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w 1. Introduction 

For  a discussion of  our  result, we will restrict to any non  zero domain  R with 
1, i.e. R is a commuta t ive  ring without  zero-divisors ~=0. One interesting class 
of  such rings are Dedekind  domains  or more  generally noether ian domains,  
another  one, which is quite attractive, are the valuat ion domains.  There is an 
increasing number  of  papers on modules  over such rings, some of them export 
results on abelian groups to these classes of  modules. A special f lavour of  such 
investigations on valuation domains  is due to the fact that  R does no longer 
satisfy the max imum condi t ion in general. This has the nice consequence, that  
many  new ideas have to be developed for the study of such modules;  and it is 
not  surprising that  such ideas are interesting mixtures of  algebra and analysis; 
- see L. Fuchs  [9] and next year also L. Fuchs  and L. Salce [10] for further 
references. 

One  of  the central problems in module  categories is concerned with the 
existence of indecomposable  modules. We are most  grateful to Laszlo Fuchs, 
for drawing our  at tent ion to this question for valuation domains,  when he was 
a visiting professor at Essen Universi ty in 1982. Answering this problem, it 
turns out that  the methods  are applicable to all domains  which are not  fields. 
Since we want  to derive counter  examples to possible Krull-Schmidt- type-  
theorems in these categories - or equivalently, examples for Kaplansky 's  fa- 
mous  test-problems - we shall derive a realization of algebras as en- 
domorph i sm algebras of  suitable modules  in this category. 

Suppose S is a multiplicatively closed subset of R representing a linear set 
of principal ideals. We will see that  ~c = ISI may be chosen to be regular. If  M is 
an R-module,  which is reduced (with respect to S, i.e. ~ M s - - 0 ) ,  then M has 

s 
the natural  Hausdorf f  S-topology,  taking {Ms: saS} as a system of neigh- 
bourhoods  of  0 e M .  Hence M can be completed to ~r. I f  the module  M is also 
torsion-free (with respect to S, i.e. ms=O, mEM, s~S implies m=0) ,  then M is 
torsion-free and reduced. The module  G realizing some algebra A will be 

This was carried out, when the first author was visiting Hebrew University in 1983/84. Both 
authors would like to thank Minerva-Foundation and the United States Israel Birational Science 
Foundation for financial support 
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326 R. G6bel and S. Shelah 

constructed between some basic submodule B depending on A and /~. We 
derive the following result: 

I f  A is an R-algebra with torsion-free and reduced R-module structure and ,~ 
is a cardinal with U=)~>IA[, then we find R-modules G~(i~2 z) such that End G~ 
= A ~ I n e s  G i and Hom(Gi, Gj)=Ines(G~,Gj) for i=t=j~2 ~. 

The ideal Ines G of End G is the set of all endomorphisms which map the 
completion G of G into G. The definition of Ines(Gi, Gj) is similar. This result 
leads already to counter examples to "Krull-Schmidt-theorems" even over a 
complete ring R; such theorems may be derived by a method given in [5, 4, 7] 
w 

If we restrict the algebras (and hence the rings) a little further, we obtain a 
strong realization theorem. The appropriate notion is cotorsion-freeness, cf. 
[11, 12]. - A module M is cotorsion-free if and only if M is torsion-free and 
reduced, and Hom(/~, M) = 0. 

I f  A is an R-algebra with cotorsion-free R-module structure and 2 as above, 
then we find R-modules Gi, i~2 ~, such that End Gi=A and Hom(Gi, G~)=0 for 
all i +j ~ 2 ~. 

If we now choose the algebra A properly, we get the desired results 
mentioned at the beginning. 

Suppose R is a valuation domain and S = R - 0 .  If R is complete (or a field), 
then the indecomposable R-modules have rank 1. Hence we assume that R is 
neither a field nor a complete domain. From (5.8) we conclude that R is a 
cotorsion-free R-module. For  cotorsion-free domains, and 2 = U (R)> IN] we may 
apply the strong realization theorem for R = A to obtain the following result. 

There exists a rigid system of 2 4 indecomposable, cotorsion-free R-modules of 
cardinality 2; and 2 is in a proper class of cardinals. 

