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ON UNCOUNTABLE ABELIAN GROUPS

BY
SAHARON SHELAH’

ABSTRACT

We continue the investigation from {10], [11], [12] on uncountable abelian
groups. This paper tends more to group theory and was motivated by Nunke's
statement (in [9]) that Whitehead problem, rephrased properly, is not solved
yet.

§0. Introduction

This work continues [10], [12], [13] but here we deal here with more
group-theoretic problems, mainly derived from Nunke [9].

In §1 we characterize the Whitehead groups of power < 2", assuming Martin
Axiom: they are the N,-free groups satisfying possibility II or I1I from [10]; and,
equivalently, they are N;-coseparable or equivalently Ext(~,Z,)=0.

In §2 we construct an N,;-free group satisfying possibility II which is not
strongly N,-free. Hence MA + 2% > X, implies there is a Whitehead group which
is not strongly N,-free.

We also prove (assuming V = L or even 2" <2™) that there is a strongly
N.-free, separable, not N;-separable group of cardinality N,. At last we construct
an Nr-free (hence strongly N,-free) non-separable, non-Whitehead group of
cardinality 2.

In §3 we deal with hereditarily separable groups. If V = L they are just the
free groups. (This strengthens the theorem: if V =2, every Whitehead group is
free.) But MA + 2 >N, implies there are non-Whitehead, hereditarily separa-
ble groups of cardinality N,. We also prove, assuming 2™ <2", that any
hereditarily separable group is strongly N,-free (a little more, in fact).

For notation see Nunke [9] or [13]. Z,, is the direct sum of N, copies of Z.
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Added in proof. Meanwhile we solve another problem from [9]: ZFC is
consistent with the existence of G, EXT(G,Z)= Q.

I thank P. Eklof for many stimulating discussions, which are the main cause
for the work presented here.

§1

THeoreM 1.1. (MA + 2% >N,) Suppose G is a group of cardinality 8,. G is a
Whitehead group iff it satisfies possibility 11 or IIl iff G is Ni-coseparable iff
Ext(G,Z.)=0.

Notice

ConcrusioN 1.2. (MA +2"%>N,;) (1) There are Whitehead groups of cardi-
nality N, which are not strongly N,-free.

(2) For G a group of cardinality =N,, G is Whitehead iff G is N;-
coseparable.

(3) There are non-free N,-coseparable groups of cardinality N,, which are not
even N;-separable.

Remarks. (1) In 1.1, 1.2 we can replace “cardinality N, by “cardinality
<M,

(2) Nunke [9] stated the negation of 1.2(3), but it seemed he was inaccurate.

(3) The proof of 1.1 is similar to {13], §1.

Proor oF 1.2. (1) Immediate, by 2.1.
(2) Immediate from 1.1.
(3) Immediate by 1.2(1), 1.2(2).

Proor ofF 1.1.  Looking at [10], it is clear the only part missing is:

(*) If G is N-free, |G| =N, G satisfies possibility I then Ext (G, Z,) # 0.

Remember (see [5]) that being Whitehead is a hereditary property, G is
N.-coseparable iff Ext(G,Z,)=0 which implies Ext(G,Z)=0, ie. G is
Whitehead and the proof in [10], §3 works for Z,, as well as for Z.

As G satisfies possibility I, there is a countable free Gs, ai (I = n(i),i < w,) in
G, such that:

() {ai: I =n(i),i <o/} is independent over Gs;

(it) PCs(Gs al,- -, a?)/Gs is not free, w.l.o.g. n(i)= n(*) for every i,

(ili) PCs(Gs, a', -+, a"”)/Gs has no subgroup of smaller rank which is not
free.

Let Gs = U,...G™, G™ freely generated by {b°,---,b™"'}.
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Let G7 be PC(G™ a’, -+, ar®). By (ii) above forno i is G¢ = U,...G7 =
PC(Gs, a',- -+, a’™) equal to (GT, Gs) hence

(iv) For each i for infinitely many m <w, GI""'#(G7,G™""). For each
m <w we define on w, an equivalence relation E, with countably many
equivalence classes:

iE,.j iff the mapping f defined by f| G™ =1id, f(a!) = a; (I = n(*)), induces an

isomorphism from PCo(G™ a, - -,a’®) onto PCo(G™, a', - -,a;"). Notice it
can induce at most one isomorphism.
As G is Ki-free, PCs(a’— af,-- -, al”— a]) is finitely generated, hence for

i#] for some m, iE.j.

From similar reasons it is clear that E, has =N, equivalence classes, and
trivially m < k implies that E, refines E,.. There is i(*) < w; such that for every
i = i(x) and m, i/E,, is uncountable (this fails only for countably many i’s, so we
can choose i(*) big enough).

Cram 1.3. (MA+2%>N,). There are an uncountable S C w,~i(*) and
k(m)<w (m <w) such that:

(i) k(m) is stricly increasing,

(i) forevery a € S, and m,{j/Ecm+1: j € S, jEcma} has exactly two members,

(iii) for every i €S, and m,(G", G**") is a proper subgroup of G{*".

Proor. Let us define a partial order P:

p € P consists of a strictly increasing sequence of natural numbers
(k”(0),-- -, k”(n,)), and a finite set V* of w, — i(*) such that k?(0) =0, and for
every i € VP and m <n, (letting k(I)=k*(l))

{j/Ek(m-f—l): ]- e i/Ek(m),j € Vp}

has exactly two members, and i# j € V? implies —iE, ().
Now p =q if n, = n,, A=, k?(l)=k?(l),and V? C V. Clearly, {0), ¢) € P.

Facr 1. P satisfies the N,-chain condition.

