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TiE JOURNAL OF SYMBOLIC LoGic 
Volume 37, Number 2, June 1972 

ON MODELS WITH POWER-LIKE ORDERINGS 

SAHARON SHELAH 

Abstract. We prove here theorems of the form: if Thas a model Min which P1(M) 
is xl-like ordered, P2(M) is K2-like ordered . . ., and Q1(M) is of power Al, * A i, then 
T has a model N in which P1(M) is Ki-like ordered. . ., Q1(N) is of power Al ..... (In 
this article S is a strong-limit singular cardinal, and fi' is a singular cardinal.) 

We also sometimes add the condition that M, N omits some types. The results are 
seemingly the best possible, i.e. according to our knowledge about n-cardinal prob- 
lems (or, more precisely, a certain variant of them). 

?0. Introduction. 
DEFINITION 0.1. In a model M, P(M) is K-like (ordered) if < (or more exactly 

< M) orders P(M), P(M) is of power K, and every head of P(M) is of power < K, 

i.e. if IeP(M) then I{ae-P(M): a < 1}| < Kc. [P(M) = {a:a an element of M, 
M F P[a]}.] 

DEFINITION 0.2. A model M is a <K,, K2, * * J Al, A2,*** >-model if P1(M) is Kl- 

ordered, P2(M) is K2-ordered, I..; | Q1(M)J = A1, I Q2(M) = A2, -(this notation 
includes also <K1, K21>)- 

DEFINITION 0.3. (1) <X, >: <Kl *Al, > **>- <K , * |Al* if>: if L is a 
first-order language of power c X, T a theory in L, r a set of < C types in L, and T 
has a <Kel,** A1, >-model omitting every p E F, then T has a<K, *K** A, .. >. 
model omitting every p e F 

(2) If 4 = 0 we shall write X instead of <x, 0>. 
REMARK. This generalizes a notation of Vaught in [17]. Here K will always be a 

strong-limit singular cardinal (K is strong-limit if and only if A < K implies 2A < K) 

and K' will always be a singular cardinal. 
Our purpose will be to prove relations of the form 

<X, 4>: <K1, *Al*|,s?* <Ks * As, 

and call them "transfer theorems". By Fuhrken [7] these relations are equivalent 
to corresponding transfer theorems for languages with generalized quantifiers 
[(Qrx)k(x)there exists at least Stir x's satisfying s]. 

Our paper continues the work of Keisler in [10] and [11]. Later I learned he had 
proven some more unpublished results (covered by this paper). In [10], Keisler 
proves that if x < K' then X: <K I > -> < K' I>. His proof consists of two parts: 
In the first part he builds a set of sentences A, depending recursively in L, and shows 
that if T is a theory in the language L, T U E is consistent and IL < K', then T 
has a <K' >-model. In the second part he proves that if T has a <K 1>-model, then 
T U F. is consistent (this is proved by a polar partition theorem). The point is 
finding E, and proving the second part. The proof of the first part is easy. 
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248 SAHARON SHELAH 

In this paper we shall use similar methods, with similar .S's, but we shall use a 
refined partition theorem, which we prove by a well-known partition theorem which 
appears in Erd6s, Hajnal and Rado [4] (Theorem 1.1 in ?1 of this paper). It is a 
reformulation of [4, Theorem 3] but we include it for completeness. 

REMARK. Our method has one fault relative to that of Keisler: it does not apply 
to K an inaccessible cardinal. But we can always use the following known theorem 
which appears in Fuhrken [7]. 

If PM is K-like, K a strongly inaccessible cardinal, A c M, JAI < K, a a regular 
cardinal <K, then M has an elementary submodel N, such that A c INI, PN is 
Kl-like, K1 is a strong limit singular cardinal of cofinality P. 

Our method will enable us to reduce transfer problems to problems which do 
not mention K-like orderings. In many cases we can translate problems of the form 
X: <Kj1,I A* * *KI... Al, ... > to problems of the form 

X: <lCf K11, * * All ** <jCf K;.. , Al ... 
>a 

In many cases we can deduce compactness and completeness theorems for lan- 
guages with generalized quantifiers, and also for the theory of the class of 
<K1,. II Al,- I I>-models, for certain <K1,-. 1,...>. But as it goes exactly like 
Keisler [10] we do not mention it. 

We do not investigate transfer theorems in which it seems there is no new point. 
Now we shall mention our results. In ?1, we define our notations. In ?2, we prove 

theorems about skeletons which are, in fact, partition theorems, using a theorem 
from [4]. In ?3, we investigate relations of the form X: <K A> <K' I A'>. Our 
results are: 

If X < A' < K', A < K, then X: <K I A> -+ <K' I A'> when at least one of the follow- 
ing conditions is satisfied. 

(A) cf K' < A 
(B) cf K 2 (Ao), 

(C) cf K > A, cf K' = A'+, A'= AdA(A)N. 
In ?4, we investigate outer-cofinality problems following Keisler and Morley 

[12]. We use this for proving the following result (in fact a more general result than 
this): 

If X < K4 < K', K2 < K1 and cf K1 = cf K2 => cf K = cfiK2 then X: <K1, K2 |>-* 
Ks 2 | >- 

<Kj IK~I>. 
In ?5, we investigate relations of the form <X, C>: <K j > -* <K' I >. We again reduce 

those problems to problems with no K-like ordering (Theorem 5.7). 
On the other hand, Theorem 5.7 is a generalization of the following theorem, of 

M. and V. Morley, which was later and independently discovered by Kunen, and 
later by J. Schmerl and myself, but was not as yet published. (See Morley [23] and 
Barwise and Kunen [19].) 

THEOREM 0.1. H = ::(A) where 
(1) /t is the first cardinal such that if T, ITI < A, is a theory which has a model 

omitting p ofpower >,a, then Thas a model omitting p in arbitrarily large cardinals. 
(2) 8(A) is the first ordinal such that if T, ITI < A, is a theory which has a model 

omitting p, of order type 2 8, then T has a not-well-ordered model omitting p. (There 
is a straightforward generalization for omitting a set of types of power s ;.) 
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ON MODELS WITH POWER-LIKE ORDERINGS 249 

Our results are 
If K = A6, cf K' = ,u, then <x, C>: <K I > -* <K' I > if at least one of the following 

conditions is satisfied: 
(A) cf 8 = A; A = ,u or A > p, A > X; and 8 is divided by (2x+a)+, 
(B) a particular case of (A) is cf 8 2 (2(x+ )) +, 

(C) C = 1; and cf 8 = p, or cf 8 > x + p.; and 8 ? 8(x + cf 8) (by Theorem 
5.7 and Lemma 5.5(1)), 

(D) I = 1, x = No. and cf 8 > X0, , = 91 (by Theorem 5.7 and Lemma 5.9), 
(E) C=1, X = No, p. = go and 8 is divided by Ml (by Theorems 5.7, 5.5 and 

5.6.2). 
There are also some negative results-see Lemmas 5.10, 5.11, 5.12. For example, 
By (A) <Ko, 2Xo>: <([(2Xo)+ x co] j> --. <Xi+, I >, 
By (D) <Ko, 1>: <=X1 I > KXt+K1 I>, 
By (E) <Ko, 1>: <K(X1) I > -- <KX+xo I > (901-ordinal exponentiation). 
One of the negative results is 

not <x, 1>: <Kj I> 
-. 

<& I>, cfx > w, cf8 = X+ < 8 < X++ 

Many of the results of this paper appeared in the abstract [15]. 
ADDED JANUARY 1972. 
(1) The value of 8(A). Kunen and Barwise [19] proved that the bounds of 

8(A) (As < 8(A) < (2A)+ when cf A > MO) cannot be improved. That is, it is con- 
sistent with ZFC that (3A)[cf A > No A 8(A) < A+ + A 2A > A+] and also that 
(3A)[cf A > Xo A 8(A) > 2A A 2A > A+]. They also compute 8 for admissible sub- 
languages of L 

(2) Completeness and compactness. For a very nice and natural axiomatization 
of the language with the generalized quantifier (3 >Kox) (and many other important 
results) see Keisler [22]. 

The added axioms say that sets with two elements are countable, the union of 
countably many countable sets is countable, and a subset of a countable set is 
countable. On 4)10 in general see Keisler [21]. For a compactness result see 
Shelah [32], [33]. A class of models is X-compact, if whenever every finite subset of a 
theory of power < X has a model, the theory has a model. The result is that if the 
class of <Al, * * * Il, 1 * ->-models is go-compact then it is x-compact, for X ? pt, 

X < Ai (provided that the number of A's and p.'s is countable). 
Also the results of Ehrenfeucht and Mostowski [35] on the existence of models 

with a group of automorphisms, and of Ehrenfeucht [36] on the existence of a 
model which realizes few types are generalized. By using ultraproducts, Fuhrken 
[7] proved that if AXo = pus, cf Ai > No, A < Ai => Ado < At then the class of <Al,***, 

Ai, ... I p, ... , p., . * ->-models is SO-compact. See also Ebbinghaus [38]. 
However, there is no nice axiomatization for the language with the added 

quantifier (3 2x). Also, it is not known whether for every A, p. the class of < I A, IL>- 
models is N0-compact. 

(3) Inaccessible-like models. In Schmerl and Shelah [27], [28] the following 
is proved: If A is strongly inaccessible, and is in Mt. in the Mahlo hierarchy (see 
Levy [37]) and p. > X then x: <A > - <. I >. If A is in M6(,.c) in the Mahlo hierarchy 
then <X, 4>: <A -? <p. j> for p > X. By Schmerl [251, [261 those results cannot be 
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250 SAHARON SHELAH 

improved. In the second case we can use the methods of ?5 here. By MacDowell and 
Specker [24], go: <o0 I > -. <A I > for every A. 

