A z</-c)||D+A_}Lf0rAED+
) i <a
) wu=tcf(llu; /D) or at least
(e7) u < Depth (Iy;, <p) and u > 2~.
Then u < o).
PROOF OF 5.14. Similar to the proof of 5.6. -
THEOREM 5.15. Assume
D an R,-complete filter on

a
Ebg = (A; 1 I < k) is a sequence of regular cardinals > 2
(c) A= ||i||D+A for A € D" and A is regular
(d) ui <op;t
( ) u< Depth+(l_.[i<)c His <D)-

Then u < Dpi .

3In fact, just € I* suffices here.
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ProOF. Let Club(4) = {C : C aclub of 4} so Club(1) C [A]* for 2 = cf(4) > Ry
For any sequence C € [],_, Club(4;) let (C) be the set acc(c£(Y (C)) where
YICl=:{llgllp : g € [I,c, GHC A);ie,B(C) ={d < 1:6 =sup(6 N Y[C])}.
Clearly
(*)1 for C €[], Club(4;) we have Z(C) € Club(4)
[the question is why it is unbounded, and this holds as ||1]|p = 4 by its
definition]
(*)2 if €', " € [],; Club(4;),g* € I14;, and C/" = C/\g*(i) then
#(C’) =%(C")mod JM.
[Why? Let a(x) = sup{||g*llp+4 : 4 € D" and ||g*||pys < A} + 1, s0 as 2~ <
A = cf(4) clearly a(x) < A. We shall show & (C’)\a(x) = &(C")\a(*): for this it
suffices to prove Y(C')\a(x) = Y(C"\a(x). Ifa € Y(C')\a(x) let o = ||h]p
where h € [[, C/, and let 4 = {i < k : h(i) < g*(i)}, s0if 4 € (Jp(L, &))" then
a < ||hllp+a < Aand |[h]ps+a < [lg¥]lp+a < al) but a > a(+), a contradiction.
So A € Jp(A, k) hence A ¢ D by clause (c) of the assumption, so g* <p h. Now
clearly there is A’ =p h with h’ € [[._,. C/’,so a = ||h|p = ||I'||p € €(C"). The
other inclusion is easier.]

()3 if €', C" € ]..,.Club(4;) and {i < & : C!" C acc(C/)} € D then
Z(C") C acc(®(C)).

[Why? Let § € Z[C" but g ¢ acc(%(_C—' ’)) and we shall get a contradiction. Clearly
B>sup(@(C')N ) (as B ¢ acc(Z(C')). As&[C"]is acc(c£Y[C"]), clearly there
is a € Y[C"]such that f > a > sup(Z(C’) N ), but

YIC"1={lglp : g €[] ¢}

i<k

i<k

<K

C! such that ||g||p = . As {i : C/" C acc(C/)} € D, clearly
B =:{i<k:gl(i)€acc(C/)} € D.
C!/suchthath <) h' <p g

so thereis g € []

i<k

Soifh € [],.; Ai.h <p g then we can find /" € [],.,
(just #'(i) = Min(C/\(h(i) + 1) noting B € D) hence

a = |gllp = sup{||hllp : k(i) € g(i) N C/ wheni € B,
h(i) = Min(C/) otherwise}

and in this set there is no last element and it is included in Y[C- ]. so necessarily
o € Z(C’), contradicting the choice of a : > a > sup(Z(C’') N B).]

(*)q if €', C" € [];.,, Club(4;) and {i : C/' C acc(C/)mod J?4} € D then
#(C") C acc(®(C')) mod JM.

