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a b s t r a c t

We show that it is consistent with ordinary set theory ZFC and the generalized continuum
hypothesis that there exist two ℵ1-separable abelian groups of cardinality ℵ1 which are
filtration-equivalent and one is a Whitehead group but the other is not. This solves one of
the open problems from Eklof and Mekler (2002) [2].
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0. Introduction

An ℵ1-separable abelian group is an abelian group G such that every countable subgroup is contained in a free direct
summand ofG. This property is apparently stronger than the property of being stronglyℵ1-free; however, the two properties
coincide for groups of cardinality at most ℵ1 in models of Martin’s Axiom (MA) and the negation of the continuum
hypothesis (¬CH). Over the years the variety and abundance of ℵ1-separable groups obtained by various constructions
has demonstrated the failure of certain attempts to classify ℵ1-separable groups of cardinality ℵ1. In brief, one can say that
positive results towards classification can be given assumingMA+¬CH and negative results are obtained assuming CH or
even the axiom of constructibility V = L. A good survey is for instance [2, Chapter VIII].
There are four principal methods of constructing ℵ1-free groups: as the union of an ascending chain of countable free

groups; in terms of generators and relations; as a subgroup of a divisible group; and as a pure subgroup of Zω1 . In the study
of ℵ1-separable groups it turned out to be helpful to consider the concept of filtration-equivalence, a relation between two
ℵ1-separable groups. Recall that two groups A and B of cardinality ℵ1 are called filtration-equivalent if they have filtrations
{Aν : ν ∈ ω1} and {Bν : ν ∈ ω1} respectively such that for all ν ∈ ω1, there is an isomorphism Φν : Aν → Bν satisfying
Φν[Aµ] = Bµ for all µ ≤ ν. Such an isomorphism is called level-preserving. Note that it is not required that Φτ extends Φν
when τ ≥ ν and note also that filtration-equivalent groups A and B are also quotient-equivalent, i.e. for all ν ∈ ω1 we have
Aν+1/Aν ∼= Bν+1/Bν .
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Under the hypothesis of Martin’s Axiom the notion of filtration-equivalence represents the end of the search; more
precisely, assumingMA+¬CH , filtration-equivalentℵ1-separable groups are isomorphic. Assuming even the proper forcing
axiom (PFA) every ℵ1-separable group (of cardinality ℵ1) is of a special standard form. However, in L there exist non-
isomorphic ℵ1-separable groups of cardinality ℵ1 which are filtration-equivalent.
In [2, Open problems on the structure of Ext Nr.6] (see also [1]) Eklof andMekler askedwhether or not it is consistentwith

ZFC that there exist two filtration-equivalent ℵ1-separable groups of cardinality ℵ1 such that one is a Whitehead group and
the other is not. Recall that aWhitehead group is an abelian group G satisfying Ext(G,Z) = 0. The class ofWhitehead groups
is closed under direct sums and subgroups and contains the class of free abelian groups. However, the question whether all
Whitehead groups are free is undecidable in ZFC as was shown by the first author in [7,8]. Similarly, we shall show in this
paper that the answer to the question by Eklof and Mekler is affirmative even assuming GCH .
All groups are abelian and notation is in accordance with [4] and [2]. For further details on ℵ1-separable groups and set

theory we refer to [2], [5], and [6].

1. The construction

Using special ladder systems we construct ℵ1-separable abelian groups of cardinality ℵ1 with a prescribed Γ -invariant.
The construction is similar to the one given in [2, Chapter XIII, Section 0].
Throughout this paper let S ⊆ ω1 be a stationary and co-stationary subset ofω1. Since lim(ω1) is a closed and unbounded

subset of ω1 wemay assume without loss of generality that S consists of limit ordinals of cofinality ω only. We shall further
require that ω2 divides δ for every δ ∈ S. We recall the definition of a ladder and a ladder system.
Definition 1.1. We use the following notions:
(i) A ladder on δ ∈ S is a strictly increasing sequence ηδ = {ηδ(n) : n ∈ ω} of non-limit ordinals less than δ which is cofinal
in δ, i.e. sup{ηδ(n) : n ∈ ω} = δ.

(ii) The ladder ηδ is a special ladder if there exists a sequence 0 < k
ηδ
0 < kηδ1 < · · · < kηδn < · · · of natural numbers such

that
(a) ηδ(k

ηδ
n + i)+ ω = ηδ(k

ηδ
n + j)+ ω for all i, j < k

ηδ
n+1 − k

ηδ
n ;

(b) ηδ(k
ηδ
n )+ ω < ηδ(k

ηδ
n+1).

for all n ∈ ω.
Note that the existence of S and certain ladders on S is well known. However, any limit ordinal δ of the form δ = α + ω

obviously does not allow the existence of a special ladder. This is the reason why we have required that ω2 divides δ for
every δ ∈ S, and hence no δ ∈ S can be of the form δ = α + ω. For δ ∈ S all ladders are special but we will continue to use
the word special because this concept makes sense also if δ is not a multiple of ω2.
Example 1.2. The following are natural examples of the ladders η on δ:
(i) Let kηn = 2n for all n ∈ ω. Then η is special if and only if

η(2n)+ ω = η(2n+ 1)+ ω < η(2n+ 2);
(ii) Let kηn = n for all n ∈ ω. Then η is special if and only if

η(n)+ ω < η(n+ 1).
For δ ∈ S we let∆δ be the set of all special ladders on δ.
We now collect ladder systems containing special ladders.

