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Abstract 

Let .rl be an abstract elementary class with amalgamation, and Lowenheim Skolem number 
LS(s:). We prove that for a suitable Hanf number I,, if’ xU t&<i~, and s: is categorical in i, 
then it is categorical in &. @ 1999 Elsevier Science B.V. All rights reserved. 

AMS clussijc.cttion: 03C45; 03C7.5 

Kqwwd~s: Classifying non-first order classes; Categoricity; Hanf numbers; Abstract elementary 
classes 

0. Introduction 

We try to find something on 

Cath = {;.: K categorical in A} 

for K an abstract elementary class with amalgamation (see Definition 0.1 below). 

The Los conjecture = Morley theorem deals with the case where K is the class of 

models of a countable first order theory T. See [14] for more on first order theories. 

What for T an infinitary language? (For a theory T, K is the class KT = {M: M b T} 

we may write Cat,). Keislcr gets what can be gotten from Morley’s proof on + e Lx,, N,,. 

Then see [7] on categoricity in HI for $ELH,,Q and even $ELH,,K~,(Q). and [9, lo] 

on the behaviour in the N,‘s. Makkai Shelah [5] proved, if T C&N,,, x a compact 

cardinal then CatKn{p+: p>Xtzk, I~/)-} is empty or is {p’: ~LJ~~++~~~~,. } (it relies 

on some developments from [ 131 but is self-contained). 
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It was then reasonable to deal with weakening the requirement on K to measurability. 

Kolman Shelah [4] proved that if ~~Catr, then (after cosmetic changes), for the right 

<r the class {M: M + T, j/Mjl <i} h as amalgamation and joint embedding property. 

This is continued in [19] which gets results on categoricity parallel to the one in [5] 

for the “downward” implication. 

In [ 1 l] we deal with abstract elementary classes (they include models of T CILx,+,, 

see Definition O.l), prove a representation theorem (see Claim 0.5 below), and in- 

vestigate categoricity in Ni (and having models in Nz, limits models, realizing and 

materializing types). Unfortunately, we do not have anything interesting to say here on 

this context. So we add amalgamation and the joint embedding properties thus getting 

to the framework of Jonsson [3] (they are the ones needed to construct homogeneous 

universal models). So this context is more narrow than the ones discussed above, but 

we do not use large cardinals. We concentrate here, for categoricity on A, on the case 

“1 is regular”, 1, > +LSOO)+. See later [ 18, 21, 221 and for more details [15]. 

We quote the basics from [l l] (or [18]). 

Definition 0.1. A = (K, 651) is an abstract elementary class if for some vocabulary 

r = r(K), K is a class of r(K)-models, and the following axioms hold: 

Axd: The holding of ME K, N <AIM depends on N, M only up to isomorphism i.e. 

[MEK,M E N + N EK], and [if N QM and f is an isomorphism from M 

onto the r-model M’ mapping N onto N’ then N’&M’]. 

If M &IN then MC N (i.e. M is a submodel of N). 

MO <s MI &I Mz implies MO <R M2 and M & M and for A4 E K. 

If 2 is a regular cardinal, M, (i<A) is a &l-increasing (i.e. i<j <A implies 

M, <sMj) and continuous (i.e. for limit ordinal 6 <A we have Mb = U,<6Mj) 

then MO <a Uicj, M; E W. 

If 2 is a regular cardinal, M; (i-c),) is Q-increasing continuous, Mj <pi N 

then Ui< j, M, ds; N. 

If MO CM, and Ml &N for / = O,l, then MO &Ml. 

LS( 53) exists, ’ where G(A) is the minimal cardinal 3, such that: if A 2 N 

and IAl d /1 then for some M &N we have A C IM( d i and we demand for 

simplicity jr] < /2. 

AxI: 

AxII: 

AxIII: 

AxIV: 

AxV: 

ArVI: 

Definition 0.2. (1) Kp =: {M E K: jjMl/ = p}. 

(2) We say h is a &-embedding of M into N is for some M’ <RN, h is an 

isomorphism from M onto M’. 

Definition 0.3. (1) We say that p is a Skolem Lowenheim number of A if 

P 3 [r(K)/ + NO and 

(*)i foreveryMEK, AGM, lA(d~thereisM’,ACM’<aMand]IM’]l<~. 

(2) LS(R) = Min{p: p is a Skolem Lowenheim number of H and jr(R)1 <p}. 

*We normally assume ME 51 =S IIMlI &S(R), here there is no loss in it. It is also natural to assume 

Ir()i)l <LS(H) which just means increasing U(X). 
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Claim 0.4. ( 1) If I is a directed partiul order, M( E K ,fbr t E I and s < I t =s M, <,; M, 

then 

(a) M,<,;IJ,,,M,EK for every sei, 

(b) $ (Vt t I) [M,<.G N] then UrE, M,&; N. 

(2) If’ ACM EK, IAl + LS(R)<p<IIM1j, then there is Ml&M such thuf 

IIM,(j=p andACM1. 

(3) lf I is a directed partial order, M, <N, E K ,ftir t E I, and s 61 t + M, <!; M, 

6; W,&; Nr then U, M,&; IJ, N,. 

Claim 0.5. Let W he an abstract elementary class. There are z~, r such thut 

(a) ri is u cocahulary extending z(K) of cardinulity LS(W), 

(b) r is a set qf’ quant$er free types in T-- (each is an m-tj’pe ,fbr some m C(0), 

(c) M EK l@_fkw some r’-model Mf omitting erery PET +qe huve M = M~‘~ 1 T. 

(d) M&; N iff there ure r--models M+. N+ orn. t’ It mg every p E r such thur Ma’ C hi , 

M=M- rt(K), N=N+ [s(K). 

(e) $M’ is u T+-model omitting erery p E r and M r T(K) < ,I N. fhetz there is 

ri -model N + omitting every p E r and N t r z(K) = N, M _ C Ni. 

Claim 0.6. Assume K has a member sf’ cardinuliry > 3,,,,,S;,,. (here uttd else\there 

+l’e can ,ceaken rhis lo: has a tnodel qf cardinulity 3 Jr ,for every ‘3 <(2Ls’!i’)‘- ). 

Then there is @ proper ,ftir linear orders (see [14, Ch. VII, Section 21) su& that 

(a) I$@)1 = LS(R), 

(b) .fbr linear orders I C J we have EM,(I, @) <hi EM(J. @) (E K), 

(c) EM,(I, @) has curdinality 111 + LS(K) (so K bus u model in ever>, curdinalif~. 

>, LS(K)). 

PART I 

1. The framework 

Hypothesis 1.1. (a) K= (K, &I) an abstract elementary class (0.1) so K; = {M E K: 

/1M/1 = r.>, 

(b) K has amalgamation and the joint embedding property, 

(c) K has members of arbitrarily large cardinality, equivalently: K has a member of 

cardinality at least 3(2I_$(-\>, )_. 

Remark 1.2. (1) So there is amonstera (see [8, Ch. I, Section I]=[ 14, Ch. I, Section I]). 

Definition 1.3. K is categorical in L if it has one and only one model of cardinality i., 

up to isomorphism. 

Definition 1.4. (1) We can define tp(G,M, N) (when M&i N. c?C N), as (Cc, M, N)iE 

where E is the following equivalence relation: (Li’ , M' , N’ ) E(C’, M’, N’) $f M’ br; N’, 

17’ E "(N' ) (for some U) and M’ = M’ and there is NE K satisfying M’ = M-‘&i N 
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and &-embedding f’ : N’ +N over M’ (i.e. ,f /Al' is the identity) and f’(Gl)= 

f2(Z2). Let p1 = p2 1 A4, if Ml <,lM2<,tM,a E “M and p/ = tp(&Mt,M). 

