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Abstract

Let & be an abstract elementary class with amalgamation, and Lowenheim Skolem number
LS(st). We prove that for a suitable Hanf number yy if 3o <Ao< A, and & is catcgorical in ~|
then it is categorical in Ao. (© 1999 Elsevier Science B.V. All rights reserved.

AMS classification: 03C45; 03C75

Keywords: Classifying non-first order classes; Categoricity; Hanf numbers; Abstract elementary
classes

0. Introduction

We try to find something on
Caty = {/: K categorical in A}

for K an abstract elementary class with amalgamation (see Definition 0.1 below).

The Los conjecture = Morley theorem deals with the case where K is the class of
models of a countable first order theory 7. See [14] for more on first order theories.
What for 7 an infinitary language? (For a theory T, K is the class Kr={M: M =T}
we may write Catg ). Keisler gets what can be gotten from Morley’s proof on € Ly, x,.
Then see [7] on categoricity in R for ¢ €Ly, x, and even Yy €Ly, »,(Q). and [9, 10]
on the behaviour in the R,’s. Makkai Shelah [5] proved, if 7CLZ, x,., K a compact
cardinal then Catx N {pu*: pu>Jow, 7))-} is empty or is {u": u=Toypy) } (it relies
on some developments from [13] but is self-contained).
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It was then reasonable to deal with weakening the requirement on x to measurability.
Kolman Shelah [4] proved that if g€ Caty, then (after cosmetic changes), for the right
<r the class {M: M =T, ||M| < i} has amalgamation and joint embedding property.
This is continued in [19] which gets results on categoricity parallel to the one in [5]
for the “downward” implication.

In [11] we deal with abstract elementary classes (they include models of TCL, y,,
see Definition 0.1), prove a representation theorem (see Claim 0.5 below), and in-
vestigate categoricity in N, (and having models in N, limits models, realizing and
materializing types). Unfortunately, we do not have anything interesting to say here on
this context. So we add amalgamation and the joint embedding properties thus getting
to the framework of Jonsson [3] (they are the ones needed to construct homogeneous
universal models). So this context is more narrow than the ones discussed above, but
we do not use large cardinals. We concentrate here, for categoricity on 4, on the case
“A is regular”, A > Jouseny-. See later [18, 21, 22] and for more details [15].

We quote the basics from [11] (or [18]).

Definition 0.1. & =(K, <g) is an abstract elementary class if for some vocabulary
t=1(K), K is a class of 7(K)-models, and the following axioms hold:
Ax0: The holding of M €K, N <qM depends on N, M only up to isomorphism i.e.
MeKM=N=NeK], and [if N<gM and f is an isomorphism from M
onto the t-model M’ mapping N onto N’ then N'<q M'}].
Axl: If M <@ N then M CN (i.e. M is a submodel of V).
AxIl: My <g M| <q M, implies My <q M, and M <q M and for M €K.
AxIIL: If 4 is a regular cardinal, M; (i<Al) is a <g-increasing (i.e. i <j <A implies
M; <aM;) and continuous (i.e. for limit ordinal 6 <A we have Ms;=J,_,M;)
then My <alJ;_, M; € K.
AxIV: If J is a regular cardinal, M; (i<Z) is <g-increasing continuous, M; <q N
then |J, ., M; <aN.
AxV: If My C M, and M, <4 N for £/ = 0,1, then M, <q M,.
ArVI: LS(R) exists,” where LS(R) is the minimal cardinal A such that: if ACN
and |A| </ then for some M <qN we have 4 C [M|<4 and we demand for
simplicity |7]| <A.

Definition 0.2. (1) K, =: {M €K: |[M||=pu}.
(2) We say / is a <g-embedding of M into N is for some M’ <gN, 4 is an
isomorphism from M onto M’.

Definition 0.3. (1) We say that u is a Skolem Lowenheim number of K if
uz|t(K)| + Ny and
(x)g forevery M €K, ACM, |A|<pthereis M',ACM' <gM and |M'||<p.
(2) LS(K) = Min{u: p is a Skolem Lowenheim number of & and |t(R)|<u}.

2We normally assume M € & = ||M||=LS(R), here there is no loss in it. It is also natural to assume
|7(8)| <LS(K) which just means increasing LS(R).
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Claim 0.4. (1) If [ is a directed partial order, M, €K for tel and s<,t = M,<q M,
then
(@) M,<alU,c, M; €K for every sel,
(b) if (Ve Iy [M,<q NY then o, M, < N.
(2) Iff ACMeK, |A] + LS(R)<u<||M||, then there is My<aM such that
[|M || = p and A C M.
(3) If I is a directed partial order, M, <N, €K for t€l and s <;t= M, < M,
& N.<u N, then |J, M, <aJ, N..

Claim 0.5. Ler ] be an abstract elementary class. There are t=, I' such that

(a) " is « vocabulary extending ©(K) of cardinality LS(R),

(b) I is a set of quantifier free types in 17 (each is an m-type for some m <),

(¢) MK iff for some t7-model Mt omitting every pel we have M =M™" | 1.

(d) Mg N iff there are 1" -models M™. N* omitting every pel such that M~ TN,
M=M"t«K). N=N* 1K)

(e) if M" is a t7-model omitting every p € T and M | ©(K) <N, then there is
tt-model N omitting every pe I and NtV | (K)y=N, M~ CN™.

Claim 0.6. Assume K has a member of cardinality B BTN (here and elsewhere

we can weaken this to: has a model of cardinality =3, for every a<(2-5N)"),

Then there is @ proper for linear orders (see {14, Ch. VII, Section 2]) such that

(a) |o(®)| = LS(R).

(b) for linear orders I CJ we have EM (I, ) <y EM(J, ®) (€K),

(¢) EM . (I, ®) has cardinality |I| + LS(K) (so K has a model in every cardinality
= LS(K)).

PART [

1. The framework

Hypothesis 1.1. (a) 8 =(K, <y) an abstract elementary class (0.1) so K; ={M €K:
]| = ).

(b) K has amalgamation and the joint embedding property,

(c) K has members of arbitrarily large cardinality, equivalently: K has a member of
cardinality at least 3(2,5(“,)-.

Remark 1.2. (1) So there is a monster € (see [8, Ch. I, Section 1]=[14, Ch. I, Section 1}).

Definition 1.3. K is categorical in 4 if it has one and only one model of cardinality /,
up to isomorphism.

Definition 1.4. (1) We can define tp(a, M,N) (when M<qN, GCN), as (a, M. N)/E
where E is the following equivalence relation: (a'.M'.N') E(@, M>,N?) iff M’ <4 N’
a €*(N’) (for some o) and M'=M"> and there is N €K satisfying M'=M><yN
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and <g-embedding f/: N’ — N over M’ (ie. f M’ is the identity) and f'(d")=
SAU@). Let py = py | My if My < My< M,a € *M and p, = tp(d, M, M).

(2) We omit N when N =@ (see later) and may then write . We can define N is
-saturated (when x> LS(R)) by: if M<g N, ||M|| <k and pe ¥ <“(M) (see below)
then p is realized in M, ie. for some aCN, p=tp(a,M,N).

(3) FYMY={tp(a, M,N): G€*N, M <qN}; we define p/|M when M<qN& p€
F(N) as tp(a,M,N,) when N<qN|, p=tp(a,N,N;). Let p<qg mean peF(M),
qgeE L (N), p=gq | M; see [13, Ch. 1I] or [18, Section 0].

(4) € is the monster model (as in [14]) so e.g. tp(a, ¢, M) is defined naturally.

(5) S(M)= LY (M) (could just as well use F<“(M)).

Definition 1.5. X stable in 1 means: |M| <i=|F(M)| <4 and i=LS(RK).
Convention 1.6. If not said otherwise, @ is as in Claim 0.6.

Claim 1.7. If K is categorical in A and 1= LS(R), then

(a) K is stable in every u, LS(R)< <A, hence

(b) the model M €K; is cf(A)-saturated (if cf(1)>LS(R)).

Proof. Like [4]. O

Definition 1.8. E, is the following relation,

p E,qiff for some M €K, m<w we have
pq€S" (M) and [NSGM&|IN||<p=p[N=gq!|N]
Obviously, it is an equivalence relation.
Remark 1.9. In previous contexts £, g« is equality, e.g. the axioms of NF in [13, Ch.
I, Section 1] show it; but here we do not know — this is the main difficulty. We may
look at this as our bad luck, or inversely, a place to encounter some of the difficulty

of dealing with L, ., (in which our context is included).

Claim 1.10. There is no maximal member in K, in fact for every M €K there is
NM<gNeK, |N||<|M|| + LS(R). | has the obvious properties.

Proof. Immediate by Hypothesis 1.1.

2. Variant of saturated

Definition 2.1. Assuming K stable in u and « is an ordinal <u*, 4™ x o means ordinal
product.
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(H M <§’H NifMeK, NeK,, M<N and there is a <gy-increasing sequence M =
(M;: i<p x o) which is increasing continuous, My =M, M, ,<a N and every pc
FUM,;) is realized in M.

(2) Wesay M <, ,N iff MeK,, NeK,, M<yN and there is a <g-increasing se-
quence M = (M;: i<pxa),My=M, M, =N and every pe ¥ (M) is realized
in M.

(3) If x=1, we may omit it.

Lemma 2.2, Assume K stable in p and x<yu™.
(0) If 7 €{0.1} and oy <oy <p™ and there is b C ay such that otp(b)= 2, and [/ =
= b unbounded in o] then </, C</ .

(1) If M €K,. then for some N we have M <, , N and for some NNM <!  N.

(2) (a) If M €K,uM <o M'</, N then M </, N.
(b) If M e K M<aM' <), N'<aN €K, then M<|,N.

(3) If (M;: i<w) is <g-increasing sequence in K, M,sj’, M and x<p” is a limit
ordinal, then My <, U, , M.

(4) If M<"'N then:
(a) any M’ €K, can be <g-embedded into N (here we can waive || M| = p).
(b) If M'<wN' €K, his a <g-embedding of M' into M then h can be ex-

tended to a < g-embedding of N’ into N.