Definition 1.3. A system η̄ = 〈ηδ : δ ∈ S〉 of (special) ladders is called a (special) ladder system on S.
We put
E = {η̄ : η̄ is a special ladder system}.

For later use we also define
Eα = {η̄α : η̄ ∈ E, η̄α = 〈ηδ : δ ∈ S ∩ α〉}

for α < ω1. On the set of special ladders we define the ω-range function as follows:
rd(η) =

〈
η(kηn)+ ω : n ∈ ω

〉
.

Note that rd(η) determines all values of η(n) + ω (n ∈ ω) since the ladder η is special. Moreover, if η̄ ∈ E, then put
rd(η̄) = 〈rd(ηδ) : δ ∈ S〉 and similarly rdα(η̄) = rdα(η̄α) = 〈rd(ηδ) : δ ∈ S ∩ α〉 for α < ω1.
Using the special ladder systems we can now define our desired groups. Let η̄ ∈ E be a special ladder system and put

kδn = k
ηδ
n for all δ ∈ S and n ∈ ω. Moreover, let tδn = k

δ
n+1 − k

δ
n for all n ∈ ω. We define a Q-module

F =
⊕
β<ω1

xβQ⊕
⊕

δ∈S,n∈ω

yδ,nQ

freely generated (as a vectorspace) by the independent elements xβ (β < ω1) and yδ,n (δ ∈ S, n ∈ ω). Our desired group
will be constructed as a subgroup of F . Therefore, given a group G ⊆ F , we define a canonical ℵ1-filtration of G by letting

Gα =
〈
G ∩ ({xβ : β < α + ω} ∪ {yδ,n : δ ∈ S ∩ α, n ∈ ω})

〉
∗
⊆ G
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for α < ω1. Here 〈· · ·〉∗ denotes the purification of 〈· · ·〉 in G. Then {Gα : α < ω1} is an increasing chain of pure subgroups
of G such that G =

⋃
α<ω1

Gα . However, the chain is not continuous since for instance Gω 6=
⋃
n∈ω G

n but this is not needed
in what follows and we will still call it a filtration. For simplicity let yδ = yδ,0 for δ ∈ S. Let ψ : ω→ ω be a fixed function
with ψ(n) 6= 0 for all n ∈ ω and choose integers aδ,nl for l < t

δ
n such that gcd(a

δ,n
l : l < t

δ
n) = 1 for all n ∈ ω and δ ∈ S. We

define elements zδ,n ∈ F via

zδ,n =
n−1∏
i=0

1
ψ(i)

yδ +
n−1∑
i=0

n−1∏
j=i

1
ψ(j)

∑
l<tδi

aδ,il xηδ(kδi +l)

 (1.1)

for δ ∈ S and n ∈ ω. Furthermore we put zδ,0 = yδ and let ā =
〈
aδ,nl : l < t

δ
n , n ∈ ω, δ ∈ S

〉
.

Let Gψ,āη̄ =
〈
xβ , zδ,n : β < ω1, δ ∈ S, n ∈ ω

〉
⊆ F . Then easy calculations show that the generating relations satisfied by

the generators of Gψ,āη̄ are

ψ(n)zδ,n+1 = zδ,n +
∑
l<tδn

aδ,nl xηδ(kδn+l) (1.2)

for δ ∈ S and n ∈ ω.

Lemma 1.4. Let Gψ,āη̄ =
〈
xβ , zδ,n : β < ω1, δ ∈ S, n ∈ ω

〉
⊆ F be as above. Then Gψ,āη̄ admits a free presentation of the form

0→ Y → X → Gψ,āη̄ → 0

where X is the free group X =
⊕

β<ω1
Zxβ ⊕

⊕
δ∈S,n∈ω Zzδ,n and Y is the subgroup of X generated by the elements ψ(n)zδ,n+1

− zδ,n −
∑
l<tδn
aδ,nl xηδ(kδn+l) for δ ∈ S and n ∈ ω.

Proof. That the elements ψ(n)zδ,n+1 − zδ,n −
∑
l<tδn
aδ,nl xηδ(kδn+l) for δ ∈ S and n ∈ ω are in the kernel Y is clear and that

they generate Y is easily established and therefore left to the reader. �

To simplify notationwe shall omit inwhat follows the superscript (ψ, ā) since the functionψ and the vector ā of integers
will always be clear from the context. However, the reader should keep in mind that for every ladder system η̄ the group
Gη̄ = G

ψ,ā
η̄ always depends on the additional parameters ψ and ā. We consider Example 1.2 again.

Example 1.5. The following hold:

(i) Let η̄ be a special ladder system consisting of special ladders as defined in Example 1.2(i) and choose aδ,n0 = 1, a
δ,n
1 = −1

for all δ ∈ S and n ∈ ω. Then Gη̄ satisfies the following relations

ψ(n)zδ,n+1 = zδ,n + xηδ(2n) − xηδ(2n+1).