(4) Singular nonstrong-limit cardinals. It is known (see Fuhrken [7]) that there 
is a sentence which has a <K' I >-model iff K' is singular nonstrong-limit cardinal. It 
is easy to see that there is a sentence which has a <K' I >-model iff K' is singular and 
(3A < KC')(K' < Ded A)[(32 < K')(K' < Ded* A)], where 

DEFINITION 0.4. Ded A [Ded* A] is the first cardinal ju such that there is no tree 
with A nodes and p branches [each branch of height x for some X]. 

This suggests 
Conjecture 0.A. If K', K" are limit cardinals, and (3A < K) (Ded* A> cK), 

X < KE then X: <KK > > <KK I >. 

Other related natural conjectures arise (e.g. the parallel of the theorems of Re- 
mark 3 or K" which is neither strong-limit nor satisfies the condition in the con- 
jecture). However even the related two-cardinals conjecture has not been proved. 

Conjecture 0.B. If im < A < Ded* ,p, X < ,u, then X: < IH <+<, Ha> -< A, pt>. 
Again we do not bother to formulate related conjectures. This Conjecture 0.B is 

implied by the following conjecture: 
Conjecture 0.C. If T has an < I Ka+ y,, >-model, then T U I is consistent 

where 
=z1 = '=(xn ..*. * Xn) A z2 = T(Xe1,*** X, x) - [Q2(z1) - Z1 = Z21: 

11,. *, n v71 , * * vn are sequences of ones and zeros of length w; 
and for some m, I m =vi I m, i # j = : j m I a I m} 

U {Ql(x,) I every q}. 
For this it suffices to prove the following: 
Conjecture 0.D. Supposefis an n-place function from H,,+,. to subsets of H.+, 

of cardinality ,,. Then there is A c IA, A = I such that a,, -, aeA ='. 

V(dat, , an)r A] c la,,, -- , an}. 
(5) n-cardinal theorems from finite cardinals. 
DEFINITION 0.5. X: {<AK,... > I i E I} <A'1,. *I ,...> if any theory 

T, ITt < X, which for every i E I has a <Al, ply | ,... >-model has also a 
<At,--* I ~~,...->-model. 

Question. When does Ho: < I ni, mi> I i < w} < K A, U> ? 

It is easy to see that the Vaught and Chang theorems for gap one (see [2]) and 
Vaught theorem for cardinals for a part [18] can be generalized easily to this case 
(e.g. if (Vh < )(3i)(n ? in2 ) then H0: {<n, mi>: i < w} < l uKj. At> when , = 

Conjecture O.E. If (Vh < w)(3i)(ni 2 mh) and u < A < Ded*,t then p: 
{<I nit ml>: i < add <1IA p>. 

Or even 
Conjecture 0.F. For every set {(n, Mi) I i < w}, ni Mne, there is n* such that 

Ho:{<In1, m>:iEI}-< IA,.t >iff, u ? A ? 2(, n*);n* < wornn* = 00. 
(6) From n-cardinal transfers to power-like transfers. 
THEOREM 0.2. (A) If K, K" are limit cardinals K" singular, cf K" = A, K" = 

L.<AA, the cardinal K is weakly inaccessible, and (*) for every function f: K' -# K'; 
A: {< I., A, A ... >i<A: <Al: i < A> is an increasing sequence of cardinals < K', A'+1 > 
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(B) If the class of < I * **, s,;, * >j <A-models is A-compact, we can replace (*) by 
H f {< I A19 * ,An> :A < ... < An < K'} < | or every 
il < ... < in < A,, n < a). 

(C) If (Ve) (Iu < c' n p < K') we can choose the At's so that the class of < I a * * 

Af,9.. >, <.-models is A-compact (i.e. such that A' = Al; the compactness is proved 
by ultraproducts, by Fuhrken [7]). 

This is proved by interpreting each Q, as an elementary submodel for L(T) which 
is an end extension of Qj for j < i. We can find such Qj's for a <K' 1>-model of T 
by [32]. I think this was first proved by Silver. He proved that (G.C.H.) To: <K' I> > 
<K' I>, K singular, K inaccessible. 

ADDED IN PROOF MAY 18, 1972. Seemingly Conjecture 0.E is proved. 
(7) Why limit cardinals? By Fuhrken [7] there is no point in dealing with trans- 

fer theorems for <A+ 1 >-models. Because for limit A, X: <A+ I > 74 <,u I> and 

<X, 0> <AP v AZ * * *Ia > <A' P J, A2s * *| s* > 

is equivalent to 

<X5, > <025 Al 5, A 15 P15 > <021 .. All +Al 5115 
... 

>. 

(8) Stable theories. On stable theories see [29]. There are very strong transfers 
for stable theories and they will appear. For example, let L(Q1,..., Qn) be a 
language with n added quantifiers, T a complete stable theory in it, and suppose T 
has a model if Qi is interpreted by (3 -A'x) where Al < ... < An are regular. Then for 
every pv's, IT T < 1< ... < wn, T has a model when (Qtx) is interpreted by (32 ax). 

For categoricity see Shelah [30], [31] and Viner [34]. 
(9) Ehrenfeucht games. H. Friedman [20] and S. Viner [34] and L. D. Lipner 

[39] independently generalized Ehrenfeucht games. 
(10) Craig and Beth theorems. Friedman [20] proved that the language L(3 >Kox) 

fails to satisfy the Beth theorem, improving a previous result of Keisler and Silver 
for the Craig theorem. 

?1. Notations. Natural numbers will be denoted by m, n, q, p. 
Ordinals will be denoted by i, j, k, 1, a, fi, y; and limit ordinals by S. We assume 

i = {j: j < i}, and that a cardinal is the first ordinal of its power. Cardinals will be 
denoted by A, U, x, K, C. Let cf 8 be the first cardinal K such that there exists an 
increasing sequence i1; j < p, U,<cii = 8. Let Hi be the ith infinite cardinal. Let us 
define by induction: =(A, 0) = A, Z(A, i + 1) = 2(A, 0, ' (A, 8) = U < 6(A, i); 
As = :(i) = :(X, i). If A is a set, IAI will be its cardinality. A+ is the first cardinal 
> A. 

A sequence s will be a function from an ordinal l(s), and its ith element will be 
St = s(i). The domain and range of a sequence will be denoted respectively by 
Dom &, Rang I. A pseudosequence & is a function from an ordered set, the nth 
element of which is n. A head H of an ordered set A is a subset of A such that a e A, 
beH, a < b implies affH. B c A is cofinal with aeA, if (VbeA) [b < a = 
(3c G B)(b < c < a)], and B c {c e A: c < a}. & is cofinal with A if Rang s is. L will 
denote a (first-order) language, and without loss of generality we shall assume 
ILI > No. F, G will denote function symbols, R a predicate, and P, Q one place 
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252 SAHARON SHELAH 

predicates. Formulas will be denoted by ap, 0, 6. Variables will be x, y, Z, and finite 
sequences of variables a-, a, a. We shall not differentiate strictly between individual 
constants and the corresponding elements in an L-model. M, N will denote models, 
I MI will be the set of elements of M, and hence MJi -its cardinality. If M is an L- 
model, R a predicate in L, then RM will be the corresponding relation; and if F is a 
function symbol in L, FM will be the corresponding function. (Sometimes we write 
F, R instead of FM, RM. If R is one-place, we write R(M) instead of RM.) Sometimes 
we write a E M instead of a e {M}. If Mis an L-model then L(M) = L. Tshall denote 
a theory, i.e. set of sentences. L(T) = L if T is a set of sentences in L, and L is the 
minimal such language. Th(M)-the theory of M is the set of sentences in L(M) 
which M satisfies. Tis a theory in L if L(T) c L. By a, b, c we shall denote elements 
of models, by d, A, e finite sequences of such elements. We write <ao, - * *, an> = 
a E A instead of ao, e E A. We say that p is a A-type (on A, A c IM ) if p consists 
of formulas (x0, * * *, - 1, a), cp E A, a E A. Usually we assume n = 1. p is a type 
in L, if p is a A-type, where A is the set of formulas of L. The A-type a E I M I realizes 
over A is {T(J, c): c E A, q7 e A, M I 4a, c]} where M I 0[b] means t4[b] is satisfied 
in M. If A is not mentioned it is the set of all suitable formulas in the language. 
M realizes p if there exists a e IM M such that p(x, c) e p implies M k 4a, il]. M omits 
p if it does not realize it. Types will be denoted by p, and sets of types by P. (It is 
clear when p is type and when it is a natural number.) A sequence <at: i < k>, 
at e M, is n-A-indiscernible (in M) over A (c IMI) if for every e e A, p E A, 
il < i2 < ...< in < k, j, <; j2 < ... < in < k, M k (p[as,, iI, as,, e] if and only if 
AI k 9[aj, *... , aj,, C]. (Similarly for a pseudosequence.) 

A theorem from Erdos, Hajnal and Rado [4] implies that 
THEOREM 1.1. If A, B cdM1, IBI > =(JAI + JAI,n + 1), then there is a 

sequence of elements of B, which is n-A-indiscernible over A, and of length > IA I + 

1Al. 
For simplicity only wve shall assume that < (a two place predicate) belongs to every 

language, and for every model < (or more precisely < M) orders the model. 
If cp is a formula, Q(x) a one place predicate, then pQ - qA, relativized to Q. is 

defined by induction: If 'p is atomic 'pQ = T, (cpa A p2)Q = 9Th A 'pQ, (-,cp1)Q - 

-,cpQ, [(3x)p]Q = (3x)(Q(x) A 9Q) (the other connectives and quantifiers are 
defined by those). 

?2. Skeletons. 
DEFINITION 2.1. (1) The (pseudo-) sequence U = <UJ: i < pi> is a (pseudo-) 

skeleton of P(M) if 
(A) For every i < tk, Uj is an increasing infinite (pseudo-) sequence of elements of 

P(M). (As U. is an increasing sequence, it is completely determined by its set of ele- 
ments, hence we shall not differentiate between Us and Rang Us.) 