Let p(i) € P, as we can replace {p(i): i <w,} by any uncountable subfamily,
w.lo.g. for every i, n,i,= n, k?(I)=k(l) (I =n), and V?©={j'(I): I <I*}, and
i (D/Ey depend on [ only (not on i). Also w.l.o.g. for some I* = I*, j'(I)= j(I)
for [ <", and {j'(I): I" = <I* i < w} are pairwise distinct (and distinct from
Jj() (1 <17)). Now for [ < 1" choose j(I) € w, — i(¥)~ V?O = VPO ji(DNEimj(l)
(possible by an assumption). Choose k < w large enough so that —1j'(I)Eij(I)
for I <I*, mj%)Egj'(l) for I"=1<1* and k >k(n). Now let g€ P be
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Vi= VPOUVEOUGIU): I<I), ny=n+1, k(0)=k(0), - k%(n)=k(n),
k(n +1)= k. It is not hard to check p°<gq, p'=q, q€P.

Fact 2. D;={p € P: for some j >, j € V"} is dense. We are given p € P,
and have to find q = p, q € D. The proof is like the latter part of Fact 1 (here
ve={j(l):1<I}).

Fact 3. D"={p € P: n, = n} is dense.

Let p € P; it suffices to show there is g = p, n, = n, + 1 (by iteration). This is
proved in Fact 1.

So by Martin Axiom (MA) and 2" > R,, there is a directed subset A of P, not
disjoint to any D; (i <)), D" (n<w). So §=U,c.V? k(n)=k*(n) (for
every large enough p € A) exemplify what we want in 1.3.

Cramm 1.4, If G® ai, n(*), S are as in 1.3 (and before) then G is not a
Whitehead group (regardless of whether MA + 2" > R, holds).

Note As being Whitehead is a hereditary property we can assume
G = PCG(Gs U{a,!: l§ n(*),i < w1}).

Proor. We now define by induction on m <w, a group H™ and
homomorphism h™ such that:

(a) h™ is a homomorphism from H™ onto (U,cs G*™) with kernel Z (note
that the range of 2™ is not a pure subgroup of G).

(b) k™, H™ increase with m.

Let h™"(*a!)=al and h™(*a)=a for a € Gs, *G™ = (h")(G™), *G, =
U.(h")(Gs), *GT = PCu (*G™ *a% -+, *xa’?)=(h")(G?).

(¢) If i,j € S, iEx(m+yj, there is an isomorphism g7y * G ™ — % G [, (onto)
gn|* G*™ = identity, g7i(* a!) = * o} (by the definition of * G7 there is at most
one such homomorphism).

(d) If i,j € S,m >1, iE(myj, but not iEy,.yj, there is no such gi;*'.

More specifically, for some b&€*GF™, c€*G*™*" and prime p,
R [(b+c)—(giyb) + ¢))] is divisible by p (in G) but (b+¢)—(gi(b)+c¢) is
not divisible by p (in H™*', hence in every H', I > m).

Now h*= Uh™ is a homomorphism from H= U H™ onto G, so we
suppose there is a homomorphism g : Range h *— H, h*g = the identity. There
is an uncountable $* C S such that for all i € S*, and |

*aj-g(a)=*aj—gh*(xa)€EZ

is b’ Choose i#j in §* choose m, iEim+1j, but not i Exem+nj.
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Let b, ¢ as in (d) above. So b — g(b) = (b + ¢)— (g[(b) + ¢) is not divisible by
p in H As be «G{"™, for some nonzero integers r, n and a € * G*™,
rb =a+Zi5.mn*a; Clearly b-gr(rb) is not divisible by kp in H. But
gn|*G*™ =id, hence gi(a)=a, hence rb—gr(rb) = Siznwn(*al — * aj) is
also not divisible by rp. Similarly

h™*'(r(b +c)—r(gib)+¢))=h™"'(En(*a; - *aj))
and it is divisible by rp. As h™"(xa{)=ai, h™*(*a})=a), Sr(ai-a') is
divisible by rp in G so there is x € G, rpx = Z,z.yn(ai — a}). Hence

pg (x) = g (rpx)

o3, rtai-a)

1=n(*)

= E)n(g(af)*g(a}))

1sn(»

= > n((*ai-b")—(xa}-b")

I=n(*)

= 2 n(*ai-+*aj).

t=n(*)

S0 Zizawh(*ai — *a;)is divisible by rp (in H). But a little time ago we asserted
the opposite. Contradiction.

Concrusion 1.5. (1) Let n: € “2 (i < ) be distinct, G, is freely generated
by {x,;n€“2 or n=n,i<w}, G is generated by G, and (x, —
Sisn 227

Then G is an K,-free non-Whitehead group which is R,-separable. G satisfies
possibility 1 (so is not strongly N,-free).

(2) If above for every a < w, there are k; < w such that

{n,-’l: k,-él<cu,i<a},{n.-|l: k=l<wizal}

are disjoint, then G is N;-separable (and we can easily find such 7,’s).

Proor. Left to the reader.

§2. Examples

THEOREM 2.1.  There is an N;-free group of power X, which is of possibility 11
but not strongly N,-free.
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Proor. Let $" (n < w) be infinite pairwise disjoint sets of primes, and for
each n let S5 (a < ) be infinite pairwise almost disjoint subsets of S$". Let G°
be the free group generated freely by X ={x.: a <o, n <w}, and G' its
divisible hull (equivalently, the vector space over the rationals generated by X).
Let

X.={x3:8<a},X:=X,U{x7:m <n}.

For a subgroup H of G,, x =y modyn means x — y is nz for some z € H.

Let U, be pairwise disjoint, infinite subsets of w, such that m € U, implies
m > n. For each a >0, n <w we choose an w-sequence 7. such that:

(a) no is with no repetitions, from X, and moreover from {x3: 8 <
a,m € U,}

(b) If « is a successor 5, is included in X, - X, _,.

(c) I « is limit, for each B <« only for finitely many ! < w, 72(l) € X,.

Now we define our example G. It is the subgroup of G' generated by x.
(a<w,n<w) and (x;-712(p))/p (@ <w,n<w and pES;). Let G, =
PCs(X.), Gi = PCs(X3).

Clearly G has cardinality N;, so the following facts suffice:

Facr 1. G is generated by
Ao, n)={x5:x§ € XZ}U{(x5 - n5(p))p: x5 € X3, p € SF}.