[Why? By (*); + (%), i.e., define C/”" to be C/\g(i) where
g(i) = sup(C/"\ ace(C/)) + 1)

when C;" C acc(C/) and the empty set otherwise. Now by (

%), we know € (C") =
#(C")mod JM and by (%)3 we know & (C") C acc((C")).]
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Now we can prove the conclusion of 5.15. Let (C. : o < ;) witness u; < Dpif
and (g, : a < p) witness u# < Depth* ([]._, 4i, <p). Let C, =: %((C;a(i) (i< K))
for o < p. S0 (Cy @ @ < p) witnesses u < op} . 515

THEOREM 5.16. Assume

i<k

K is regular uncountable
= (A; 1 i < k) is a sequence of regular cardinals > &

a)
b) A
¢) D is a normal filter on k (or just Ny-complete)
d)
)
)

(
(
(
(d) A= IMHD = tef ([T, 4i/D), A regular
e) ui < Dp
£) u < Depth* ([T, 1, <n).
Then pu < op3".
Proor. Let (f} : a < u;) exemplify u; < D]:JJr2 let (g, : @ < u) exemplify
w < Depth™ ([T, 41, <p)., and let (h; : { < A) exemplify A = tef ([T, 4, <p).

Now for each o < u we define f,, € *1 as follows:

FalO) = 1S 0 (he (D)) 1 < )l

Clearly f,({) is an ordinal and as f;a([) e W)}; clearly <f;a(i)(h§(l.)) i< k) <
(A; 1 i < k) hence fo({) < ||A|lp = 4, so
(N fa €A

The main pointis to prove f < o < u = f < fa.

Suppose f < o < p, then gg <p g, hence 4 =: {i < k : g4(i) < g4(i)} € D so
icAd= fg,, <gp [y ). Wecan define i € [, 4; by:
h(i)issup{¢ +1: f’ ( ) > féa(i)@)} ifi € A, and k(i) is zero otherwise.

gpli
But (h : { < A)is < p-increasing and cofinalin ([],_, 4;, <p) hence thereis{ (*) < A
such that & <p hg(,).

So it suffices to prove:

(
(

i<k

L) <<= f5(0) < fall).

Solet{ € [L(x),4), so

B =:{i<k:h(i) <hy(i) <h(i)andi € 4}
belongs to D and by the definition of 4 and B and 4 we have

i€B =>f’/(, (b (7)) < f;a(f)(h((i))'

So .

<fg,, (he(i)) 1i < k) <p (f oy (he(0)) i < &)
hence (by the definition of || — || p)

1Ly (e D) 25 < )l < I b hei)) <

which means

f5(8) < fal(0).
As this holds for every ¢ € [{(x), ) clearly

f/} <J;ya fa-
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So(fa:a<u)is< sw-increasing, so we have finished. 516
5.1. Discussion. Now assumption (c) in 5.15 (and in 5.6) is not so serious once
we quote [Sh:g. V] (to satisfy the assumption in the usual case we are given 1 =
cf(A), u < A < us, cf(u) =k, (Va < u)(Ja|® < u) and we like to find (4; : i < &),
and normal D such that ||(4; : i < &)||py4 = 4). E.g., ([Sh:g, Chapter V]) if SCH
fails above 22’ # regular uncountable, D a normal filter on 6, I fllp > A=cf(A) >
22 (so if & = family of normal filters on 6, so & is nice and tk3. () > || f|lp > A).
so g, from [Sh:g, Chapter V,3.10, page 244] is as required.
Still we may note
Facr 5.17. Assume
(a) D is an X -complete filter on k
(b) f*€"O0rdandcf(f*(i)) > 2 fori < k.
Then for any C = (C; 1 i < &), C; a club of £*(i) and a < || f*||p we can find
f € 1lic. Ci such that:
(@) A€ (Up(f*6)" =a<|flora=1flp<If*Ip
(B) A€ Ip(f* k)ND" = (| fllpsra > [lf*]p-
PrOOF. We choose by induction on { < " a function f; and

(fea:AaeUp(f )"

such that:

(a) fL € Hi<n Ci
(b) e <= A (i) < £(0)
(c) for { limit f; (i) = sup,., fe(i)
(d) for 4 € (Jp(f*, A))", letting oz 4 =: || f¢|lp+a We have