(B) If i < j then every element in Uj is smaller than every element in Up. 
(C) For every a E P(M), there exists i < u such that a < Uj(O). 
For skeletons only we demand also 
(D) P(M) is K-like ordered, cf Kc = 

(E) 2j<4IUjI = K. 
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(2) Every Us will be called a column of the skeleton. 
REMARK. In the following definition only skeletons are mentioned but we shall 

use them freely also for pseudoskeletons. 
DEFINITION 2.2. Let <Uj: i> be a skeleton of P(M), and c an element of P(M) 

(and H a head of P(M)). Let H be the minimal head (of P(M)) c e H (H c H) such 
that if a e H, b R H, then there exists i, such that a < Ut(t) < b, for every t e 
Dom U( which is big enough. 

The sequences <am: m < n> and <bin: in < n> (of elements of the skeleton) are 
similar over c (over H) if and only if 

(1) ak E Ut if and only if bke EUt (for every i); 
(2) ak < am if and only if bk < bm (and soCk a,,, if and only if bk = bn); 
(3) if ake- H or bk e H then ak = bk. 
REMARK. If c(H) are not mentioned, we mean that the similarity is over the 

empty head. 
DEFINITION 2.3. (1) A skeleton (of P(M)) is A-n-good over A if and only if 

every two sequences, of length n, from the skeleton, which are similar over any 
head H (of P(M)) realize the same A-type over A u H. (Hence if [F(X, !) = y] E /v, 
d, ai' are similar sequences over H from the skeleton, 5 E A u H, then F(a', 5) E H 
implies F(', b) = F(d, 6).) 

(2) The skeleton is zA-n-excellent over A if it is A-n-good over A, and for every 
function F(G, y) such that [P(F(X, j)) (z> F(X, i))] E A (we shall say in short 
that F appears in A) and for every c E A and d E U{Rang Us: i < io < }, 

M k P[F[d, c]] Uj.(O) > F(d, e). 

(3) A skeleton is A-good if it is A-n-good for every natural number n. Similarly 
we define A-excellence and we omit A if it is the set of all formulas in L(M). 

DEFINITION 2.4. The skeleton < Vi: i < IL> is a subskeleton of the skeleton 
< Us: i < u> if and only if there exists an increasing sequence <ji: i < fL> such that Vj is 
a subsequence of UJ, for every i < p. 

PROPOSITION 2.1. (1) Two sequences in a (pseudo-) subskeleton are similar over c 
in the skeleton if they are similar over c in the subskeleton. (If we replace c by H 
a parallel proposition holds.) 

(2) A subskeleton of a A-n-good (A-n-excellent) (pseudo-) skeleton is a A-n-good 
(A-n-excellent) (pseudo-) skeleton. 

(3) A subskeleton of a subskeleton of U is a subskeleton of U. 
PROOF. The proof is immediate. We shall use this proposition without mention 

also of pseudoskeletons. 
THEOREM 2.2. If JAI + I Q(M)I < K, then every skeleton of P(M) has a sub- 

skeleton which is A-n-good over Q. 
PROOF. We shall prove by induction on m the following statement: 
(*) If < Us: i < cf K> is a skeleton, then for every m it has a subskeleton < Us: 

i < Cf K> such that if a = <ao, * * *, an -1> is a sequence in which appear elements of 
at most m columns, 6 is similar to d over H, then they realize the same A-type over 
Q(M) U H (clearly d and 5 are sequences from the skeleton). 

If we succeed in proving (*) for m = n, clearly Theorem 2.2 will be proven. 
For m = 0, (*) is trivial (the skeleton itself can serve as the required subskeleton). 
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254 SAHARON SHELAH 

Suppose we have proven (*) for in by finding < Uf: i < cf K>, we shall prove it for 
m + 1. Let K = i<cf -i, where Hi < K, and pi is an increasing sequence. 

Now we shall define, by induction on i, Um +I and ji such that U' + 1 will be a sub- 
sequence of Um. Suppose we have defined UJin+1, ii for every i < k < cf K. As 
{jj: i < k < cf K} is a set of <cf K ordinals smaller than cf K, and cf K is a regular 
cardinal, there exists < cf K such that, < j for every i < k. Let Hk = {c: c P(M), 
i < k, t E Dom UjrI, c < U',(t)}, and clearly Hk is a head of P(M). As P(M) is K- 

like ordered IHkI < K. As <, I Umi = K, and I U J < K, there exists jk < cf K, 

i < k -ji < jk, such that I UkI > (I HkI + I Q(M)I + Ik + cf K + AI, n + 1). 
By Lemma 1.1, Ujk has a subsequence Ukt+', I U' + l , which is A-n-indis- 
cernible over Hk U Q(M) u {Uj"(l): I < w, i < cfK}. It is clear that <Uk' +1: 
k < cf K> is a subskeleton of < Uj: i < cf K>. So it remains to prove that it satisfies 

(*) for m + 1. 
Let a = <ao, * *, an_ = <bo, bn - 1> be two similar sequences in <Uk+1': 

k < cf K> over a head H; and suppose that in a appear elements from m + 1 
column, the first of which is U.' + 1, and without loss of generality the elements from 
U,' +1 will be ao, - *, a,. Let H' = {c e P(M): c < Uam+ (t)} and it is not hard to 
see that without loss of generality we can assume H c H'. 

It is not hard to find a sequence a' = <a' , a'j > in <Ur: i < cf K> such 
that 

(1) a, a' are similar over H, 

(2) a' = ao, a,' = ap, 
(3) if p < k < n then al = U7l,(l) for some I < W, f < cf K. 

Similarly we can define 51 such that in addition 51 = <bo, - , bp, a, + 

anl- 1>- 

Now it is easily seen that a and a' are similar sequences on H' in < Us : i < cf K>. 

Also <a, + 1,.*.*, an ->1 <aP + l,** *, an - 1> are similar sequences over H' in < Us" 
i < cf K>, and so they satisfy the same A-type over Q(M) u H'. As H C H', and 
ao, a.sa HH1, ao = a', a, = al, clearly a = <aO, ? * * 
and al = <a * a., a + , a _ 1> satisfy the same A-type over Q(M) u H. 

Similarly 5 and 5' satisfy the same A-type over Q(M) U H. So it remains to 
prove only that a' and 51 satisfy the same A-type over Q(M) U H. As a,+' = 

b1+** an bl and a, * *, an' E {Usr(1): i < cf K, I < Cw}, it suffices to 
prove that <a', - * *, a'>, <bl, - * *, b1> satisfy the same A-type over Q(M) u H u 

{Ur (1): i < cf K, I < wo}. As H C H,,, and U '+ 1 is A-n-indiscernible over Q(M) u 

Ha u {Urn(l): i < cf K, I < w}, and p + 1 < n this is clearly true. 
So we have proven statement (*) by induction. Taking m = n, we prove Theorem 

2.2. 
THEOREM 2.3. If JAI + I Q(M)I < cf K then every skeleton of P(M) has a sub- 

skeleton which is A-n-excellent over Q. 
PROOF. Let U = <Us: i < cfK> be the skeleton. By Theorem 2.2, it has a 

A-2n-good subskeleton W = <Wj: i < cf K>. Let K = t<Cf wCi, cf K < of < K, and 
without loss of generality assume IW I > pt. Let Vt = {W1(k x w + n + 1): 
k x w + n + 1 < Pt} and V= <Via i < cf c>. 

Let, for i < cf K, A, = {V,(t):j < i, t e Dom Vj}, and let B1 = {F[a, 0]: F 
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ON MODELS WITH POWER-LIKE ORDERINGS 255 

appears in A (i.e. [P(F(x, y)) ->Az > F(R, y)] Ec A), c E Q(M), a e Aj, 1(a) < n} f 
P(M). 

It is sufficient to prove that every B1 is a bound set in P(M). For suppose it is true, 
and we shall define an increasing sequence jj, ji < cf K for i < cf K. such that < V1,: 
i < cf K> is the required subskeleton. 

Suppose ji has been defined for i < k < cf K, and let jO < cf K be an upper 
bound for{d1: i < k}. As E1<,fIVI = K, i ViI < K, there exists jk > j?1,k < cf K, such 
that I Vjk I > Ik, and for every b e Bjo, b < IJk(O). Clearly <aVt: I < cfK> is the 
required subskeleton. 

So it suffices to prove that each B1 is a bounded set in P(M). Suppose B1 is not 
bound. Now we shall define an equivalence relation on Be: Fj(dl, cl) F2(02, e2) if 
F, = F2, cl = 2 and da, d2 are similar sequences. As the number of function 
symbols appearing in A is < JAI < cf K (or they both are finite and so < cf K); and 
the number of c E Q(M) is also < I Q(M) I + + No ? cf Kc; and the number of similar- 
ity types of sequences from B, is < Ii I + + go < cf K; it is clear that the number of 
equivalence classes is < cf K. We can conclude from this that there exists an equiva- 
lence class BO which is unbounded in P(M). It is easy to find a subset Bl of BO 
which is unbound in P(M), B' c P(M), and B' = {F(J1, c): i < Cf K}, such that 
i < j < cf K implies F(d7, c) < F(%, c). <at(O): i < cf K> has no infinite decreasing 
subsequence (by the definition of skeleton). From this it is easily seen that either it 
has an increasing subsequence of length cf K, or for some a, !{i: d1(0) = a}l = cf K. 