Just prove by induction on (y, k) that PCqun{X?2) is generated by the
above-mentioned set (i.e., by induction on wy + k).

Facr 2. If {ni(p):p >d} is disjoint from X§j then for no p>d and
y € PCs (X5,x%,+-,x27") does X2=y modc p.

If p& S” this is easy by Fact 1 (in fact, y# x modgp for any y € G1). If
p €S. then n3(p) = x2 modgp; letting x, = n2(p), clearly n <[ (see choice of
the U,’s) hence pZ S, (see choice of the S’s) hence, by what we said before,
y# x,modgp for y E GG (as clearly Bw + m < yw + I). So the conclusion is
easy for y € G5.

Replacing G5 by G', change nothing as S5 NS, = for m <n.

Fact 3. G is Ni-free.

Being a subgroup of G, G is torsion free, so it suffices to prove that for any
finite A C G, PCs(A) is finitely generated. However, any generator of G (in the
way we define it) is in PCs(Y) for some YC X, |Y|=2, hence w.l.o.g. A isa
finite subset of X. We prove by induction on (e, n) that PCg-{A N X ) is finitely
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generated. In the limit case (i.e., n = 0) for some (8, m)<(a,n), A N X, C X7,
so as G7% is a pure subgroup of G (hence of G;) by its definition PCs-(A N
X%)= PCsz(A N X7%), and our conclusion follows by the induction hypothesis.
If n=m+1, x7€& A, the same proof applies. So suppose x% € A, choose
p0)<w, B<a, k<o such that {nZ(I): IZp(0)} is disjoint to Xj but
ANX®CXsU{x? -, x7'}. By the induction hypothesis it suffices to prove
PCs(A N X3)/PCs(A NX7T) is finitely generated, and for this it suffices to
prove that, letting Y = Xj U{x%, -, x2 7"}, PCo(Y U{x7})/PCs(Y) is finitely
generated. This is obvious by Fact 2.

Facr. 4. G is not strongly N;-free.

Suppose G, C H C G, G/H is N;-free, and we shall show G = H; as G, is
countable this clearly suffices. So we prove by induction on (a, n) that x € H.
For o =0, n < @ this is by assumption. Suppose we have proved it for each
(B,m)<(a,n),so X2 C H. So for each p € S, x> = y modsp for some y € H,
so xo/H € G/H is divisible by every p € S.. As G/H is N;-free this implies
x2/H=0/H, i.e., x3 € H.

Fact 5. G does not satisfy possibility I.

Otherwise there are @ < w;, and a; € G (I = n(i),i < w;) such that:

(@) {ai: I =n(i),i < w,} is independent over G., and

(b) PCs(G,, al,- -+, at¥)/G, is not finitely generated, or equivalently,

(b') for infinitely many natural numbers d, there are x =3/%d'ai, 1=
(@’ -+, d"?) (their greatest common divisor), y € G, such that x = y modsd.
We can assume w.lo.g.

(¢) {ai: 1 = n(i)) has no subgroup of smaller rank which satisfies (b’),

d) ai e G’

(Because we can replace a%, -+ by da¥,---,daT").

For each ai, there is a minimal Y{C X, a;€(Y!). By (a) for some i,
Y!Z X.+,, and choose maximal (8, m) for which x5 € Y = U4, Y'. For some
time we fix i. We can replace (ai: [ = n(i)) by any permutation of it, and by
(a%+dai,ai, -+, al®). So in the usual diagonalization of matrices by elemen-
tary operations, we can assume x5 € Y{— YU -+ U Y7® and aS—d*x} €
(YS~{x7}), d*€Z-{0}.

By (c) there is a natural number d,, such that for any d, a, b, a =2d'al,
1=(d%---,d""), b€ G, a=b modsd implies d divides d,.

By the construction there is a natural number d, and a y < 8, k < w such that
YNX,CX% X, C X% and {n5(l): I = d,} is disjoint to X*.
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By (b’) there is d > d*do(d\!), a = Zis.d'ai €E{ai: | = n(i)), b € G,, such
that @ = b modgd, and 1=(d% ---,d""). As d > d,, clearly d°#0.

Let d, be the greatest common divisor of d°d* and d, and let d; be the greatest
common divisor of d°, d and d,= (d',- - -, d""), so (d°, d.) = 1 hence (ds, ds) = 1.

Clearly a/G is divisible by d, hence d°d*x 73 /G is divisible by d, hence d/d,
is a product of distinct primes from S7%. It is also clear that Zoc;znq)d'a; — b is
divisible in G by d; (as a — b, d°a’ are), so as (ds, d,) = 1 ds divides do. Now d,
divides d,d* (by their definitions) which divides dod*.

So some p € S’ divides d but not d, (hence not d°d*) and is > d,.

Let n(p)=xy Y*= X5 U{xgs -, x5 '}, then clearly d°d*x /PCs(Y?*) is
divisible by p, hence so are x5 /PCs(Y*), x;/PC(Y*), but this contradicts Fact
2. (Note that wy +k =l +1)

THEOREM 2.2. (Ou,) There is a strongly Ni-free, No-separable group of cardi-
nality N; which is not N,-separable.

Proor. We shall define by induction on a < w,, a group G. with universe
o(1+ a), and for each pure subgroup I of G, of finite rank, a homomorphism
h such that:

(1) G. is free, increasing with a, G./Gg., is free (for B + 1< a), as well as
G/ G,

(2) h§ increases with «, h7 ] I is the identity, k¢ is a homomorphism from G,
onto L

The demands up to now ensure G = U.,.,, G. will be strongly N;-free,
No-separable of power N,. We shall construct it so that G, is not a direct
summand. So by the definition of O, we can have for each limit § <w,, a
function hs: Gs — G, such that for any h: G— Go, {8: h ,Ga = hs} is sta-
tionary. So it suffices to define Gs., in a way that h, cannot be extended to a
homomorphism from G into G,, which is the identity on G,.