Sea €ice 5@ N feallp > agqand fr (i) > fr(i) fori< w

(e) feali) < frp(i)fori<w,Ae (Jp(f*, A4)*t

(£) Ifollp > cand 4 € Jp(f*, k) = | follpya > |/ *|Ip-

There is no problem to carry out the definition: for defining f for each 4 €
Ip(f* k)choose gy <pya f*suchthat||gllpia > [lf*|p (possibleas|| f*||pya >
||.f*|lp by the assumption on 4). Let g* < f* be such that ||g*||p > «, (possible
asa < | f*||p)andlet fy € [],., f*(i) be defined by

foli) = Min(C;\ sup{g“ (i), g4(i) : 4 € Jp(f™,K)}).
For { limit there is no problem to define f;; and also for { successor. If f; is
defined, we should choose f4. For clause (d) note that || f*||psa = I|lf*Ip
as A € (Jp(f*,A4))" and use the definition of || f|p. We use, of course, A,
cf(f*(i)) > 2%,
Now f+ is as required. Note: f <p fx+ = V, v [ <p f¢, and for 4 €
(Jp(f*, &))", we have '

Ilfxllpra = sup || fellpia
(<Kt

=sup ary < sup || feiillp = 1w+ llp-
{<kt (<Kt

CoNcLUSION 5.18. (1) In 5.15 we can weaken assumption (c) to
(€)~ |I{Ai i < K)||p = A, A regular.
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APPLICATIONS OF PCF THEORY 1665
(2) In 5.6 we can weaken assumption (c) to (¢) ™.

Proor. (1) In the proof of 5.15, choose g** € [],.,. 4; satisfying (exists by 5.17):

i<k
(o 4 €Jp(2.k)ND* = g™ |pra > A (which is | 2] ).

We redefine Y[C]as {||g|lp : g € [],, Ci but g(i) > g**(i) for i < x}. The only
change is during the proof of (*), there, we let

a(x) = sup{llglpa: 4= (p(2 )"}

Nowifa € Y[C']\a(x) then thereish € [],_, 4; suchthat[i < k = h(i) > g**(i)]
and ||h||p = candlet 4 = {i < k : h(i) < g*(i)}. Nowif 4 € (Jp(1, &))" we geta
contradiction as there and if 4 = ) mod D we finish as there. So we are left with the
case 4 € Jp(A, k)ND*,||A|lp1a > ||Allp > Ahence ||g**||p4+4 > Ahence ||k pia <
%> a hence necessarily [l (o) — a (as [Alp = Min{lAllpsa. [4llp- 0 })-
Now choose ' € [[,_. 4 by ' | (k\d) = h | (k\d) and [i € 4 = h'(i) =
Min(C/\K(D)] s0 A € T, €k < B < LA < [hllpra < IWlpia < IK]pes
and so

18" p = Min{||A" o4 |2 llp 1)} = v

Also in the proof of (*); choose g such that g > g**. So we are done.
(2) Let g** be as in the proof of part (1). In the proof of 5.6 we let

Y[X]=: {||h||D+A the H()(f\g**(i)) and 4 € I*}

remembering I = Jp(4, ).

Y101 = { . 4)) e [0 ()

i<k

and (h, A) € cla$ (4, D) for some o < l}

and we can restrict ourselves to sequences X such that X; Ng**(i) = @. In the proof
of (*) make g > g** and in (*)3, g’(i) > g**(i). 518

CLAIM 5.19. Assume

(a) Jisafilteronk
(b) A aregular cardinal, A; > 27,0 > 2~
(©) Tlic, 4i/J is A-like, i.e.,
() 4 = tef T4 /T
(i) Ty({(4; : i < &)) = A (follows from (i) + (iii) actually) and
(111) lf,u, < A; then TJ(<,U, i< H)) <A
(d) k<O=cf(0) <iifori<k
(e) i<k=S) ={0<4:cfd) =0} € I[A] (see below)
(f) (Va < 0)[|alf < 0].

Then S} = {6 < A: cf(5) = 0} € I[A].
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REMARK 5.20. Remember that for 1 regular uncountable

I[2] = {A C A : for some club E of 2 and P = (P, : o < A) with

P, C Pa),|P| < A,
foreveryd € AN E, cf(6) < & and for some closed
unbounded subset a of 6 of order type <9,

(Va<8)(3f<d)anae y,f)}.