So B' has a subset Boo such that Bl = {F(d79, c): i < cf K} and is unbound in 
P(M) and i < k implies af(O) < djk(O), or i < k implies d,(fO) = aJ1O). Doing the 
same for 1, ... , n - 1, we get Al = B1,- which satisfies 

(1) Al C B1, IA'I = Cf K, and so Al is unbound in P(M), 
(2) Al = {F(d1, c): i < cfK}, 
(3) i < j implies F(d, c) < F(a', c), 
(4) for p < n, either i < j implies @1(p) = -'(p) or i < j implies a1(p) < d'(p). 
Now it is not hard to find in the skeleton W (not V) a sequence a such that 
(1) a is similar to d?. 
(2) If p < n, and i < j implies d1(p) = ati(p) then a(p) = d?(p). 
(3) If p < n and i < j implies a1(p) < at(p) then for each i, t1(p) < a(p); and if 

b E U{Rang Vt: i < cf K} and for each i, cl(p) < b, then d(p) < b. 
This is possible as Vt = {Wt(k x w + n + 1): k x w + n + 1 < gut+}. 
It is not hard to see that for every i there exists j > i such that B'at and ala are 

similar sequences in W. As W is A-2n-good we can conclude that these sequences 
realize the same A-type over Q(M). So from P[F(df, c)] we can conclude P[F(J, c)], 
and from F(c', c) < F(af, c) we can conclude F(51, c) < F(d, c). So F(d, c) e P(M), 
and for every i ( < cf K), F(d1, c) < F(7, c). This contradicts the unboundedness of 
Al, and hence we finish the proof. 

?3. Applications of skeletons for transfer theorems. In this section we 
shall use the theorems about the existence of good and excellent skeletons for 
proving relations of the form x: <K I A> -+ <K' I A'>. 

DEFINITION 3.1. A theory T (in L) is closed if (1) for any formula cp(y, ?), there 
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256 SAHARON SHELAH 

exists a function symbol F(Q) such that (VX)[(3y)p(y, x) --* p(F(G), x)] e T, (2) for 
every function symbol F, F1, F2,., there exists a function symbol G such that 
(V, y2, . )[F(F1(jY), F2(Y2), ) G(Y1, Y2, * * )] E T. 

THEOREM 3.1. For every language L there exists a language LSK and a theory 
TSK (in LSK) such that 

(1) every L-model is the reduct of a model of TSK; 

(2) every theory T in LSK, T v TSK, is closed; 
(3) if M is a model of TSK, IN I a I M I, and IN I is closed under thefunctions of M, 

then N is an elementary submodel of M. 
PROOF. This is a well-known theorem. We shall use it without mentioning it 

explicitly. 
THEoREM 3.2. (1) We can define = sH(p, R, R1, n) as a sentence depending 

only on the formula p and the predicates R, R1 such that 
(A) If M is a model of f, then RM/ is an equivalence relation between the elements 

of RM, and RM c PM, andfor every a e RI", there is b E RM, M h --R1[a, b], a < b. 
Let us define for a E RM, Ua as a pseudosequence whose set of elements is 

{b: M f R1[b, a]}. 
(B) If M F /, then <Ua: a E R(M)> is a {p}-n-good pseudoskeleton of P(M) over 

Q(M). 
(C) Let TsH = T U {0SH((P, R, R1, n): 4p e L(T)}. (We assume R, R1 0 L(T).) Then 

if M is a <K I A>-model of T, A + IT < K; then M is a reduct of a model of T2H. 
We write TSH = Un<JTSnH 
(2) The same as (1) except that wve replace SH by ST, goodness by excellence, and 

in (C) we replace ITI + A < K by ITI + A < cfK. 
PROOF. The proof follows immediately from Theorem 2.2, 2.3; and in fact, 

TsnH, Tsn are a formalization of what was said there, i.e. #SH(9p, R, R1, n) will be the 
conjunction of the following sentences: 

(1) (Vx)(R(x) P(x)), 
(2) (Vx)(R(x) R1(x, x)), 

(3) (Vxy)(Rl(x, y) ->Rl(y, x)), 
(4) (Vxyz)[R1(x, y) A R1(y, z) -. Rl(x, z)], 
(5) a sentence telling that: if xl, x2 are "similar" sequences (of length n) over Z, 

R(z) and AmZ > y(m) then 9(x51,J)-+ T(Q2, j), 

(6) (Vx)(3y)(R(x) -+ R(y) A x < y A -7R,(x, y)), 
(7) (Vxyz)(R(x) A R(y) A R(z) A x < y A y < z A -7R1(x, y) -+ -7R,(x, z)). 

THEOREM 3.3. If M is a model of T U TSH where T is a closed theory and there 
exists a sequence <a1: i < A>, as e R(M), such that i < j < A implies M b 

R1[ai, a>], the sequence is unbounded in P(M), and K > IIM j, K > cf K = A, then 
there exists models N, M, of Tsuch that M1 is an elementary L(T)-submodel of M and 
of N. Q(M) = Q(M1) = Q(N) and P(N) is K-like ordered. If M is a model of 
T U TST, the unboundedness of the sequence is not necessary. 

PROOF. Suppose K = :E{pi: i < cf K}, JuI < K, M is a model of TSH u T and 
<as: i < A> is unbound in R(M). Let L1 be LSH with the new constants {c: c e 
Q(M)} U {bf: i < Cf K, j < tiJ. Let 
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ON MODELS WITH POWER-LIKE ORDERINGS 257 

T' = T U -1 (b;'11 bj9 .. * * b, cl * * ..., cp) *- (bik11, LT ** bkm , C,, * Cp): 

c, ... , cp E Q(M), and i, = i, implies j,,, > js-~ kor > k0} 
u {q9(bi9 .. * * beym, cl, *3 * SCp): jlg .. *, *im < Ad9 

M l 9)LUa1 (Ii),.. * Ua'tm(Im) cl, ... *. 

Clearly every finite subset of T' has a model, and so by the compactness theorem, 
T' has a model N1. Let N be the elementary submodel of N' whose set of elements 
is the closure by the functions in N' of A = {c: c e Q(M)} u {b': j < pi, i < cf K}. 

It is not hard to see that all the conditions are satisfied. The only nontotally 
trivial one is that P(N) is c-like ordered. We shall prove it. 

Firstly, we shall prove that {bO: i < cf K} is unbound in P(N). For suppose 
P[F(dl,, d2,. * *)] and F(d,, d2,.**) > b? for every i, where d,, . E A. We an 
easily define d,', d2l, * such that 

(Od~2,',, c-, 
(1) dme{bi:j < N} iffd.1 e{bl:j < pj for any m and i, 
(2) if d. e Q(M) or dm' E Q(M) then dm = d1, 
(3) d,, < dn (dm = dn) iff dm < dn' (dm' = dn'), 
(4) if dm = b? or d, = b? then dm = d- , 
(5) if dm 0 Q(M), then for some i < cf c and 0 < j < w, do = b(. 
From the definition of T, it is easily seen that for any i < cf Kc, F(dl, d~l,* ) > 

b?, and P[F[dl, d2, * * * ]] (all this holds in N). Now define d,2, d2, * * *: if d," e Q(M) 
then da2 = d,1; and if d1 = bI then d, = Ua,(j). From the definition of T, it is clear 
that (in M) P[F(d,2, d22, *)] and for each i < cf Kc, F(d2, d2,***) > a1. So 
{as: i < cf ic} is a bound set in P(M), a contradiction. 

We have proven that {bO: i < cf K} is unbound in P(N). In order to prove that 
P(N) is K-like ordered it is sufficient to prove that for every i < cf Kc, J{c e P(N): 
c < b?}I <K. Let io < cfiK be fixed, and let B= Q(M) u {bJ: i < io orj < wand 
i < cf K}, and let B, be the closure of B under the function of N. Clearly IB, I < c. 

Now as in the previous paragraph, it is easy to see that if di, d2, * e A, 
P(F(dl,,)] holds, and F(dj,.) < bO then F(dj,,.) = F(d1,') where 
do, * * * B. and so F(dj, e) e B1. Hence I{c eP(N): c < bO}I < IjBI < K and so 
P(N) is K-like ordered. 

Now there remains the case where M is a model of T U TST, and <at: i < A> is 
bound in P(M). Then the closure of Q(M) u {Ua(n): a e {at: i < A}, n < w} by the 
functions of L(T) is an elementary L(T)-submodel of M, MO, and a model of T u 
TST. As <(Ua: a e R(M)> is an excellent pseudoskeleton, {at: i < A} is unbound in 
P(MO). Hence the remainder of the proof is as in the previous case. 

Now we shall deduce from Theorems 3.2, 3.3 some conclusions, which are the 
aim of this section. 

CONCLUSION 3.4. If K > A, IK' > A' > cf c', X <_ A' then X: <Kc I A> --. <K' I A'>. 
PROOF. Let T, ITI < x have a <K I A>-model. By Theorem 3.2, T, = (T U 

TsK) u (T U Tsy)sH is consistent. By Theorem 3.3, it is sufficient to find a model M 
of T, in which there exists in P(M) an unbound increasing sequence <a1: i < cf K'>, 
a, e R(M), i # j =* --Rl[at, a1], and such that I Q(M)) = A'. 

It is not hard to find a model MO of T, such that 11 MOjI = I Q(Mo) =A'. Let us 
define by transfinite induction M1 for i < cf K': M'O has been defined. MA +, will be 
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an elementary extension such that |Mi+ al = WiMl = A' and there exists ai e 

I MI., I l, as E R(M, + 1), and b E R(Mj) => b < at, --RI [b, ail. Clearly M, (p = cf K') 

is the required model. 
CONCLUSION 3.5. If cfK = A+, A' = 2{(A'):u < A%}, x A', and Cf K > A 

then X: <K| A> -<K' I A'>. 
PROOF. Suppose IT! < X and T has a <K | A>-model. We should prove it 

has a <K' I A'>-model. By Theorem 3.2, every finite subset of T1 = (T U TsK) U 

(T u TSK)ST has a model M, in which R(M) is (cf K)-like ordered, and I Q(M)I < cf K. 