(2) We omit N when N = 6 (see later) and may then write $. We can define N is 

Ic-saturated (when K >LS(A)) by: if M<s; N, I(MIl <K and KEY<“’ (see below) 

then p is realized in M, i.e. for some ZGN, p =tp(Z,M,N). 

(3) Y”(M)={tp(Z,M,N): ZE “N, MC&N}; we define p/M when M&i N&~E 
Y’(N) as tp(&M,N,) when N&i NI, p= tp(&N,Nl). Let pdq mean p E Y(M), 
qEY(N), p=q rM; see [13, Ch. II] or [18, Section 01. 

(4) Q is the monster model (as in [14]) so e.g. tp(G, $,M) is defined naturally. 

(5) Y(M) = Y’(M) (could just as well use YCW(M)). 

Definition 1.5. K stable in A means: (1MIl <A + IF(M)I 62 and AaLS(sI). 

Convention 1.6. If not said otherwise, @ is as in Claim 0.6. 

Claim 1.7. If K is categorical in 1 and 12 LS(%), then 

(a) K is stable in every p, LS(R) < y < A, hence 
(b) the model ME K;. is &A)-saturated (if cf(3.) > LS(sI)). 

Proof. Like [4]. 0 

Definition 1.8. E,, is the following relation, 

p E,qiff for some MEK, m<o we have 

p,qEY”‘(M) and [Nd~~M&l(Nll,<p*p tN=q YNI. 

Obviously, it is an equivalence relation. 

Remark 1.9. In previous contexts ELS(.(I) is equality, e.g. the axioms of NF in [13, Ch. 

II, Section l] show it; but here we do not know - this is the main difficulty. We may 

look at this as our bad luck, or inversely, a place to encounter some of the difficulty 

of dealing with LJ,,,, (’ m w tc our context is included). h’ h 

Claim 1.10. There is no maximal member in K, in fact for every M E K there is 

N,M<R N E K, (IN(I d llM]l + LS(R). 1 has the obvious properties. 

Proof. Immediate by Hypothesis 1.1. 

2. Variant of saturated 

Definition 2.1. Assuming K stable in ~1 and CI is an ordinal <p+, ,u+ x a means ordinal 

product. 
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( 1) 44 <ii, I N if M E K,,, N E K,,, A4 < N and there is a < ,I-increasing sequence A? = 

@I,: i < ~1 x ‘Y) which is increasing continuous, MO = A4, A<(, x 1 < 5I N and every p t 
.Y” (M, ) is realized in M,+ 1. 

(2) We say M < :i, I N iff M E K,,, N E K,!, M < )I N and there is a < s;-increasing se- 

quence M=(M,: i</~xx),M0==A4, M,rx-/= N and every p E .f/;‘(M, ) is realized 

in M,_~,. 
(3) If c(= 1. we may omit it. 

Lemma 2.2. Assume K stable in p and Y <pi-. 

(0) Jf / E (0, 1) and ~(1 < 32 <p*’ and there is b 2 ~1 such that ofp(b) = xl und [/ = 1 

=s b unbounded in CIJ then <i,.71 C <$1,X,. 

( 1) If’ M E K,,, then fbr some N \ve hacc M <i:,, N mnd for some N, M < :,., TV. 

(2) (a) !~,~EK,,,M~,;M’~:,.,N then M<i,.N. 
(b) If.ltK,,,M~~~M’$%,,N’~,rMEK,,‘therl M<:,,,N. 

(3) Jf’(M,: i<a) is < , ,i-increasing sequcwe in K,,, Mj < li Mi _ 1 and x < t1 is LI limit 
ordinal. then MO d :,, I U, <? M,. 

(4) [f M<ij’,N then: 

(a) an>’ M’ E K,, ran be < ,;-embedded into h’ (here we can wire /lMll = to. 

(b) [f M’GN’EKG,,, h is a <g-embeddiny qf M’ into M then h can he es- 
tended to a <,t-embedding qf N’ into N. 

(. 5 1 !f M’ G 1,. ,, N’ jiw / = 1.2, h an isomovphism ,fkm M’ into [onto] M’ thtw h cun 
be e.ytended to an isomovphism .fiom N’ into [onto] N’. 

(6) [fM,(j,_,iN’ Jtir /=1,2 then N’ZN’ (even oz’er M). 
(7) [f M <i.,, N, M < 5; M’ E K,, then M’ can be < !;-emheddcd into N over M. 
(8) [f 113 ti > LS(A). M < :,,,( N then N is cf (ti)-saturutrd. 

Proof. See [ 13, Ch. II, 3.10, p. 3 191 and around. 

Discussion 2.3. There (in [13, Ch. II, 3.61) the main point was that for I< >LS(S), 

the notions “k--homogeneous universal” and ti-saturation (i.e. every “small” l-type is 

realized) are equivalent. 

Not hard, still [13, Ch. II, 3.61 was a surprise to some. In first order the equivalence 

saturated G homogeneous universal for -X seemed a posteriori natural as the homogene- 

ity used was anyhow for sequences of elements realizing the same first order formulas 

so (forgetting about the models) to some extent this seemed natural; i.e. asking this 

for any type of l-element was very natural. 

But here, types of l-element are really meaningful only over a model. So it seems 

that if over any small submodel every type of l-element is realized (say in ‘II) and 

we want to embed N 3~ Na,Ne &!.!I into (rl over No, we encounter the following 

problem: we cannot continue this as after ~rj stages we get a set which is not a model 

(if M(R) > No this absolutely necessarily fails; and is if D(S) = No at best the situation 

as in [9]). 
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This explains a natural preconception making you not believe; i.e. psychological 

barrier to prove. It does not mean that the proof is hard. 

In the explanation of Ch. I, Lemma 2.2(8), qf course, we assumed IC regular. 

Definition 2.4. M E K is k-saturated if ti > LS(sI) and: 

N<.(IM, (IN/( <IC,~E Y’(N)+ p realized in M. 

Remark. Note d il, ,i, K regular are the interesting ones. Still d ::, ~ is enough for univer- 

sality (Lemma 2.2(4)) and is natural, <ji,K is natural for uniqueness. But <:,,.+ = <:( N, 
can be proved only under categoricity (or something like superstability assumptions). 

Look at first order T stable in n. Then, A4 <:l.,i N is equivalent to 

Ml = llNll = P,MN b T 

and there is (M;: i <K), <-increasing continuous such that 

A&j =A4, M,=N, 

(Mj+ 1, c)~.~M, is saturated. 

Question: Now . . is N saturated when M <,!,,,( N? 

Answer: It is iff cf(K)>K,.(T). See [20, Ch. IV, Section 31. 

See on limit and superlimit models in [l 11. 

Proof of Lemma 2.2(S). 

Statement: If M < ;L,,i N (K regular) then N is K-saturated. 

Note: if K<LS(R) the conclusion is essentially empty, but there is no need for the 

assumption “K > LS( fi)“. 

Proof. Let &‘=(M,: i<pxIc) witness M<L,,,_N so M0=A4,M,,,,=N, M;<,l- 

increasing continuous and every p E .9’(A4;) is realized in A4;+ 1. 

Assume 

(*> N’<,iN, IIN’IJ<K, PEY(N’). 

We should prove that “p is realized in N”. But @fi: i < ,~t x K) is increasing continuous 

cf(,uxK)=rc>I/N’II 

so N’<.RM/,~~=IJ~<I(X~ Mi implies there is i(*) <p x K, such that N’ C M;(*, hence 

by Axiom V N’d~t&$,). So p has an extension p* E 9(Mic*)) and p* is realized in 

Mj(*)ll so in M,,.. =N. 0 

Comment: Hence length K (instead of p x K) suffices. 