On finding 1 as in clause (c) see [Sh:g, Chapter V].

Proor. Clearly each 4; is a regular cardinal and A = tcf([],_, 4:/J), so let

f = {fa : a < A) be a <,-increasing sequence of members of I1;<. Ai. which is

cofinal in [],_, 4;/J. So without loss of generality if f 6 hasa <y-eub f’ then
fo=s 1"

For each i <  (see the references above) we can find &' = (e, : « < 4;) and E;
such that:

(i) E;isaclub of 4;
(ii) e, C o and otp(el,) < 6
(iii) 1fﬁee ﬂ@e}—eaﬂﬂ
(iv) ifé € E; and cf(é) = 0, then 6 = sup(e}).

Choose N = (N; : i < A) such that N; < (Z (), €, <}) where, e.g., y = Jg(2)",
[[N:|| < A, N; is increasing continuous, N | (i +1) € Nj,1, N; N Ais an ordinal, and
{(f J (A i< k), (€:i<k)}eN. Let E={0<A:NsNA=2d} soit
suffices to prove
(*) if 6 € E N S/ then there is a such that:
(i) a Co
(ii) 6 = sup(a)
(iii) |a| < A
(iv) a<d = an N, € Ns.

By clause (b) in the assumption necessarily f |  has a <,-eub ([Sh:g, Chap-
ter I1,§1]) so necessarily /5 is a <j-eub of f | 6. Moreover, 4* = {i < & :
cf(f5(i)) = 0 and fa( ) € E;} = kmodJ by clause (f) of the assumption. So
for each i € A%, e} ) is well-defined, and let e/ = {a( { < 6} with aé in-
creasing with (. For each { < 0 we have <a€ : 1 < k) <y fs hence for some
y(§) < d we have (af : i < &) <y fy), but Tn(fy)) < Aand () € Nye)yy
hence f,) € N,)y1 hence for some gr <, f,) we have: gr € N, and
Ar={i<r:g/(i)=al} #0modJ. As§ = cf(0) > 2~ for some 4 C k we have
B =:{{<0:A; = A} is unbounded in 6.

Now for { < 0 let

e = {Min{y < 45+, <0 2 e € Jel e <03 = Tl ).

i<k i<k
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Clearly { < & < 0 = a;y C ae. Also for { < 0,a; is definable from f and
g | A, hence belongs to N, ,;, but its cardinality is < 6 + 2* < 1 hence it
is a §ubset of Ny)41- Moreover, also (ag_: <) is deﬁnable from f and
(({fol:e<&}ii< A): & <) hence from f and g, | A and (¢' : i < k), all of
which belong to Ny < Ny, hence { € B = (as : £ <) € Ny &agisa
bounded subset of §. Now
(*) Ueg<p a¢ is unbounded in 6.
[Why? Let f < 6, so for some { < 6 we have:

fp(i) < f5() = fp(i) <o < f5(i)
$0
Min{y : =(fy <y (e\a) (aé ti<k))} € (BF)Nar.
Letw = {{ < 0 : a; is bounded in az .}
a} = {Min{y € ae; : y is an upper bound of a;} : & < {}.
So J{a; : { < 0} is as required. 519
REMARK 5.21. (1) If we want to weaken clause (c) in claim 5.19 retaining only (i)
there (and omitting (i) + (iii)), it is enough if we add:
(2) foreachi < kandd € S}, {y <o :cf(y) > kandy € e}} is a stationary subset
of 6.
(2) In part (1) of this remark, we can replace cf(y) > & by cf(y) = o, if D is

at-complete or at least not a-incomplete.
(3) This is particularly interesting if 1 = ut = pp(u).

§6. The class of cardinal ultraproducts modulo D. We presently concentrate on
ultrafilters (for filters: two versions). This continues [Sh:506, §3], see history there
and in [CK], [Sh:g].

Recall

DEFINITION 6.1. (1) A filter D is f-regular if there are 4, € D for € < 6 such that
the intersection of any infinitely many A4.’s is empty.