This implies by Chang [2] that T1 has a model N, I|N!| = A'+, such that R(M) is 
(A' +)-like ordered, and I Q(N)I = A'. As R(M) is A' f-like ordered, we can find in it 
an increasing sequence of non-RI-equivalent elements of length A'+, and hence 
Theorem 3.3 implies our conclusion. 

CONCLUSION 3.6. If cf K 2 Z(A, rt)), X < A' < K', then X: <K ! A> -t<' I A'>. 
PROOF. The proof is as in the previous conclusions, using the two-cardinal 

theorem appearing in Vaught [18] and also in Morley [13]. (In fact, we should take 
care for the existence of the increasing sequence we want.) 

LEMmA 3.7. (1) For every theory T there exists a theory T1, TlI < ITI + No, 
such that 

Thas a < |JAj, .. * Amq Cf Kl, * ,Cf K,,>-Ynodel iff JT, has a <Kl,* , K,, I Al, 3 * Am>' 
model. 

(2) For every theory T there exists a theory T1, IT1! S ITI + go, such that 

T1 has a <K I A>-model, if T has a model M, I Q(M)I = A, and in P(M) there 
exists an increasing unbounded sequence of length cf K. 

PROOF. The proof is immediate. 
COROLLARY 3.8. There exists a sentence (p which has a <K' I A'>-model iffcf K' < 

A' (cf K' < A'+) (cf K' < X, where A' = R) (cf K' - <(A', n)). 
PROOF. The proof is an immediate consequence of Vaught [18]. 

?4. Outer cofinality and transfer theorems. Such problems were discussed in 
Keisler and Morley [12] for models of ZF. We shall generalize their results, and use 
them for transfer theorems. We used our results about outer cofinality to prove 
that if K1 > K2, K' > K' > cf K', X < K', and cf Kl # cf K2 or cf K= = cf K' then 
X: <Kl, K2 j> - <Kj, K'11> (in fact, a more general theorem, Theorem 4.5). 

DEFINITION 4.1. If a, b e P(M), then cf a s b in P, i.e. the cofinality of a is not 
greater than b in P if for some function symbol F(x, z) in L(M), and sequence c in 

M 1 (Vx < a)[P(x) -* (3y < b)(P(y) A x < F(y, c) A F(y, c) < a)], 

otherwise the cofinality of a is greater than b. If cf a > b for every b < a, b e P(M), 
then a is called regular (in P). If P(M) = M, we omit the words "in P". 

DEFINITION 4.2. In the notations of Definition 4.1, ocfP1(M) = A if there exists 
an increasing sequence <at: i < A>, a1 e P1(M), and there is no a' e P1(M), a1 < a', 
for every i; and there does not exist such a sequence for k < A. Such a sequence 
(not necessarily of length A) will be called a sequence cofinal to P1(M). ocf P1(M) is 
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ON MODELS WITH POWER-LIKE ORDERINGS 259 

called the outer cofinality of P,(M). We define ocf a = ocf ({b e M: b < a}). 
ocfp a = ocf ({b E P(M): b < a}). 

THEOREM 4.1. (1) There is a type, i.e. a set offormulas, such that a is regular iff it 
realizes that type (i.e. satisfies each of the formulas (we can replace in (1), (3) regular 
by regular in P)). 

(2) If a is regular in M, and Ml an elementary extension of M, then a is regular in 
Ml. 

(3) If Tis a complete theory, and a an individual constant, and in one model of T, 
a is regular, then it is regular in every model of T. 

(4) If a E P(M) and {d E P(M): d < a} is A-like ordered, and A is regular, then, a is 
regular in P. 

(5) If {at: i c I} are individual constants, andfor every finite subset J of I and T, of 
T, there is a model of T, in which {at: i e J} are regular, then T has a model in which 
{at: i e I} are regular. 

PROOF. The proof is immediate. 
THEOREM 4.2. If a is a limit element of M, Th(M) is closed, then Mf has an 

elementary extension Ml such that 
(1) There is a, e Ml, a, < a, such that b e M, b < a implies b < a. 
(2) If b E M and cf b > a then there is no b, c Ml, b, < b such that b2 E M, 

b2 < b implies b2 < bl. 
PROOF. Suppose ocf a = A, and let D be a nonprincipal ultrafilter on A, such 

that < A implies {i: j < i < A} e D. 
Let <at: i < A> be a sequence in M cofinal to a. Let a0 = <at: i < A>ID, and for 

c E M, we identify c and <c: i < A>/D. (On ultrapowers, see [5].) Let Ml be an 
elementary submodel of MAID whose set of elements is the closure of I MI U {a0). 
Clearly a0 < a, and a' e M, a' < a implies a' < a0. Suppose b E M, cf b > a, and 
there is b, < b, b, E Ml, such that b2 E AI, b2 < b implies b2 < bl. We should 
show that this leads to a contradiction. So let b1, = F(aO, c), where c is a sequence 
from IMI. If b2 e M, b2 < b, then M1'/D k b2 < F(aO, c) A F(aO, c) < b. By the 
fundamental theorem about ultraproducts (see [5]) this implies, if c = \CO9 

. . . cn>, 
that {i < A: M k b2 < F(at, co , cCn) A F(aj, cot * e - , cn) < b) E D, and hence, 
for some i < A, M h b2 < F(at, c) A F(at, C) < b. As at < a, this contradicts 
cf b > a, which we assumed. So Ml is the required extension. 

THEOREM 4.3. If T = Th(M) is closed, and a0 > a, > . > an are limit ele- 
ments of P(M), andfor each k < I < n, cf ak > a,, and o,, - a8t are limit ordinals, 
then M has an elementary extension N, in which, for k = 0,. -, n, there is a sequence 
in N, of length 8,3k which is cofinal to ak. Hence ocf ak = cf Sk. 

PROOF. We define by induction Mt for i < am, m < n: MO = M. If Ml is 
defined, then Mm+, will be an elementary extension of Mn, in which there is 
am < am, such that a e Mm, a < am implies a < am; and if cf b > am, bE Mt, then 
there is no bl, b, < b, such that b2 E Mt, b2 < b implies b2 < bl. (Such an exten- 
sion exists by Theorem 4.2.) For limit ordinals 8, M, = Uj<,Vhm, and fol + 1 = 

Let N = Mnn. Clearly for each m ? n, <am: i < am> is a cofinal sequence. 
REMARK. This theorem is true also for an infinite number of at's. 
THEOREM 4.4. Suppose each finite subset of T has a model AIf in which P,,(MT) is 
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Am-like orderedfor in <? n and Am is regular. Suppose inm, ? n, are regular cardinals 
such that Am = AP implies pm = PP. 

Then T has a model N in which, for m = 0,. * I, ocf Pm(N) = jim. Moreover 

NII < ITI + o + Hlo + * * * + ?m. 
REMARK. This theorem is true also for an infinite number of P's. 
PROOF. We can easily find T1, T c T1, IT,1 < ITI + Ho, such that 
(1) T1 is closed. 
(2) If M1 is a model of T1, then ocfPm(Mi) = ocf am, for im = 0,... * , n, and 

am e P(M1). 
(3) Every finite subset of T1 has a model M1 in which, for in = 0,... * , n, 

{a: a E P(M1), a < am} is Am-like ordered. 
(4) If Am = AP then am = a,. 
We adjoin to T sentences saying that {x: Pn(x)} and {x: P(x) A x < am} have 

equal cofinality, and one of them is A-like ordered iff the second is A-like ordered 
(this is done by saying for each head of the one there is a one-one mapping into a 
head of the other). Then we used Theorem 3.1. 

By Theorem 4.1 (4) and (5), T1 has a model in which each am is regular. By 
Theorem 4.3, T1 has a model N1 in which cf am = pm. It is easy to find an elemen- 
tary submodelNof N1, IINiI ?< IT + 7m:nium = TI + Ho Ho + . + pm, and 
for each m, N1 contains am and a sequence <ar: i < um> which is cofinal to am in 
N1. Clearly also in N, ocf am = gum and so N is the required model. 

THEOREM 4.5. Suppose that, for each mn, p < n, 
(1) Km 

> KCP iff K > K,' 

(2) cf Km < K', 

(3) Km > X, 
(4) cf Km = cf K. implies cf K', = cf K;p. 

Then X: <Ko, K 0* *.X..n 1 |><os ln- 

PROOF. Without loss of generality K1 > K2 > * > Kn- 1. Then the proof is by 
iterating Theorem 3.2, and then using Theorems 4.4 and 3.3. 

THEOREM 4.6. If M is a model of ZF, a, b E IMI, a # b are regular cardinals, 
then M has an elementary extension in which ocford a = A, ocford b = Mu (i.e. the outer 
cofinality of {c e M: c is an ordinal < a} is A, and similarly for b). 

REMARK. This improves Theorem 3.2 from Keisler and Morley [12], and solves 
a question they asked on p. 58. 

PROOF. By [12], M has an elementary extension N, JINII = X+ (x a regular 
cardinal > JIM I), and ocford a = X, ocford b = X+ We add to N two one-place 
relations-RI, RN such that RN is x-like ordered and RN is an unbound subset of 
{c E N: c an ordinal < a}. Similarly for R2 and b. Then the proof follows easily by 
Theorem 4.4. 

Alternatively, this can be proved directly by Theorem 4.3. 

?5. On transfer theorems with omitting types. 
DEFINITION 5.1. If Tis a theory, r a set of types, then Ec(T, r) will be the class 

of models of T which omits every type p E r. 
DEFINITION 5.2. <XI, >: <Kjl,... I A1 ...> <K;, 

I A* *... > if for every lan- 
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ON MODELS WITH POWER-LIKE ORDERINGS 261 

guage L, ILI < X and theory T (in L) and set IF of < C types in L if in Ec(T, F) there 
is a <K, -- I A1,-.- >-model, then in Ec(T, r) there is a <K',? j A, ?..>-model. 
(We always assume 4 is a cardinal greater than zero, although most of the results 
remain true for 4 = 0.) 