But for the uniqueness it does not. See Lemma 2.2(4) + (5). 

Comment: The definition of ~j.~, <;l,,i is also essentially taken from [ 13, Ch. II, 

3.101. We need the intermediate steps to construct models so we have to have p of 

them in order to deal with all the elements. 
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Claim 2.5. Jf’K is categorical in i., M E K; and cf (A) > p then: (f N <)I M E K,, N E 

K!,, N’ <.,I M. h is an isomorphism @rn N onto N’, then h can he e.vtended to an 

uutomorphism qf’ M. 

Proof. We can find (M,: i <A) which is <,:-increasing continuous, 

IM = lil +LS(s),“i <I,J_Ls(H).J,J-Ls(!;) M~+I. By the categoricity assumption without 

loss of generality M = U, <; M,. As cf( A) > p for some io < i, we have N, N’ d M,,, 

By Lemma 2.2 we can build an automorphism. ‘I7 

Definition 2.6. For ~13U(sI), we say N E Ki, is (LL. K)-saturated (or (/L, ti)-limit) if fol 

some M we have M < :,,,; N (so K is <I(, normally regular). 

Fact 2.7. (1) The (p, K)-saturated model is unique (even ocer M) $ it exists at all. 

(2) [f M is (p,x)-saturated, ~=cf(ti),cf(~)>LS(SI) then M is ti-saturated. 

(3) [f M is (p, I<)-saturated ,fbr erer~~ ri = cf( K ) < 1-1 UICI ~1 > LS( S>) thrrl M is 

p-saturated. 

Discussion: It is natural to define saturated as I(M /I-saturated. (I may have confusions 

using the other.) This is particularly reasonable when the cardinal is regular, e.g. if K 

categorical in I., i = cf(i) the model in K; is i.-saturated. 

Part of the program is to prove that all the definitions are equivalent. 

For now in Definition 2.6 we are not sure that such a model exists. 

3. Splitting 

Whereas non-forking is very nice in [14], in more general contexts it is not clear 

whether we have so good a notion, hence we go back to earlier notions from [6], like 

splitting. It still gives for many cases p E .Y’(M ), a “definition” of p over some “small” 

N 6%; M. We need p-splitting because E,..Q,;, is not known to be equality (see 1 .X). 

Context 3.1. Inside the monster model 0. 

Definition 3.2. p E Y(M) p-splits over N d 5; M if 

and there are N,,N2,h such that N<,;N/ d,;M for t = 1.2 and 

h an elementary mapping from N, onto Nz over N such that the types p 1 N2 and 

!I( p 1 NI ) are contradictory and N d 5; N, d !t M. 
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Claim 3.3. (1) Assume R is stable in p, ,a >LS(R). Zf M E H, p E Y’(M), then for 

some No CM, JjNoll =p, p does not p-split over NO (see Dqjinition 3.2). 
(2) Moreover, if 2” >p, (M;: i<lc+ 1) is <St-increasing, GE”‘(M,+,), tp(&M;+,, 

M,+l) does (<,a)-split over M;, then K is not stable in p. 

Proof. (1) If not, we can choose by induction on i < p Ni, N,’ , Nf , hi such that 

(a) (Iv;: i<p) is increasing continuous, N; <nM, l(N;jl = p 

(b) N <RN,/ <RN+, 
(c) h, is an elementary mapping from N,’ onto Nf over Ni, 

(d) p r Nf, hi(p IN,‘) are contradictory, equivalently distinct (we could have defined 

them for i < ,LL+). 

Let X=Min{X: 2’>~} so 2<“<~. Now contradict stability in p as in [8, Ch. I, 

Section 21 or [14, Ch. I, Section 21 (by using models). 

(2) Similar proof. 0 

Conclusion 3.4. If PE 5“‘“(M), M is ,u+-saturated, K = cf(K) <p, then for some 

No <E,,. Ni <.QM,(IJNI II =P) we have 

p is the E/,-unique extension of p IN, which does not ,u-split over NO. 

4. Indiscernibles and E.M. models 

Definition 4.1. Let hi: Y-i6 for i<i*. 
(1) (hi: i < i*) is an indiscernible sequence (of character <K) (over A) if for every 

g, a partial one to one order preserving map from i* to i* (of cardinality <K) 

there is f E AUT(c), such that 

g(i)=j+hiohi’ C f 

(and idA C f ). 

(2) (hi: i<i*) is an indiscernible set (of character K) (over A) if for every g partial 

one to one map from i* to i* (with (Domg] <K) there is f E AUT(&), such that 

g(i)=j+h,oh,:’ C.f 

(and idA c f). 

(3) (hi: i<i*) is a strictly indiscernible sequence, if i* 20 and for some @, proper for 

linear orders (see [S, Ch. VII] or [14, Ch. VII]) in vocabulary 71 = z(Q) extending 

7(K), there is M’ = EM’(i*, @) such that M’ is the Skolem Hull of {xi: i<i*}, 

and a sequence of unary terms (cc: t E Y) such that 

or(xi) = h;(t) for i <i*, tEY 

M’ 1 z(K) <$I a. 
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Notation 4.2. We can replace h; by the sequence (hi(t): t E Y). 

Definition 4.3. ( 1) 52 has the (K, t))-order property if for every r there are A 2 K, (CT,: i 

c x), where ~7, E “K, IA( d 0 such that 

(*) if i,, <.j,j < c[, in <j, <a then for no ,f E AUT(C) do we have 

f‘ 1 A = id.{, f(Z,,,*Z,,,) = a,, ^c?~, . 

If A = 0 i.e. H = 0, we write “k--order property”. 

(2) R has the (~1, ~2, Q) order property (f for every cx there are A C: C such that 

IA / d 0. t(iT,: i < 3) where ~7; E’I 6, (h,: i < a) where b, E”’ C such that 

(*) if i,)<,jo<a,il <j, <g. then for no ~EAUT(K) do we have 

.f 1 A = $4, .f(C,,, ) = a,, , .f(oi,. I= 6,:. 

Remark 4.4. So we have obvious monotonicity and if 8~ ti we can let A = 8: so 

the (ti. Q-order property implies the (K + H)-order property. Also strictly indiscernible 

sequence is an indiscernible sequence. 

Claim 4.5. (1) lf p>LS(sI)+ IYI und hj’: Y -&,,for i<fI-~3,~,., (e.g. hj’=hj) then 

MY can ,find (hi: j <i”), a strictly indiscernible sequence, with hi : Y - Q such that 

(*) ,f;jr ever]’ n <co, jl < . <.j,, <i” ,for arbitrarily Iurge 0 w’e can find 

iI < <i,, < 0 and f E AUT(O) such that hl o (hj’ )-’ c ,f. 

(2) [f in part (1) ,fbr each 0. the sequence (hy: j < 0) is an indiscernible sequence of 
character No. in (*) any il < <i,, <iv iz*ill do. 

(3) In Definition 4.3 +ve can restrict x to a < I,, 111( ,\,c ,. and get un equiwlent 
version. 

(4) In Dqfnition 4.3 we can demund (G^Z;: i < x) is strictlv indiscernible (~*hcre U 

lists A) and get an equicalent version. 

(5) If p3LS(A)+/Yl, N<nC andhj’: Y ----f Nfi,r i<U<1C2z.,2 and N’ is an e.\-pun- 

sion of N rvith IT( <p, then .fbr some espansinn N’ of N’ Hith IT( <,H 

and Y HV hate 

(a) 5(Y)=s(N1) 

(b) .f& linear orders I C J \t’e ha1.e 

EM,(Z.Y’) GEM(I,Y)tK 
and the skeleton of EA4?(I, Y) is (CT,: t E I), ~7, = (a,,) : y E Y) 

(c) .for ever)’ n <co for arbitraril>, large 0 < 3 (2,’ ,- .for some i(, < i,,_ 1 < 0, for 

errerj linear order I and to < < t,,+ 1 in I, letting J = {to.. . , t,,-, } therr is 

an isomorphism g ,from EM(J. Y) C EM(I, Y) (those are z(N’ )-models) onto 

the s&model of N’ generated bjq U,_,,, Rang(hj: ) such that hl: (y) = g(ar , ). 