(2) For a filter D, let reg(D) = min{6 : D is not @-regular}. Note that reg(D) is
a regular cardinal.

FacT 6.2. Assume
a) D is an ultrafilter on k and 6 = reg(D)
) u=cf(u) and o < p = |a|<8P) < u
) A= (ni<k),0<nm <o 4=, {i} xn)
) foreach i < k,n < n; we have A, is regular > K, < u strictly increasing with
n, stipulating A(; ,,) = K.
(e) if B € D then u < maxpcf{A,y :i € Bandn < n;}
Then for some (m; : i < k) € [],.,.(n; + 1) and B € D we have:
(a) M < th(Hi(K )'(i.m,-)/D)
(B) u>maxpcef{A, :i € Bandn < m}.
ProOOF. We try to choose by induction on { < reg(D), B; and (nf I < k) such
that:
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(i) B:eD
(ii) nt < n; non-decreasing in ¢
(iii) B; = {i : n} <nt™'}and
(iv) maxpef{A;,) :i<kandn < n} < u.

If we succeed, then {B; : { < reg(D)} exemplifies D is reg(D)-regular, contra-
diction. During the induction we choose B; in step { + 1. For{ = 0 try nt = 0,
this cannot fail as clause (iv) holds trivially. For ¢ limit let n,.c = n,.é for every & < ¢
large enough, this is O.K. as

max pef{l;,) i<kandn < n}

< Hmaxpcf{/l(,-.,,) ri<kandn < nf} < u
&
by assumption (b). Lastly, for { = & + 1,{i < & : n® < m;} € D (otherwise
contradiction as A, = u and clause (iv) contradict assumption (e)), and if
u < tef ([T, A”’;/D) we are done with m; = nt, if not there is B € D such that

maxpcf{d::i € B} <uandlet B: = {€ B : ne < n}

nt+1 if e B:nt<n
i nt if otherwise. 6.2

1

LEMMA 6.3. Assume
(i) D is an ultrafilter on &
(i) g =cf(u)and o < u = |a|<eP) < 4
(ili) at least one of the following occurs:
(@) a<u=|a<P < u
(B) D is closed under decreasing sequences of length reg(D).
Then there is a minimal g/ D such that:
u = tef ([T, g(@)/D) and \,_, cf(g(i)) > .
We shall prove it somewhat later.
REMARK 6.4. (1) Note that necessarily (in 6.3)

{i < k : g(i) aregular cardinal} € D.

(2) g is also <p-minimal under: u < tcf ([],., g(i)/D) & {i : cf(g(i)) > K} €
D'[W/zy? assume g’ <p gg, p < tef (1, &'(i)/D), and
X ={i:cf(g(i)) <k} =0modD;
clearly u < tef ([T, cf(g'(i))/D). If Limp cf (g’ (i)) is singular, by [Sh:g, I1,1.4(1),
page 50] for some (4; : i < k), we have u = tcf(I1A; /D) and
Limp 4; = Limp cf(g (7)), 4 < cf(g(i))

and (Vi)[cf(g(i)) > & — A; > k), so again without loss of generality \,_, A > K.
Now (A; : i < k) contradicts the choice of g. If Limp cf(g’'(i)) is regular, it is < k
and this contradicts an assumption on g'.]
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(3) If |&"/D| < u then we can omit (in the conclusion of 6.3 and of 6.4(2)) the
clause “{i : cf(g(i)) >k} € D.”

CONCLUSION 6.5. If assumptions (i)—(iii) of 6.3 hold and
(iv) u>2¢
then without loss of generality (each g(i) is a regular cardinal) and

(Hg(i)/D, <D>
i<k

is u-like (i.e., of cardinality x but every proper initial segment has smaller cardinal-
ity).

REMARK 6.6. We use u > 2% in 6.5 rather than u > |k*/D| as in 6.4(3) (which
concerns 6.3, 6.4(3)) as the proof of 6.5 uses 1.5.

Proor oF 6.5. If D is X|-complete this is trivial, so assume not hence reg(D) > Ny.