This answers Fuchs' question above; for a history of this problem (in 
particular for R=2g) see [5, 8]. Next we assume R not a field (otherwise the 
following result fails by results on Linear Algebra). In [-3, 4] we find an R- 
algebra with free R-module structure which can be applied to the split-re- 
alization theorem. Using arguments as in [7] if R is complete (or applying the 
strong realization theorem if R is not complete), the given algebra gives rise to 
the following. 

For any abelian semi-group F there exist R-modules G~ (7~F) which are 
torsion-free and reduced such that for 

ct, fi, 7oF, G~@G~=G~ if and only if ~+fi=Y- 

For  R = g  and the special F=77/n 7Z this may be found in [-8], Vol. II, p. 145, 
Theorem 91.6. 

Another remarkable class of modules can be constructed as follows. As- 
sume that R is an incomplete domain and not a field; and apply the strong 
realization theorem to Corner's algebra [2] extended naturally to arbitrary 
domains; see also [8], Vol. II, p. 145. We conclude. 

There are R-modules G of cardinality 2 (2 as above) which do not have any 
indecomposable direct summands ~ 0. 
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Modules Over Arbitrary Domains 327 

The techniques of the proof  of our main theorem are similar to methodes 
of [4, 6] and [17], and we shall follow the exposition given in [4]. However we 
shall need some substantial changes in order to deal with non-metrizable 
topologies. 

w 2. Preliminaries 

We shall prove our results in an even more general category of rings than that 
of domains. Throughout  this paper R will be a non-zero commutative ring 
with 1 and S a subset of non-zero divisors subject to the following conditions 

(1) {Rs: sES} is a descending chain with (~ Rs=O, 
S 

(2) 1 ~ S and ISI is a regular cardinal to. 

Condition (2) is no restriction for domains, but it will be convenient; in fact (2) 
follows from 

(2*) S satisfies the intersection property, i.e. 

If X~_S, IXl<cflS[, then S c ~ R x 4 0 .  Suppose ~c=cf[SI, then we find a 
X 

filtration S =  Q)S~ such that [S~l<lSI. By (2*) we have GeSc~ ~Rs  and 

therefore {1, s~S; c~e~c} will satisfy (1) and (2). Recall that (2*) replaces the 
standard assumption that S is multiplicatively closed. If R is a valuation 
domain, then (1) is automatic; more generally (1) and (2) can be arranged for 
any domain which is not a field, without loss of generality we shall assume that 
S is multiplicatively closed. 

A module M over R is called S-reduced, if ~ Ms= O. The set S induces the 
S 

natural S-topology on M, taking {Ms: seS} as a basis of neighbourhoods of 
0eM. Since (~ Ms=O, the S-topology is Hausdorff and we may consider the 

S 

completion M of M in its S-topology. Furthermore, M is called S-torsion-free if 
ms=O for meM, s~S implies m=0.  A module M is S-cotorsion-free, if and only 
if M is S-reduced, S-torsion-free and Horn (/~, M) =0;  cf. E11, 12] and (2.4)(c). 

Let A be a fixed R-algebra such that the R-module A is S-reduced and S- 
torsion-free for such an S. Then we will fix some cardinal 2 with 2~=2>JAI 
and choose a sequence {ai~S, i~c} representing a strictly descending chain of 
ideals Aa i of A with ~ Aai=O. It follows from K6nig's Theorem (cf. [13], pp. 
45, 46) that '~  

(2.0) cf(2)>~c. 

Hence, every subset of 2 of cardinality < ~c has an upper bound in 2. Since S is 
fixed, we will now omit the prefixed S. 

We are interested in torsion-free, reduced R-modules M; therefore we first 
recall some of their basic properties from [14, 15]: 
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328 R. G6bel and S. Shelah 

(2.1) We can identify ~ with a submodule of 1-I M/Ms, in fact 
s 

~c= ~ xs+ MsE)Ql if and only if xs-x~tsMs for s, t~S. 
SEN 

We shall identify M with a submodule of ~Q, in the sense M c ~  that 
x ~  x+Ms. 

SEN 

(2.2) (a) M is torsion-free and reduced 
(b) MI/M is torsion-free and divisible (S-divisible in the obvious sense). 

Remark. Use (2.1) to prove (2.2). 

(2.3) Definition. U _  M is S-pure if and only if Us = U n Ms for all s~S. 

If U~M, then U,=(~{X~_M:UcX,  XS-pure in M}={yeM:seU for 
some sES} = minimal S-pure submodule of M containing U. 