(5) If M <! N’ for £ =1,2,h an isomorphism from M" into [onto] M* then h can
be extended to an isomorphism from N\ into [onto] N-.

(6) If M<! N’ for £ =1,2 then N' = N* (even over M).

(7) 1]‘M<§{v,( N, M<gM' €K, then M' can be <g-embedded into N over M.

(8) If uzr>LS(KR).M <! N then N is cf (x)-saturated.

WK

Proof. See (13, Ch. 1L, 3.10, p. 319] and around.

Discussion 2.3. There (in [13, Ch. II, 3.6]) the main point was that for »>LS(R),
the notions “k-homogeneous universal” and x-saturation (i.e. every “small” 1-type is
realized) are equivalent.

Not hard, still [13, Ch. I, 3.6] was a surprise to some. In first order the equivalence
saturated = homogeneous universal for < seemed a posteriori natural as the homogene-
ity used was anyhow for sequences of elements realizing the same first order formulas
so (forgetting about the models) to some extent this seemed natural; i.e. asking this
for any type of 1-element was very natural.

But here, types of l-element are really meaningful only over a model. So it seems
that if over any small submodel every type of l-eclement is realized (say in ) and
we want to embed N =g Ny, Ny <qU into A over Ny, we encounter the following
problem: we cannot continue this as after o stages we get a set which is not a model
(if LS(R) >N, this absolutely necessarily fails; and is if LS(R) =N, at best the situation
as in [9]).
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This explains a natural preconception making you not believe; i.e. psychological
barrier to prove. It does not mean that the proof is hard.
In the explanation of Ch. 1, Lemma 2.2(8), of course, we assumed x regular.

Definition 2.4. M € K is x-saturated if x> LS(R) and:

N<qM, |N||<x, pe S (N)= p realized in M.

Remark. Note é},‘ (K regular are the interesting ones. Still <), is enough for univer-
sality (Lemma 2.2(4)) and is natural, <, is natural for uniqueness. But <All» %o
can be proved only under categoricity (or something like superstability assumptions).
Look at first order T stable in u. Then, M <}M N is equivalent to

IMI| = IN||=p.MN =T

— 1
- <p.N|

and there is (M;: i<k), <-increasing continuous such that
My=M, M,.=N,
(Mis1,¢)eep, 18 saturated.

Question: Now ... is N saturated when M < , N?

Answer: It is iff cf(k) 2k, (T). See [20, Ch. IV, Section 3].
See on limit and superlimit models in [11].

Proof of Lemma 2.2(8).
Statement: If M <},,,‘. N (x regular) then N is k-saturated.

Note: if k <LS(R) the conclusion is essentially empty, but there is no need for the
assumption “xk > LS(K)".

Proof. Let M = (M;: i<uxk) witness MgL_,\.N so My=MM,.=N, M;<gx-
increasing continuous and every p € %(M;) is realized in M, ;.
Assume

(*) N'<gN, |N|<xk, peP(N).
We should prove that “p is realized in N”. But (M;: i<u X k) is increasing continuous
of (1 x 1) = K> [N

s0 N'<x My =<, M: implies there is i(x) <p xx, such that N’ C My, hence
by Axiom V N’ < g M. So p has an extension p* € #(Mj.,) and p* is realized in

A/[f(*)q SO in [WNX,\- =N. O

Comment: Hence length k (instead of u x k) suffices.

But for the uniqueness it does not. See Lemma 2.2(4) + (5).
Comment: The definition of <, <. is also essentially taken from [13, Ch. II,
3.10]. We need the intermediate steps to construct models so we have to have u of

them in order to deal with all the elements.
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Claim 2.5. If K is categorical in ;,M € K; and cf (A)>p then: if N <q¢MecK,, N
K,. N'<qM. h is an isomorphism from N onto N’, then h can be extended to an
automorphism of M.

Proof. We can find (M;: i< ) which is < g-increasing continuous,
IM:]] = |i] + LS(RK), M; <}11'J+LS(.\§)A|1‘}~LS(A§) M;, . By the categoricity assumption without
loss of generality M =, _, M. As cf(4)>u for some iy <4 we have NN’ <M, .

By Lemma 2.2 we can build an automorphism. [J

Definition 2.6. For u>LS(R), we say N € K, is (u. k)-saturated (or (u, x)-limit) if for
some M we have M <}U\. N (so x is <y, normally regular).

Fact 2.7. (1) The (u, x)-saturated model is unique (even over M) if it exists at all

(2) If M is (p, x)-saturated, xk =cf(x),ctf(k)>LS(RK) then M is k-saturated.

(3) If M is (u,x)-saturated for every k=cf(k)<u and pu>LS(K) then M s
u-saturated.

Discussion: It is natural to define saturated as ||M ||-saturated. (/ may have confusions
using the other.) This is particularly reasonable when the cardinal is regular, e.g. if K
categorical in A, A=cf(4) the model in K; is /-saturated.

Part of the program is to prove that all the definitions are equivalent,

For now in Definition 2.6 we are not sure that such a model exists.

3. Splitting

Whereas non-forking is very nice in [14], in more general contexts it is not clear
whether we have so good a notion, hence we go back to earlier notions from [6], like
splitting. It still gives for many cases p € ¥(M), a “definition” of p over some “small”
N<qM. We need p-splitting because E, 5w is not known to be equality (see 1.8).

Context 3.1. Inside the monster model €.

Definition 3.2. p & (M) p-splits over N <q M if
Nl <p,

and there are N,, N>, h such that N< N, <, M for / = 1,2 and
[Nl =[Nl s

h an elementary mapping from N| onto N, over N such that the types p | N> and
h(p [ Ny} are contradictory and N <q N, <a M.
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Claim 3.3. (1) Assume K is stable in u,u>LS(K). If M €K, pc S (M), then for

some Ny C M, ||No|l =, p does not p-split over Ny (see Definition 3.2).

(2) Moreover, if 2" >p, (M;: i<x+1) is <g-increasing, a€™(M,..1), (@M,
M,.11) does (< u)-split over M, then K is not stable in .

Proof. (1) If not, we can choose by induction on i<y N;,N! N2, h; such that
(a) {N;: i<p) is increasing continuous, N; <g M, [|N;|| = u
(b) N;<a N/ <aNio
(c) h; is an elementary mapping from N onto N? over N,
(d) p N2 h(p!N') are contradictory, equivalently distinct (we could have defined
them for i< pu™).
Let y=Min{y: 2*>p} so 2<2<pu. Now contradict stability in g as in [8, Ch. I,
Section 2] or [14, Ch. I, Section 2] (by using models).
(2) Similar proof. [

Conclusion 3.4. If pe¥™"(M), M is yu'-saturated, kx=cf(x)<p, then for some

No <0« M <qM,(]INi|| = p) we have

p is the £ -unique extension of p [ N, which does not p-split over Ny.

4. Indiscernibles and E.M. models

Definition 4.1. Let 4;: Y — € for i <i*.

(1) {(h;: i < i*) is an indiscernible sequence (of character <xk) (over A) if for every
g, a partial one to one order preserving map from i to i* (of cardinality <k)
there is [ € AUT(€), such that

giy=j=hioh7'C f
(and id C ).

(2) (h;: i<i*) is an indiscernible set (of character k) (over 4) if: for every g partial
one to one map from i* to i* (with [Dom g|<k) there is f € AUT(E), such that

gy =j=hoh ' Cf
(and ld,4 _(; f)
(3) (h;: i<i*) is a strictly indiscernible sequence, if i* = w and for some @, proper for
linear orders (see [8, Ch. VII] or [14, Ch. VII]) in vocabulary 7, = 7(®) extending

©(K), there is M' = EM'(i*, @) such that M' is the Skolem Hull of {x;: i<i*},
and a sequence of unary terms {(a,: ¢ € Y) such that

o(x;)=hi(t) fori<i*, teY
M 1K) <z €
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Notation 4.2. We can replace /4; by the sequence (h;(¢): t€Y).

Definition 4.3. (1) K has the (x, 8)-order property if for every « there are 4 C €, {d;: i
<ay, where d; € "€, |4| <0 such that

() if iy <jy<a,i; <jy <o then for no /€ AUT(C) do we have
f TA :idf" f(dilnkd/'(‘):djl A(ill'

If A=0 i.e. 0=0, we write “k-order property”.
(2) R has the (x,k2,0) order property if for every a there are A CCE such that
|4 <0.{a;: i<a) where ;€ €, (b;: i<a) where b, " € such that

(x) if iy<jo<oiy<jj <o, then forno f € AUT(€) do we have
/ [A = idflh/‘(éiu ) = &/1 ? f(B/A) = }_71‘; -

Remark 4.4. So we have obvious monotonicity and if 0<x we can let 4=0; so
the (x, 6)-order property implies the (x + 6)-order property. Also strictly indiscernible
sequence is an indiscernible sequence.

Claim 4.5. (1) If u=LS(K)+ |Y| and h: Y — €, for i<O0<35, (e.g. b =h;) then
we can find (h: j<i*), a strictly indiscernible sequence. with I;:Y — € such that

(¥)  for every n<w, ji<--- <j,<i for arbitrarily large 6 we can find
iy < <i,<0 and f€AUT(C) such that K. o(h! )™ ' C f.

(2) If in part (1) for each 0O, the sequence <h(/-': j<8) is an indiscernible sequence of
character Wy, in (x) any i) < --- <i, <r* will do.

(3) In Definition 43 we can restrict % 10 a<Ioniswy- and get an equivalent
version.

(4) In Definition 4.3 we can demand (@"a;: i <x) is strictly indiscernible {(where G
lists A) and get an equivalent version.

(5) If u=LS(R)+|Y|, N<wC€and B! .Y — N for i<0<3,- and N' is an expan-
sion of N with {[t(N')|<u. then for some expansion N* of N' with |[t(N°) <pu
and WV we have
(a) (¥)=1(N?)