Let g € "(u + 1) be as in 6.3, so without loss of generality as in 6.4(2), and
remember 6.4(1) so without loss of generality each g( )is aregular cardinal. Clearly
I1,<. &(i) has cardinality > u. Assume first u = y*

Let g’ € [],., g(i), then by 6.4(3) and the choice ofg

sup{tefT14;/D : 4; < g'(i) fori <k} < y.

But as reg(D) > ¥y by clause (ii) of the assumption we have o < u = || <
,u so 1.5 applies (say for J = {k\A4 : 4 € D}, as D is an ultrafilter clearly
T(f) HK,c f(i)/D) and by assumption (ii), clause (e) of 1.5 holds. So we get

|HI<I€g /D| <X’ SOYCallyHKK ( )/D ls,ullke
If u is not a successor, then it is weakly inaccessible and x4 = sup(Z), where

Z={y":|k"/D| <y = x < u},
so for each y € Z by 6.3 we can find g, € (4 + 1) such that [],_, g,(i)/D is x-like
so necessarily for y; < y, in Z we have g,, <p g,,. Itis enough to find a <p-lub
for (f, : x € Z), and as u > 2" this is immediate. 6.5
PrOOF OF 6.3. First try to choose, by induction on e, f, such that:

(A) fa€®(ut+1)

(B th (H1<n fa )

(©) ﬁ<a:fa <Df/f

(D) each f,(i) is a regular cardinal > .

Necessarily for some a* we have: f, is well-defined if and only if @ < a*. Now
a* cannot be zero as the constant function with value u can serve as fo. Also if
o* is a successor ordinal, say a* = f + 1, then f is as required in the desired
conclusion (by 6.4(2)’s proof).

So «* isa limit ordinal, and by passing to a subsequence, without loss of generality
a* = cf(a*) and call it 6.

Without loss of generality

(B) p=maxpcf{fa(i):i<k}.
We now try to choose by induction on { < reg(D) the objects o, A;, by such that:
(a) ar < 0 is strictly increasing with {
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(b) Ar e D
(¢) by C{fa.(i): &< andi € A}
(d) b is increasing with {
(e) maxpef(b;) < u
(f) for each i the sequence
(fa,(i): & <Candi € A and f4 (i) ¢ by) is strictly decreasing
(g) [e')) =0,A0 = I-c,bg =®
(h) a1 =+ land Ay = {i € A¢ : fap,, (i) < fo (i) and fo (i) & b7}
(i) for ¢ limit, o is the first « < 6 which is > | J,_, a. such that for some B € D

e<(
we have:
u>maxpef{fo (i) : &< (i€ dsandi € Band fo, (i) < fal(i)}
(G) bry1 = b;

(k) for ¢ limit A, satisfies the requirements on B in clause (i) and

by = Ub€UU{f¢(i) c&<{andie dsNAgand fo, (i) < fo (i)}

e<{
(£) for& < {wehave {i € d¢ : fo. (i) ¢ b} € D.

So for some {* < reg(D) we have (ar, A;, b;) is well defined if and only if { < ¢*.
We check the different cases and get a contradiction in each (so o* must have
been a successor ordinal giving the desired conclusion). -

Casel.l*=0.
We choose ayp = 0,

A():K,,b():q)l

so clause (g) holds, first part of clause (a) (i.e., oy < 6) holds, clause (b) and clause
(c) are totally trivial, clause (e) holds as max pcf(@) = 0 (formally we should have
written sup pef(b;)), clause (f) speaks on the empty sequence, and the other clauses
are empty in this case.

CASE2.(* = + 1.

Wechoose s = oy = ag+1, A = {i € Ay * fo 41(i) < fo (i) and fo (i) ¢
b} and b4y D by is defined by clause (j). Clearly o < oy < 0 and Aryy € D as
A € Dand fo, 11 <p fo, and {i : fo,(i) ¢ b} € D by clause (£); so clause (b)
holds. Now clause (a) holds trivially and clauses (g) and (i) are irrelevant. Clause
(h) holds by our choice.