(ii) Let η̄ be a special ladder system consisting of special ladders as defined in Example 1.2(ii) and choose aδ,n0 = 1 for all
δ ∈ S and n ∈ ω. Then Gη̄ satisfies the following relations

ψ(n)zδ,n+1 = zδ,n + xηδ(n).

We now prove some properties of the constructed groups Gη̄ .

Lemma 1.6. Let η̄ ∈ E. Then the group Gη̄ is a torsion-free ℵ1-separable abelian group of size ℵ1 with Γ (Gη̄) = S̃.

Proof. Let η̄ ∈ E be a special ladder system. Clearly the group Gη̄ is a torsion-free group of cardinality ℵ1. We first prove
that Gη̄ is ℵ1-free. Therefore, let H be a finite rank subgroup of Gη̄ . Then there exists a finite subset

T ⊆ {xβ : β < ω1} ∪ {zδ,n : δ ∈ S, n ∈ ω}

such that

H ⊆ 〈t : t ∈ T 〉∗ ⊆ Gη̄.

Let TS = {δ ∈ S : zδ,n ∈ T for some n ∈ ω}. We can enlarge T (not changing TS) so that there exists an integerm such that

• for δ ∈ TS we have zδ,n ∈ T if and only if n ≤ m;
• for yδ = zδ,0 ∈ T we have xηδ(n) ∈ T if and only if n < k

δ
m+1.
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Then using Eq. (1.2) it is not hard to see that 〈t : t ∈ T 〉∗ is freely generated by the elements {zδ,m : yδ ∈ T } ∪ {xηδ(n) : n <
kδm+1, yδ ∈ T }. Thus H is free and therefore Gη̄ is ℵ1-free.
It remains to prove that Gη̄ is ℵ1-separable. Therefore let {Gαη̄ : α < ω1} be the canonical ℵ1-filtration of Gη̄ . We shall

now define for all ν 6∈ S a projection πν : Gη̄ → Gνη̄ such that πν �Gν
η̄
= id �Gν

η̄
. Let ν 6∈ S be given. For every µ ≥ ν + ω

let πν(xµ) = 0; for δ ∈ S with δ > ν let nδ be maximal with ηδ(kδnδ ) < ν. Hence ηδ(kδnδ + i) < ν + ω for all i < tδnδ and
ηδ(kδnδ+1) > ν + ω. Let πν(zδ,n) = 0 for all n ≥ nδ . Moreover, put

πν(yδ) = −
nδ−1∑
i=0

i−1∏
j=0

ψ(j+ 1)
∑
l<tδi

aδ,il xηδ(kδi +l)

and finally

πν(zδ,n) = −
nδ−1∑
i=n

i−1∏
j=n

ψ(j+ 1)
∑
l<tδi

aδ,il xηδ(kδi +l)

for all n < nδ . Letting πν �Gν
η̄
= id �Gν

η̄
it is now straightforward to check that πν is a well-defined homomorphism as claimed

using Eq. (1.2). Finally, Γ (Gη̄) = S̃ follows immediately by an easy checking that Gν+1η̄ /Gνη̄ is not free for ν ∈ S. �

We now prove that a special ladder system is sufficiently separated.

Lemma 1.7. Let η̄ ∈ E and α < ω1. Then there exists a sequence of integers 〈mδ : δ ∈ S ∩ α〉 such that the sets {ηδ(kδn) + ω :
n ≥ mδ} (δ ∈ S ∩ α) are pairwise disjoint. In particular, the sets {ηδ(kδn + i) : n ≥ mδ, i < t

δ
n} (δ ∈ S ∩ α) are pairwise disjoint.

Proof. Let η̄ ∈ E and α < ω1 be given. Since α is countable we may enumerate S ∩ α by ω, say S ∩ α = {δk : k ∈ ω}. We
shall now define inductively the sequence

〈
mδk : k ∈ ω

〉
such that for every k ∈ ω the sets

{ηδj(k
δj
n )+ ω : n ≥ mδj} (j ≤ k) are pairwise disjoint. (1.3)

We start with k = 1, hence ηδ0 and ηδ1 are given. In order to carry on the induction we shall prove a stronger result. Letmδ0
be fixed but arbitrary.We claim that there ismδ1 such that (1.3) holds for k = 1. Assume first that δ0 < δ1. Since S ⊆ lim(ω1)
and ω2|δ for all δ ∈ S we obtain δ1 > δ0 + ω. Hence it is easy to see that mδ1 exists such that (1.3) is satisfied for k = 1
because ηδ1 is a ladder with sup(Im(ηδ1)) = δ1.
Assume δ1 < δ0, then δ0 > δ1 + ω. Thus there is m′δ1 such that {ηδ0(k

δ0
n ) + ω : n ≥ m′δ1} and {ηδ1(k

δ1
n ) + ω : n ≥ m′δ1}

are disjoint. Increasingm′δ1 sufficiently we obtainmδ1 ≥ m
′

δ1
such that (1.3) holds.

The inductive step is now immediate. Given k such that mδ0 ,mδ1 , . . . ,mδk−1 satisfy (1.3) we obtain integers sj for j < k

such that {ηδj(k
δj
n ) + ω : n ≥ mδj} and {ηδk(k

δk
n ) + ω : n ≥ sj} are pairwise disjoint for every j < k. Choosing mδk =

max{sj : j < k}we satisfy (1.3). �

Note that Lemma 1.7 can give the same sequence of integers for different η̄, ν̄ ∈ E if rd(η̄) = rd(ν̄). Nevertheless, the
next lemma shows that special ladder systems η̄, ν̄ ∈ E with rd(η̄) = rd(ν̄) do not overlap very much.