(b) for linear orders I CJ we have
EMALY) <aEM(L,¥)eK
and the skeleton of EM.(I,YV) is {a;: t€l), a,={a;: y€Y)

(¢) for every n<w for arbitrarily large 0 <y for some ig< ---i,_; <0, for
every linear order 1 and ty< --- <t,_ in I, letting J = {ty,....t,_1} there is
an isomorphism g from EM(J. W) C EM(I, W) (those are ©(N?)-models) onto
the submodel of N* generated by | J, _, Rang(hﬁf,) such that B (y)=g(a,.).

Proof. As in [11].
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Lemma 4.6. If there is a strictly indiscernible sequence which is not an indiscernible
set of character Ng called (G': i <w), then R has the |¢g(a')|-order property.
[Permutation of infinite sets is a more complicated issue.]

Claim 4.7. (1) If & has the k-order property then
I(y,x)=2% for every y>(x + LS(])T

(and other strong non-structure properties).
(2) If & has the (x\,k2,0)-order property and yzx=rwx, + k; + 0 then for some
M€K, we have | (M)/E.|>y.

Proof. (1) By [17, Ch. III, Section 3] (preliminary version appears in [13, Ch. III,
Section 3]) (note the version on e.g. A(L;+ ).
(2) Straight. O

Definition 4.8.

(1) Suppose M <g N, p& F”"(N). Then p divides over M if there are elementary
maps (h;: i<i), Dom(h;Y=N, h; | M =idy, (h: i<K) is a strictly indiscernible
sequence and {h(p): i <K} is contradictory i.e. no element (in some €',€ <)
realizing all of them.

(2) xu(8R) [or k;(R)] is the set of regular x such that for some < g-increasing contin-
uously (M;:i<k+1) in K, and b€ M, for every i <x we have: tp(b,M,,M,.,|)
[or tp(b,M;, 1, M, )] divides over M,.

(3) K o(R) [or K o(S] is the set of regular x such that for some < g-increasing
continuous sequence (M;: i<k + 1) in Ky and b € M, for every i<k we
have: tp(b, M., M,..1) [or tp(b, M;1|,M,.11)], p-divides over M; (see Definition 4.11
below).

Remark 4.9. (1) Is there a parallel to forking?
(2) Note the difference between x,(R) and k(). Note that now the “local charac-
ter” is apparently lost.

Fact 4.10.

(1) In Definition 4.8(1) we can equivalently demand: no element realizing > i)+
of them, where y=||N]||.

(2) If k€ x(R), 8=cf(0)<k then O € (R) and similarly of Ky o(R).

(3) K (R) Cku(R) similarly K, 0(R) Crpo(R).

Definition 4.11. Suppose M <z N, pe ¥(N), M € K¢, n=LS(R).
(1) We say p u-strongly splits over M, if there are (@': i <w) such that
(i) @ €2 € for i<w, y<p™,(ad": i<w) is strictly indiscernible over M
(i1) for no N*, N <qN*, 32 Ua'CN* and b € N* realizing P do we have:
a®”(b),a'™(b) realize the same type over M.
(2) We say p explicitly u-strongly splits over M if in addition @° Ug' CN.
(3) Omitting u means any y (equivalently p=|N|]).
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Claim 4.12. (1) Swrongly splitting implies dividing with models of cardinality <pu if
(%), holds where (%), = (%), x,x, and

(e If (@ i<i*) is a strictly indiscernible sequence, a' €"€. he ™ G,
then for some uCi*, {ul <8 and the isomorphism type of (€,a' " h
for all iei*\u is the same.

)

Claim 4.13. (1) Let p(*)=pu+ o+ LS(R). Assume (@ i<i*) and b form a counter-
example to (x), 0., of Claim 412 and 0>, then K has the u(x)-order
property.

(2) We can also conclude that for y=u + LS(R), for some M &K, we have
| IO M| > .

(3) If we have “0<Jouny” we can still get for every y=u+ o0 + LS(K) + 0 for
some M € K,. we have | 9P(M)| = 4",

Proof. Straightforward, using Claim 4.14 below.

Claim 4.14. Assume M =EM(1, &), LS(8)+/g(@a)y<p u=|a|+LS(K)y and M < N,
be’N and

(x)  for no JCI |J| <Dy do we have for all 1, s € I\J.
tp(a,"b.0.N)=1tp(a, " b.0,N).

Then
(A) we can find &' and a formula ¢ (not necessarily first order. bur @ is preserved
by < w-embeddings) such that for any linear order I'
M=EMI'.®"). a,=a b, (g@a)y<u. fg(b)=ua
pla'. bl et<s
(if a <, this is half the finitary order property).
(B) this implies instability in every p' = if a<o.
(C) this implies the (u + |a|Y-order property,
(D) if be’M then “|J|<u™™ in (x) suffices.
(B) if x=u. for some M €K,, |S*(M)| >y moreover |S*(M)/E,|> y.

Proof. As we can increase /, without loss of generality the linear order / is dense
with no first or last element and is (J>«,+ ) -strongly saturated. So for some p and
some interval Iy of I, the set Yy = {r € Iy tp(d, " b. 0,N)=p} is a dense subset of /.
Also for some g # p, the set Y; ={r € I: tp(@,"h,B,N) =g} has cardinality >3,
and let Y/ CY, have cardinality Jo.,-. As we can shrink /; without loss of gen-
ecrality /; is disjoint from Y| and as we can shrink Y, without loss of generality
(Vse Y[ )Vrelp)(s<'t) or (Vs € Y,)(Vr € lh)(t<'s). By the Erdés—Rado theorem, for
every 0 <. there are s! € Y| for a<8 such that (s): x<0) is strictly increasing

b

or strictly decreasing without loss of generality the case does not depend on 0, so as
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we can invert / without loss of generality it is increasing. Let ¢ € ¥{ for a < Jpu)- be
strictly increasing. Hence (try (p1, p2)=(p.q) and (p1, p2)=(q, p), one will work)

(*) we can find p; # p, such that
(++) and for every § <3~ an increasing sequence (f): a <0+ 0) of

members of [ exists such that
a<6:tp(étgAB9®aN):p0>
0<O€<9+ 6= tp(d[;IAl;,@,N):pl.

Now we apply Claim 4.5(5) with 4! listing @, a5 and letting N' be EM (I, ®) (so
(N')=1(®P)) and we get ¥ as there. Now for any linear order 1*, look at EM(I*, ¥)
and its skeleton (@': t€I*). Clearly, 3" =a' “a’"b*, and letting M* be the submodel
of EMy¢)(I*,¥) generated by {a),a’: t €I*} Ub, it is isomorphic to EM(I* +I*, ®),
so without loss of generality M =M* | () < €, so tp(a, b0, M)=p, tp(a> b, ,
M) = py. Now for any y we can choose /* =1} such that D= {J: J an initial segment
of I* and J =I* and I*\J is isomorphic to /*} has cardinality > y.

So we have proved clause (E) and clause (B), by easy manipulations we get clause
(A) and so (C).

We are left with clause (D). Clearly for some 7= {t;: i <i*), i* <|o|" 4+ Ny such that
b= (bp: B<at), bp="14(Ty s> rpnpy_,) and i(B,£) <i*, 745 a T(D)-term.

Let J = {#: i <i*} so by the version of (%) used in clause (D), necessarily for some
$1,80 € I\J we have

P # P2,
where
plztp(a_S] Al_)ava)’ p2:tp(dv:ABa®aN)'

Clearly s, #s,. By renaming without loss of generality s; <’s» and 0 =iy <i; <iry <i3

=i* and t,<!s)ei<i; and s, <'t; <5y =i, <i<i; and s; </t &b <i<is.
Renaming without loss of generality i(f,7) ¢ {i|,i2}, and replace #,,t, by s,s;.

So for every linear order I’ we can define a linear order /* with the set of elements

{t:: i<iy or h<i<i*}U{(s,i): s€l',iy<i<ir}
linearly ordered by

L <ty if (1 <j2<ii

G <ty If <ji<j<i,

b <G, JN<G" <t if i<in, <<,

ss" el i, j" elii]
(S/ <11S//) v (S/ =S//&j/<j/l).
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In M =EM{*,®) define, for s’

(_"\“,- is d,, if l<ll \/i>i2, El\A,‘:d(&,’) if iE[i|,i2),

by = (TH(Co.itp.010 Coithotr - - o+ Critpontppy—1y: B<a).

Easily

1A A7

s'<!s" = (@i, be, 0.M)= pi.

1"

s"<hs" = (g b 0.M) = pa.

By easy manipulations we can finish. [

Claim 4.15. Assume (K is categorical in A and)
(a) 1<k, LS(R)'<0=cf(0)< /i and
(V<0 |a|* <)
(b) a,€"C for i<
Then for some W C 0 of cardinality 8, the sequence (a;: i € W) is strictly indiscernible.

Proof. Let M’ <G, |M'||=0, a,CM'. There is M" M' <M" <€, |M"|=4 So
M'" =2 EM (/.. &) and without loss of generality equality holds. So there is u C /. |u| <0,
M' CEM(u,®). So without loss of generality M’ =EM(u, ®). So a,€ EM(r,. D),
vy Cu, oyl <k,

Without loss of generality: otpuv, = j*, so for a<fi, OP,_,, the order preserving

150

map from uy onto u, induces f, p:EM(up, @) — EM(u,.,®), and without loss of
generality f, g(dg) =a,.

Now for some w € [0]", (v,:x€w) is indiscernible in the linear order sense (make
them a sequence). Now we can create the right @.

[Why? Let u,={y,,: j</j*} where y,; increases with j. For a<0. A, ={y;
p<oj<j }U{Us<,, 75+ 1} Let 75, =Min{y € 4 y5, =7} and for each o € S =
{o<: cf(6)>x} let H(d)=Min{f<3: 75 €4} (defining (ds: f<J) as increasing
continuous, c¢f(d)>k>|;*| and 75, €A4s by definition).