(2.4) Suppose R is a domain and the S-topology is the same as the R- 
topology (induced by R - 0 ) .  Then 

(a) M is divisible if and only if M is injective. 
(b) If A _  C such that C/A is torsion-free and divisible, then any h: A~D 

has a unique extension nO?: C~D provided D is complete. 
(c) M is complete if M is cotorsion, i.e. Extl(Q, M ) = 0  for the quotient field 

Q of R. 

(2.5) If R is a valuation domain, then "all" notions of purity are equivalent. 
However, we stick to Warfield's RD-purity as in (2.3). 

Finally we want to supply some rings for the module categories under 
discussion. If F is an arbitrary totally ordered abelian group and F a field, then 
we can find a valuation domain R with quotient field Q and a valuation map 
v: Q ~ F  u { oQ } such that R = {aE Q : v(a) >_ 0}, P = {a~Q, v(a) > 0} the maximal 
ideal of R such that R/P=F. All valuation domains arise this way; see [1, 16]. 
The ideals of R correspond to the sections H of F, which are subsets of F with 
(heH, h < g ~ g e H ) .  So the chain of the ideals # 0  of valuation domains may 
be very long; hence x above can be large. 

The following example illustrates the limitation of our construction; this 
arises from the fact that the R-topology might be far away from being "linearly 
ordered" at 0. 

Let X denote a set of commuting variables of size x > No. Then we consider 
the ring R = �9 [X] of polynomials with coefficients in 2g. Take any enumeration 
of R \ 0 = { b i :  i<~} and consider a set of commuting variables Y={xv,w: V~_a, 
IV[<~:, w a finite subset of V}. Let R act on Y by bixv, w=Xv, w..(~] for i~w~_V. 
Finally, construct the R-algebra A = R  [Y] which is generated on Y 

Let S~_R\O be any multiplicatively closed subset of R with ISI<~:. If V 

={ i<~ ,  ~s~S, s=bl}, then [VI<~: and bixv,(i~=Xv,o. Therefore Xv,oe ('~As@O. 
S 

Since R has obviously no descending chains of principal ideals of length N~, 
the algebra A is not S-reduced for a suitable S, satisfying condition (1). On the 
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other hand, let S be the multiplicative closure of {xz, i<  ~c} in R. If 0 ~ a ~A, we 

may write a =  ~ rixv(i),~(i) with O+rieR\O, w(i)~_V(i)~e such that IV(i)]<~c. 
i = 1  

Using the relations in A, we may assume that the presentation of a is reduced, 
i.e. if i<r and jew(i), then bj~/r~. The element r~Xv(z),~(i ~ is only divisible by all 
b~ with ieV(i) and bj with bj/r~. The cardinality of these elements is <~.  
Therefore a is divisible by <~c elements and ~ A s = O  by [S[=tc, i.e. A is S- 

s 
reduced for some "bad"  S~_R. Nevertheless, for a fixed domain R, not a field, 
there are many  algebras including R itself which are S-reduced for some S - 
even in this case. 

Added in Proof (Nov. 1984): Using different techniques, we will derive a Realization Theorem 
which also covers any "bad" S~_R; see a forthcomming partII of this paper (submitted to 
Fundamenta Mathematicae). 

w 3. Construction of the R-modules 

(3.1) The Tree T = ~ > 2  

We will consider the tree T=~>2 consisting of all functions z: v~2(v<~: )  
ordered by set theoretical containment, i.e. 

a<=z if and only if o-~-c if and only if ( doma_~domz  and a=z  [domcr). 

Clearly TTI=2, for ~ e T  define the length t(z)=-domze~c, which has cardinality 
<~c. Maximal  linearly ordered subsets of T are called branches; Br(T) shall 
denote the set of all branches of T. We also fix a continuous, strictly increasing 
function 

p: c f (2 )+  1 ~ 2 +  1 

such that p (0)=0  and p(cf (2))= 2. This will be used to define norms of the 
basic module B. 

(3.2) The "Basic Module" B 

We start with the observation that direct sums of cyclic modules might be 
complete in the S-topology. Hence we shall substitute the "standard basic 
subgroups" by a more  suitable module. 