Lemma 1.8. Let η̄, ν̄ ∈ E and α < ω1 such that rd(η̄) = rd(ν̄). Moreover, let 〈mδ : δ ∈ S ∩ α〉 be the sequence from Lemma 1.7.
If ηδ(k

ηδ
n + j) = νδ′(k

νδ′
m + i) for some n ≥ mδ , m ≥ mδ′ , and i < t

νδ′
m , j < t

νδ
n . Then δ = δ′ and m = n.

Proof. Assume that ηδ(k
ηδ
n + j) = νδ′(k

νδ′
m + i) for some n ≥ mδ ,m ≥ mδ′ , and i < t

νδ′
m , j < t

νδ
n . Then

ηδ(kηδn + j)+ ω = ηδ(k
ηδ
n )+ ω = νδ′(k

νδ′
m + i)+ ω = νδ′(k

νδ′
m )+ ω = ηδ′(k

ηδ′
m )+ ω

since rd(η̄) = rd(ν̄). Thus δ = δ′ by Lemma 1.7. Moreover,m = n follows since ηδ is a special ladder. �

Recall that two groups A and B of cardinality ℵ1 are called filtration-equivalent if they have filtrations {Aν : ν ∈ ω1} and
{Bν : ν ∈ ω1} respectively such that for all ν ∈ ω1, there is an isomorphism Φν : Aν → Bν satisfying Φν[Aµ] = Bµ for all
µ ≤ ν. Such an isomorphism is called level-preserving. Note that we do not require that Φτ extends Φν when τ ≥ ν and
note that filtration-equivalent groups A and B are also quotient-equivalent, i.e. for all ν ∈ ω1 we have Aν+1/Aν ∼= Bν+1/Bν .

Proposition 1.9. Let η̄, ν̄ ∈ E such that rd(η̄) = rd(ν̄). Then the groups Gη̄ and Gν̄ are filtration-equivalent.

Proof. Let η̄ and ν̄ be given. By construction we have

Gη̄ =
〈
xβ , zδ,n : β < ω1, δ ∈ S, n ∈ ω

〉
and

Gν̄ =
〈
xβ , wδ,n : β < ω1, δ ∈ S, n ∈ ω

〉
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such that the elements zδ,n and wδ,n (δ ∈ S, n ∈ ω) are defined as in (1.1) for η̄ and ν̄ respectively. Hence, the generating
relations satisfied in Gη̄ and Gν̄ are the relations in Eq. (1.2) (see Lemma 1.4). Since filtration-equivalence is a transitive
property it suffices to prove the result when Gη̄ is of the simplest form (k

ηδ
n = n, t

ηδ
n = 1, a

ηδ ,n
0 = 1), and hence

ψ(n)zδ,n+1 = zδ,n + xηδ(n)

and

ψ(n)wδ,n+1 = wδ,n +
∑
l<tδn

aδ,nl xνδ(kδn+l).

Note that the parameters kδn, t
δ
n and a

δ,n
l depend on νδ . Moreover, we shall assume for simplicity andwithout loss of generality

that aδ,n0 = 1 for every δ ∈ S, n ∈ ω since gcd(a
δ,n
l : l < t

δ
n) = 1. Hence we may replace the basis element xνδ(kδn) by the new

basis element
∑
l<tδn
aδ,nl xνδ(kδn+l).

Let Gη̄ =
⋃
α<ω1

Gαη̄ and Gν̄ =
⋃
α<ω1

Gαν̄ be the canonical ℵ1-filtrations of Gη̄ and Gν̄ respectively. For each α < ω1 we
now define a level-preserving isomorphism from Gαη̄ onto G

α
ν̄ . Let α < ω1 be fixed. Since by assumption rd(η̄) = rd(ν̄) we

may choose a sequence 〈mδ : δ ∈ S ∩ α〉 as in Lemma 1.7 for η̄ and ν̄ simultaneously. Let π̂ : Gαη̄ → Gαν̄ be defined via

• π̂(xηδ(n)) =
∑
l<tδn
aδ,nl xνδ(kδn+l) for all n ≥ mδ, δ ∈ S ∩ α

• π̂(xνδ(kδn)) = xηδ(n) for all n ≥ mδ, δ ∈ S ∩ α if ηδ(n) 6= νδ(k
δ
n)

• π̂(xβ) = xβ for every β < α + ω otherwise and
• π̂(zδ,n) = wδ,n for all n ≥ mδ, δ ∈ S ∩ α.

Recursively we may define π̂(zδ,n) for n < mδ (δ ∈ S ∩ α) using the definition of π̂ on xβ (β < α + ω) and on zδ,mδ . By
the choice of the sequence 〈mδ : δ ∈ S ∩ α〉 it is now easy to see that π̂ is a level-preserving isomorphism from Gαη̄ onto G

α
ν̄

and hence the groups Gη̄ and Gν̄ are filtration-equivalent. �

2. The consistency result

From now on we letψ : ω→ ω be given byψ(n) = n!with the convention that 0! = 1. In order to force that the group
Gη̄ is a Whitehead group we recall the definition of the uniformization property.