Proof. As in [l I]. 
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Lemma 4.6. Zf there is a strictly indiscernible sequence which is not an indiscernible 
set of character No called (a’: i<o), then R has the leg(aorder property. 

[Permutation of injinite sets is a more complicated issue.] 

Claim 4.7. (1) Zf 53 has the n-order property then 

Z(x, tc) = 2” for every x > (IC + LS(A))+ 

(and other strong non-structure properties). 

(2) Zf 52 has the (ICI, ICZ, O)-order property and X>K = ICI + 1c2 + 0 then for some 
MEK~, we have ]YS(M)/EFI>~. 

Proof. (1) By [17, Ch. III, Section 31 (preliminary version appears in [13, Ch. III, 

Section 31) (note the version on e.g. A(L,+,,,,)). 

(2) Straight. 0 

Definition 4.8. 

(1) Suppose A4 <a N, p E Y”(N). Then p divides over A4 if there are elementary 

maps (hi: i < K), Dom(hi) = N, hi 1 M = idM, (h;: i < i?) is a strictly indiscernible 

sequence and {hi(p): i < I?} is contradictory i.e. no element (in some a’, (5’ < 6) 

realizing all of them. 

(2) K,(R) [or K;(R)] is the set of regular K such that for some <,I-increasing contin- 

uously (Mi: i<lc+ 1) in K,, and b cMh+l for every i < K we have: tp(b, i&, Mh+ I ) 

[or tp(b,Mj+i,MK+i)] divides over A4;. 

(3) K&A) [or r&(R)] is the set of regular K such that for some <$I-increasing 

continuous sequence (A4,: i<tc + 1) in Kc) and b E M,,.+l for every i<n we 
have: tp(b,M,,M,+l) [or tp(b,Mi+l,M,+1)], p-divides over ML (see Definition 4.11 

below). 

Remark 4.9. (1) Is there a parallel to forking? 

(2) Note the difference between ~~~(9) and K;(R). Note that now the “local charac- 

ter” is apparently lost. 

Fact 4.10. 

(1) In Definition 4.8( 1) we can equivalently demand: no element realizing > X(2,)+ 
of them, where x = /IN]]. 

(2) Zf KE tcL(%), g=cf(8)6n then 6~ it;(%) and similarly of t+(R). 

(3) n;(R) C K,,(R) similarly $,(fi) C KQ(~). 

Definition 4.11. Suppose M <HN, pi Y(N), M E K,,, u>LS(R). 
(1) We say p ,u-strongly splits over M, if there are (a’: i<~) such that 

(i) a’ •7~ 6 for i -CO, y <$, (CT’: i -CO) is strictly indiscernible over M 
(ii) for no Ni, N da N+, a0 U a’ C N+ and b E N+ realizing P do we have: 

G’*(b), C”‘(b) realize the same type over M. 
(2) We say p explicitly p-strongly splits over M if in addition a0 U i’ c N. 
(3) Omitting p means any p (equivalently ,u= l]Nl]). 
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Claim 4.12. (1) Strongly splitting implies dividing with models sf’ cardinality d ,LL lf 

(*)/, holds where (*),, = ( *),c.+l.+ and 

(*)jr.ii.O i. [f (c i < i*) is a strictly indiscernible sequence, ij’ E “(5 6 cr h Cc. 

then ,for some u c i*, /MI <Q and tl Ie isomorphism type qf (K, 2 . h) 

jiw all i E i*\u is the same. 

Claim 4.13. (1) Let p( *) = ,D f CT + LS( si). Assume (a’: i < i”) and b ,form a counter- 

e.uample to (*)iI.,),ri qf’ Claim 4.12 and O> 1(2,,1s8, then W has the /L( *)-order 

propert?‘. 

(2) We can also conclude that .ftir x >p + LS(Si), f&r .some M t K, HXJ haw 

I:+‘@!!)( > %. 

(3) !f we hat;e “O<3,,,,,.1,+” we can still get ,for et:ery ~3ji + f7 + LS( Si) + 0 ,fi~r 

some M E K,. bt’e hat?e 19”‘jchr(M)( >, x”. 

Proof. Straightforward, using Claim 4.14 below. 

Claim 4.14. Assume M =EM(Z,@), LS(Sl)+/g(U,)dp, ~12 1x1 +LS(R) and M Q N. 
i; E ‘iv ar1n 

(*) .fov no J C I, lJ( < 1(2z’,. do 11.e hare ,ftir all t, s E I\./. 

tp(a,^b,m,N)=tp(a,-~,0,N). 

Then 

(A) lzte can find @’ and u ,formula q~ (not necessaril?! ,first order. but *cp is pre.wwti 

hi, &I-embeddings) such that for- an)’ linear order I’ 

M =Elvf(I’,@‘). a, =a’-&, /‘g(G’)</i. /g(b,)=a. 

(P[Z’, i;,] H t <s 

(f r < (!I, this is half the finitary order propert?‘). 

(B) this implies instability in ecery ,LL’ >,p if SI <w, 

(C) this implies the (~1 + (a\)-order propu~‘, 

(D) lf 6 E ‘M then “IJl <p+” in (*) sufJices, 

(E) if’ x>~L. fbr some M E K,, I.V’“(M)1 >x moreot?er I.Y’“(M)/E,,I >x. 

Proof. As we can increase I, without loss of generality the linear order I is dense 

with no first or last element and is (Ic2,8,+ ) _ -strongly saturated. So for some p and 

some intenal 10 of I, the set Yo = {t E IO: tp( fi, * 6.0, N ) = p} is a dense subset of 10. 

Also for some q # p, the set YI = {t E I: tp( ~7, ̂h, 0, N ) = q} has cardinality 3 3,: , 

and let Y,’ & YI have cardinality JAZZ, I. As we can shrink Jo without loss of gen- 

erality Z,, is disjoint from Y,’ and as we can shrink YI without loss of generality 

(V&y t Y,‘)(tit t ZO)(S <‘t) or (Vs E Y<i)(Vt E Zo)(t <‘.s). By the Erdijs-Rado theorem, for 

every H<3,1,,, there are st E Y( for i( < fI such that ($!: r< 0) is strictly increasing 

or strictly decreasing without loss of generality the case does not depend on 0, so as 
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we can invert I without loss of generality it is increasing. Let t,* E Y,’ for a < 1~~~ )- be 

strictly increasing. Hence (try (~1, ~2) = (p. q) and (~1, ~2) = (q, p), one will work) 

(*) we can find pi # p2 such that 

(**) and for every 0 < +)- an increasing sequence (tf : c( c 0 + 8) of 

members of I exists such that 

Now we apply Claim 4.5(5) with hj’ listing 2: ^a:+, ^b and letting N’ be EM(I, @) (so 

z(N’)=z(@)) and we get !P as there. Now for any linear order I*, look at EM(I*, Y) 

and its skeleton (5:: t E I*). Clearly, ZT = a,’ ^Lz,’ ̂6*, and letting M* be the submodel 

of EM,,~,(Z*, Y) generated by {a:,~:: t ~1’) U 5, it is isomorphic to EM(I* +I*, @), 

so without loss of generality M = M* / z(R) 6~ 6, so tp(c7: *&B,M) =p~, tp($ *g, 0, 

M) = p2. Now for any x we can choose I* = IT such that D = {J: J an initial segment 

of I” and J 2 I* and I*\J is isomorphic to I*} has cardinality >x. 