For clause (f), the new cases are when f au,(i ) appears in the sequence, i.e.,
i € Agy such that fagﬂ(l') ¢ UfS[—H by = beyy = by buti € Adeyy = i €
A; & fo (i) ¢ by so also fq, (i) appears in the sequence and as i € A4y =
for (i) > fo,+1(i) = fa,, (i) plus the induction hypothesis; we are done.

As for clause (£) for & < ¢ + 1, if & < ¢ this holds by the induction hypothesis
(as bry = br) so assume & = { + 1. Clearly

(i € Az forli) ¢ ben} = AN {i <52 fo (i) ¢ by ).

Now the first belongs to D by clause (b) proved above and the second belongs to
D asmax pef(by.1) < u by clause (e) proved below as tef ([, fa.(i)/D) = u by
clause (B).
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We have chosen by, = b, so (using the induction hypothesis) clauses (c), (d),
(e) trivially hold and also clause (j) holds by the choice of b;+, and clause (k) is
irrelevant so we are done.

CASE 3. {* = { is a limit ordinal < reg(D).
Let b; = [J,. b, so by basic pef:

X max pef(b;) < Hmaxpcf(bg) <u
¢<t

as

= cf(u) & (Vo < p)[|a|<"P) < u)] & ¢ < reg(D).

Now we try to define o by clause (i).

Subcase 3A. o is not well defined.

Let w; = {¢ < { :i € Agand fo.(i) ¢ bf}. Note that by the induction
hypothesis (clause (f)) for each ¢ < { and i < x we have the sequence (f4, (i) :
¢ <eandi € Aeand fo, (i) ¢ b.) is strictly decreasing, so as b, C b} clearly
(f 0tg,(i ) : ¢ <eand ¢ € w;) is strictly decreasing. As this holds for each e < { and
¢ is a limit ordinal, clearly (f, (i) : &€ € w;) is strictly decreasing hence w; is finite.

Now for each B € D we have (first inequality by clause (E) and clause (b) on the
induction hypothesis on ¢, second by the definition of the w;’s)

u< maxpcf{fé(i) té<{i€dsandi € B}
< max{max pef(by ), max pef{ /(i) : £ € w; and i € B}}

and max pef(bf) < 4 as said above, hence necessarily
(*) B €D = u<maxpcef{fq (i) : ¢ €w;and i € B}.

As w; is finite and each f, (i) is a regular cardinal > x we have {i : w; # 0} € D.

By Claim 6.2 (the case there of {i : m; = n;} € D is impossible by (x) above) we
can find g € [],_. w;/D, more exactly g € *Ord, w; # 0 = g(i) € w; and B € D
such that:

(@) u < tef ([T, 2(0)/D)
(B) p>maxpef{fo.(i): £ €w;andi € Band f, (i) < g(i)}.

Now by the choice of (f, : @ < 6) and clause («) necessarily (and [Sh:g,
Chapter II, 1.4(1), page 50]) for some o < 6 we have f, <p g. Now for & < ¢, let
B, ={i<k: fali) > fo (i)}, if B € D then B* =: {i <k :& € wyandi €
Bandg(i) > fo. ()} 2 BN{i<k: foli)<gali)}n{i<r:i€d:}n{i<k:
fali) ¢ b7} 0 {i<k:fali)> fa: (i)} which is the intersection of five members
of D hence belongs to D, but {f, (i) : i € B*} is included in the set in the right
side of clause (f) hence 4 > maxpcf{f, (i) : i € B*} contradicting B* € D,
tef ([T« fa:(i)/D) = u. So necessarily B ¢ D, hence fo <p fao, hence a > o.
So U e <a< . Let B = Bn{i<k:foli) <g(i)} soB" €D and [first

i<k
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inclusion by the choice of B’, second inclusion by the choice of b}]

{fai): E<li€edsandi € B and [ (i) < fo(i)}
C{fai):é<icdsandi € Band f, (i) <g(i)}
CbiU{fo.(i): ¢ cw;andi € Band fo, (i) < g(i)}

hence

maxpcf{fai(i) ¥ <{liedsandi€ B and f, (i) < fa(i)}
< max{max pef(b; ), max pef{ /(i) : & € w,

and7 € Bandf,. (i) <g(i)}} <pu

(the first term is < u as the statement X was proved in the beginning of Case 3, the
second term is < u by clause (f)). So « is as required in clause (i) so a; is well
defined; contradiction to our case assumption.