So if a is a successor, or h, [ G, is not the identity or h, is not a
homomorphism into G,, we can just let G.., be freely generated by G., x. (there
is no problem for h$*'). In the other case let @ = U, <., an < an.y, let p, be
distinct primes, and {I,: n < w} be a list of all pure subgroups of G. of finite
rank (in fact I, = I7), and let {c.: n < w} be a list of the members of G, each
appearing N, times. We shall define by induction on n <, B., a. = 8. <a,
Ba < Bns1, elements y2 € G, — G,,; we let G be the group (freely) generated
by G., x., (x. = y.)/pi (I <n). We also define in the induction homomorphism
h$™ GoL— 1 (I <n), h§" increasing with n, and extending h¥,
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Suppose we have defined y7, B.(m <n) and hi"(l <n). Choose B, < q,
Bn > Ui B, @, such that yo, -+ y2 '€ G, and I, -+, I, C G,

Clearly G7/G. is torsion free, of rank 1, and finitely generated, so there is
Xe €GLGL={G0LXx0),dx5—x, =b" E G,. For each m < w there is at most
one homomorphism h: G — G, extending h., h(x,) = c.; call it k7 if it exists.
Let k(n) be the first k = n, such that k% is defined, and there is z2 € G,,
ha(z2)=ha(x.) A Nicahi(z2) = h5"(z2). Choose if possible t2€ G, NKerh, N
n,<,.Kerh}', and vy.(a)<a, yala)>B. z2€ G, ., such that 13/G, ., is not
divisible by p,. At last choose s& € GoN M, Ker h;, not divisible by p. (thisisa
pure subgroup of G, and Go/(GoN M., Ker h;) has finite rank, so such s"
exists).

If k(n), z, and t; are defined, we let y» =2z2+t2+s. and continue;
otherwise we stop. If we continue it is easy to check h§" (I < n) has one (and
only one) extension hi"": G.*'—> I, and h, has no extension h: G2*'— G,,
h(x.)= ¢y and we can define A"

If our induction stops at some n, we behave as for a successor «, and if we
finish it, G... is generated by G, x., (X. —y2)/p. and then we let h§*'=
U.z:h 5" In the other cases (I C G..y, IZ G., or the induction stops) there is no
problem to define h§*".

If our induction is finished it is not hard to check that k., has no extension
h: Gevi— Go.

The only point we have to show is that if h: G — G, is a homomorphism, and
h | Go = the identity, then for some 8, ks = h | Gs, and the induction is finished.

However, C, = {8 < w;: for every pure I, - - -, I, C G, of finite rank there is
¥ <8 such that h(xs) = h(x,), Ay (xs) = hy(x,), -, by (xs) = by (x,)} is closed
and unbounded.

Similarly, C,= {6 < w;: for every B <8, pure I, -, I, C G; of finite rank
there are successors y(1) < y(2) <8, B < y(1), h(x,0— Xy2) = hy(Xya— Xy0) =
oo =hy (X0~ Xy@) = 0} and § = {6 < w;: h | G; = h;} is stationary.

So there is § € S N C, N C,, and for it the induction is finished, i.e., for every
n, 255 v.(8),s5 exist.

We can improve this to:

THEOREM 2.3. The last theorem holds even assuming only 2% < 2™,
Proor. This time we use the fact that w, is not small (see Devlin and Shelah

[3]). We this time define by induction on & < w; for n € *2, a free group G,, with
universe w(1+ «a), and for each pure subgroup I of G, of finite rank, a
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projection hi: G, —1 onto I, both increasing by <, such that G,/G,s.),
G,/G , are free (where B <I(n)), G, has rank N, and:

(*) for limit & < w,, n € &, there are no projections h;: G,~;,— G, onto G,
(1=0,1), he| G, = h,| G,, b | Gy =id.

Now by @ (see [3], §6) for some n € “’2, G, does not have a projection onto
G, then this is the group we are trying to construct.

For the construction, let B, < B,.. <8, UB, =8 y, € G.p...» Yal G s, DOt
divisible by p., G,u=(G,x,m, (Xym—y.— Xod.)/p.), where (xo)=
p Cag ,(x0)C G ,. We have to choose the d, so that (y. + x,d’)/G ,,, is not
divisible by p,, and to destroy all possible pairs (ho(x '), h1(x 1)) (from G ,.)

THeoREM 2.4.  There is a strongly N,-free group which is not Ng-separable of
power 2. Moreover, there is a No-free, strongly N,-free not Whitehead group of
cardinality 2™,

RemaRrk. This theorem answers negatively a question of Eklof [4] as to
whether the class of N;-separable N, groups is definable in L...,, (see [4] p. 106,
paragraph before theorem 2.11).

Proor. Let A =2%,

Let Hy, H, be free groups of cardinality N,, such that H,C H,, H,/H, is N,-free
but not a Whitehead group, exists by 1.5. Let {z}: i <w,} freely generate H,
(1=0,1).

Let G, be freely generated by x, (n €“™A) and G be generated by
GoU{y.: i <w;, n €“A} freely except that:

(*) there are embeddings h,: H,— G, h,(z%) = x,, h,(z}) =y for n € “r).

Let for n € “1®A, G, = (x,u: a <I(n)), H, ={(y%: a < w).

Fact 1. G is Rx-free.

Any subgroup G* of G of power =N, is contained in (H,: 5 € S) for some
sC“P) |S|=N,, and let § ={n;: i <w,}. We can define by induction on i
a; < wy, such that B, = {n, ] B: ai = B < w:} are pairwise disjoint. Let us define

IO=<{xv: v =1, la for some i, a < w,, v& U B.-}>,

I,‘ = <I(), U HB>'
S B<i

Clearly I (i <) is an increasing continuous sequence of subgroups of G
whose union is (H,: i < w,). So it suffices to prove I,, I. /I, are free.
I, is free as a subgroup of G,.
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L., /I is isomorphic to H, /G, which is easily verified to be free.