Let ~ e T  be a generator of a cyclic A-module zA with Ann(z)=0.  If C 

- - [ - [~A denotes the cartesian product, then its subset { f e C ,  I[f][<~c} is the 
~ T  

~c-direct sum B =  @~zA,which is a pure submodule of C; [ f ]  = {zeT:  f ( z ) + 0 }  
z~T 

denotes the support of f Since A is a reduced R-module, also B is reduced and 
we can construct its completion /~. According to w we have that B c /~  are 
reduced and torsion-free and B/B is torsion-free and divisible. We call B the 
basic submodule and the modules G we want to construct will satisfy B_~ G_~/~. 

First we want to know how the elements in /~ look: If ge/~, then gee ]-[ ~3  
z e T  

and we may write g =  ~ vg~ with g~eA and [g] the support  of g as above, 
z~[g] 

Then we have from the definition of B 
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(i) g ~ A  for all ze[g]  
(3.2)(a) g =  ~ zg, s / ~ *  (ii) Ifs~S, then there exists a set X g [ g ]  with iXL<~: 

~[~] and g~es~3 for all z e [ g ] \ X .  

This can be seen as follows: 

If gs=g I{r~T, g,~s/l}, then IUg~]l<~r and g~@~zA.Then  (g -g~)~ .0  and g 
= lim g~/~. r 

S 

If X__/~, we let IX] = ~ {[g] : geX} = {~e r :  3 geX with g~#0}. 
We define the norm Llgll =min{v<cf (2) ,  [g]__q~>p(v)} and similarly IlXll 

=sup{llgll:g~X}. Since ][g]l<~c from (3.2)(a), we have IIXll~cf(~) for all 
IXI < ~ from (2.6). 

The following convention will be used quite often. 

(3.2)(b) IfX___T, v<ef()c), let ,X={,~X:IJ~}J>v}.  

(3.3) Canonical Submodules 

This concept is used to find modules of sufficiently small cardinality. For 
finding pretty large modules we could also adopt the construction in [5] and 
then we could omit canonical submodules. If z~T, the submodules of zA purely 
generated by at most ~ elements are called canonical submodules P~. If Y~_ T 
and I Y] _-< ~: and P, (ze Y) are canonical submodules, then 

p = @~ p~_c B is a canonical submodules as well. 

We have the following immediate consequences: 
(a) If P is a canonical submodule, X_~B, tXI < n, then there exists a canoni- 

cal submodule P' such that P w X _~ P'. 
(b) If P is a canonical submodule, then I[P]I < ~c. 
(c) The set of canonical submodules is closed under unions of chains. 

(3.4) Divisibility Chains 

In order to determine pure submodules explicitly, we use the 

Definition. g~E/~ (seS) is a divisibility chain of g =  gl if and only if 
(a) gS-tgSt~B for all s, t~S 
(b) If seS, there exists v < IlgSkl such that rig s] _ [g]. 

We have the following Lemma to ensure the existence of divisibility chains. 

Lemma. (a) I f  P is a canonical submodule of B and geP, then there exists a 
divisibility chain gSsfi (s~S) of g = g l .  

(b) I f  v~Br(T) and v s= ~, a ~  s 2 t for s~S, then v ~ (seS) is a divisibility 
chain of v t. a~v. az(~)eRs 

Proof. (a) The canonical submodule P is designed to ensure g ' e P  if geP.  It is 
enough to construct g~e/~. Let g = ~ z g ~ ,  ssS and X = { z ~ T :  g~sA}: Then 
IX[<~c from (3.2)(a), and since A is dense in A [(2.2)(b)3 we find g~eA, g;eA 
such that g~-sg~+g~- ~ ' for all z~X.  If g '=  ~ z g'~, then g'~B from 1Xl < ~c and the 

X 
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Definition (3.2) of B. If z e Y = T \ X ,  then g~=sg{ for some g~eA. Then g* 
= ~ z g{ is an element of B and 

g-sg~=Z zg~Zzsg*~=Z vsg{ + Z zsg{ + Z zg'~-Z zsg~=g, eB. 
Y x x 

If s, t eS and also g - s  t g*~eB by definition of gSt, then s(g * -  t g~t)eB and also gS 
-tg*~eB by purity; the relation [g*] _c [g] is immediate. 

(b) Is straight forward. 

Remark. If gq~B, then (g~ + B: seS)~-S-1R. 