Definition 2.1. If λ is a cardinal and η̄ is a ladder system on S we say that η̄ has λ–uniformization if for every family
{cδ : δ ∈ S} of colorings cδ : ω → λ, there exist Ψ : ω1 → λ and Ψ ∗ : S → ω such that Ψ (ηδ(n)) = cδ(n) for all
n ≥ Ψ ∗(δ) and δ ∈ S.

The following lemma is by now standard (compare [2, Chapter XIII, Proposition 0.2]). However, the construction in
[2, Chapter XIII, Section 0] is slightly different from our construction since x

ηδ(k
ηδ
n +i)

(i < tηδn ) appear in Eq. (1.2) at the
same time. Therefore, we give the adjusted proof of the next lemma in a particular case for the convenience of the reader.
However, we shall only apply it for η̄ of the simplest form as in Example 1.5(ii).

Lemma 2.2. If η̄ is a ladder system which has ℵ0-uniformization, then the group Gη̄ satisfies Ext(Gη̄,N) = 0 for every countable
abelian group N. If η̄ has 2-uniformization then Gη̄ is a Whitehead group.

Proof. Let N be a countable abelian group. For simplicity we shall assume the setting of Example 1.5(i). The general proof
is similar. By construction we may regard Gη̄ as the quotient P/Q of the free group P =

⊕
β<ℵ1

xβZ ⊕
⊕

δ∈S,n∈ω zδ,nZ and
its subgroup Q generated by the elements

gδ,n = n!zδ,n+1 − zδ,n − xηδ(2n+1) + xηδ(2n)

for δ ∈ S and n ∈ ω. In order to show that Ext(Gη̄,N) = 0 it therefore suffices to prove that every homomorphism
ϕ : Q → N has an extension ϕ̃ : P → N . Thus let ϕ ∈ Hom(Q ,N) be given. We fix a bijection b : N → ℵ0 and define
cδ : ω→ ω for δ ∈ S as follows: Let n ∈ ω and put

cδ(2n) = b(ϕ(gδ,n)) and cδ(2n+ 1) = b(2ϕ(gδ,n)).

By the uniformization property there exists f : ω1 → ω such that for all δ ∈ S there exists kδ ∈ ω such that

cδ(n) = f (ηδ(n)) for all n > kδ.

We define ϕ̃ : P → N as follows: Let α < ω1

• If α = ηδ(n) for some δ ∈ S and n > kδ then put ϕ̃(xα) = b−1(f (α)); note that α 6∈ S;
• If α 6∈ S and α 6= ηδ(n) for any δ ∈ S and n > kδ then put ϕ̃(xα) = 0;
• if α ∈ S and 2n > kα then put ϕ̃(zα,n) = 0;
• if α ∈ S and 2n ≤ kα then we define ϕ̃(zα,n) inductively and distinguish the following four cases:
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– if ηα(2n) = ηδ(k) for some k > kδ and ηα(2n+ 1) = ηδ′(k′) for some k′ > kδ′ then put

ϕ̃(zα,n) = b−1(f (ηα(2n+ 1)))− b−1(f (ηα(2n)))− ϕ(gα,n)+ n!ϕ̃(zα,n+1);

– if ηα(2n) = ηδ(k) for some k > kδ but ηα(2n+ 1) 6= ηδ′(k′) for all k′ > kδ′ and δ′ ∈ S then put

ϕ̃(zα,n) = −b−1(f (ηα(2n)))− ϕ(gα,n)+ n!ϕ̃(zα,n+1);

– if ηα(2n) 6= ηδ(k) for all k > kδ and δ ∈ S but ηα(2n+ 1) = ηδ′(k′) for some k′ > kδ′ then put

ϕ̃(zα,n) = b−1(f (ηα(2n+ 1)))− ϕ(gα,n)+ n!ϕ̃(zα,n+1);

– if ηα(2n) 6= ηδ(k) for all k > kδ and δ ∈ S and also ηα(2n+ 1) 6= ηδ′(k′) for all k′ > kδ′ and δ′ ∈ S then put

ϕ̃(zα,n) = −ϕ(gα,n)+ n!ϕ̃(zα,n+1).

It now remains to show that ϕ̃ is an extension of ϕ, and hence satisfies ϕ̃(gα,n) = ϕ(gα,n) for all α ∈ S and n ∈ ω. Clearly
we have

ϕ̃(gα,n) = n!ϕ̃(zα,n+1)− ϕ̃(zα,n)− ϕ̃(xηα(2n))+ ϕ̃(xηα(2n+1)).

If α ∈ S and 2n > kα then

ϕ̃(xηα(2n)) = b
−1(f (ηα(2n))) = b−1(cα(2n)) = ϕ(gα,n)

and similarly ϕ̃(xηα(2n+1)) = 2ϕ(gα,n). Furthermore, ϕ̃(zα,n) = ϕ̃(zα,n+1) = 0 and hence

ϕ̃(gα,n) = −ϕ(gα,n)+ 2ϕ(gα,n) = ϕ(gα,n).