By Fodor’s lemma for some stationary S, C Sy, 4 [ Sy is constantly f*. As (Vo <0)
(Ja|* <8 =cf(8)) for some S, C S for each j<,j* and for all § €S, the truth value of
“7s.; €457 (e.8. yo; =7} ;) is the same and <y(*i‘j: d€ S5 is constant, Now (us: 6 € 5h)
1s as required. See more in [16, Section 7]. O

Definition 4.16. A model M is A-strongly saturated if

(a) A-saturated,

(b) strongly ~-homogeneous: if f is a partial clementary mapping from M to M.
|Dom f'| <A then (g € AUT(M)H)N f C g).

Note: if = p<’,1 a linear order of cardinality <y, then there is a i-strongly saturated
dense linear order J,7 CJ.
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Remark. We can even get a uniform bound on |J| (which only depends on p).

5. Rank and superstability

Definition 5.1. We define for M € K, pe " (M), R(p) as follows: R(p) =« iff for
every <o there are Mt M <gaM* €K, pC pt e S (M '), R(p" )= P& p* u-strongly
splits over M]. In case of doubt we write R,,.

Definition 5.2. We call K (u, 1)-superstable if

MeK, & pe ¥ (M) = R(p)<oco (equivalently <(2*)").
Claim 5.3. If (x), from Claim 4.12 above fails, then (u, 1)-superstability fails.
Proof. Straightforward.

Claim 5.4. If K is not (u, 1)-superstable, then there are a sequence (M;: i<w + 1)
which is <g-increasing continuous in K, and a €™ (M, + 1) such that (Vi <o)[ - p-
strongly splits over M;].

Proof. As usual.

Claim 5.5. (1) If K is not (u, 1)-superstable then K is unstable in every y such that
2>+ a4 2%
(2) If kex(R) and 3" >y =LS(K), then K is not y-stable, even modulo E,.

Remark. We intend to deal with the following elsewhere; we need stable amalgamation

(*) if KEr(R), cf(y)=x, /\ng,
A<y

then K is not y-stable.

Remark. (1) In (1) this implies, J(LS(KR)H@0t4n Ky> |a| when u=R,,.
Similarly in (2). We conjecture [2] can be generalized to the context of (1).
(2) Note that for FO stable, for x regular we have (*)} < (*)5 where

(%)} an increasing union of a chain (M;: i<xk) of A-saturated models of
length k, U; <, M; is A-saturated,

(x); KeEKr(R).
In [17] ()5 is changed to
(*x) K<k (T)

(really x,.(8) (i.e. k(7)) is a set of regular cardinals).
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[
~3
[

From this point of view, T FO is a degenerated case: x,(7) is an initial segment so
naturally we write the first regular not in it. This is a point where [13] opens our eyes.
(3) In fact in Claim 5.5 not only do we get |M|=y. |[F(M)|>y but also

S (M)/E,| > y.

Proof. (1)

Case I: There are M, N, p, (a;: i<i*) as in Claim 4.12 (x), and ¢, (in fact Zg(¢)=1)
such that ¢ realizes 4,( p) for infinitely many i’s and fails to realize 4,( p) for infinitely
many i’s; so without loss of generality {i: ¢ realizes #;( p)} is countable (even of order
type w), where the A; are the maps associated with the indiscernible sequence (see
Definition 4.1(1)). Let J be a 3(y + J(2¢) )" -strongly saturated dense linear order (see
Definition 4.16) such that even if we omit <J,«,» members, it remains so. By the
strict indiscernibility we can find (G,: t €1},c as above.

So there 18 u C 1, |u|<D2ny- such that g =tp(a, "¢,0,€) is the same for all 1 € /\u:
without loss of generality ¢ =tp(a, "¢.0,€) < 1 €/\u, so u is infinite. So we can find
i, € 1" Mu such that i, <i, . Let I'=I\(u\{i,: n<w}), so that " is still y~-strongly
saturated. Hence for every J C I’ of order type @ for some ¢,(€ €) we have

teI\J=1tp(a, ¢;,0.€)=gq,
teJ=1tp(a, ¢,.0,€)#£q.

This clearly suffices.
Case 11. Note Case 1.

As in [6] (the finitely many finite exceptions do not matter) or see part (2).

(2) Possibly decreasing x (allowable as k € x,(R) rather than x € x,(R) is assumed)
we can find a tree T C*?y, so closed under initial segments, |7 N"”y| <y but
|TN*y|>y. (The cardinal arithmetic assumption is needed just for this). Let
(M i<k +1), c €M, exemplify k € k;(R) and let T' =T U {n"(0): n€"Ord,
i<k—nlieT}

Now we can by induction on i <x + 1 choose {(h,: n€ T'N'y), such that

(a) h, 1s a <,-embedding from M, into €
(b) J </ ()= hyy;
(c) ifi=j+ 1, veT (Vy, then (hy(M;). n€Sucr(v)) is strictly indiscernible,

and can be extended to a sequence of length & such that (7, (P [ M)y =

v o), < K) is contradictory (i.e. as in Definition 4.8(1)).
There is no problem to do this. Let M <4 & be of cardinality y and include
U{h (M) i<k, n€TNy} hence it includes also hy(M,) if neTN"y as
M=, M.

Let for n€ TN"y,c;=hy~0)(c), so by Claim 4.14 clearly (by clause (C))
() ifi<k, n€TNy, and yany, € TN"y, then
p € Sucr(n): for some p;, p<p; € TN"y and
cp, realizes tp(cy,, y, ri-n(mi1))}

has cardinality < Ju-rsmy-.
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Now define an equivalence relation e on T N*y:
nieny iff tp(ey,, M)=tp(cy,, M).

Now if for some #€ T N*y,|n/e|> vy then for some #* € TN*~ y, we have
{v [ (¢g(n* + 1)): v€n/e} has cardinality > Jpisi )

which contradicts (*); so if y 2= Juseny-, we are done.

But if for some # € T N*> y the set in (%) has cardinality >, then we can continue
as in case I of the proof of part (1), so assume this never happens. So above if
|n/e|>2", we get again a contradiction. So if |7 N*y|>2", we conclude |TN"y/e|=
[T N"x|, so we are done. We are left with the case y<2*, covered by 3.3(2) (note
that for y <2" the interesting notion is splitting). [

Claim 5.6. If A>p", u=LS(K,K), K is categorical in /. then
(1) K is (u, 1)-superstable.
(2) K (R)NA is empty.

Proof. (1) If A>u**, can use Claims 5.5 and 1.7, so wlogcf (4) > |LS(R)].

By Claim 1.7 if M €K, then M is cf(1)-saturated. On the other hand from the
Definition of (u, 1)-superstable we shall get a non-u™-saturated model.

Let y =i y+. Assume R is not (u, 1)-superstable so we can find in K, an increas-
ingly continuous sequence (M;: i<k + 1) and ¢ € M,,,, such that p,.| =tp(c, My,
M, 11) u-strongly splits over M, for n<®. For each n<w let (a: i<w) be a strictly
indiscernible sequence over M, exemplifying p,.| p-strongly splits over M, (see Defi-
nition 4.11). So we can define a” € € for i € [, y) such that (a: i<y) is strictly indis-
cemible over M,. Let T, ={n € ?"y: n(2m)<n(2m+1) for m<n}. For n<w, i<j<y
let #; € AUT(C) be such that 4!, [ M, =id,h] (aj "a))=a; "a;j. Now we choose by
induction on n<w, (fy: n€T,), (gy: nE€T,), (@' i<y,n€eT,) such that
(a) f,gy are restrictions of automorphisms of €,

(b) Dom( f,)=M,,

(c) g, € AUT(C),

(d) a;l =gy(a;) if neT,,

(e) f() =idm,,

) fi<gp

(g) if ney, m<n then fy12m C fys

(h) if pe>"y and i<j<y then fy~; s C(gyohf;) I M1,

There is no problem to carry the induction. Now choose by induction on n, M. %, is, j»
such that

(O() in <jn <X and Hn = <i0’j07' . -sin—l,jnfl> SO H, € Tm
(ﬁ) lwn* €K, Mn* <;lt,(u Mn*+l’

(v) Rang(f,,) S M,
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[po]
~
-3

d) a.a™ realizes the same type over M,
K ’ 2
(eyar.a"cm; .

There is no problem to carry the induction (using the theorem on existence of strictly
indiscernibles to choose i, <j,).

So U, <., fy, can be extended to f € AUT(E). Let ¢* = f(c). M, =, M; .M, , =
f(M,,-1). Clearly tp(c, M, |, M, ) does p-split over M, hence M., is not y~ -saturated
(as ¢f(4)>p) (see Claim 5.7); contradiction.

(2) Follows. O

Claim 5.7. If = LS(R), (M;: i<98) is <w-increasing continuous, p € & <" (My). p -
strongly splits over M; for all i (or just p-splits over M;) then M, is not u~-saturated.

Proof. Straightforward.

Claim 5.8. Assume there is a Ramsey cardinal >p + LS(RK). If 8 is not (u,1)-
supersiable, then for every y > u+LS(R) there are 27 pairwise non-isomorphic models
in &,

Proof. By [2] for y regular; together with [17] for all .

Lemma 5.9. (1) If for some M,|F(M)/E,|> 7= |IM|| + 32y and 1 =LS(K) then K
is not (u, 1)-superstable.
) If 1 2L MYE N> = 212 IM}j + Daeyr . p2LS(K) + k then k€ k(R).

Proof. No new point when you remember the definition of £, (see Definition 1.8).

6. Existence of many non-splitting

Question 6.1. Suppose N = (N;: i<d) is < ;‘g_,\.—increasing continuous (we mean for

[ <j.j non-limit N; <}L,\. N;), d<yu® and p € & (N;). Is there o < such that for every

M€ K¢, Ny <4 M, p has an extension g € " (M) which does not u-split over N, (and
so in particular p does not p-split over N,).

Remark 6.2. If p [N, does not p-split over N,, then p [ N, has at most one ex-
tension mod £, which does not u-split over N, because N, € K, is universal over
Ny, N,y <M e K. Also if A= p there is a unique g € ¥ (M) which does not u-split
over N,.

Lemma 6.3. Suppose K is categorical in 4. cf (A)>u=LS(K). Then the answer fo
Question 6.1 is yes.