Lemma (a) can also be derived from (2.2); however the proof given allows 
natural generalizations. 

(3.5) The Combinatorial Black Box 

This is also needed to decrease the size of our final modules. 

Definition. (f,P,~o) is called a trap if f :  ~>~:--+~>2 is a tree embedding, P a 
canonical submodule with ~0sEndg P and the following properties, 

(a) Im f c__P, 
(b) [P] _~ P and @~ [P] __ P, 
(c) [P] is subtree of T, 
(d) cfllPIl=~c, 
(e) llvtl = llPtl for all v~Br(Imf).  
The following Lemma can be derived from [4], Appendix, with a few minor 

changes. It is based on [17]. 

Black Box. There are an ordinal 2* and traps (s for all ct<2* with the 
following properties: 

(i) If f i < a <2* ,  then IlP~ll <P=II. 
(ii) If fl, e<2*  are different, then Br(Im f~ c~ Imfp)=0.  

(iii) If f l + 2 ~ < a < , t  *, then Br(Im f~ c~ [Pa])=0. 
(iv) If X c/~, [X[<~c and ~oeEndB, there exists an a<2*  which catches X, 

q~ i.e. X_cff~, pIX[] < liP=l[ and (o)P~=q)=. 

w 4. Construction of  the Module G 

(4.1) Construction. We want G to be the union of a continuous ascending 
chain of submodules G~(~<2*) with 2" from the Black Box (3.5). In addition, 
we define elements b~e~vo {oo} such that 

(i) bp(~G~ for all fi<c~<2* 
subject to various conditions, depending on the transfinite construction of the 
submodules G~. 

We let Go=B and assume that G~ for c~<p and b~ for c ~ + l < #  are 
constructed for some /,<2*. If g is a limit cardinal, then G,= U G, and (i) 
holds. If p = c~ + 1, then we consider three cases: ~<u 
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(A) Suppose we find v~cBr(Imf~) and g~eP~ such that 

IlgS-vs[I < lIP=H( = I[v=H) (seS) 

and b~=g~cp~ with bp(~G~+l+~gSA for all /~<~+1, then we choose these 
s 

elements and call ~ a strong ordinal. 
(B) Suppose (A) is not possible, but we find v~eBr(Imf~) and g~e/~ such 

that q[g~-v~]i<l[v~[I (seS), then we choose these elements and G~+I=G~ 
+~g~A,  b~= oo and call c~ weak. 

S 
(C) If (A) and (B) are not possible, we let g~=0, b~=oe and G~+I=G~ and 

call ~ useless. [] 

Remark. We shall show in (4.4) that there are no useless ordinals! 

If geG, then 

g = b + x +  Z gS(i) a, (beB, ]lx[[ < I[P~[[, Hg~(i)H = HP~]I) 
i < n  

if ~ is the least ordinal with g~G~+I\G~. If beB, then I[b]l<~c; and since 
cflIP~ll=K by (3.5), there is no element in B with norm liP~[[. Hence, the 
representation of g is plausible. We summarize its properties in the 

(4.2) Recognition Lemma. Let g~G\B, then 
(a) there is a unique c~<2" with geG~+l \G~;  
(b) there exist ~(n)< . . .<a (0 )=a  with }]P~(i)N = IIP~N, v< IIP~II such that v[g] 

=Fw U viVa(i)] a disjoint union with F~_T, IFI<K and each element of F has 
i <=n 

norm > IIP=li; 
(c) /f fi<2* and IIr~ll=-IIP~ll, there exist aeA, seS such that for ~c many 

a~v~; g~ a=a a~(~)s- l a. 

(4.3) Lemma. Let ~<2",  v<[IP~][ such that for each veBr(Imf~) there is a 
divisibility chain g~eB with , [g~-v~]=0 for all seS. Then there exists 
veBr(Im f~) such that bp(s G=+ l(v) (fl < c~) where G=+ l(v) = G= + ~ g'~A. 

S 
The Lemma has the immediate 

(4.4) Corollary. There are no useless ordinals. 