DEFINITION 5.3. (1) Tp(M) is the type of order by which < (more exactly 
< m) orders M. 

(2) Tp(P(M)) is the type of order by which < orders P(M). 
(3) Tp(T, r) = {Tp(M): M e Ec(T, F)}. 
DEFINITION 5.4. <X, 4>: [8] -- [p] if: if L is a language of power < X, Ta theory 

in L, r a set of types in L, i rl < 4, and 3 E Tp(T, r), then there exists M E Ec(T, r) 
of outer cofinality ,u which is not well-ordered. 

DEFINITION 5.5. 8(X, 4) is the first ordinal such that: if T and r are in the lan- 
guage L, ILI < X, ILI < 4, and 8(X, 4) < k e Tp(T, F), then in Ec(T, F) there is a 
non-well-ordered model. 

THEOREM 5.1. (1) If <x,4>: [8I-.>.], and Tand F are inL, ILl < X, Frl 4, 
M e Ec(T, r), and Tp(P(M)) = 8, then there is M E Ec(T, F) such that P(M) is not 
well-ordered and its outer cofinality is s. 

(2) If T, F are in L, ILI < X, I F < 4, and M e Ec(T, F), Tp(P(M)) 2 8(, 4), 
then in Ec(T, F) there is an Mfor which P(M) is not well-ordered. 

PROOF. The proof is immediate. 
THEOREM 5.2. If <x, 4>: [8] -] [p4, and for every ordinal i, j < 8, i + j < 3, 

then for every singular cardinal K, K', K = Mk+6, Cf K' = X, KX 4>: <K -* <K' I >. 
PROOF. Let L be a language, ILI < X, T a theory in L, r a set of types in L, 

Irl < C. Let, also, A e Ec(T, F) be a <K 1>-model, i.e. Pm is K-like ordered. We 
should prove that in Ec(T, r) there is a <K' I>-model. Without loss of generality 
assume T is closed (see Theorem 3.1). We shall also assume, without loss of gene- 
rality that Tp(P1(M)) = K. (See Fuhrken [6]. He proved that if < 'is an ordering of 
P1(M) of type K, M1, M are elementarily equivalent then P1(M1) is A-like ordered 
by < iffP1(M1) is A-like ordered by <'.) So let P1(M) = {C(: i < K}, such that i < j 
iff cj < c,. Let also <ri: i < cf K> be an increasing sequence of ordinals < 8, Ut,, = 

3, and ri + ri < ri+ 1 (It is easy to construct such a sequence as i, j < 8 => i + 
j < S. Clearly cf 8 cf K.) 

For every ordinal x, Uj,<7O < a < a% = 7io < 8, let Sn = {<Xa.: i0o < i < 
cf K>: a An} be the set of n-good skeletons of P1(M), such that I Xa i I= 3k+ ri+, 

and Ut<iXa, c {c,: e < Mk+,}. Clearly S? # 0. 
By the proof of Theorem 2.2, it is easily seen that 

(*) If r + (n + 2)2 < a, and a e An, Ui<io i <K a < Tio then there exists 
be A+1 such that for every i, io0< i < 3 5, X ta 

Now we shall define a model N. The set of elements of N will be 

IMI u{i: i < 3}u U{An:n < w,a < }. 

(Without loss of generality we assume those sets are disjoint.) 
The set of relations and functions of N will consist of the following: 
(1) Ql' Q2, Q3, Q4 which will be (rcsp.) IMl, {i: i < 3} = 8, U{An: n < <, a < 

and {ri: i < 8}. 
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262 SAHARON SHELAH 

(2) The relations of M and functions of M (if {a0, **, anJ I MI we can define 
FN[a0,.. * *, an] = 0 (E 8)). 

(3) Ordinal addition among the ordinals < 8; and < M is extended to a total 
ordering of IN I, such that on 8 it will be the order between ordinals. Also 0, 1, 2, 
3, ... will be individual constants in N. 

(4) Functions F1, F2, F3 such that 
F1(a) = n iff a E An for some cr 
F2(a) = a iff a E An for some n, 
F3(a) = io iffaeAa, Ua < o ' a < 7io 

(5) A relation R such that N F R[a, i, bi iff b E Xa, i 
(6) A relation SUB such that N F SUB[b, a] iff a E An, U,<LOrt S a < 7iog and 

for every i, io ? i < 8, Xb, a Xa {. 
(7) More function symbols, such that Th(N) will be closed, and of power < X. 

(It is clear by Theorem 3.1 that we can do it.) 
(We assume implicitly that all the new symbols do not belong to L.) 
By Theorem 5.1, it follows that there exists a model N1, elementarily equivalent 

to N; such that (Q2)Nl is not well-ordered and has outer cofinality ,u; and N1 omits 
every type pQ', for p E r, where pQl = &Q' p Ep) ('?Q is o relativized to Q'). It is 
clear that also the outer cofinality of (Q4)NI is '. 

As (Q2)Nl is not well-ordered, let {an: n < o} be a decreasing sequence in (Q2)NI. 

Clearly N1 h an+m + m < an for every n, m. Hence we can find a subsequence 
{Pn n < w} of {an: n < )} such that Pfln+1 + (n + 2)2 < in. By what was said in 
(*) (which appears just before the definition of N in this proof) we can find an, 
n < w, in (Q3)N1 such that F1(an) = n, F2(an) = f,,,, F3(a,") < F3(ao) = 'r,.and for 
every n, N1 I SUB[an + 1, an]. 

Let {yj: 1 < u} be an increasing cofinal sequence in (Q4)Nl, r < 70. 
Let Xn, - {C E (Ql)Nl :N1 I R[an, yi, c]}. 
By the elementary equivalence of N and N1, clearly <Xn, i: i < II> is an n-good 

pseudoskeleton of PN1 . As N1 1 SUB [an+ l, a,], clearly n < m implies Xm .c X, i. 
The rest of the proof is obvious and similar to that of the proof of Theorem 3.3. 
Let K' = , <,Ai, Ai < K', let {di, a: j < Ai, i < p} be a set of new individual constants. 

Let T1 = T U {di I < di.,,,: i < il or i = il1 j < jI1 u {0(dio jog, dil. J1 .,I d, jn) 

there exists cio, jo, - - *, cin, 1 such that 
(1) di1,,, < die, a iff cf., , < cif,, k (for 1, a E n + 1), 
(2) ci, j E Xn+ 1,i (for every le n + 1), 
(3) N1 k f[CiO, Jo0 

... * Cine, Ji9 
(4) b is a formula in L(T)}. 
Clearly T1 is consistent, and hence has a L(T)-model N2. N2 has an elementary 

submodel N3 which is the closure of {di, 1: j < Ai, i < 4}. Clearly N3 is the required 
model, and hence this finishes the proof. 

THEOREM 5.3. For every T, r in L there exists T1, ri in L1 such that 
(1) IL1j + No = ILI + xo, Iril = Irl. 
(2) There exists a <K' 1>-model in Ec(T1, rF) iff one of the following conditions is 

satisfied: 
(A) There exists M e Ec(T, r) which is not well-ordered and whose outer cofinality 

is cf K'. 
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ON MODELS WITH POWER-LIKE ORDERINGS 263 

(B) KA = N+, 6, and there exists 81 E Tp(T, r) such that there is an increasing 
sequence of ordinals cofinal in 81 of length 8 (hence 8 < 81, cf K' = cf 8 = cf 31). 

REMARK. (1) By small changes in T, we can change condition (B) a little. For 
example we can replaceK =- k+ 6 by K' = U <,A, (where At < Ai+, < (2Ai)+; for 
every limit ordinal 82 < 3, U <62At = A62)- 

We can replace (2by) + by any cardinal function F such that there is a sentence 
which has a < f A', A2>-model iff Al ? A2 < F(Al). 

(2) By this theorem, from any example proving <x, C>: [a] -4 [p], we can con- 
struct an example proving <x, 4>: <K I> 74 <K I >. 

PROOF. T, will consist of 
(A) a sentence saying < is an order (of the whole model); 
(B) the sentences of T relativized to R; 
(C) a sentence "saying" R is cofinal in the model, i.e., (Vx)(3y)(x < y A R(y)). 

If M is a model of Tl, a e R(M), let tat = t{b e M: b < a}I; 
(D) a sentence telling that if x is the predecessor of y in R then IyI < x I +, i.e. 

(Vxy)[[R(x) A -7(3z)(R(z) A x < z < y) A x < y] 
[(VZlZ2Z3)(Zl < Z2 < Z3 < Y 

F(zl, Z3) < X A F(zl, -3) # F(z2, Z3))]]; 

(E) a sentence telling that if a e R(M) has no predecessor then 

Jat < U {Ibl: b < a, b E R(M)}, 

i.e., 

(Vx)[R(x) A (Vy)(3z)[y < x A R(y) R(z) A y < z < x] 

(Vy)(3z)[y < x -- R(z) A y < z < x]]. 

r1 will be r relativized to R, i.e., rl = {pQ: p e r} where pQ = {cpQ: p e p}. 

Clearly T,, rl satisfy the theorem. 
LEMMA 5.4. (1) If there is an increasing sequence of ordinals < 8 which is cofinal 

with a, and has length 81, and <x, ;>: [81] -+ [t], then <x, ,>: [8] [I]. 

(2) If X < Xi, C < 4l then 8(X, C) < 8(X,, ,). 

(3) If x < Xs 4 < ? , and <x,, Cj>: [8] -.). [u] then <x, >:[8] []. 

(4) IfC < X then 8(x, )= 8(X, 1). 
(5) If C < X, then <x, >: [8] - [] iff <X, 1>: [8] ->[]. 

(6) If C, > 2x then 3(x, Cj) = 8(x, 2X). (Similarly for <x. C>: [8] ->.) 

(7) If cf 8 > K, then <x, C>: [K] -- [JL] : <X, t>: [8] -+ [n]. 