Remark 6.4. We intend later to deal with the case /> p> cf(1)+ LS(K) as in [4].

Notation. 7 x x is { + 7 + --- (« times) (with the obvious meaning).
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Proof. Let ¢ be proper for linear order, |1(®)| <LS(K), EM (I, ®)€K (of power
[I| + LS(R)) and I CJ = EM,(I, ®) <, EM.(J, ®). So EM (A, ®) is pu'-saturated (by
Claim 1.7). Let I* be a linear order of power u,[* x (a + 1)=I* for a<ut and
I" x w = I* (see [12], App.). By Claim 1.7 we know that EM.(I* x A, ®) is u*t-
saturated W log x = N,.

Now we choose by induction on i an ordinal a; <y and an isomorphism 4; from
Ny, onto EM(I* x a;, ), both increasing with i such that for non limit i, cf(e;)™Ry.

For i =0, use the proof of the uniqueness of N| over N, (see Claim 2.5 and refer-
ences there); then using the back and forth argument we can find o C 4, |J]=p
and isomorphism Ay from N} =Ny, onto EM(1* X Jo, @) C(I* x A4, P). Now let
JP=Ju{a<i: (VBep)B<a} so 2] (note: Jy is bounded in A as cf (1) >pu>|Jo|)
and also EM,(I* xJ°, @) is u*-saturated (being isomorphic to EM(I* x A, ®)), so with-
out loss of generality Jy is some ordinal ag < put.

So we have hy. The continuation is similar.

Now h; is defined h;: N onte, EM.(I* x a5, @), so as EM(I* x A, ®) is u™-saturated,
hs(p) is realized say by a, so let a=&(xy, 4)..-.,%u,,;,)) Where ¢ is a sequence of
terms in t©(®) and (f,7,) is increasing with £ (in I* x ). Let f<d be such that

{V1s-eespnt Nas Cog.
Let

Nz if v, <as,

y{—{fww if yrzas

Then in the model N = EM,(I* x A+ A, @), we shall show that the finite sequence @ =
G(X(ty 51)s - - > X(1,,;) ) Tealizes a type as required over M = EM,(I* x A, ®). Why? Assume
toward contradiction that

(*) tp(a’,M,N) does p-split over Mg, where over M, = EM(I* xa., ®), for y<J.

Let & be“M realize the same type over M., but witness splitting.
We can find wC A, |w|<u such that &, b C EM(I* x w, ®). Choose y such that

supw<y<A.

Let M~ =EM(I* x (a5 Uw U[7,1)), ®)<a M.

Let N~ =EM{I* x (as UwU [y, A)U[4, 4+ 1)), D).

So still &b witness that tp(@', M ~,N~) u-splits over Mg, ;.

There is an automorphism f of the linear order /* x (as Uw U [y, A))U[A, A+ 1)) such
that

ST {* x apyr)=the identity,
FTU" x[y+ 2,4+ A))=the identity,
Rang([ (7" x (w\atg1))) CI™ X [api1, 0p42).

Now f induces an automorphism of N~ naturally called 7.
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So

~

f [ M/p,\ = identity,

fay=a. [ y=Mm".
As f is an automorphism, f(é).f(i)) witness that tp( f(c?’),fA(M‘),f(N*)) u-splits
over f(Mg_); i.e. tp(@ .M~ ,N~) p-splits over My_,. So tp(a’.My_,,N) p-splits over
Mg, ;.
Now choose a. <u*t for y& (3, ], increasing continuous

iy =os + 1, M. =EMI" x a.,P).

So (M.: y<u} is increasing continuous. Without loss of generality 6 =cf(d). If 6 =,
we finish by Claim 3.3(2) as categoricity in A=> stability in y € [LSq, ). So 0 =¢f(4)
<p. So for y, €[, ) there is an f € AUT(I" x (A+ 4))

S 11" < ap = identity,
S takes [™ x [ag, ap4) onto 1™ X [og, o, 1),
S otakes I x {opp,op42) onto I X [, .y, 0, —2),
S takes I™ x [olg0, 0 13) onto I7 X [ot, 1, %, 12).
ST x o 13,4 + A) = identity.

As before this shows
tp(c?',/\/[,,ﬁﬁl,N) p-splits over M. ...

So {y<u: tp(@',M..\,N) p-splits over M.} has order type u, so without loss of
generality is y. By Claim 3.3(2) we get a contradiction.

Note: A priori may be a<ff<d=>p| Ny does not p-split over N, but x<d= p
w-splits over N,. The first part of the argument shows in particular p u-splits over
Ny = p[ Ny p-splits over N,.

The second part, (as the first part holds for every a) pushes it up to the “new™ M.’s
(7€ (5, 1)) to enable us to use Claim 3.3(2).

By categoricity EM(I* x /,®) is the model in K; and by Claim 2.5 it is also unique
over /;(N;). Now having proved the conclusion for hAs;(Ns),hs(p), we can deduce it
for Ns,.

Theorem 6.5. Suppose K categorical in A and model in K, is p-saturated (e.g.
cf(A)y>p) and LS(R)<u< i
(1) M <), N=N is saturated.

(2) If xi,k2<u and for £=1,2 we have M, <, Ny, then Ny =N,
(3} There is M € K, which is saturated.
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Remark 6.6. (1) The model we get by (2) we call the saturated model of K in p.
(2) Formally — we do not use Lemma 6.3.
(3) By the same proof M <! N, = N, =y N, and we call N saturated over M.

Sk

Proof. (1) By the uniqueness proofs 2.2 as M <, N there are (M;: i<x), M; <}_‘N
M; 1, <gw-increasing continuous My =M, M, =N and as in the proof of Lemma 6.3
without loss of generality M; = EM(«;, @) where o, <u'.

To prove N =N, is p-saturated suppose p€ S '(M*), M*<gN, ||M*||<pu; as we
can extend M* (as long as its power is <y and it is < N ), without loss of generality
M*=EM(J,®), J Ca, || <p.

So for some y,[7,y+@)NJ =0, y+w<a,. We can replace [,y + ) by a copy of
A; this will make the model p-saturated [alternatively, use /* x ordinal as in a previous
proof].

But easily this introduces no new types realized over M*. So p is realized.

(2) Follows by part (1).

By Claim 2.2(4) we finish.
(3) Follows from the proof of part (1).

Remark. In part (1) we have used just cf(1)>pu>LS(K).

Claim 6.7. Assume K categorical in A,cf (A)>u>LS(K). If N; €K, is saturated, in-

creasing with i for i<d,0<u’ then N=J,_, N; € K, is saturated.

Proof. We prove this by induction on J, so without loss of generality (N;: i <§) is not
just < g-increasing but also contradicts the conclusion but is increasingly continuous
and each N; saturated. Without loss of generality 0 =cf(d). If cf(J) = p the conclusion
clearly holds so assume cf(8)<pu. Let M <g N, ||M| <u and p€ S (M) be omitted
in N and let 8=06 + |M|| + LS(R) <y, and let p<ge F(N). Now we can choose
by induction on i<é, M;<N; and M,  <qN such that M; e Ky, M;* €Ky, M; <g-
increasing continuous and M NN, CM;, j<i=M; NN, SM;,, and M; <M1 and
if g does 6-split over M; then q| M;" 6-splits over M,.

So by Theorem 6.5 we know that M; is saturated, and for some i(x) <0 we have:
gl M; does not O-split over M. But My CN=,_;Niy, M/ NN;CM;, so
M, C M;. So necessarily g € #(N) does not 0-split over M.

Now we choose by induction on o < 8%, Mj(.). 4, by, fo such that: M. , €Kpr, My <
Mic).2 €& Nigxy, Migx),» 18 < g-increasing continuous in o, by € Nj,) realizes g My.) 4,
f« is a function with domain M; and range C N, such that ¢={c: ¢ € M;),&* =:
(fale): c € M;) realizes the same type over M., . and {b,} URang(f.)C Miu) ot
As Ny is saturated we can carry the construction; if some b, realizes q[ M; we are
done (as b, €N realizes p). Let d € € realize g so

(x) a<f<0"=:'"(b,) does not realize tp(¢"(d), My.), €).
[Why? As ¢"(b,) does not realize tp(c¥d), My, €) because d realizes
p = q| ¢ whereas b, does not realize p =¢q|[¢.]
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On the other hand as ¢ does not 0-split over M., we have tp(¢” (d), M;.), €) =tp(é*~
<¢{>.Mi(*).(§) so by the choice of b/gi

(#)2 1f a<f<0" then ¢*"(by) realizes tp(c(d), My, €).

We are almost done by Claim 4.14(D). As Ny, is saturated without loss of general-
ity Nioy = EMy (1. @) and M., = EM (0. ®). As before for some y<6* there are
sequences ¢, 0" in EMya)(t + 7, ®) realizing tp(C. Ni.y. €), g Ny respectively, here
we use cf(/4)> u rather than just ¢f(4)> u. For each f< 8" there is a canonical iso-
morphism g from EM.4,(f U, u+y). @) onto EM. 4, (s +7.®). So without loss of
generality M., , = EM«(0+7,.@),&" = G- (¢ ). by =gy (). So () +(x), gives
the order property.

[Why only almost from 4.14(D)? We would like to use the “f-order property fail”,
now if we could define (¢ (by): for f<(2")") fine, but we have only a<0°, this is
too short.] [

We really proved, in Theorem 6.5 (from /A categoricity):

Subfact 6.8. (1) If I CJ are linear order, of power <cf(r),

(¥) 1€\ = (3Nse) s~ 1] where s~ 1 means “s,t realize the same
Dedekind cut”,

then everv type over EM. . (I, @) is realized in EM(J, ).

(2) Adding more Skolem functions we can omit (), for a suitable ® we can make
even the extension p-saturated over EM (I, ®).

Proof. Why? Use the proof of Theorem 6.5(1).

Replace the cut of ¢ in / by A: we get cf(/4)-saturated model.