The proof of (4.3) is very similar to [-4] (Lemma 3.9). Since it is also crucial in 
the proof of our main theorem, we sketch it: If (4.3) does not hold, then for 
each veBr(Imf=) there is fi=fi(v)<a such that b~G=+l(v ). Consequently b e 
=g~qo~P~; and we find a=a(v)~A, s=s(v)~S with b~-g~a~G~. Since b~(~G~, 
also a + 0  and ~[-g~a] ___v are sets of cardinality ~. By the Black Box (3.5)(ii) and 
the Recognition Lemma (4.2) we find a subset of size ~c of v to be contained in 
[be] __ [P~]. By the Trap Definition (3.5)(c) we conclude v___ [-P~] ; and (iii) of the 
Black Box implies /~<e</~+2  ~. If ~o is the least of the /~=/~(v), then 
/~o--< ~ </?o + 2 ~ and I Br(Im f~)l = 2~ implies that there are two distinct branches 
v, w~Br(Imf~) with fl=fl(v)=fl(w). Subtracting bt~)-g~(~a(v)~G~ and b~(,~) 
-g~a(w)~G~, we have ~ ~'~ g~a(v)-g~ a(w)6G~, which is impossible by the sup- 
ports of the summands. [] 
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w 5. Proof of the Theorem 

We will distinguish some subsets of the tree T=K>2. 

(5.1) Definition. For  t/E2, let w(r/) be the constant branch of r/ which is the set 
of all functions K>{~/}. A set {a~T,  v<~c} is an antibranch if and only if l(a~) 
=v, No'~][ < Ila~lJ but {a~, au} are not comparable in T for all v</~<~c. 

The following two algebraic definitions are relevant in this section. 

(5.2) Convention. A={(a,s)~A x S : R s = R  or ar Compare 1-63. 

(5.3) Definition. Let M , M '  be reduced R-modules; then Ines(M,M') 
={a~Hom(M,M' ) ,  ~(/14)___M'}, where M is the completion of M and 3 is the 
unique extension of o-. We shall identify a and 3. In particular InesM 
=Ines (M,M)  is a two-sided ideal of End M; compare [-51. 

We have the following crucial 

(5.4) Lemma. Let ~o~End/3\A (~ Ines G. 
(a) There exists a canonical submodule P~_B such that 

P ( sq ) -a )~G for all (a, s)~A. 

(b) There are a canonical submodule P*~_B and a divisibility chain 
g ~ P *  (s~S) such that 

gcp(~G + ~ gSA. 
S 

Proof. (a) We consider first the case (a, s)eA with Rs=R.  

Let P' be a canonical submodule of B which contains an element wl~P ' for 
some constant branch w=w(t/). Suppose P=P'  does not satisfy (a) under the 
restriction Rs=R.  Then we find a'eA such that 16'(sq)-a')~G. If s r= l ,  a 
= r a'EA, this implies P ' (q~-a)~  G. Since q ) -a r  G, there exists x~B such 
that x(q~- a)r Take any canonical submodule P ~ P' with x eP' - cf. (3.3)(a). 

Suppose also P(s~o-b')~G with Rs=R.  Then as above f i (q ) -b)~G for 
some beA. Subtracting leads to f i ' (a-b)~G.  Since wa~/s', also wl(a-b)eG and 
a=b by the Recognition Lemma (4.2). We derive x(q)-b)=x(q)-a)~G, a 
contradiction. Next we consider any seS and let a ~ A  be so that 

(a~,s)~A and 13'(sq~-a~)~G 

where P' is chosen as before. We shall fix s and construct a converging 
sequence in /s such that its image under r  contains an antibranch. 
The sequence will converge rapidly compared with s and the S-topology. First 
we define a sequence c ~ S  (v~.) by transfinite induction. Let Co = 1 and assume 
c ~ S  to be defined for all ~ < v. 

If v is a limit < ~c, we take any c ~ S  with c ~  (~ Rc~ ~ Ra~ and if 
G t < V  

c~+l =v,  let c~=c~.a~.s. 
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Next we define inductively an antibranch consisting of elements a~eT and 
sums 

(i) hV= ~ c~a~eB 
C t < V  

subject to the following conditions 
(ii) LIh~01L < Ilcrvll 

(iii) No two of the a~ (a < v) are comparable in T. 
In order to satisfy (iii), we let as(0)= e. Choose ao = (0) and assume that h ~, 

a~ (c~ < v) are constructed. If v is a limit, h ~ is defined by (i). Since c f(2)> ~c (cf. 
(2.0)), IIh~@ll=#~cf(,~) and we let a ~ ( 1 ) = p - l ( # + l ) ;  cf. (3.1). The other values 
of a v can be taken arbitrarily. Therefore II h~ 0 II < # + 1 < II a~ ]j and (ii) holds. If v 
= e +  1, we can choose av similarly such that h ~, a~ satisfy (ii) and (iii). Finally 
let h= l imh~=  ~ c~r~. Since c~ (~etc) is a nullsequence and h~eB, by (3.2)(a) 