We now find a group G g, Z C Gy, and a homomorphism g, from G onto G,
Kergo=2Z. Then by induction on a <w;, for each n €“*PA we assign
fn: Gnla - G;la (Where G.= gal(GV)) such that v < n > fv gfm fngnla = lGr,|a
(where g... = g0, G:.) and for every f: G,— G, fg, =1, extending f,, for
some a <A (=2%), f= frra

Now for n € “YA we define H;, and a homomorphism g” from H; onto H,,
GiCH:, g,Cg" Kerg” =Z such that f, = U..., f,sn cannot be extended
to a homomorphism from H,, into H7, f,g, = 1¢, (this is possible as H,/G,, is not
a Whitehead group).

Now we define G*, g such that H,C H for n € “?2, g extend every g"
(n € “72) and g is a homomorphism from G* onto G, Ker g = Z (no problem as
there was no “‘connection” between the H,’s except through G,). Now G, g
exemplify G is not a Whitehead group. For suppose f: G — G~, fg = 1, then
define by induction on a < w;, y(a) <A such that

f , G(Y(i)=i<a) = f(v(l'):iéa)’

let 7 =(y(a): a <@y, 0 f D U.cu, frieeny 50 f,H,, contradict the choice of
g

So G is N,-free and not Whitehead, G* is N»-free and not separable (Z is not a
direct summand). We finish noting that by [11], N,-free implies strongly N;-free.

THeEOREM 2.5. (1) In the example from Theorem 2.4 the G we construct is
N,-separable, provided that each H,/G, is N;-separable.
(2) We can make G not hereditarily separable.

Proor. (1) Left to the reader.

(2) We choose G ,C G, ), G/G/ ,isomorphic to Z$’ (p a prime), x, € G ,—
G{ ), pxo€ G{ ), and then G,C G, (n € “1*)) increasing with n (by <),
xo& G!, G,/Gisomorphic to Z$”, and for each 7 € “1A we have a projection h,
of G, onto pZ where we identify Z with (xo).

We now have to define H,C H,, H,N G, =G., H,/H,=Z%, so that h,
cannot be extended to a projection of H, onto pZ. This is done as in 1.5-1.4.

§3

DEermniTion 3.1. (1) An abelian group G is hereditarily separable if it is
N.-free and for every subgroup G’, and finitely generated pure subgroup H of
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G’, H is a direct summand of G'. We can replace ‘“finitely generated” by
“isomorphic to Z” (see [5] or [9]).

Remarg. (2) The hypothesis “for every regular A and stationary $ C A the
weak diamond holds” (see [3]) is sufficient for Theorem 3.1 (see the proof of 3.5
and then change the proof of 3.1 accordingly).

THEOREM 3.1. Suppose V = L, or even that for every regular A and stationary
S CA Os holds.

Then every hereditarily separable torsion free group is free.
Before proving this theorem we first establish two facts.

Fact 1. The following are equivalent where H,C H, and I are abelian
groups:

(a) every h: H,— I has at most one extension to h': H,— I,

(b) if h: H,— I, h | H, = 04, then h | H,= 04,

(c) if h: Hy/H,— I, then h =0.

ProorForFact 1. If (a)fails, hy, hy: H.— I extend h and h, # h,, then h,— h,
shows that (b) fails. If (b) fails, & exemplifies this, the mapping x/H;— h(x)
(well defined as H, C Ker h) shows (c) fails. If (c) fails and h exemplifies it, let
hi(x)=0(x € H,), hs(x)= h(x/H}), so h, # h;: H,— I extend 0y, thus showing
that (a) fails.

Facr 2. If I=1Z, or even No-free, H is not free, of finite rank and every
subgroup of smaller rank is free, and is torsion free, then every h: H — I is zero.

ProoroFFacr 2. Let h#0. The range of h is a subgroup of I of finite rank,
so w.l.o.g. I has finite rank, hence is free; let ho: I - Z be such that hsh #0
(easy). So H, = Ker (hoh) is a subgroup of H of rank < rank H, hence H, is free,
and h*: H/H,— Z defined by h*(x/H,) = hoh(x) is a well defined homomor-
phism, and # 0, Kerh*=0. So h* is an embedding, but H/H, is not finitely
generated, as H is not free, contradiction.

Proor oF THEOREM 3.1. Let G, be any torsion-free, hereditarily separable
group and H, be a pure free subgroup of rank N,.

Let p be any prime, {x.: n <w} generate freely H,, and let H} be the
subgroup of H, generated by {p""'x.: n < w} U {x, — pXu.1: n < w}. (So Hy/H'is
isomorphic to Z$.) We prove by induction on A:

(*)» Suppose G is torsion free, H a pure subgroup of G, G/H has rank = A,
H'CH, H/H'=Z{’, and more specifically H=(H'," ", X, ** Yncw pXo€ H’,
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Xo — pxani € H', xo& H', and G/H is not free. We identify Z with (x,) C H, so
pZ is a pure subgroup of H'.
Then:

(@) If h is a projection of H' onto pZ, we can find G'CG, G=
(G, Xn,* * Jucwy H'= G' N H, such that h cannot be extended to a projection
of G' onto pZ.

(b) If in addition G is |H [*-free we can in (a) find G’ suitable for all A.

Clearly (b) gives our conclusion (with Go, Ho, H' for G, H, H') for uncountable
G. We can in fact weaken the hypothesis of (b) to: There is no G*C G,
|G*|=|H|, G/G* free.

We prove it by induction on A.

Choose G,, H C G, C G, such that G,/H is not free, and the rank of G,/H is
minimal. It suffices to prove (), for G, because if G| is as required (for G,), let
G' be a maximal subgroup of G such that G' N G, = G| (equivalently, G; C G,
xo & G'). Notice the rank of G,/H is = A, and G, is |H |*-free if G is | H [*-free.

By [11}, the rank « of G,/H is finite, or a regular uncountable cardinal.

Case 1. « finite.

Let z,/H,---,2./H be a maximal independent set in G,/H, and w.l.o.g.
(z\/H, -, z..,/H) generate a pure subgroup of G/H. Let I be a maximal
subgroup of Gy, such that INH=H', z,,-+-,z.,€ I, pz. €I but z, + Ix, &I
for every L 0=l<p-1.