All other cases can be checked similarly by easy calculations and are therefore left to the reader.
The second statement follows similarly using [2, Chapter XIII, Lemma 0.3] �

Similarly, we can prove the next result which is essentially [2, Chapter XIII, Proposition 0.6]. Recall that a ladder system
η̄ is called tree-like if ηδ(n) = ηδ′(m) for some δ, δ′ ∈ S and n,m ∈ ω impliesm = n and ηδ(k) = ηδ′(k) for all k ≤ n.

Lemma 2.3. Let η̄ be a special tree-like ladder system. If Gη̄ satisfies Ext(Gη̄,Z(ω)) = 0, then η̄ has ℵ0-uniformization. Similarly,
if Gη̄ is a Whitehead group, then η̄ has 2-uniformization.

Proof. As in the proof of Lemma 2.2 we shall assume for simplicity the setting of Example 1.5 and let Gη̄ = P/Q . Let
{anmj : n,m, j ∈ ω} be a basis of Z(ω). Given an ω-coloring {cδ : δ ∈ S} define ϕ : Q → Z(ω) by

ϕ(gδ,n) = ancδ(2n+1)cδ(2n+2).

By hypothesis there exists an extension of ϕ to ϕ̃ : P → Z(ω). Define Ψ ∗(δ) to be the least integer n′ > 4 such that

ϕ(zδ,0) ∈
〈
almj : l < n′,m, j ∈ ω

〉
.

It suffices to show that if ηδ(k) = ηγ (k)where k ≥ Ψ ∗(δ),Ψ ∗(γ ) then cδ(k) = cγ (k). In this case Ψ (ηδ(k))) = cδ(k)when
k ≥ Ψ ∗(δ) is as required. Thus let k ≥ Ψ ∗(δ),Ψ ∗(γ ) and ηδ(k) = ηγ (k). Then k = 2n + 1 or 2n + 2 for some n with
2 ≤ n ∈ ω. Let ϕ̃′ be the composition of ϕ̃ with the projection of Z(ω) onto

〈
akmj : m, j ∈ ω

〉
. Then

ϕ̃′(zδ,0) = ϕ̃′(zγ ,0) = 0.

Since η̄ is tree-like we have xηδ(s) = xηγ (s) for all s ≤ k. Using this and the fact that ϕ̃
′(gδ,n′) = ϕ̃′(gγ ,n′) = 0 for all n′ < k

we can show by induction that

ϕ̃′(zδ,n) = ϕ̃′(zγ ,n).

Hence

ancδ(2n+1)cδ(2n+2) − ancγ (2n+1)cγ (2n+2) = ϕ(gδ,n)− ϕ(gγ ,n) = n!(ϕ̃
′(zγ ,n+1)− ϕ̃′(zδ,n+1).

Therefore n! divides ancδ(2n+1)cδ(2n+2)−ancγ (2n+1)cγ (2n+2); so ancδ(2n+1)cδ(2n+2)must equal ancγ (2n+1)cγ (2n+2) since they are basis
elements and hence cδ(k) = cγ (k) since either k = 2n+ 1 or k = 2n+ 2.
The second statement follows similarly with the appropriate adjustments and [2, Chapter XIII, Proposition 0.6]. �

We are now ready to prove themain theorem. Therefore let ν̄ be a special ladder system and c̄ = 〈cδ : ω→ {0, 1}|δ ∈ S〉
a sequence of colorings. We define a group Hν̄,c̄ as follows. Similar to the group Gν̄ constructed in the previous section we
let F ′ be the Q-module

F ′ = ŵQ⊕
⊕
α<ω1

x̂αQ⊕
⊕

δ∈S,n∈ω

y′δ,nQ
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and Hν̄,c̄ be the subgroup of F ′ generated by

Hν̄,c̄ =
〈
ŵ, x̂β , ẑδ,n : β < ω1, δ ∈ S, n ∈ ω

〉
⊆∗ F ′,

where the ẑδ,n are chosen subject to the relations

n!ẑδ,n+1 = ẑδ,n +
∑
i<tδn

aδ,nl x̂νδ(kδn+i) + cδ(n)ŵ

for δ ∈ S and n ∈ ω. We define a natural mapping hν̄,c̄ : Hν̄,c̄ → Gν̄ via

• hν̄,c̄(x̂β) = xβ for all β < ω1;
• hν̄,c̄(ẑδ,n) = zδ,n for all δ ∈ S and n ∈ ω;
• hν̄,c̄(ŵ) = 0.

Obviously, the kernel of hν̄,c̄ is isomorphic to Z, in fact ker(hν̄,c̄) = ŵZ. Thus hν̄,c̄ induces a short exact sequence

0 −→ Z −→ Hν̄,c̄ −→ Gν̄ −→ 0. (E)

As for Gν̄ we also define a filtration for Hν̄,c̄ by letting

Hαν̄,c̄ =
〈
Hν̄,c̄ ∩ ({ω̂, x̂β : β < α + ω} ∪ {y′δ,n : δ ∈ S ∩ α, n ∈ ω})

〉
∗
⊆ Hν̄,c̄

for α < ω1.
The idea for proving the main theorem is to build an extension model of ZFC in which GCH holds and in which we can

force two special ladder systems η̄ and ν̄ with rd(η̄) = rd(ν̄) such that η̄ has the 2-uniformization property, and hence Gη̄
is a Whitehead group but at the same time we force a coloring c̄ such that the sequence (E) does not split, and hence Gν̄ is
not a Whitehead group. For notational reasons we call a special ladder system of the simplest form as in Example 1.5(ii) a
simple special ladder system.