7. More on splitting

Hypothesis 7.1. As before + conclusions of Section 6 for p € [LS(R).cf (4)), that is
(*) (a) K has a saturated model in pu.
(b) union of increasing chain of saturated models in K, of length <y is saturated.
(c) if (M i<0) increasing continuous in K, each M, saturated over M; (the
previous one), p € S (M;) then for some i <, p does not p-split over M,.

Conclusion 7.2. If pe.9"(M) and M €K, is saturated, then for some M~ <, M.
M~ €K, is saturated and p does not p-split over M ™.

Proof. We can find (M,: n<w) in K, each M, saturated M, < ;lu') M, and M, =
U<, My so M, is saturated, without loss of generality M,, =M. Now using (x)(c)
of Hypothesis 7.1 some M, is OK. as M~. [
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Fact 7.3, If My<! M, <L(UM3, pE S (M), p does not p-split over M, then

IR0}

R(p)=R(p| M).

Proof. We can find (by uniqueness) M; such that M, < }W M, < /'w M.

We can find an isomorphism /4, from M; onto M, over M (by the uniqueness
properties < }MU). Consider p and A(p [ M;) both from ¥ (M3), both do not u-split
over My and have the same restriction to M;; as My < L_w M, it follows that p=h(p |
M3). So R(plM;)=R(h(p|M>))=R(p) as required. [
Claim 7.4 (K categorical in A,cf(A)>p>LS(R)). Suppose m<w,McK, is satu-
rated, p€ S"(M),M<aN€K,, p<qge S"(N),N saturated over M,q not a sta-
tionarization of p (ie. for no M ’<IOWM, q does not u-split over M~ ). Then ¢
u-divides over M.

Proof. By Claim 7.5 below and Lemma 6.3 (just p does not u-split over some N,).

Claim 7.5. Assume My<! M, <} M, all saturated. If g€ S (M,) does not p-split

1o 1w

over My and q| M, does not p-split over My, then q does not u-split over M.

Proof. Let M3 €K, be such that M, < ;‘4.«) M; and c € M; realizes g. Choose a linear

order I* such that I* x (u + @*)=I* = [* x u, [* has no first nor last element (see
[12, Appendix]), [I*] = .

Let y=0"xp, [y =lg+1" xZ, =1 +1" x Z,I3 =5 +1I* x u. Clearly without loss
of generality M, = EM(®,1;), let c=1(ay,....a, ) Lrs1n =L + I* x {m: Z}l=m<n}
and [y ,=1* x a. So we can find a (negative) integer n(*) small enough and m(x)eZ
large enough such that {#,....6,} VD ne) CLimsy. Let My, =EM ,, @),
My, =EM(L,,®). Cleatly My<, M, <), M <, ,M,<| ,M. Clearly (use
automorphism of 73)

(*)o gl Mz, does not p-split over M, if ZE=n<n(x),m(x)<meZ.
By Fact 7.3 with ¢, M, M, ,,M>,q here standing for My, M,, M3, p there we get
() R(@)=R(qlM,) if neZ
Similarly
()2 R(gIM)=R(gI My n) if meZ
By (x)¢ and Fact 7.3 we have
(¥)3  R(qIM2 ) =R(q[ M m(x))-
Similarly we can find a(*) <y, a(*) successor and k(*) € Z such that

{to,- 6} N1 kyst € Lo uie)—1
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and then prove
(x)s R(gTMo)=R(g Mo,) if a(x)<a<p
(+)s R(gt Mis)=R(ql Mo) if a(x)<a<p

Together R(q)=R(g! My), hence g does not u-split over M, as required.

Part II

1. Existence of nice @

We build £M models, where “equality of types over 4 in the sense of the existence
of automorphisms over 4™ behaves nicely.

Context 1.1.

(a) & is an abstract eclementary class with models of cardinality =3,
it really suffices to assume:

(a)y K is a class of t(K)-models, which is PC,. ., with a model of cardinality
> Jun -

Definition 1.2. (1) Let k = LS(K), now 1" = T is the family of @ proper for linear
orders (see [14, Ch. VII)) such that
(a) [e(d)| <K,
(b) EM(I.®) = EM(I,®) | t(K) € K.
(¢} ICJ=EM.(1.D) <q EM(J. ®).
(2) T is Tq,

Definition 1.3. We define partial orders <! and <% on 1) (for k =LS(R)):
() Y <P if (P S o). EM(LY) € EMqw, (L ¥2) and EMA(L'YP) <g
EM.(I.'V,) for any linear order /.
Again for kx =LS(RK) we may drop the «.
(2) For &, @, 1, we say &, is an inessential extension of &), & <7 P, if
¢, < &, and for every linear order I,

EM(I, @)= EM (1, ;).

(note: there may be more functions in 7(®,)!)

(3) @1 <7 @, iff there is ¥ proper for linear order and producing linear orders such
that
(a) (V) has cardinality <k,
(b) EM(1,%¥) is a linear order which is an extension of /: in fact [f€/ = x, =1t].
(c) @, <P, where &,=P o, ie.

EM(I, &) =EM(EM(L, V), ®)).
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(Though we allow further expansion by functions definable from earlier ones (compo-
sition or even definition by cases), as long as the number is <k.)

Claim 1.4. (1) (7, £2) and (X, <) are partial orders (and <2 C <P).

(2) Moreover, if (®;: i<} is a <ZD-increasing sequence, d<x*, then it has a
<®-lub. & EM'(I,®)=J,_,EM'(I,®;). Similarly for <&.

Lemma 1.5. If N <qM, [[M||=30:-, x=|N|| + LS(R), then there is @ proper for

linear order such that:

(a) EM (0, @)=N,

(b) N <xq EM.(I, ), moreover

1CJT = EMq){d, D) < EMys)(I, D).

(¢) EM.(1, ®) omits every type p € F(N) which M omits, moreover if I is finite then
EM. (I, ®) can be <g-embedded into M.

Proof. Straight by [11, 1.7].

Lemma 1.6. Assume
(a) LS(R)< <4,
(b) No <g N <g M,
(©) INoll <z [NV =2 and [[M1]> Jzny (2,
(d) I ={p): i<it <y} CH(N,), each p!/E, omitted by M,
(e) To={pY i<ii} CH(No), each p? omitted by M.
Then we can find (N]: a<w), ® and (q!: i<i) such that
(o) @ proper for linear order,
(B) N, €K, is Ka-increasing continuous (for a<m),
(y) Ny=N, and Nj<. Ny,
(6) ¢/ €SN,
() EMya)(0,®) is N/,
(8) for linear order I CJ we have EMya\(I, P) < g EMy)(J, D),
(1) for n, there is a <g-increasing sequence (N, »: m<w) with union EMg,(n, ®)
and a < g-embedding f, m of N, m into M such that
(1) ern = fomNoms fam C fami
(i1) fi.m [ No is the identity, Rang( fo.n) C Ny,
(iii) fi(q! [N) = p} | Rang( f,) for i<ii,
(0) EMay(I, D) omits every p? for i<ii and omits every q! in a strong sense: for
every a € EMys) (1, ®) for some n we have q! | N, # tp(a,N,, EMy)(1, D)).

Remark. (1) So we really can replace ¢! by (g} | N: n<w), but for w-chains by
chasing arrows such limit (g}) exists.
(2) Clause ({) follows from Clause (7).
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Proof. By [11, 1.7] we can find 7, ©(R)C 1y, |1;| <y (here we can have <LS(KR)<y)
and an expansion M~ of M to a t;-model and a set I' of quantifier free types (so
|| <2%l%iy such that

(A) M* omits every perl,

(B) for ae”” M we let M; =M" [ c/(@,M") then M; <4M*, Rang (d)C Rang(h)
=M [ 1(R) <a M, 11(x) where a€””(N,)= [M;|CN,.

Note: Further expansion of M~ to M™, as long as |t(M™)| <y preserves (A)+ (B) so

we can add

(C) No €M, and letting M, =M [ (IN|N|M]]). /=12

(D) M{() [7(RK) <.\\/w£1 F(R) <u MJF Fo(R),

(E) for i<ij, the type p! (M}, | ©(R)) is not realized in M. | 7(R).

Now we choose by induction on #, sequence (f': x<(2%)") and N, such that

(1) f) 1s a one-to-one function from 2,(/) into M,

(i) (/<) {<3,(4)) is n-indiscernible in M™,

(ii1) moreover, if a<(27)", and m<n and (| <- -<{, <3, () and & < <, <
Jp(2) then: the sequences @ = (f({))ere s ful S ))s D= (f3(E .-, Jp(&,)) realize
the same quantifier free type in M~ over N;°, so there is a natural isomorphism
gj, - from M. onto M/f (mapping f,({/) to f3(£))), moreover

i<if =g, :(p] [ (M7 1 9(R) = p! T(M; | T 1(R)) and M, | 2(R) = N,
The rest should be clear. [
Claim 1.7. Suppose
(a) @€ T,
(b) n<w, u, uy, uy are subsets of {0,1..... n—1} and o1(....%... )y, 02

(X ) s are T(P)-terms.

(c) For every a< (2T (or at least 2, < u(x)-see [14, Ch. VIL, Section 4} but
of this we should be careful as to omit only <LS(RK) rvpes) there are linear
orders 1 CJ. 1 Ng-homogeneous inside® J,1 of cardinality >3,. such that for
some (equivalently every) ty<t) <---<t,. of I we have
@ for some automorphism [ of EM.(J.®). f1EM.(IN{t,: £<n, /&u}.®) is

the identity and

f(()’](...qdr,.,...)/5,,]):(72(...,(,7,, ..... )/GUZA
THEN for some @, & <= & and even & <> ' and
@ for every linear order I and to<<---<t, | from I, there is an automorphism f of
EM (1, @") such that
() fTEMUIN{ts: ¢ <n, {&u}, ") is the identity and
(/)’) f(()’,(....d, ..... )_/@,,):O'g(...,ﬁ, ..... )/g,,ﬂ.

() f=F(—.t4.....t,_) for some Fet(P").