So we have proved clause (E) and clause (B), by easy manipulations we get clause 

(A) and so (C). 

We are left with clause (D). Clearly for some i= (t,: i <i*), i* < /&Ii + No such that 

b = (b/f: B <a), bp = T/G,,,j.,,, . . . 1 Lzt,(,( ,,,,, :i_,, ) and i(p, 4) < i*, zp a z( @)-term. 

Let J = {t;: i<i*} so by the version of (*) used in clause (D), necessarily for some 

SI ,s2 E I\J we have 

P1# P2, 

where 

pi = Ma,, ^b, 0,m ~2 = Ma,, % 0,N). 

Clearly s I # ~2. By renaming without loss of generality s 1 c’s2 and 0 = io <i, < i2 < i3 

=i* and t,<‘sl #i<il and sl <‘t,<‘s2(jil <i<i2 and sz<‘ti@i2<i<i3. 

Renaming without loss of generality i(/I,e) $! {il,i~}, and replace ti,, ti2 by sI,s2. 

So for every linear order I’ we can define a linear order I* with the set of elements 

{tj: i<il or iz<i<i*} U {(qi): sEI’,i, <i<i2) 

linearly ordered by 

tjl < tj2 if jl <j2 < il, 

tih <tin if i2 <J’, <J’, <i*, 

tjl <(s’,j’)<(s”,j”)<tj> fjl <il, iz<jz<i*, 

s’,s” E I’,j’,j” E [i,, i2] 

(s’ <“S”) v (s’ = s” &j’ <j”). 
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In M = EM(I*, @) define, for s E I’ 

C,., is a,, if i(i, Vi)iz, E,,i=G(,.ij if iE[it,i?), 

is = jzp(F,.,(,i.o,,~,.,(/i. I )>. . 3 F ,.I, /i,,(,,)-, ): p < x). 

Easily 

3’ <“S” =+ tp(a(,cJ,j, ) ̂ b,p, 0.M) = p,, 

S”dS’ * tp(acY/.,, J&0.M)= pz. 

By easy manipulations we can finish. C 

Claim 4.15. Assume (K is categorical in i and) 

(a) 16~ U(Q)“<0=cf(Q)<I~ and 

Then for some W C: 0 of cardinality 0, the sequence (ai: i E W) is strictly indiscernible. 

Proof. Let M’ + (I;, jlM’ll = 0, a, CM’. There is M”.M’ 4 M” + 6, jlM”Il = A. So 

hd” ” EA4(/., @) and without loss of generality equality holds. So there is u c i. /u/ < 0, 

A!’ 2 EM(u, ip). So without loss of generality M’ = EM(u, @). So Gx E EM(r,, @). 

c-, 2 U, IV,/ < ti. 

Without loss of generality: otp ~1, =j”, so for c( <p, OP,,z~,,, the order preserving 

map from up onto ~4% induces ,fx,,i: EM(u,~, @) 2 EM(u,,@), and without loss of 

generality ,t.,j(~?ij) = a,. 

Now for some IV E [Q]“, (U 7 : ct E IV) is indiscernible in the linear order sense (make 

them a sequence). Now we can create the right @. 

[Why? Let U, ={y,,i: j<j*} where yr,, increases with j. For x < 0, A, = { jl/,,,: 

~I<~,j<j*}U{U,~~I,,~~~~,,+ l}. Let ~i;,i=Min{?:EA,: ~,~.,3~} and for each r+$S,y = 

{6<0: cf(d)>ti} let h(d)=Min{fi<d: ;$, EA,~} (defining (A,{: /I<6) as increasing 

continuous, cf(S) > K > ij* 1 and 7X,, E A,, by definition). 

By Fodor’s lemma for some stationary S1 C: Se, h r S, is constantly /?*. As (Vir <(I) 

((a]“ < 0 = cf(N)) for some Sl C SI for each j <j* and for all 6 ES,, the truth value of 
“?! ,(,,, EA,,” (e.g. ;JQ =$,) is the same and ($,: (5 ES?) is constant. Now (II,,: 6 ES?) 

is as required. See more in [ 16, Section 71. 0 

Definition 4.16. A model M is A-strongly saturated if 

(a) i-saturated, 

(b) strongly i.-homogeneous: if f is a partial elementary mapping from M to M, 

]Domfl <A then (3g~AUT(A4))(f5 g). 

Note: if ;1= pC’ , I a linear order of cardinality d ~1. then there is a i-strongly saturated 

dense linear order J,I C: J. 
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Remark. We can even get a uniform bound on IJI (which only depends on p). 

5. Rank and superstability 

Definition 5.1. We define for A4 E K,,, p E Ym(M), R(p) as follows: R(p) 3 c( iff for 

every p -=c CI there are M+, M <w M+ E K,,, p C pt E 9’ (Mf ), R( pf ) 3 /3 & [p+p-strongly 

splits over M]. In case of doubt we write R,,. 

Definition 5.2. We call K (,u, 1 )-superstable if 

M E K,, & p E Y(M) + R(p) < 03 (equivalently < (2L’)f). 

Claim 5.3. Ij. (*Xc from Claim 4.12 above fails, then (y, l)-superstability fails. 

Proof. Straightforward. 

Claim 5.4. If K is not (u, I)-superstable, then there are a sequence (Mi: i <cu + 1) 

which is <R-increasing continuous in K,, and 5 E n1 (M,,, -t 1) such that (Vi < o)[&u- 
strongly splits over Mi]. 

Proof. As usual. 

Claim 5.5. (1) Zf K is not (u, l)-superstable then K is unstable in every x such that 
XNU > x + u + 2”u. 

(2) If K E K-T,(R) and x” >x>LS(S), then 53 is not x-stable, even module E,,. 

Remark. We intend to deal with the following elsewhere; we need stable amalgamation 

(*) if K E Q(H), cf(X)= Ic, A AP<x, 
i. < 7 

then 53 is not X-stable. 

Remark. (1) In (1) this implies, 1(LS(R) +((“(Xo+r)in),K) 3 1~1 when p = N,,. 

Similarly in (2). We conjecture [2] can be generalized to the context of (1). 

(2) Note that for FO stable, for K regular we have (*); H (*)$ where 

(*); an increasing union of a chain (M;: i < tc) of L-saturated models of 

length K, U,,,; Mi is i-saturated, 

(*); Ic E K,.(H). 

In [ 171 (*); is changed to 

(**) K<Jc/.(T) 

(really K,.(R) (i.e. K,.(T)) is a set of regular cardinals). 
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From this point of view, T FO is a degenerated case: K,-(T) is an initial segment so 

naturally we write the first regular not in it. This is a point where [ 131 opens our eyes. 

(3) In fact in Claim 5.5 not only do we get ]IMll = 1, IY(M)( > 1 but also 

(Y(M)&,] >I. 

Proof. (1) 

Cuse I: There are M,N, p, (iii: i<i*) as in Claim 4.12 (*))( and ?, (in fact Q(C) = 1) 

such that F realizes h,(p) for infinitely many i’s and fails to realize h,(p) for infinitely 

many i’s; so without loss of generality {i: c realizes h;(p)} is countable (even of order 

type o), where the h; are the maps associated with the indiscernible sequence (see 

Definition 4.1( 1)). Let I be a 1(x + X(2,, )A )+-strongly saturated dense linear order (see 

Definition 4.16) such that even if we omit < 72,, )+ members, it remains so. By the 

strict indiscernibility we can find (a,: t E I),c as above. 