Theorem 2.4. There exists a model of ZFC in which GCH holds and for some special ladder systems η̄, ν̄ ∈ E with rd(η̄) = rd(ν̄),
the group Gη̄ is a Whitehead group, but Gν̄ is not.

Proof. Essentially the proof is given in [8] (see also [7] and [9]). Thereforewe only recall the basic steps of the proof. Suppose
we start with a ground model V in which GCH holds. Let η̄ be a (special) ladder system. It was shown in [7, Theorem 1.1]
that there exists a forcing notion (P,≤) such that:

• |P| = ℵ2, P satisfies the ℵ2-chain condition and adds no new sequences of length ω; hence, if V satisfies GCH , then also
the extension model V P satisfies GCH;
• every stationary set remains stationary in V P ;
• η̄ has the 2-uniformization property (even the ℵ0-uniformization property (see [7, Theorem 2.1])).

The forcing notion (P,≤) was obtained by a countable support iteration (of length ℵ2); at each step using a basic forcing
extension and taking inverse limits at stages of cofinalityℵ0.Webriefly recall the basic step to be iterated. Let c̄ = 〈cδ : δ ∈ S〉
be a system of colors which has to be uniformized. Here each cδ : ω→ 2. Define Pc̄ as the set of all functions f such that

(i) f : α→ 2 for some α < ω1;
(ii) for all δ ≤ α, δ ∈ S there is nδ such that f (ηδ(m)) = cδ(m) for allm ≥ nδ .

Pc̄ is ordered naturally and it is easy to see that the set Dα = {f ∈ Pc̄ : α ⊆ Dom(f )} is dense for every α < ω1 and hence a
generic filter will give the desired uniformizing Ψ .
Now, assume that V � GCH is given. We shall define a countable support iteration Q̄ =

〈
Pα, Q̇α : α < ω2

〉
as follows: We

start with an initial forcing (compare also [3]).

Definition 2.5. Let P0 consist of all triples 〈η̄, ν̄, c̄〉 such that for some α < ω1 we have

• η̄, ν̄ ∈ Eα are special ladder systems on S ∩ α
• η̄ is simple
• c̄ = 〈cδ : ω→ 2 | δ ∈ S ∩ α〉
• rdα(η̄) = rdα(ν̄).

Wemay think of the conditions in P0 as partial special ladder systems on S∩α for some α < ω1 and a corresponding partial
coloring. It is easy to check that a P0-generic filter G gives a pair of special ladder systems η̄, ν̄ on S (in the extension model
V [G]) with the same ω-range and a global coloring c̄ . Moreover, η̄ will be simple. Let ˜̄η, ˜̄ν and ˜̄c , c̃δ be the corresponding
P0-names which are defined naturally. Note that P0 is ω-closed and satisfies the ℵ2-chain condition, so GCH holds in V [G]
since it holds in V . Applying the forcing described above to V ′ = V [G]we can force that in (V ′)P the ladder system ˜̄η has the
2-uniformization property and hence the group G ˜̄η is a Whitehead group. Here, we let P =

〈
Pα, Q̇α : 1 ≤ α < ω2

〉
, hence in
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V Q̄ = (V ′)P the generalized continuum hypothesis holds. We have to show that the group G ˜̄ν is not a Whitehead group. As
indicated this shall be done by showing that the sequence (E) cannot be forced to split.
For the sake of contradiction assume that (E) splits. Hence for some p ∈ Q̄ we have

p  ‘‘f ˜̄ν, ˜̄c ∈ Hom(G ˜̄ν,H ˜̄ν, ˜̄c) is a right inverse of h ˜̄ν, ˜̄c ."

Since Q̄ satisfies the ℵ2 chain condition we can replace Q̄ by Pα for some α < ω2.
For an infinite cardinal κ letH(κ) be the class of sets hereditarily of cardinality< κ , i.e. H(κ) = {X : |TC(X)| < κ}where

TC(X) is the transitive closure of the set X . As in [8] there is an elementary submodel N ≺ (H(ℵ2), ε) such that

• |N| = ℵ0;
• p, f ˜̄ν, ˜̄c ∈ N0;
• N =

⋃
n∈ω Nn with Nn ≺ (H(ℵ2), ε) elementary submodels such that Nn ∈ Nn+1.

We let δ = N ∩ ω1 ∈ S and δn = Nn ∩ ω1 for n ∈ ω. Note that δ can be chosen from S because the set of δ’s that can be
obtained from N ’s is a club and therefore meets the stationary set S. Choose η′δ such that η

′

δ(n) ∈ [δn, δn+1] for all n ∈ ω and
η′δ is simple and special.
As in [7, Lemma 1.8] and [8, Theorem 2.1] (see also [3]) we define inductively a sequence of finite sets of conditions in

the following way:
In stage n let η′δ(n) = γ . We have a finite tree

〈
pnt : t ∈ Tn

〉
∈ Nn+1 of conditions and let kδn+1 = k

δ
n + |max(Tn)| + 1.

Moreover, if t ∈ max(Tn), then

pnt forces a value to f ˜̄ν, ˜̄c �G ˜̄ν�γ+ω
.