PROOF. For (1), (2) and (3) the proof is immediate. 
(4) This is a particular case of hx = n,, in fact, which appears in Chang [3, 

pp. 47-48] [nx is the Hanf number for omitting a type in a language ? X; hS is the 
Hanf number of sentences of L.+,( ,]. As 1 < C, by (1) 8(x, 1) < 3(x, C). Suppose 
T. r are in the language L, ILI < X, trI < C. Let r = {pI: i < io < p}, pi = 
{(p, 1(x): j < X} (this is possible as tPI p< X, and we allow many appearances of one 
formula). 

Let 

T, = Tu {(fVx)Q(Fi(x)): i < 4} U {(Vx)[Ft(x) = c, Ti. j(x)] i < , j < X}. 

(Clearly we assume Q 0 L, Fi i L.) 
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264 SAHARON SHELAH 

Let rF = {p}, p = {Q(x)} U {-7x = cj: i < X}. Clearly To, r1 are in a language 
L1, IL11 < X5 and Frl = 1. Also clearly Tp(T1, rF) = Tp(T, r). If 8(X9 1) < S(x, C), 
we shall get easily a contradiction by this construction. 

(5) The same proof as of (4). 
(6) There are no more 2x types in a language of power < x. 
(7) is proven by 5.4 (1) and the downward Lowenheim-Skolem-Tarski theorem. 
LEMMA 5.5. (1) If cf 8 = P, S 2 S(X + I, Z) then <X, Z>: [8])- [p]. 
(2) If u > x, it ? l, ut, ul regular and <X, C>: [8] -- [At] then <X, {>: [8] [#L] 
PROOF. (1) Suppose T, r are in L, ILI < x, IF) r C, and MeEc(T, r), 

8 = Tp(M). As cf 8 = p, we can find in M a cofinal sequence {cj: i < A}. Let 
r, = r u {p},p = {x > cj: i < {}, and T1 TU {cj < cj: i < j < Az}. Clearly T1, 
F1 are in a language L1 of power ox + Au, and IFr, I IrI + 1. Using Lemma 
5.4 (4), it is clear that 8 > 8(x + p, g + 1) = 8(x + p,, C). Hence there is a 
model M e Ec(T1, r1), which is not well-ordered. As it omits Pi its outer cofinality 
is clearly ,u. Hence, by the definition <x, C>: [8] -? [p]. 

(2) is immediate. 
THEOREM 5.6. (1) X+ < 58(X, ) ? (2X)+, and if cfx > to, then X+ < 8(X, 1). 
(2) If x = M, cf 8 = w, then 8(x, 1) x+ (in particular, 8(90, 1) = D1). More- 

over, if cfX = w, then S(X, 1) < (Ex<x2x)+ 

(3) 8(x, 2X) = (2x)+ 
REMARK. Clearly, these results with Lemma 5.5 give as immediate corollaries 

relations of the form <x, C>: [8] [IL], which by Theorem 5.2 proves relations of 
the form <X, C>: <K I > <KI I>. 

PROOF. By Theorem 0.1 quoted in the Introduction (Ax = g(X,)), we can prove 
these results by previous results on I,. (1) follows by Morley [13], M. and V. Morley 
[14] and Chang [1] and [3]. (2) follows by Morley [13] (for x = ), and Helling 
[8]; and (3) is proved in Shelah [16]. (The results in (1) and (2) appear in Chang 
[3, pp. 4748].) 

In fact we use only the easy direction in Theorem 0.1: j,(x) u,; for in the cases 
we use the other direction, the proofs we depend upon prove our result. 

THEOREM 5.7. For every infinite cardinal X. C, A, and ordinal 8, j, i < 8 > i + 
j < 8 (or equivalently i < 8 => i + i < 8) the following conditions are equivalent. 

(A) <X, ;>: [8] -*[p]; 
(B) for every K, K', K = -k+6, cf K' = it; <x, <>:K -> <"K' >. 
PROOF. In Theorem 5.2 we prove that (A) implies (B). Suppose not (A), and 

we shall prove not (B). By definition there are T, r in L, ILI ? x, I rI J X, such that 
8 e Tp(T, r), but there is no M FE Ec(T, r) with outer cofinality ju, which is not well- 
ordered. 

Let T1, r, be those constructed from T, r in Theorem 5.3, i.e. ITi) < x, Irj1 < 

F r) and there is a <K' 1 >-model in Ec(T1, rF) iff 
(oa) there is M e Ec(T, r) with outer cofinality cf K' which is not well-ordered; or 
(P) Kt= Mk+6o,, and there is 81 e Tp(T, r) such that there is an increasing 

sequence of ordinals cofinal in 81 of length 8o. 
Now let 80 = (2x+ IS) + x p. Clearly cf 80 = A, and (by Lemma 5.5) <X,; >: 

[80] .-+ [p]. Let K 2 = , K' = Hp. We know that not <X, i>: [8] -+ [.], and will prove 
not <X, A>: <K I > <K') >, hence not (B). We know that T, r are in L, ILI ) X, 
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ON MODELS WITH POWER-LIKE ORDERINGS 265 

J FI < C, and (by (/3)), that there is a <K J>-model in Ec(T1, rF). If there is a <Kc' 1>- 
model in Ec(T1, rl) then (a) or (/) is satisfied. By the choice of T, F there is no 
M e Ec(T, r) with outer cofinality ju = cf S' = cf K' which is not well-ordered, 
hence (a) is not satisfied. Suppose (/) is satisfied, then, as clearly k < 80 implies 
k + k < 80, there is 81 E Tp(T, r) such that there is an increasing sequence of 
ordinals cofinal in 81 of length 80. But by Lemma 5.4, <x, C>: [8S] -+ [, ] implies 
<x, C>: [81] -* [I], this implies that in Ec(T, r) there is a not well-ordered model of 
outer cofinality u, a contradiction. Hence condition (/) is not satisfied, so <x, I>: 
<K I> 74 <K' I>, and by this we end the proof. 

REMARK. (1) Because of this theorem, we shall deal only with relations of the 
form <X, C>: [5] -* [p], and shall not mention the obvious conclusions of the form 
<x, C>: <K I> -- <K'l>. (See, for example, 5.5, 5.6 and 5.4, which have such 
obvious conclusions.) 

(2) We cannot expect to prove more transfer theorems, before we prove weaker 
two-cardinals transfer theorems with omitting types (i.e. relations of the form 
<X, 0: < I -A1, ;ks > < I A11, A21>)- 

LEMMA 5.8. If cf 8 ? :[(2z)+] (or even if cf 8 ? zd(x,O) then <x, A>: [5] -- [u] for 
every 1A. 

PROOF. This is done by a slight change in the proofs of Morley [13] and Chang 
[1], 

LEMMA 5.9. If cf 8 > w then <x, 1>: [8]-[81I. 
PROOF. By Lemma 5.4 (7), it is sufficient to prove <x, 1>: [91] ->[RXj. Hence 

let T, r be in a countable language L, r = {p}, and Ml E Tp(T, r), or Ml = Tp(M), 
M e Ec(T, r). From Keisler [9, Theorem 2.1], it follows that we can find a model N 
of a countable language such that M is a reduct of N; and if N1 _ N, I1N11 = MI, 

and N1 omits p, then N1 has an elementary extension N2 of outer cofinality X, 
which omits p. By Lemma 5.5 and Theorem 5.6(2), there is N1, N1= N, IN1 = 

go, N1 omits p and N1 is not well-ordered. By the definition of N we get our con- 
clusion. 

We shall try to get a few negative results. 
LEMMA 5.10. If there are T, r in L, ILj < x, Ijl < C, such that there is Me 

Ec(T, r), lIMIt = cf 5, but there is no M E Ec(T, r), JIM 11 = j.t, then <X, C>: [5] -4 
[p1. 

PROOF. The proof is immediate. 
LEmmA5.11. If cf S < X, then <X, C>: [8] - UI] if S(X,, ) < 8 and cf S = cf a. 
PROOF. By Lemma 5.5, it is immediate. 
LEMMA 5.12. (1) If cf U > t, n < w, then <Xa, 1>: [Xa+n] 74 [Xa+n] 
(2) If there is T, r in L, ILI < XO, IF! = 1, such that in Ec(T, r) there is a 

<jXa+n+2 Xa+n+l>-model, but not a < I +tn+l, a+>-model, and cf Ma > w, then 
<Ka, 1>: [Ra~n+21 -A [Kasn+1]- 

(3) Ifcfx> w, then there are T, r in L, ILI = x, lr = 1, such that 
(A) Every 8, X + < < xi +, cf 8 = x+, belongs to Tp(T, r). 
(B) Every model in Ec(T, r) which is not wiell-ordered has outer cofinality w. 
PROOF. All the parts of this theorem are easily proved by the following theorem 

of Chang from [3]: 
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For every predicate P, Q there is a sentence b such that if in a model Al, i = 

Tp(P(M)), cf i > w, then Q(M) is well-ordered, and Tp(Q(M)) ? 1 i I. Moreover 
for every A is a model in which Tp(P(M)) = A, Tp(Q(M)) = A+. 

T = {(Vx)Q(x)} U {the axioms of order} u {ci < cj: i < j < x} V {,}, 
r = {p}, p = {P(x)} U {x = ci: i < x} 

clearly proves (1) for n = I (this was Chang's theorem). By iterating the con- 
struction we can prove (1), and from it (2), (3) follow easily. 

(4) can be proved by adding to the above defined T a sentence saying P, Q are 
with equicofinalities. 

REFERENCES 

[1] C. C. CHANG, Two refinements of Morley's method on omitting types of elements, Notices 

of the American Mathematical Society, vol. 11 (1964), p. 679. 