So there is u C Z, In/ < +,- such that q = tp(E, ^.?, 0,(t) is the same for all t t I\u; 

without loss of generality q =tp(E, ^Z,@,Cr) H t E Z\u, so u is infinite. So we can find 

i,, E i” n II such that i,, <&+I. Let Z’=I\(u\{i,,: n <co}), so that I’ is still x--strongly 

saturated. Hence for every J C I’ of order type Q for some c.,( E c) we have 

t E I’\J * tp(Z, YJ, 0,O) = q, 

t E J * tp(ii, Y,,, 0,O) # q. 

This clearly suffices. 

Case II. Note Case I. 

As in [6] (the finitely many finite exceptions do not matter) or see part (2). 

(2) Possibly decreasing K (allowable as K E K;(S) rather than ti E K/,(W) is assumed) 

we can find a tree T C ‘>x, so closed under initial segments, jT n ‘\ > x( <x but 

IT n h~I > x. (The cardinal arithmetic assumption is needed just for this). Let 

(M;: i<K+ l),CEM- &+I exemplify ti E K;(_%) and let T’ = T U {q ^(O): q E “Ord. 

i < ti+q riot}. 

Now we can by induction on id ti + 1 choose (Jr,,: y E T’ n ‘I), such that 

(a) h,, is a <,-embedding from M(uc,,) into (X 

(b) j<f~(~)*h,,t, Gh,, 
(c) if i=j + 1, YE T ni x, then (h,,(M,): u E Suck) is strictly indiscernible, 

and can be extended to a sequence of length It’ such that (h,,(P t A4,) : q = 

@(a),~ < K) is contradictory (i.e. as in Definition 4.8( 1)). 

There is no problem to do this. Let M 6,; 6 be of cardinality x and include 

U{&(M): i<K, q E T f’ ‘x} hence it includes also hlj(Mh) if q E T n ‘j x as 

Mh=U,<hM. 
Let for ye E Tn”~,c,~= h,i-(o)(c), so by Claim 4.14 clearly (by clause (C)) 

(*) if i<ti, VE Tn’;, and yaql ET-n”%, then 
p~Suc~(q): for some pI, papI ET~A~X and 

c/,, realizes tp(c,,, , h,,, :(i-I I(~,-I )I> 

has cardinality < X(?,,-r w ) 
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Now define an equivalence relation e on T n ‘x: 

VII ev2 iff tp(c,~,,M)=tp(c,,,M). 

Now if for some q E T n ‘x, lq/el> J(2,~+~~~~~Ij+ then for some II* E T f’ ‘>x, we have 

{v 1 (/g(q* + 1)): v E q/e} has cardinality > J(2,,+~.~I~~~j+ 

which contradicts (*); so if x> J~Zi~+~~o~ij+, we are done. 

But if for some q E T n ” x the set in (*) has cardinality 2 K, then we can continue 

as in case I of the proof of part (l), so assume this never happens. So above if 

Iv/e1 > 2”, we get again a contradiction. So if IT n ‘xl> 2%, we conclude IT n “x/e1 = 

IT n “~1, so we are done. We are left with the case x<2”, covered by 3.3(2) (note 

that for x < 2” the interesting notion is splitting). q 

Claim 5.6. If A>p+, p>LS(R, K), R is categorical in ;1 then 

( 1) K is (p, 1 )-superstable. 

(2) $(Si)nA is empty. 

Proof. (1) If 2 > p+(“, can use Claims 5.5 and 1.7, so w logcf (A) > ILS(R)l. 
By Claim 1.7 if ME Ki, then M is cf(A)-saturated. On the other hand from the 

Definition of (p, I)-superstable we shall get a non-p+-saturated model. 

Let x = J(,, )+. Assume A is not (cl, 1)-superstable so we can find in K,, an increas- 

ingly continuous sequence (Mi: i < IC + 1) and c E M,,, 1 such that pn+ 1 = tp(c, IV,+ 1, 

MC,,+,) y-strongly splits over A4, for H co. For each n <o let (ii;: i<w) be a strictly 

indiscernible sequence over M,, exemplifying p,,+l p-strongly splits over A4, (see Defi- 

nition 4.11). So we can define iiF E 6 for i E [CO, x) such that (a,!: i ~1) is strictly indis- 

cernible over M,!. Let T,={~E~“x: y(2m)<y(2m+l) for m<n}. For n<o, i<j<x 
let hfi E AUT(6) be such that h::,j r M,, = id, h,?,( -O a” ̂ L?;’ ) = 5:’ ̂ Z,r. Now we choose by 

induction on n co, (f,?: y E T,), (g,?: q E T,,), (a:: i<x, y E T,l) such that 

(a) fq,gtl are restrictions of automorphisms of 6, 

(b) Dom(f,l) =M,, 

(c) g>r E AUT(Q 
(d) ii;’ = g,l(iir) if q E T,7, 

(e) f() =idM,,, 
(cl 5, c 9lp 
k> if Y E 2n~, nz <n then fvl(2n2) C fv, 
(h) if v E “‘x and i < j < x then fil A(i,j) C (gll 0 hi?,) 1 M,,+l. 

There is no problem to carry the induction. Now choose by induction on n,M,*, u],, i,,, j,, 
such that 
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(6) a~,~,zj~t~ realizes the same type over M,,, 

(c) ay,ii;” CM,:+,. 

There is no problem to carry the induction (using the theorem on existence of strictly 

indiscemibles to choose i,, <j,,). 

So u ,1<1,, Jr,, can be extended to f E AUT(%). Let c* = ,f’(c),M,“, = IJ,, M,;,, M,; h, = 

.~WL-I ). Clearly tp(c, M,r+,, iw,*,+, ) does [l-split over M,, hence M,., is not /t- -saturated 

(as cf(i,)>/i) (see Claim 5.7); contradiction. 

(2) Follows. 0 

Claim 5.7. u ;13LS(%), (M,: i ~6) is &-increusiny conrinuous, p E F/S “(M,). p p- 

strongI}, splits orer 152, $or all i (or just /l-splits ocer M,) then M,, is not 11 --suturutcti. 

Proof. Straightforward. 

Claim 5.8. Assume there is u Ramsey cardinal > p + LS(H). lf S is not (~1, l)- 

superstuble, then fov eEery s( > p + LS( W) fhere are 2/ pairwise non-isomorphic models 

in $3,. 

Proof. By 121 for x regular; together with [ 171 for all x. 

Lemma 5.9. (I) ufor some M, i9(M)/El, ( > x 3 jjA4 11 + I(?;’ ) and ~13 LS( $1) then $3 

is not (p, 1 )-superstable. 

Proof. No new point when you remember the definition of E,, (see Definition I .8). 

6. Existence of many non-splitting 

Question 6.1. Suppose fi = (N,: i < fi) is <:i,ti -increasing continuous (we mean for 

i <,j, j non-limit Ni < :,. ,i N, ), 6 <p+ and p E Y”(N,i). Is there r < 6 such that for every 

M E $1 <, , N,, < .r; M, p has an extension q E JP’(M ) which does not /l-split over N, (and 

so in particular p does not p-split over N,). 

Remark 6.2. If p tNY+l does not p-split over N,, then p 1 N,+I has at most one ex- 

tension mod E,, which does not p-split over N, because N,,, E K,, is universal over 

N,, N+, GM E K;.. Also if A- 1-1 there is a unique q E Y(M) which does not {I-split 

over N,. 

Lemma 6.3. Suppose K is categorical in A. cf(n) > 1-12 LS(W). Then the answer to 

Question 6.1 is yes. 

Remark 6.4. We intend later to deal with the case i. >/L> cf(n) + LS(H) as in [4]. 