3 This means that every partial order preserving function  from / to I can be extended to an automorphism
of J.
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Proof. Expand M = EM(J, ®), by the predicates O, = {a,: t€1},0»={a,: te€J}. For
to<---<t,_1 €1, let fy ., ,€AUT(EM.(J, D)) as in (P) and let g, (for £/ <w) be
functions from M into {a,: ¢t €J} such that VX € M, x =1.(go(x),....gn—1(x)) such that
g(xX)=a,,, tos<'tesp, let Pr={x: i, =1}

Let F be an (n+ 1)-ary function, F(a,,....a,_,.b)=f,..._,(b) when defined. The
model we get we call M*. Now use the omitting types theorem, i.e. Claim 4.5(5). So
there is a model N* and (b,: n <w) indiscernible in it such that N* =M*,N* omits
all types which M™* omits, for every m<w for some sp< - <s,_ from I the type
of by"-++ by, in N* is equal to the type of a,,"---"a;,_, in M. Define &' such that
EM(I*, @) is a 1(N*)-model generated by {a,: t€I*} such that tp<--- <, | €1* =
type of @, --"a,,_, in EM(I*,®') is equal to type of by "b,_; in N*.

Why is #<®@’ and not just & <®@’?
Here we use 0,0, in M we have

(*) every cEM™ is in the t4-Skolem Hull of Q‘QW ={a,;: teJ}.
So

(*)Y M™" omits the type

p(x): {ﬁ(aio""’y—n~l) (/\ QZ(J;/)&x:J(yOs“"yn): O-ET(D) } . D

/<n

Conclusion 1.8. For x 2 LS(R) there is ¢* €T (in fact for every @€ 71?" there is

o*, O<OP* € 1) satisfying

(a) if @* satisfies the assumptions of 1.7 for some I, J ther it satisfies its conclusion,

(b) moreover if x>25CY for some y(®*) < u(x) (see [14, Ch. VII, Section 4]), we
can weaken the assumption o<z to 3, <y(P*),

(¢) moreover, in Claim 1.7 we can omit “/ is Rg-homogeneous inside J”,

(d) also we can demand the automorphism to be F(—,d,,...,a, ,) for some function
symbol F € 7(®*),

(e) also we can replace clause (o) of ® (of Claim 1.7) by: f extends some automor-
phism of EM(I\{¢,: £ <n, £ ¢ u},®*) definable as in clause (y) or & of 1.7.

(f) we can deal similarly with automorphisms extending a given f |EM{U [{t: ¢
<n}) and having finitely many demands.

Proof. For (a) iterate Claim 1.7, by bookkeeping looking at all (o1, s, 4, u;,u2) and
use Claim 1.4 for noting that the iteration is possible. Now (b) holds as cf(u(x)) >k,
and the number of terms is <k. For (¢) we can let ¥ be such that EM (I, ¥) is an
Np-homogeneous linear order, |7(¥)| =Ny and use ¥ o @*. The rest are easy, too. [

Lemma 1.9. Let @* be as in Conclusion 1.8, and I be a linear order of cardinal-
ity y(®*) (where y(®*) is from Conclusion 1.8). Assume o(Xy,...,%,_1) is a term
in ©(®*), for £=1,2 we have t; <---<t'_, and uC{/: t! =12}, and there is no
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automorphism f of EM(I,®*) such that f } EM(I\{t\.t}: /<n, £du},®*) is the
identity, and flaay.....))=0(ag,....)
Then l
(1) for y>x(@*)" we have I[(3,K)=2"
(2) We have the y(®*)-order property in the sense of (see more [13, Ch. Il, Sec-
tion 3] or better [17, Ch. 111, Section 3]).

Proof. Without loss of generality / is dense.
We can find 5 <---<r}_, such that

/Eu:>[;':t/l,
fdu=1t ¢ {1 .2 m<n}.

¢y there is no automorphism f of EM(I,®*) such that f [ EM.(I\{t}.r;.1}: / <n.
/¢ u}t, @) is the identity and flo(a,...))=oag....)
[Why? If there is easily some @ contradicts Conclusion 1.8(a)]

&y for some k €{1,2}, there is no automorphism f of EM (I, ®) which is the identity
of EM(UN{¢).6,6): £ <n, /¢u}.®) and f(0(qy....))=0(d,....)
[Why? If not such f1, f> exists and f;] o f contradict (*)1].

&3 For some k€ {1,2} there is no automorphism f of EM (I, ®) which is the identity
on EM(I\{t,t}: £ <n, £€u},®)and f(o(dy....))= a(a....) [Why? We negate
a stronger demand than in (*);]. ' ]

By renaming we get that without loss of generality

$=t; = =keuw

By the transitivity of “there is an automorphism” we can assume that just for a
singleton /(x), ¢}, #1],,. Now if we increase u, surely such isomorphism does
not exist so without loss of generality u={/<n: /#/(x)} and 1), <,;t; . Let
P={rel: 1<t} }. I'={tel: 1, <t < 5, ) P={tel: 6, <;t} (yes: <,
not <;).

Now for every linear order J we can define /(J) as follows: I(J) is a linear order
which is the sum /° + 3, ., I/(J) + I*, I](J) is isomorphic to I', so let f,:/' —
I'(J) be such an isomorphism. Let b list EM(I" + I'(J) + [*) (such that for s,
(idjo + ff," +id,;2) induces a mapping from b’ onto b*). Let & = f,(a(t,.. ... .
Now

(x); if s9 <;r <, s then there i1s no automorphism f of EM .(I(J).®") over b
mapping ¢ to ¢,

(*), if J is Ny-homogeneous (or just 2-transitive) and r <;s9 & r <, 57 or sy <, *
& 5| <, r then there is an automorphism f of EM .(I(J), ®*) over b" mapping
¥ to &,

So by [17, Ch. III, Section 3] (or earlier version [13, Ch. IIl, Section 3]), we have the
order property for sequences of length y(@*); the formula appearing in the definition
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of the order is preserved by automorphisms of the model; though it looks as second
order, it does not matter. So conclusion (2) holds and (1) follows. O

Claim 1.10. Assume

(a) K is categorical in A,

(b) the M €K; is y*-saturated (holds if cf (A)>y).

(c) 1=LS(R).

Then every M €K of cardinality =Dy~ (or just =y, if x =25 is y+-saturated.

Proof. If M is a counterexample, let N <q M, ||N|| <y and pe F(N) be omitted by N.
By the omitting type theorem for abstract elementary classes (see Lemma 1.5, i.e. [11]),
we get M'€K;, N <gM', M’ omitting p a contradiction.

Claim 1.11. Assume

(a) LS(R)<y,

(b) for every a<(2*)* there are M, <g Ny (s0 My #N,), ||My|| =3, and pe ¥ (M,)
such that céN, = —pE, tp(c,M,,E).

(1) For every 0>y there are M <aq N in Ky and pe S (M,) as in clause (b).

(2) Moreover, if @ is proper for orders as usual, |1(P)| <y, Jon- <AK categorical
in A and I a linear order of cardinality 0, then we can demand M = EM (1, ®).

Proof. Straightforward.

2. Small pieces are enough and categoricity

Context 2.1.
(1) & an abstract elementary class,
(ii) K categorical in 4, 1>LS(R),
(ii1) some (= any) M €K is saturated (if 1 is regular this holds),
(iv) @* is as in Conclusion 1.8.

Hence

Fact 2.2. For u€[LS(R),A), there is a saturated model of cardinality u, (why? by

part 1 6.5(3A)) and there is also ®*€ 1" as in Conclusion 1.8.

Main Claim 2.3. If M €K is a saturated model of cardinality y, y(®*)<y<cf(A}<4
then (M) has character <y(®*), ie. if pi# pr are in S (M) then for some
NLKg M, NGKX(@:) we have Pi fN?épz [ N.

Proof. We can find ICJ, |I|=y, J|=4 M=EM.I, &*)<aN*=EM.(J,d*) and
I.J are Ny-homogeneous. So by Claim 1 6.7: every p€ ¥ (M) is realized in N* and
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say p is realized by op(ay,,.a;,,,....d;,, ) where t,0<tp | <-- <tp, . If the
conclusion fails, then we can find ¢ # p in (M) such that

(x) N<aM. |N|<x(P")= pIN=gIN.

Choose I’ CJ, dense, homogeneous inside J, [I'| = x(®*) such that {z,,: ¢/ <n,} CI'
and {7, ,: £ <n,} CI' and let M’ = EM(I' DL &* )< a M I'\{tperty il <my, h<n,} 1.

So pI M =g | M’; so Claim 1.7 becomes relevant (i.e. Conclusion 1.8(b)) consid-
ering the Ng-homogeneity of J) hence by the choice of @*, p=gq contradiction. [

Conclusion 2.4. Assume M €K, is saturated, y(®*)<y <A, I directed, (M,: t€l) is a
< g-increasing family of < g-submodels of M, each saturated and [r <s = M, saturated
over M,] and ||M,{| < x(@™), then for every pe F(|J,., M,) for some t* I
(*) p does not pu-split over M,-
(and even does not y-split over M;-).

ref

Proof. Clearly by the proof of 2.3.

Claim 2.5. If T is categorical in A, the M €K, is p~ -saturated, LS(R) < y(P*)y<pu< 2,
(M;: i<9d) an <g-increasing sequence of " -saturated models then |, _sM; is p™-
saturated.

Remark. (1) Hence this holds for limit cardinals > LS(8).
(2) The addition compared to Claim I 6.7 is the case cf(A)=ut. 01" " eg i=pu".

Proof. Let Ms;= |J,_,M; and assume M, is not " -saturated. So there are N <y M,
of cardinality <y and p €% (N) which is not realized in M;. Choose p; € ¥ (Ms) such
that p, [N = p.

Without loss of generality N is saturated (by I 6.7 or induction on ).

Let y = y(®*), without loss of generality § =cf(J).

We claim

@ there are i(x)<d and N* < a M., of cardinality y such that p does not y-split
over N™.
Why? Assume toward contradiction that this fails. The proof of ® splits to two
cases.

Case 1. cf(0)<y.