We now choose νδ(kδn + i) in [γ , γ + ω] for i < tδn so that νδ becomes special and rd(η
′

δ) = rd(νδ). We have that, if
t ∈ max(Tn), then

pnt  ‘‘f ˜̄ν, ˜̄c(xνδ(kδn+i))− x̂νδ(kδn+i) = ŵb̃t,n,i"

for every i < tδn . By linear algebra we may choose a
δ,n
l for l < t

δ
n such that gcd(a

δ,n
l : l < t

δ
n) = 1 and if t ∈ max(Tn), then

pnt  ‘‘
∑
i<tδn

aδ,ni b̃t,n,i = 0".

Finally, we choose cδ(n) arbitrarily. In the inverse limit we hence obtain a triple
〈
η̄′, ν̄ ′, c̄ ′

〉
which we may increase to〈

η̄′
〈
η′δ
〉
, ν̄ ′ 〈νδ〉 , c̄ ′ 〈cδ〉

〉
. Now we can find p∗ ∈ Pα above pnt for some t ∈ max(Tn) and all n ∈ ω. Note that the cδ was

chosen arbitrarily, so there are 2ℵ0 possible choices for the same νδ .
Now assume that G is a generic filter containing the condition p∗. Then ẑδ,0 − f ˜̄ν, ˜̄c(zδ,0) ∈ ŵZ. Moreover,

n!fν̄,c̄(zδ,n+1) = fν̄,c̄(zδ,n)+
∑
i<tδn

aδ,ni fν̄,c̄(xνδ(kδn+i))

for every n ∈ ω. Similarly, we have

n!ẑδ,n+1 = ẑδ,n +
∑
i<tδn

aδ,ni x̂νδ(kδn+i) + cδ(n)ŵ.

Subtracting the two equations yields

n!(fν̄,c̄(zδ,n+1)− ẑδ,n+1) = (fν̄,c̄(zδ,n)− ẑδ,n)+
∑
i<tδn

aδ,ni (fν̄,c̄(xνδ(kδn+i))− x̂νδ(kδn+i))− cδ(n)ŵ.

But by our choice we have∑
i<tδn

aδ,ni (fν̄,c̄(xνδ(kδn+i))− x̂νδ(kδn+i)) =
∑
i<tδn

aδ,ni bt,n,i = 0.

Therefore, we get

n!(fν̄,c̄(zδ,n+1)− ẑδ,n+1) = (fν̄,c̄(zδ,n)− ẑδ,n)− cδ(n)ŵ ∈ Zŵ. (2.1)

Since Z is countable there exist generic filters G1 and G2 (and corresponding triples (η̄1, ν̄1, c̄1) and (η̄2, ν̄2, c̄2)) such that
c1δ 6= c

2
δ , ν

1
δ = ν

2
δ = νδ but

ẑδ,0 − fν̄1,c̄1(zδ,0) = ẑδ,0 − fν̄2,c̄2(zδ,0) ∈ Zŵ.

Let n be minimal such that c1δ (n) 6= c
2
δ (n). Then an easy induction using Eq. (2.1) shows that

fν̄1,c̄1(z
1
δ,l)− ẑ

1
δ,l = fν̄2,c̄2(z

2
δ,l)− ẑ

2
δ,l ∈ Zŵ
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for every l ≤ n. Note that ẑδ,i depends on Gi (i = 1, 2). We finally calculate

n!(fν̄1,c̄1(z
1
δ,n+1)− ẑ

1
δ,n+1)− n!(fν̄2,c̄2(z

2
δ,n+1)− ẑ

2
δ,n+1)

= (fν̄1,c̄1(z
1
δ,n)− ẑ

1
δ,n)− (fν̄2,c̄2(z

2
δ,n)− ẑ

2
δ,n)+ (c

1
δ (n)− c

2
δ (n))ŵ.

By Eq. (2.1) we conclude

n!(fν̄1,c̄1(z
1
δ,n+1)− ẑ

1
δ,n+1)− n!(fν̄2,c̄2(z

2
δ,n+1)− ẑ

2
δ,n+1) = (c

1
δ (n)− c

2
δ (n))ŵ.

However, the left side is divisible by 2 but the right side is ŵ or −ŵ, hence not divisible by 2 — a contradiction. Note that
all the differences are elements of the pure subgroup ŵZ by Eq. (2.1). Hence the above calculations take place in ŵZwhich
is in the ground model, although the elements we are talking about come from different (incompatible) extension models.
Thus the sequence (E) cannot be forced to split and this finishes the proof. �

At this point we would like to remark that it is not clear if the special ladder system ˆ̄η in the above proof is still simple?

Corollary 2.6. It is consistent with ZFC and GCH that there exist two filtration-equivalent ℵ1-separable abelian groups of
cardinality ℵ1 such that one is Whitehead and the other is not.

Proof. Applying Theorem 2.4 to a model V of GCH we get an extension model of V in which there exist abelian groups Gη̄
and Gν̄ for η̄, ν̄ ∈ E such that Gη̄ is a Whitehead group but Gν̄ is not. Since rd(η̄) = rd(ν̄) we deduce that Gη̄ and Gν̄ are
filtration-equivalent by Proposition 1.9. �
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