" r  CtE~c 

the element h is in /~. If r ' = h - h  ~+~, then ~ ^ r esc~B and h=hV+c~a~+r ~. 
Therefore h - h ~ + c ~  modsc~/~, and modsc~/~: 

hO-=h~ ~ +c~a~ t)=-h~ ~ +c~avsqo-c~a~a~=-h~ O-c~a~a ~. 

The contribution of h ~ to a~ becomes by (ii) 

hO ~ a, = - -c,a~av mods  c,/~. 

Suppose h O ~ a ~ 0  modsc , /3 ;  then c ,a~sc ,  A and we find ceA such that c~a~ 
=sc,  c and equivalently c~(a~-sc)=O. Since c~eS and A is torsion-free by (2.2), 
also a~-sc=O, which implies a ~ s A  c~ A = s A  by purity. Therefore (a~, s)~A, a 
contradiction. Hence av~[h~k] and [hO] contains an antibranch of norm IJhOll- 
The Recognition Lemma (4.2) implies ht)~G. 

Such an h=h~ can be contructed for any seS; i.e. 
(iv) h~sB, h~(sq)-a~)(~G. 
Since ISI=K, we find a canonical submodule P of B with P'___P and hssP 

for all seS; see (3.3)(a). Suppose P(s~o-b)c_G for some b~A. Since P'(s~o 
-a~)c_G, also P'(b-%)~_G and in particular w(b-a~)~G. The Recognition 
Lemma (4.2) implies b = a~ and therefore P(sq~- a~)= P(s qo- b)~_ G. Since h ~ P ,  
also h~(sq~-a~)~G, which contradicts (iv); we conclude (a). [] 

(b) Let P be as in (a) and pick any t /<2  such that IIPII <~/, IIP~01I <t/; which 
is possible by (2.0). Let w =w(~) be the constant branch of 11. Any divisibility 
chain is contained in the completion of some canonical submodule. So we have 
to concentrate on the second condition of (b) only. If g = w  ~ does not satisfy 
(b), we find some a~A, sGS with 

(,) wtq9 -wS aeG. 

If (a,s)~A, then assA and we may write a=sa'. Then B ~ G  and (*) imply w~o 
-wla 'eG and certainly (a', l )e~.  Hence we may assume (a,s)eA. From (5.4)(a) 
we find some h~P with 

(**) h(s rp -a)$G. 
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We claim that g = w ~ + h satisfies (b). If this is not the case, then 

w~(o+h~p-wta'-hra'=g~o-g~a'~G for some a'6A, teS. 

We obtain from (,) that (hq~-h'a')+(wSa-Wa')eG. 
Assume without restriction t=s •  for some reR. Then (h(o-hta')+wt(a ' 

-ra)eG. Comparing supports, we derive a'=ra and h~o-h~ra=hq~-hta'eG. 
Multiplication by s leads to 

hscp-h~sra=hsqo-(h't)a~G and h(s(o-a)cG, contradicting (**). 

(5.5) Theorem. I f  A is an S-reduced and S-torsion-free R-algebra and the R- 
module as in (4.1), then End G = A (~ Ines G. 

Proof Since A @ Ines G c End G holds trivially, we consider any 
(oeEnd G\A OInes  G and want to derive a contradiction. 

From (5.4)(b) we find some g~/~ with 

(*) gcp(iG+ ~ gSA 
S 

and from the Black Box (3,5) we have some ~ < 2 "  such that g, g q~E/~, 

sup {lIg~[], IIg~@l] : s~S}< ]]Pull and (o~P~=q~,. 
s 

If e is a strong ordinal, then g~(0 =g,q)~=b~r  by construction (4.1) of G. 
Since g~G, we conclude ~0r G. 
Therefore it is enough to show that c~ is strong: 
Let v ~ B r ( I m s  and e~{0, 1}. Suppose there exist 

a~A, seS with (v~+eg~)q~-(v~+eg~)a~G~, 

then (g c p - g S a l ) +  vS(ao-a~)eG~. This is only possible if ao--=a~ and therefore 
g cp -g~ ao~G~ contradicting (,). 