Subcase 1A. I/H’ is not free.

Clearly I/H' has rank «, and every subgroup of smaller rank is free, hence h
has a unique extension h* to a projection of I onto pZ.

Choose a number [ € {0, 1} C Z such that # *(pz..) + pl (in Z}) is not divisible by
p? (in Z), and let G" ={I, z, + Ixo), G’ be a maximal subgroup of G,, G"C G’,
G'NH = H'. G'is as required, because if &’ is a projection from G’ onto pZ as
required, necessarily h' D h*. So (remembering 1= x,)

ph'(z. + 1) = h'(pz. + pl) = h'(pz.) + h'(pl) = h*(pz.) + h'(pl)
= h*(pz.)+ pl.

All numbers are in Z, but moreover h'(z, + I) € pZ, so h *(pz.) + pl is divisible
by p? (in Z), contradiction.
The other conditions on G’ are easy to check.

Subcase 1B. I/H' is free.
It is clear that if q is a prime #p, z € G, qz €1, then z €1 (by the
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maximality of I). Also G,/I is torsion (as (H', 2y, -, 2., pz.)CI), so it is a
p-group. Hence also G,/(I + H) is a p-group. As INH = H' clearly I/H'=
(I + H)/H, so as they are free, (I + H)/(H +{z,, ", Z.-1, p2.)) is finite. So if
G./(I + H) is finite then G\/(H + (24, - -, Z.—1, pz)) is finite. Hence G,/(I + H) is
finitely generated, hence free, contradiction. So G,/(H + I) is not finite. Now
G/(H + I) has rank 1 (it cannot have rank 0, as it is not finite; if it has rank >1,
then there is y € G,~ (H +I), z./(H + I) not in the subgroup that y/(H + I)
generate). As G,/(H + 1) is a p-group, we can assume py EH+ I = (L x,- ).
So py =Ix. +y’ for some m >0, [€Z, y'€ H Now we can replace y by
y—Ix., so now py€L Let I'=(Ly). Now z,.+Ix&I (as otherwise
zo/(H+I)e (I'+ H)/(I + H), contradicting the choice of y). Also x,& I (as
otherwise xo—Ily €1, so (as xo&I) (,p)=1, and then ly € (H + I), which
together with (p, 1) = 1 implies y € (H + I), contradiction). Hence I' N H = H’.
So I is not maximal, contradiction. Hence the rank of G,/(H +I) is 1.

The only (up to isomorphism) infinite p-group of rank 1 is Z2, which is
p-divisible. We show that G,/I (which is a p-group) is p-divisible. Let y/I €
G/\/I. As G,/(H + I) is p-divisible, there is y, € G,y —py. € H+ Lsoas H' C I,
y—-pyi=Ix.+y.: for some y,€I [ and k. Now y-p(y,+ )=
y —py) = Ipxca = Ixi + y2~ It + 1(x — pxir) = 2+ 1 {xe —pxins) € I+ H' =
I So y/I is divisible by p. Now h has only 8, extensions to a homomorphism
from G, into Q (the only freedom we have is the images of z,,---, pz,;
remember Z C Q, and we identify 1€ Z and x,).

Let us enumerate them h* (k < w). Now we define t. € G, such that £, € G,,
&L pto€ L ptiyi— 6 EL x0 & (Lo, "+, ti).

Let t;= z. (check xo& (I, z) by I'’s definition).

If & is defined, choose t3.: € Gy, pth.i— t € I (by the p-divisibility of G,/I).
Choose 1 €{0,1} such that h*(t%.,+ Ixo) is not in pZ = (px,) (possible as
xo& pZ), and let fiey = th.r+ IXo.

Now let G'= (L to,***, b, " * ).

Case 2. « regular uncountable cardinal.

So let G, be PCs(H U{ai: i <k}), {a:: i <k} independent over G. Let
a(i)<k (i <k) be increasing and continuous. Let G’ be PCs(H U{a;: i<
a(j)}). Clearly S = {a <«: for some B > a, G#/G* is not free} is stationary, so
w.l.o.g. a € S implies G**'/G* is not free. Trivially the rank of G**'/G* is < k.
Clearly any homomorphism from G* into Q extending h is determined by the
images of the a,’s (and vice versa — every function from {a;: i < «} to Q can be
extended to such homomorphism). As by a hypothesis, &5 holds, there are
homomorphisms h.: G* - Q (a € S) such that:



Sh:105

Vol. 32, 1979 UNCOUNTABLE ABELIAN GROUPS 325

(i) for any homomorphism h': G,~>Q, h Ch', {a €S: h'| G* = h,} is sta-
tionary.

(ii) If | H| <« (which occurs in (b)) we can omit the demand h C h'.

Now we can define by induction on a <A, groups H* C G*, H* increasing
with a, xo & H*, G* ={H"*, X0, X1, - *), and if « € S, h, a projection from H*
onto pZ, then h, cannot be extended to a projection from H*"' onto pZ.

For @ =0, H* = H'; for a limit H* = U,_, H?; for a successor, if h, is a
projection from G“ onto pZ use the induction hypothesis, otherwise it is trivial.
Now we define G’ as U H"

So we finish Case 2, hence the theorem.

DerNiTION 3.2, For a natural number m (>1) a group G is called m-
hereditarily separable if G is N;-free and for any homomorphism h: G — Q.. /Z
(where Q. is the additive subgroup of Q generated by 1/m, 1/m?---,1/m*, )
and pure subgroup I* of G isomorphic to Z, there is a homomorphism
g:Kerh—=I*NKerh, g I(I* N Ker h ) = the identity.

CLamm 3.2, The following conditions on a group G are equivalent:
(a) G is hereditarily separable.

(b) G is m-hereditarily separable for every natural number m (>1).
(c) G is p-hereditarily separable for every prime p.

ProOOF. See later.

THEOREM 3.3. (MA +2"%>N,) Let G be an N;-free group of cardinality <2%.
Then the following conditions are equivalent (we can erase the ““for every p™'):

(i) G is hereditarily separable, i.e., p-hereditarily separable for every prime p.