Notation. I x r is I + I + . (a times) (with the obvious meaning). 
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Proof. Let @ be proper for linear order, ]z(@)l <U(U), EM,(I,@) EK (of power 

]I( +LS(A)) and I&J + EM,(I,@)<,,EM,(J,@). So EM,(i, @) is pL+-saturated (by 

Claim 1.7). Let I* be a linear order of power h,Z* x (a + 1) “I* for c( < p+ and 

I* x co 2 I* (see [12], App.). By Claim 1.7 we know that EM,(I* x A,@) is p(+- 

saturated W log IC = No. 

Now we choose by induction on i an ordinal ai <p+ and an isomorphism hi from 

Nl+i onto EM(I* x ct;, @), both increasing with i such that for non limit i, cf (ai)‘&,. 

For i = 0, use the proof of the uniqueness of NI over Na (see Claim 2.5 and refer- 

ences there); then using the back and forth argument we can find Jo 2 A, lJo/ = ,u 

and isomorphism ha from N, = Na+t onto EM( l* x Jo, @) C (I* x A, @). Now let 

J’=JoU{a<A: (tip~Jo)P<~}soJ~~~(note:Joisboundedin~ascf(ll)>~~~Jo/) 

and also EM,(I* x Jo, @) is pi -saturated (being isomorphic to Eh&(I* x A, @)), so with- 

out loss of generality JO is some ordinal aa <p+. 

So we have ho. The continuation is similar. 

Now hg is defined hg : NJ 2 EM,(I* x Q, @), so as EM,(I* x 2, @) is CL+-saturated, 

As(P) is realized say by ii, so let Z=r?(x(,,,:.,),. ..,x~~,,~,,)) where C? is a sequence of 

terms in r(Q) and (t/, y/) is increasing with / (in I* x 2). Let p<S be such that 

Then in the model N =EM,(I* x A+& @), we shall show that the finite sequence a’= 

‘(‘(,, , j’:), ’ ’ ’ ) 
qt,,_;)) realizes a type as required over M =EM,(I* x A, CD). Why? Assume 

toward contradiction that 

(x) tp(G’, A4, N) does p-split over Mb+, where over MY = EM(I* x q., @), for y < 6. 

Let C, b E L’M realize the same type over M/j+, but witness splitting. 

We can find w C ,I, Iwl d p such that C,i C EM(I* x w, @). Choose y such that 

supw<y<l. 

Let M- = EM(I* x (aa U w U [y, A)), @) < $1 hf. 

Let N- = EM(I* x (c(g U w U [y, 1) U [A, /z + A)), @). 

So still c,b witness that tp(Z’,M-, N- ) p-splits over MD+]. 

There is an automorphism f of the linear order I* x (~6 U w U [y, A)) U [A, /z + A)) such 

that 

f 1 (I* x ap+r ) = the identity, 

f 1 (I* x [y i- 2, R + A)) = the identity, 

Rang( 1 (I* x (w \Q+I ))) Cr I* x [~P+I, ~B+z). 

Now f induces an automorphism of N- naturally called f. 
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so 

.r^( z’ ) = a’, S^@r)=M 

As ,p is an automorphism, ,f(c), f(b) witness that tp( f(G’), f^(M- ),,{(N- )) /l-splits 

over ,[(M,j- I ); i.e. tp(Z’, M-,iV-) p-splits over M/i I I. So tp(Z,M,i_ 2, N) /l-splits over 

M/j+i. 
Now choose r., i p+ for y E (6, ~1, increasing continuous 

%i ir - - la + i, M; = EM(I* x a:, @). 

So (A4; : 5’ G/l) is increasing continuous. Without loss of generality 6 = cf( fi). If ii = 11, 

we finish by Claim 3.3(2) as categoricity in ,I + stability in x E [L&;.,!). So 6 =cf(S) 

< ~1. So for 71 E [p, p) there is an .f E A I/?“(/* x (2 + i)) 

.f‘tr* x xp = identity, 

.f takes I* x [q,up+~) onto I* x [q,a;,_,). 

f takes I* x [G+~, , u/~+~) onto I” x [z;., +, , r:,, -? >, 

.f’ takes I” x [~+~,a;.,, 3) onto I* x [cI;~,+~,x,,.~~). 

.f [ I” 1 x [K, +3. ;1+ 2) = identity. 

As before this shows 

tp(G’ , M, , +,‘++ 1, N) p-splits over M, +:?. 

so {y<p: tp(a’,M;.+, ,N) p-splits over IV,} has order type p, so without loss of 

generality is ~1. By Claim 3.3(2) we get a contradiction. 

Note: A priori may be cz c/j’<6 =+ p 1 N/i does not p-split over N, but n<ci =? p 

/l-splits over N,. The first part of the argument shows in particular p /l-splits over 

N, + p / Nl _. I /l-splits over N,. 

The second part, (as the first part holds for every CI) pushes it up to the “new” K’s 

(YE(~,/L)) to enable us to use Claim 3.3(2). 

By categoricity EM(Z* x i., @) is the model in K;_ and by Claim 2.5 it is also unique 

over h;(N,i). Now having proved the conclusion for h~~(N~~),h~~(p), we can deduce it 

for N,Q. I 

Theorem 6.5. Suppose K cateyorictrl in A and model in K, is ~1 ‘-suturated (e.61. 
cj’(E)>p) and LS(R)</L<~i. 

( 1) M < :,, ,~ N + N is saturated. 
(2) [f til, ti2 Gp and for / = 1,2 we huve M, <j(,,_ N,, then NI g Nz. 

(3) There is M E K,, which is saturated. 
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Remark 6.6. (1) The model we get by (2) we call the saturated model of K in p. 

(2) Formally - we do not use Lemma 6.3. 

(3) By the same proof M <it,,+ Nl + N1 Ebf N2 and we call N saturated over M. 

Proof. (1) By the uniqueness proofs 2.2 as M<L., N there are (Mj: i< K-), M, <f ,i 

Mi+,, <ri-increasing continuous MO =M, M, = N and as in the proof of Lemma 6:3 

without loss of generality M, = EM(ai, @) where CI, < pf. 

To prove N =N, is p-saturated suppose PEY’(M*), M* <AIN, IIM*(I <p; as we 

can extend M* (as long as its power is <p and it is < si N), without loss of generality 

M* = EM(J, @), J c ah-, IJI <pL. 

So for some y, [y, ‘J + o) n J = 0, y + cc) d CI,-. We can replace [y, y + w) by a copy of 

1; this will make the model p-saturated [alternatively, use I* x ordinal as in a previous 

proof]. 

But easily this introduces no new types realized over M*. So p is realized. 

(2) Follows by part (1). 

By Claim 2.2(4) we finish. 

(3) Follows from the proof of part (1). 

Remark. In part ( 1) we have used just cf(A) > ,D >LS(A). 

Claim 6.7. Assume K categorical in 2, cf (2) > ~1 >LS(R). If N, E K,, is saturated, in- 

creasing with i for i < 6,6 <p+ then N = Ui,,j Ni E KP is saturated. 

Proof. We prove this by induction on 6, so without loss of generality (Ni: i<S) is not 

just <s-increasing but also contradicts the conclusion but is increasingly continuous 

and each N; saturated. Without loss of generality 6 = cf(6). If cf(6) = ,u the conclusion 

clearly holds so assume cf(6) <p. Let Mda N, /lMll <p and p E Y(M) be omitted 

in N and let 6’ = 6 + llM/l + LS(fi)<p, and let p<q E Y(N). Now we can choose 

by induction on i <6, Mi <N, and M,+ < si N such that M; E Ko,MF E Kc), Mi <J;- 

increasing continuous and M n N, & M;, j < i + M,? n Ni C M;+ 1 and Mi < :,,((, Mi+l and 

if q does O-split over Mi then q TM;+ &splits over M,. 