Therefore we found e = e ,  and g = v  ~ +e~g such that g~@~r which 
S 

allow us to apply (4,3), So one of the branches v implies br and 
is strong. [ ]  s 

Recall the definition of "cotorsion-free" from w a module M has this 
property if and only if M is torsion-free, reduced and Hom(/~, M) = 0. Then we 
have the 

(5.6) Proposition. A is cotorsion~free if and only if G is cotorsion-free. 

Proof (this is the same as in [4] (Lemma 6.2). We shall only sketch it here). 
The relevant part  is to consider any non-zero homorphism (p: / ~ G .  We let g 
= 1~o. If geB, then also/~q~_~B. Since B is obviously cotorsion-free, we have q) 
=0. Therefore g(iB and we find ct<2* such that g~G~+l\G~. We may assume 
g-g~ a~G~ for some aEA. Now it is easy to see that rg-g~ a'EG~ for r~/~, 
which induces a non-zero homomorphism I ~ A  (r-~a'). [] 
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From (5.5) and (5.6) we have the immediate Corollary 5.7. 

(5.7) Corollary. Let A be a cotorsion-free R-algebra and 2 cardinal >lA[ with 
2~CR)=2. Then we can find R-modules Gi(ie2 ~) of cardinality 2 such that 
Hom(Gi,  Gj )=0  and EndGi=A for all i4:j~2 ~. 

Proof If ermines G~, then 8: /~--*G i, and this extends to an homorphism y of a 
free R - resolution of /~  into Gi. Since G~ is cotorsion-free by (5.6), we have y 
=0.  Therefore EndG~=A follows from (5.5). The existence of a rigid system 
follows similarly, using arguments from [4]. 

We shall close with a few applications of our results. In order to apply (5.7) 
the following observation will be quite useful. We consider R as an R-module. 

(5.8) Proposition. Let R be a domain and S = R \ { 0 } .  Then the following con- 
ditions on R are equivalent: 

(1) R is neither a field nor a complete ring, 
(2) R is cotorsion-free. 

Proof If R is a field, then R is certainly not reduced, hence not cotorsion-free. 
If R is complete, then 0~ i d6Hom ( / ~ ,R )  and R is not cotorsion-free. Therefore 
suppose that R is not cotorsion-free. If R is not reduced, we find a (maximal) 
divisible submodule O+D~_R, which has a complement C~_R by (2.4)(a). 
Choose O~=d6D and any c6C; then dc~C c~ D = 0  and c is a zero-divisor, which 
implies C = 0  and D = R  is a field. We now assume that R is reduced and we 
can build the completion /~. By assumption Hom(/~,R)=~0; and let 04:B 
=/~cr_~R some image of/~ in R. From (2.4)(a) we have B cotorsion. If 04:beB, 
then A = R / B  is bounded by b, hence strongly cotorsion (in the sense of E. 
Matlis [1, p.4]) and therefore cotorsion. Extensions of cotorsion modules by 
cotorsion modules are cotorsion; cf. [15], p. 5, Theorem 1.5(1). Since 
O---,B--,R~A---,O, also R is cotorsion. Therefore R is complete by (2.4)(c). []  

If R is a complete domain or a field, then indecomposable modules (vector 
spaces) have rank 1. Therefore, we naturally assume that R is neither a field 
nor a complete domain. For  valuation domains with S = R \0 ,  this is equivalent 
to saying that R is cotorsion-free; cf. (5.8). Realizing A = R  we obtain a rigid 
system of R-modules Gi with End Gf = R from (5.7). 

Since R is a domain, R has only trivial idempotents. Consequently G~ is an 
indecomposable R-module. If we want a rigid system over an arbitrary incom- 
plete ring R4:0, we simply localize R at some prime P so that R~, is still 
incomplete, not a field and apply the last result. 

For the second application mentioned in w 1 we only recall that the R- 
algebras A constructed in [3], [4] have a free R-module structure. Hence A is 
cortorsion-free iff R is cotorsion-free. If R is complete, we argue similarly to 
[7], since A can be chosen N0-cotorsion-free in the sense of [7], see also [4]. 
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