(ii) For every p, and finite subsets A; C G (i < w,), there are SoC w;, n < w,
ai€G (i€S8,, 1=1,---,n}, S, uncountable, A, C(ai, -, a.) (fori € S,) such
that for every uncountable S, C S, there are i# j € S, such that:

PC(ai, -+ al al,---,al)=

(@) (PC(ai, - al),PC(al, - al),PC(al —al, - a—al)),

(B) Siikiai = 2., mia) implies ki = mj for [ =j,--- n,

(y) no element of PC(ai —al, -, a.—al)/ai—al, -+, a,—al) has order
p.

(iti) For no countable pure subgroup G,C G are there a; (I = n,, i < w,) such
that:

(a) in G/Go, the set {ai/Go:l = n,i <w,} is independent,
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(B) in PC(GoU{a:i: I = n})/PC(GoU{ai: I < n}) there are elements t,, # 0,
Pluii =t (for m <w).

Proor oF CLamM 3.2.  (a) > (b). Let h: G - Q../Z, I* C G be as in (b), and
let H = Ker h. Clearly I* N H is a pure subgroup of H isomorphic to Z, so by (a)
thereis g: H—>I*NH, g ](I*DH)= the identity.

(b) = (a). Let H be a subgroup of G (not necessarily pure), I* a pure
subgroup of H of rank 1 (equivalently, isomorphic to Z). It suffices to find
g-H-I*g I * = the identity. Clearly we can replace H by any H', HC H'C
G, HNPCs(I*)=1I*,s0ow.lo.g. H is maximal with respect to those properties.
Clearly PCs(I*) is of rank 1, hence isomorphic to Z, and let x, generate it;
m = min{n: nx, € I*}. By the maximality of H, G/H has no subgroup disjoint to
the subgroup xo/H generated. So it has rank 1. So we can embed it into Q/Z,
h': G/IH—>QJ/Z, h'(x,)=1/m, and let h: G — Q/Z be such that h(x) = h'(x/H).
Since xo/H has order m, G = (H, x,), and we see Range h C Q,./Z and clearly
H CKerh.

(b) = (c). Trivial.

(©)=> (a). Let m =TL.p?, k(i)= 1. It is easy to check that Q, C Q., so
Q,,/Z is a subgroup of Q../Z, and that Q,./Z is the direct sum of Q,,/Z (i <n),
so let f; be the projection from Q./Z onto Q,/Z.

Let h: G—>Qn/Z, hi = fh: G—>Q,/Z, I'* a pure subgroup of G isomorphic
to Z. So by (c) there are homomorphisms g: Kerh,—»I*NKerh,
g f(I* N Ker h;) = the identity. We want to define an appropriate g. For
x € Ker h, obviously x € Ker h; (for i < n). Let x, € I* generate it; so for each i,
for some minimal [(i)= 0, p;“x, € Ker h;. By elementary number theory there
are natural numbers m; such that
;E m]]p®=1.
<n j<n

j#Ei

Let us define g: Kerh — I'* by
gy)=2 ml] pi¥g(y).
<n i<n

j#i
Note Kerh CKerh; so g(y) is well defined.
Note
’ H p:”y €Kerh,
j<n
j#i
so g(y) is well defined.
Also, g }(I* N Kerh) is the identity as g f(I* NKerh)Cg {(I* NKerh,)is
the identity.
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The last point we have to prove is that the range of g is CI*NKerh.
Obviously it is included in I'*, so we have to prove only h(g(y)) = 0. For this it
suffices to prove

h(ILpts ) =o.
jHEi
Now gi(y)=Ipi“xo for some I, so it suffices to prove Il,pi“h(x5)=0 or
h([;<.pi®x0) = 0. But [I;<.p“’x, is clearly in Ker h; for each i, hence is in Ker h,
as required.

Proor oF THEOREM 3.3.  (ii) > (i). We shall prove (b) of Claim 3.2. So let I*,
h, m be as there. Let P ={(f, I): I a pure subgroup of G of finite rank, I*C I,
Domf=INH, fiINH—-I*NH a homomorphism, fl(I*ﬂH)=the
identity}, where H = Kerh. P is ordered by: (f )= (f,I')if fCf, ICI.

As G is Ni-free, also H is, so it is easy to check for x € H that D, =
{(f ) e P: x € Domf}is dense in P. So, as | H| =| G | <2, by MA it suffices to
prove that P satisfies the N; chain condition. So let (f, L)€ P (i < w:) be N,
conditions.

As we can replace them by any uncountable subfamily and increase, we can
assume: I; is freely generated by ai,---,a,, fi(ai)=s and h(a})=1€Q./Z
(I=1,---,n). Now by (ii) for m we can find i <j < w, satisfying (a), (8), (y). So
h(ai)=h(al)=1 hence ai— a} € H. By (B8), there is a homomorphism f: (I, N
H LNH)-I* flI*NnH=id, f, f,Cf Clearly (I, N\H,I, N H)C H, and as
h(ai—a't)=0, f(ai — a})=0 we can extend f to

f:I'={LNH,INH PCu(ai—al, ---,a.—al))—>I*,

f l I* = the identity. Let I = PCs (I, I;). It suffices to prove I N H = I’; trivially
I'CINH. Now if x€INH, then by (o) x =x1+x:+x3, x €1, x, €1,
x;€ PCg(ai —al,---,a.—al). Let x,=Zkbi and let x; = Skb}, so x5 € I, and
x:— x5€ PCs(ai —al,---,ai—al). Let

x = (x;+x2))+ (x5 + (x2— x3)), sox;+ x5€ I,

X3+ (x2— x3) € PCs(a; —al,---,a;—al). So hence w.l.o.g. x,=0. However as
H =Kerh,ij satisfy (y) of (ii), clearly PCs(ai—al,---,ai—al)CH, so
x;€ H, but as x € H, also x, € H. So
x=x1+x3, XIEI.-ﬂH,
x;€ PCs(ai —al, - +,ai—al)NH=PCu(ai —al,---,a.—al).