We can choose by induction on i <3, N?,N! such that
(a) N? <4 M; has cardinality y,
(b) N! is increasingly continuous,

(c) N) <} NP

i+12

(d) N <a N <qaM;,

(e) N! has cardinality <y,

() pi I N} does y-split over N?,

(g) for &, {<i, N/ NM:CN.
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There is no problem to carry the definition and then N;' C |J; s N} and (N: i<d), p1 |
U, <5 N contradicts Lemma 6.3.

Case 1I: cf(8)>y.

Now by Claim 3.3

() for some N*< g M; of cardinality ¥y we have p; does not y-split over N~

As §=cf(8) = >y, for some i(*)<d we have N* < M. This ends the proof of ®.

So i(x), N* are well defined wlog N* is saturated. Let c€€ realize p,. We can
find a < g-embedding & of EM.(p* + ut, ®) into € such that
(a) N* is the h-image of EM.(y. @),

(b) h maps EM.(u", ®) onto M’ < g M.y,
(c) every d€N and ¢ belong to the range of A.

By renaming, # is the identity, clearly for some o<y we have N U {c} C EM (aU
[t ut + a)), so some list b of the members of N is (s @in sy 4 ica, j<x (BS-
sume o>y for simplicity) and c=0"(...,d;..., 8,4 4j5-- dicu,jew (U,w S p™ finite as,
of course, only finitely many a;’s are needed for the term ¢*).

For each y<ut we define 5":o"(...,6,—,...,a(1+7,)a+‘,-,...),A<,(“,-<1 and ¢ =0*(...,

@iy -y A(14)atjs - - - )i; and stipulate l_fﬁ =b, ¢* =c and let g=tp(b “¢,N*,€). Clearly
(b "¢’ y<ut)'b'c is a strictly indiscernible sequence over N* and C M; U {c}, so
also {b": y<u} CM; is strictly indiscernible over N. [Why? Use / D u* + u* which
is a strongly p*™ saturated dense linear order and use automorphisms of EM(Z, @)
induced by an automorphism of /.)

As ¢ realizes py clearly tp(c, M;s) does not y-split over N* hence by Main claim 2.3
necessarily tp(’" ¢, N*,€) is the same for all y<u*, hence y<ut = tp® ™" N,
€)=gq, so by the indiscernibility f<y<u* = tpG " ¢/, N*,€)=q.

By the indiscernibility for some ¢,

B<y < put = tp(b"cf, N*,€)=q,.
If g#q, then tp(co,b',€)#£1tp(cs,b',€), but Rang(h’) is a model N<g My,
N*<g N, so by Lemma 1.9, for some v C £g(b") of cardinality ¥, tp(co,b' | v,€)#
tp(c2,b' [ 1,€). So clearly we get the (. x, 1)-order property contradiction to Claim
4.14.

Hence necessarily f<ut & y<u* & B#y = tp(bPc’,N*,€)=q. For f=yu*, y=0
we get that ¢ € M) <xM; realizes tp(c’,N,€)= p, [ N as desired. O3

We could have proved earlier

Observation 2.6.

(1) If M is G-saturated, A > 0> LS(K) and N <gq M, N €Ky then there is N', N <
N'<gqM, N €Ky and every pe S (N) realized in M is realized in N’

(2) Assume (N;: i<J) is < g-increasingly continuous, N;€K, N, <M, M is
#-saturated, and every pe& ¥ (N;) realized in M is realized in N, then
(a) if 6=0 x g, LS(R) <o =cf(6)<0, then N; is o-saturated
(b) if 6=6 x 6, 6>LS(RK), then N; is saturated.
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Theorem 2.7 (The Downward categoricity theorem for / successors). If 4 is suc-
cessor = u(x(P*))=pu<y< i, then K is categorical in y.

Remark. (1) We intend to try to prove in future work that also in K., we have
categoricity and deal with 1 not successor. This calls for using #~ (n)-diagram as
in [9], etc.

(2) We need some theory of orthogonality and regular types parallel to [8, Ch. V] =
{14, Ch. V], as done in [20] and then [5] (which appeared) and then [4, 19]. Then the
categoricity can be proved as in those papers.

Proof. Let K'={M € K: M is y(®*)-saturated of cardinality > y(®*)}. So
(x); K’ is closed under < g-increasing unions, and there is a saturated M € K;
(%) if y= ety (x(@*)) and M €K, then M € K
[Why? Otherwise by Claim 1.5 there is a non LS(R)*-saturated M €K, contra-
dicting Lemma 2.2],
(x); if M €K', pe S (M) then for some My <43 M. Myc K’ and p does not y(P*)-
split over My so [[Mo]| = x(2*).
()4 Definition: for y € [y(®*),4) and M €K and p € ¥ (M) we say p is minimal if
(a) p is not algebraic which means p is not realized by any c € M,
(b) if M <gq M/EK; and pi, p € S(M') are non-algebraic extending p, then
br= p2.
(*)s Fact: if M €K, is saturated, y € [x(P*), ), then some p € &(M) is minimal
[Why? If not, we choose by induction on o <y for every # € *2 and triple (M, N,
a,) and A, 1y for f<a such that
(a) M, <N, and a, € N,\M,,
(b) (My1p: f<a) is <g-increasingly continuous,
(€) Myyp <o Myripeny,
(d) hy.,1p is a < g-embedding of N,z into N, which is the identity on M,:; and
maps a,;p to a,,
(e) if y<B<a, ne?2, then hy v =hy 150 hyrpgs
(f) M-y =M, -1, but
tplay 0y My 0y, Ny ~0y) F a1y My -1, Ny oy )-
No problem to carry the definition and then we can get a contradiction to stability
in y; for successor use 16.3].
() Fix M* €K/ ,., and minimal p* € S (M").
(%), f M* <y M €K'_,, then p* has a non-algebraic extension of p € ¥(M), more-
over it iS unique and also p is minimal if M saturated.
[Why? Existence by Lemma 6.3, uniqueness modulo £, -, follows hence unique-
ness. Applying this to an extension M’ of M of cardinality < 4 we get p is
minimal. ]
(*)g There are no M;,M, € K’ such that
(@) M* <qg M, <q M,
(b) M\, M, are saturated of cardinality Z,, 4 = 4,
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(c) M, #M,,

(d) no c € M\M, realizes p*.

[Why? If there are, we choose by induction on { <A, N; € K, is < g-increasingly
continuous, each N; is saturated, Ny =M,, N; # N, and no ¢ € Ny | \N; realizes
p*. If we succeed, then N =J._, N: is in K; (as N;#N;y!) but no c € N\Ny
realizes p* so it is not saturated (as {{: c¢N:} is an initial segment of 4,
non-empty (0 is in)) so it has a last element {, so c €N \N; as c¢ realizes
P* cont; so N is not saturated, contradiction. For {=0, Ny=M; is okay by
clause (b). If { is limit <4, let N:=J, <:Ne clearly N: € K, and it is saturated
by 2.5. If {=¢+ 1, note that as N;, M| are saturated in K;, and < g-extends
M* which has smaller cardinality, there is an isomorphism f: from M; onto N,
which is the identity on M*. We define N; such that there is an isomorphism
/o from M, onto N extending f. By assumption (b), N: €K, is saturated
by assumption (c), N;# N-y,, and by assumption (d), no ¢ € No./\N: realizes
p* (as f: | M*=the identity). So as said above, we have derived the desired
contradiction. ]

If MeK, , and M*<M <gN, M has cardinality >0 = 35,4+ (or just >0*
=: u(x(P*))), then some c € N\M realizes p*.

[Why? By (x);, M, N are 6*-saturated. So we can find saturated M’ < g M, N’ <q N
of cardinality 0* such that M’ =N'NM, M* #£ N’ (why? by Observation 2.6). So
still no ¢ € N'\M’ realizes p*. We would like to transfer the appropriate omitting
type theorem of this situation from 6* to A;; the least trivial point is preserving
the saturation. But this can be expressed as: “is isomorphic to EM (I, @) for some
linear order I for appropriate @, and this is easily transferred.]

If M €K.; has cardinality >0" =3, then it is 0*-saturated (so € K__,).
[why? included in the proof of (x)o].

If M €K, has cardinality >6~, then M is saturated

[why? Assume not by (x)jp, M is @*-saturated let M be 6@-saturated not
07 -saturated by ()19, 0= 6%, without loss of generality M* <qM. Let My <qaM
be such that M* <M, € Ky and some g € ¥(My) is omitted by M. Now choose
by induction on i < 6" a triple (N2, N/, f;) such that

(a) NP <4 N/ belong to Ky and are saturated,

(b) N? is <g-increasingly continuous,

(c) N,.1 is < g-increasingly continuous,

(d) N} =M, and d €N, realizes g,

(e) f; is a <,-embedding of N into M, increasing continuous, fy = id,

(f) for each i, for some ¢; € N/\N? we have c; e N, |.

If we succeed, let E={6<6": & limit and for every i< and c€N,! we have
(F<0)(c;=c)—(Fj<d)(c;=c)}. Clearly E is a club of 67, and for each
JEE, cs belongs to N} = J,_sN/ so there is i<d such that ¢; €N/, so for
some j <4, c=c; 50 ¢s=c; €N}, | <aNj, contradiction to clause (f).

So we are stuck for some {, now {#0 trivially. { not limit by Claim 2.5, so
{=e+1. Now if N’ =N}, then f.(d) € M realizes g a contradiction, so N <4 N,
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Also f.(N?) <M by cardinality consideration. Now by ()9 some ¢, € N/\N?
realizes p*.
We can find N/ <q M such that f,(N?) <y N/ € Ky. N! saturated (why? by Ob-
servation 2.6). - '
Again by ()9 we can find ¢ € N/\ f,(N?) realizing p*. By (x)s clearly tp(c’.
FAUNDY M) = fi(tp(c;, N, N!)) so we can find saturated, N! € K, which <,-
extended N, and ¢, is a <,-embedding of N/ into N! extending f~' and
gi(cl)=rc:. Let N® =N, = g,(N)). ' '
So we can carry the construction, contradiction, so ()1, holds.]

(*)12 K is categorical in every y € [3 401y, 4)
[why? by (*),, every model is saturated and the saturated model is unique]. ]
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