CASE 3B. ay is well defined.

Let B € D exemplify it. We choose 4; as B and we define b; by clause (k).

Now clause (a) follows from clause (i) (which holds by the assumption of the
subcase), clause (b) holds by the choice of B (and of 4;), clause (c) by the choice
of by, clause (d) by the choice of by, clause (e) by the choice of by, that is, by & above
and the choice of 4; (see clause (i)). Now for clause (f) by the induction hypothesis
and clause (d) we should consider only fo, (i) > fa (i) when & < {,i € A: N A;
and fo. (i), fo, (i) ¢ b, but clauses (i)-+(k) (i.e., the choice of b;) take care of this,
clauses (g), (h), (j) are irrelevant, clause (i)+ (k) holds by the choice of o, 4,,, B
and clause (£) follows from clause (e).

So we are done.

Case 4. ¢* =reg(D).

The proof is split according to the two cases in the assumption (iii).

Subcase 4A. a < u = |a[*¢P) < u.

Let b = [J{b: : £ < {*} so maxpef(b) < u, hence for each & < {* we have
Al =:{i € d¢ 1 fqo.(i) ¢ b} € D. Letw; = {& < {* i € AL, so fo (i) ¢ b}.
Now for any { < {* and 7 < « the sequence (faé(i) 1 ¢ < ¢ and ¢ € w;) is strictly
decreasing (by clause (f)) hence (f (i) : £ < {* and & € w;) is strictly decreasing
hence w; is finite. Also for each & < {* the set Aé belongs to D, so {Ag E< )
exemplifies D is |{*|-regular, but {* = reg(D), contradiction.

Subcase 4B. D is closed under decreasing sequences of length reg(D).

Letb = Uy bz

In this case, for each & < {*, the sequence ({i € 4; : faé(i) ¢b:}:C e[l M)
is a decreasing sequence of length {* = reg(D) of members of D so the intersection,
A ={i € A¢ : fo (i) ¢ b} € D, and we continue as in the first subcase. 6.3

DEFINITION 6.7. (1) For an ultrafilter D on x let reg’(D) be: reg(D) if D is
closed under intersection of decreasing sequences of length reg(D) and (reg(D))"
otherwise.
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(2) reg”(D) is: reg(D) if (a)~ below holds and (reg(D))* otherwise

(a) reg'(D) = reg(D) or just
(a)~ letting @ = reg(D), in 6% /D there is a <p-first function above the constant
functions.

THEOREM 6.8. If D is an ultrafilter on k and 0 = reg’(D) then

u=u<">10%/D| = ue{[l,4/D : A € Card}.

Proor. Apply Lemma 6.5 with D, k, u* here standing for D, , u there; note
that assumption (iii) there holds as the definition of reg’(D)(= ) was chosen
appropriately.

Let g*/D = (Af : i < k) be as there, so as ([],., A7/D) is u"-like. for some
f eIl Ai-wehave |T],., f(i)/D| = u as required. 6.8

REMARK 6.9. Canreg'(D) # reg(D)? This is equivalent to: D is not closed under
intersections of decreasing sequences of length 0 = reg(D). So ifreg’ (D) # reg(D) =
0 then 0 is regular and for some function i : k — 6 the ultrafilter D' = {4 C 0 :
i~'(A) € D} is an ultrafilter on 0, with reg(D’) = 0 so D’ is not regular.

This leads to the well known problem (Kanamori [Kn]): if D is a uniform ultrafilter
on k withreg(D) = k does k" | D have a first function above the constant ones?

Note that
Fact 6.10. If 0 = reg(D) <reg (D). u = 3", pis pf = pti < piyy and

117G/D| = u then ] f()/D| > " = p*.

i<k i<k
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