So I'=1NH, so we finish (ii) > (i).
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(iii) = (ii). This proved as in the proof of ““if G satisfies possibility III or II
then it is Whitehead™.
Not (iii) = not (ii). This is proved as in the proof of Theorem 1.1.

CraM 3.4, There is an N-free group G, |G | = N, satisfying (ii) of 3.2 which
is not a Whitehead group. (So assuming MA + 2" >N,, there is a hereditarily
separable non-Whitehead group of cardinality R,.)

Proor. Let UC*“2, [U|=N,; let G" be the free group generated by
{x,: 7 € U}, G* its divisible hull, {p,: n < v} indistinct primes, and G C G * be
generated by

{x,: n € U}U{(x, — x.)/p.: nln = v|n}.
Its being non-Whitehead follows by 1.5. Now use 3.2 (you can use only (ii), (i),
which was proved in detail).

THEOREM 3.5. (2% <2%) If G is hereditarily separable, then G is strongly
N,-free. Moreover, if Ui<m, G: C G, G; increasing continuous and countable, then
{6 < wi: (Ui<.,G)/Gs is Ni-free} is stationary.

Proor. Let S ={6 < w;: Ui.,, G//G; is not free}. We suppose S includes a
closed unbounded set, and prove G is not hereditarily separable. This clearly
suffices. We can assume w.l.o.g. G = U, G, G a pure subgroup of G, and for
i €S, Gi./G: is not free, has finite rank and has no subgroup of smaller rank
which is not free, and G, has rank N,.

Denote H = Gy, choose x, € H, H'C H such that H =(H xq,- ", X, * * *),
x€H-H', px,€ H', x, — px.., € H'. Now we define by induction on | < w,,
for every n €2, a subgroup H, of G. such that:

(1) v <7 implies H, C H,,

) H,NH=H', G/H,=Z,,

(3) if 8 €S, n €°2, and h,~y a projection from H,~, (C Gs.,) onto {px,) for
1=0,1, then hy| H# h oy | H,.

This suffices: for every n € “v2 let H, = U.-(MIIH,,,,- CG; so if G is
hereditarily separable for every such n there is a projection h, from H, onto
{pxo). As S includes a closed unbounded set (and 2" < 2") by @ of [3], §6, for
some §E€S, 1 E€°2, and vy, 1 €2, 7 {l) <w. So h|H,~, contradicts
condition (3) above.

In the definition of H, (n € “2) the cases i =0, i limit and i =j+1, j& S
cause no problem. For i = j+ 1, j € § we have to take care of condition (3). This
is similar to the proof of case (1) in the proof of Theorem 3.1. Let n €2, and we
define H, .
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Let {z,/G}, - - -, z./G;} be a maximal independent subset of G./G,, and let I be
a maximal subgroup of G; such that H, U{z,, -+, zicy, pz} C L, z, + o & I
(I=0,1,---,p=1). If I/H, is not free we let H,,~, = (I, z, + Ixo) (I =0,1): and
as in subcase 1A of the proof of 3.1, (3) is satisfied. If I/H is free then as in
subcase 1B of the proof of 3.1 we can find t{ € G, (v €*2, k < w) such that
t6=2z, ptia—ti€l, -1 =x. For each veEe“2 let H,, =
(H,, 15", t}",---). Then we choose vy, v, € “2; let H,-q,= H,.. So we have to
prove that there are v, v, so that condition (3) holds. In fact for every v, all but
countably many v, € “2 are suitable.

THEOREM 3.6.  Suppose G is torsion free, and for some finite set P* of prime
numbers and free G*T G, G/G * is a torsion group such that for no prime p& P* is
there an element of order p in G/G*.

Then G is hereditarily separable iff G is Whitehead.

Proor. The “if”’ part appears in Nunke [9]. So suppose G is hereditarily
separable, so we can assume G = G'+ Z. Clearly G is a Whitehead group if G’
is a Whitehead group, and we shall prove the latter.

So let h be a homomorphism from H onto G’ with kernel Z C H. We can
assume G*=(G'NG*)+Z; let {a;: i <a} freely generate G'N G*.

We shall embed H into G, thus proving Z is a direct summand of H, hence h
splits and we shall finish the proof.

Choose b; € H, h(b;) = a,, so clearly {b;: i < a} generate freely a subgroup of
H. Let n* be the product of the primes in P*.

Look at the family of embedding g, Domg a subgroup of H including
ZU{b::i<a}, g(b)=a, g(x)=n*x (x €Z). Clearly this family is non-empty
and closed under unions of increasing chains, hence it contains a maximal
member g*. It suffices to prove Domg* = H.

Note that for m € Z, m &€ Range g * implies m is divisible by n* (otherwise in
H, 1 is divisible by some n >1).

Suppose Domg*# H. Clearly H/Domg* is torsion (as ZU{b:i <a}C
Domg*). So for some prime p and x € H, x€ Domg*, px € Domg*, and
clearly it suffices io prove g*(px) € G is divisible by p (in G).

For some natural numbers n,m and y €Z, and i([) < e, k, integers (I <m),
we have

m—1
(1) npx = ny + E k[b,'([)
1=0

(this is possible as px € Dom g*, and Z is a direct summand of Dom g * since G
is hereditarily separable, g * an embedding into G ; so if npx = y, + 7 kibiy, ¥1
is divisible by n as npx is (in Dom g*)),
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) g*(npx)=nn~y + TZ ki,

and clearly

3) h(npx)= h(ny)+':2)l kh (b.»(,,)=0+':‘§=;1 ka., € G,

hence

“) h(npx) = nph(x)€ G'.

As all groups here are torsion free, it suffices to prove g *(npx) is divisible by
np (in G).

By equations (3), (4) it follows that =2, kia;q, is divisible by np in G. So by
equation (2) it suffices to prove n*y is divisible by p in G. For this it suffices that
p divides n* or equivalently (by n*’s definition) that p € P*. But this follows by
the choice of G*.
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