[21 , A note on a two cardinal problem, Proceedings of the American Mathematical 

Society, vol. 16 (1965), pp. 1148-1155. 
[3] , Some remarks on the model theory of infinitary languages, Lecture notes in mathe- 

matics, no. 72, Springer-Verlag, New York, 1968, pp. 36-64. 
[4] P. ERDbs, A. HAJNAEL and R. RADO, Partition relations for cardinal numbers, Acta Mathe- 

matica, vol. 16 (1965), pp. 93-196. 
[5] T. FRAYNE, A. MOREL and D. ScoTT, Reduced direct products, Fundamenta Mathematicae, 

vol. 51 (1962), pp. 195-248. 
[61 G. FUHRKEN, Languages with the added quantifier " there exists at least ,, ", The theory of 

models (J. W. Addison, L. Henkin and A. Tarski, Editors), North-Holland, Amsterdam, 1965, 

pp. 121-131. 
[7] , Skolem-type normal forms for first-order languages with a generalized quantifier, 

Fundamenta Mathematicae, vol. 54 (1964), pp. 291-302. 
[8] M. HELLING, Hanf numbers for some generalizations offirst-order languages, Notices of the 

American Mathematical Society, vol. 11 (1964), p. 679. 
[9] H. J. KEISLER, Some model theoretic results for w-logic, Israel Journal of Mathematics, 

vol. 4 (1966), pp. 249-261. 
[10] , Models with ordering, Logic, methodology and philosophy of science. III (B. Van 

Rootselaar and J. F. Stoal, Editors), North-Holland, Amsterdam, 1968, pp. 35-62. 
[11] , Weakly well-ordered models, Notices of the American Mathematical Society, 

vol. 14 (1967), p. 414. 
[12] H. J. KEISLER and M. MORLEY, Elementary extensions of models of set theory, Israel 

Journal of Mathematics, vol. 6 (1968), pp. 49-65. 
[13] M. MORLEY, Omitting classes of elements, The theory of models (J. W. Addison, L. Hen- 

kin and A. Tarski, Editors), North-Holland, Amsterdam, 1965, pp. 265-274. 

[14] M. MORLEY and V. MORLEY, The Hanf number for K-logic, Notices of the American 

Mathematical Society, vol. 14 (1967), p. 556. 
[15] S. SHELAH, On models with orderings, Notices of the American Mathematical Society, 

vol. 16 (1969), p. 580. 
[16] - A note on Hanf numbers, Pacific Journal of Mathematics, vol. 16 (1970), pp. 539- 

543. 
[17] R. L. VAUGHT, The Liwenheinm-Skolem theorem, Logic, methodology and philosophy of 

science (Y. Bar-Hillel, Editor), North-Holland, Amsterdam, 1965, pp. 81-89. 
[18] , A Lbwenheim-Skolem theorem for cardinals far apart, The theory of models (J. W. 

Addison, L. Henkin and A. Tarski, Editors), North-Holland, Amsterdam, 1965, pp. 390-401. 
[19] J. BARWISE and K. KUNEN, Hanf numbers for fragments of L, ,, Israel Journal of Mathe- 

matics. vol. 10 (1971). pD. 306-320. 

This content downloaded from 195.34.79.20 on Sat, 14 Jun 2014 03:26:24 AM
All use subject to JSTOR Terms and Conditions

Sh:18

http://www.jstor.org/page/info/about/policies/terms.jsp


ON MODELS WITH POWER-LIKE ORDERINGS 267 

[20] H. FRIEDMAN, Back and forth theorem L(Q), L.,,, (Q) and Beth's theorem, Stanford 
University, Stanford, Calif., 1971 (mimeographed notes). 

[211 H. J. KEISLER, Model theoryfor infinitary logic, North-Holland, Amsterdam, 1971. 
[22] , Logic with the added quantifier, "there exists uncountably many", Annals of 

Mathematical Logic, vol. 1 (1970), pp. 1-94. 
[23] M. D. MORLEY, The Lowenheim-Skolem theorem for models with standardpart, Symposia 

Mathematica, vol. 5, Academic Press, London and New York, 1971, pp. 43-52. 
[241 R. MAcDOWELL and E. SPECKER, Modelle der Arithmetik, Infinitistic methods (Proceed- 

ings of the Symposium on Foundation of Mathematics (Warsaw, 1959)), New York, 1961, 
pp. 257-263. 

[25] J. H. SCHMERL, On -like models for inaccessible X, Ph.D. thesis, University of California, 
Berkeley, Calif., 1971. 

[261 , An elementary sentence which has ordered models (to appear). 
[271 J. H. SCHMERL and S. SHELAH, On models with orderings, Notices of the American Matho- 

matical Society, vol. 16 (1969), p. 840. 
[281 , On power-like models for hyperinaccessible cardinals (to appear). 
[29] S. SHELAH, Stability, thef.c.p. and superstability; model theoretic properties offormulas in 

first order theory, Annals of Mathematical Logic, vol. 3 (1971), pp. 271-362. 
[301 , Categoricity of classes of models, Ph.D. thesis, Hebrew University, Jerusalem, 

Israel, 1969. 
[31] , On generalizations of categoricity, Notices of the American Mathematical Society, 

vol. 16 (1969), p. 683. 
[321 , Two-cardinal compactness, Israel Journal of Mathematics, vol. 7 (1971), pp. 193- 

198. 
[331 , Two-cardinal and power-like models: compactness and large group of automor- 

phisms, Notices of the American Mathematical Society, vol. 18 (1971), p. 425. 
[34] S. VINER, Some problems in first-order predicate calculus with numerical quantifiers, Ph.D. 

thesis, Hebrew University, Jerusalem, Israel, 1971; Notices of the American Mathematical 
Society, vol. 17 (1970), pp. 456, 964, 1077. 

[351 A. EHRENFEUCHT and A. MOSTOWSKI, Models of axiomatic theories admitting automor- 
phisms, Fundamenta Mathematicae, vol. 43 (1956), pp. 50-68. 

[36] A. EHRENFEUCHT, Theories having at least continuum many nonisomorphic models in each 
infinite power, Notices of the American Mathematical Society, vol. 5 (1968), p. 680. 

[37] A. LEVY, Axiom schemata of strong infinity in axiomatic set theory, Pacific Journal of 
Mathematics, vol. 10 (1960), pp. 223-238. 

[381 E. D. EBBiNGHAuS, On models with large automorphism group, Archiv fir mathemadsche 
Logik and Grundlagenforschung, vol. 14 (1971), pp. 179-197. 

[39] L. D. LIPNER, Some aspects of generalized quantifiers Ph.D. thesis, University of 
California, Berkeley, 1970. 

HEBREW UNIVERSITY 

JERUSALEM, ISRAEL 

PRINCETON UNIVERSITY 

PRINCETON, NEW JERSEY 08540 

This content downloaded from 195.34.79.20 on Sat, 14 Jun 2014 03:26:24 AM
All use subject to JSTOR Terms and Conditions

Sh:18

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 247
	p. 248
	p. 249
	p. 250
	p. 251
	p. 252
	p. 253
	p. 254
	p. 255
	p. 256
	p. 257
	p. 258
	p. 259
	p. 260
	p. 261
	p. 262
	p. 263
	p. 264
	p. 265
	p. 266
	p. 267

	Issue Table of Contents
	The Journal of Symbolic Logic, Vol. 37, No. 2 (Jun., 1972), pp. 225-447
	A simplification of combinatory Logic [pp.  225 - 246]
	On Models with Power-Like Ordering [pp.  247 - 267]
	Ramsey's Theorem and Recursion Theory [pp.  268 - 280]
	Ordinal Recursion, and a Refinement of the Extended Grzegorczyk Hierarchy [pp.  281 - 292]
	Existentially Closed Structures [pp.  293 - 310]
	Which Number Theoretic Problems can be Solved in Recursive Progressions on Π 1/1-Paths Through O? [pp.  311 - 334]
	Some Model Theory of Abelian Groups [pp.  335 - 342]
	Generalized Interpolation Theorems [pp.  343 - 351]
	A Reduction Theorem for Predicate Logic [pp.  352 - 354]
	A System of Abstract Constructive Ordinals [pp.  355 - 374]
	Sufficient Conditions for the Undecidability of Intuitionistic Theories with Applications [pp.  375 - 384]
	General Models, Descriptions, and Choice in Type Theory [pp.  385 - 394]
	General Models and Extensionality [pp.  395 - 397]
	Reviews
	untitled [pp.  398 - 399]
	untitled [pp.  399 - 400]
	untitled [p.  400]
	untitled [p.  400]
	untitled [pp.  400 - 401]
	untitled [p.  401]
	untitled [pp.  401 - 402]
	untitled [p.  402]
	untitled [p.  402]
	untitled [pp.  402 - 404]
	untitled [p.  404]
	untitled [p.  405]
	untitled [pp.  405 - 406]
	untitled [p.  406]
	untitled [p.  406]
	untitled [pp.  406 - 407]
	untitled [pp.  407 - 408]
	untitled [p.  408]
	untitled [p.  408]
	untitled [pp.  408 - 409]
	untitled [pp.  409 - 410]
	untitled [pp.  410 - 411]
	untitled [p.  411]
	untitled [pp.  411 - 412]
	untitled [pp.  412 - 413]
	untitled [pp.  413 - 414]
	untitled [pp.  414 - 416]
	untitled [pp.  416 - 417]
	untitled [p.  417]
	untitled [p.  417]
	untitled [p.  417]
	untitled [pp.  417 - 418]
	untitled [pp.  418 - 419]
	untitled [pp.  419 - 420]
	untitled [p.  420]
	untitled [pp.  420 - 421]
	untitled [pp.  421 - 422]
	untitled [pp.  422 - 423]
	untitled [p.  423]
	untitled [p.  423]
	untitled [p.  424]
	untitled [pp.  424 - 425]
	Further Citations [pp.  425 - 429]

	Meeting of the Association for Symbolic Logic [pp.  430 - 447]