So by Theorem 6.5 we know that MO is saturated, and for some i(x) <6 we have: 

qrMh does not Q-split over Mi(*,. But MiT*, C N =UiCrj Ni, M&, nNj CM,+! SO 

M&, 5 M(s. So necessarily q E Y(N) does not Q-split over MIC,). 

Now we choose by induction on TV < f3+, M. ,(*).l,b5L1fx such that: Mi(*),a~K~+,Mi(,)d~i 

M;(*,x 6,tNi(*),M;(*).x is <s-increasing continuous in LX, b, E Iv;(*) realizes q 1 Mi(*).,, 

fz is a function with domain MS and range 2 Ni(,, such that C= (c: c EM()), C” =: 

(f&c): c EMU) realizes the same type over MiC*),a and {ba} URang(&) GM,,,,,.+,. 

As Ni(*, is saturated we can carry the construction; if some b, realizes q EMS we are 

done (as b, EN realizes p). Let d E CC realize q so 

(*)I a<fi<Q++F”^(b,) does not realize tp(Z*(d),Mj(,),(X). 

[Why? As F*(b@) does not realize tp(F(d),MiC,,,&) because d realizes 

p = q 1 C whereas b, does not realize p = q 1 C.] 
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On the other hand as q does not d-split over A4,(*, we have tp(?^(d),M,,,,,c)= tp(?‘^ 

(d).A4;(.,. a) so by the choice of b/i: 

(*)z if u</3<Bi~ then F”^(b,j) realizes tp(?-(d),M,,.,.(5). 

We are almost done by Claim 4.14(D). As N,(,, is saturated without loss of general- 

ity N,( * ) = EM,, 5: ,(p, @) and M,, *, = EMT, ,I,( 8, @). As before for some “1~ Hi there are 

sequences C’, b’ in EM,, H ,( CL + y, @) realizing tp(?, Njc * ,, c). q 1 Nlc _ ) respectively, here 

we use cf( 1.) > /L rather than just cf ( j.) > I_L For each /3 < 8‘ there is a canonical iso- 

morphism (I/; from EM,(,,T,~(/? U [p, p + y), @) onto EM, ,C~j([j + +y. @). So without loss of 

generality ~~,,,,.,=EM,(!;,(8+~~,~), ~‘LRII_;..~(C’).~,=~,,_,,,(~‘). So (*), +(*)z gives 

the order property. 

[Why only almost from 4.14(D)? We would like to use the “H-order property fail”, 

now if we could define (i’l’^(b,~): for fi < (2” )+) fine, but we have only c( < 0 ’ , this is 

too short.] I-’ 

We really proved, in Theorem 6.5 (from i categoricity): 

Subfact 6.8. ( 1) !f I C J are linear order. of po\ijer < cf(i); 

(*) t E J\I i @s E J)[s ~1 t] brhrre s mI t means “s, t reulix the sume 

Dedekind cut”. 

then ezler>’ type over EM,(^,(Z, @) is realized in EM(J, @). 

(2) Adding more Skolem functions r\‘e can omit (*), ,fov a suitable @ we can make 

even the extension p-saturated over EM,(I, @). 

Proof. Why’? Use the proof of Theorem 6.5( 1). 

Replace the cut of t in I by A: we get cf(i,)-saturated model 

7. More on splitting 

Hypothesis 7.1. As before + conclusions of Section 6 for p E [LS(Si).cf (I.)). that is 

(*) (a) K has a saturated model in 11. 

(b) union of increasing chain of saturated models in I$ of length <I* is saturated. 

(c) {f (M,: i<6) increasing continuous in K,( each M,+I saturated over M, (the 

previous one), p E .Y(M,) then for some i < 6, p does not p-split over M,. 

Conclusion 7.2. If p E F9’“‘(M) and M t K,, is saturated, then for some MP <I,,<,, M. 

M- E K,, is saturated and p does not p-split over M ~. 

Proof. We can find (M,,: n d w) in K!, each M,, saturated M,, <jl,I,, M,,, l and M,., = 

U,,,,,, M,, so M,., is saturated, without loss of generality M,., = M. Now using (*)( c ) 

of Hypothesis 7.1 some M,, is O.K. as M-. L 
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Fact 7.3. If MO d :,.,, M2 < :,,,, A43, pi YO”(M3), p does not ,u-split over MO, then 

wP)=wPrM2). 

Proof. We can find (by uniqueness) MI such that MO <t_ Mr < f,,,, M2. 

We can find an isomorphism hl from Ms onto Mz over MI (by the uniqueness 

properties <h,tu). C onsider p and h(p 1 MI) both from 9’(M3), both do not p-split 

over MO and have the same restriction to MI ; as MO < :,,,,M, it follows that p = h(p / 

Mz). So R(prMz)=R(h(ptMz))=R(p) as required. 17 

Claim 7.4 (K categorical in A, cf(3.) > /.L >LS(%)). Suppose m < o,M E K,, is satu- 

rated, PEY”‘(M),M<,IN EK,,, pdq~9~(N),N saturated over M,q not a sta- 

tionartation of p (i.e. for no MP < i.(,, M, q does not ,u-split over M- ). Then q 

p-divides over M. 

Proof. By Claim 7.5 below and Lemma 6.3 (just p does not p-split over some N,). 

Claim 7.5. Assume MO c:(,~:, MI c:~,~,, M2 all saturated. IJ’q E Y(M2) does not p-split 

over MI and q r MI does not p-split over MO, then q does not ,u-split over MO. 

Proof. Let M3 E K,, be such that M2 CL,<,, M3 and c E M3 realizes q. Choose a linear 

order Z” such that Z* x (.D + co*) 2 I” g I” x ,u, I* has no first nor last element (see 

[12, Appendix]), ]I*/ = pu. 

Let ZO =Z* x ~1, II =ZO +I* x &Z-J =ZI +I* x Z,Z3 =Zz +I* x ,u. Clearly without loss 

of generality M/=EM,(@,Z,), let c=z(a,,,...,a,,),Z/+,,, = Z, +I* x {m: z/==m<n} 

and lo,, = I* x c(. So we can find a (negative) integer n(*) small enough and m(*) E Z 

large enough such that {to,. .,&} flZ~,~(*) GZI ,,,, (*). Let MI.,~ =EM(ZI.., @), 

M2,,, = EMV2.,,, @I. Clearly MO -c i,,,,) MI .,I =c jl .,,, MI -c :,.,,> Ml.,? =C ,!L, (<, M2. Clearly (use 

automorphism of Z, ) 

(*)o qrMz,,l does not p-split over Ml,,, if ~~n<n(*),m(*)<m~Z. 

By Fact 7.3 with q,M,,MI+M2,q here standing for Mo,M2,Mj,p there we get 

(*)I R(q)=WqtM2,,,) if FEZ. 

Similarly 

(*I2 R(qtMl)=R(qtM.m) if ~~27. 

By (*)a and Fact 7.3 we have 

(*I3 Nq P&n(v)) =R(q t M,,m,*,). 

Similarly we can find a(*) < ,u, a(*) successor and k(*) E Z such that 

ito, . . ..tk)n~i&*.+l czo,,,*,-I 
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and then prove 

Together R(q) =R(qtMo), hence q does not if-split over MO as required. C 

Part II 

1. Existence of nice @ 

We build EM models, where “equality of types over A in the sense of the existence 

of automorphisms over A” behaves nicely. 

Context 1 .l. 

(a) .Q is an abstract elementary class with models of cardinality 3 3,7f,,\iS j ; 

it really suffices to assume: 

(a)’ H is a class of r(K)-models, which is PC,,l _(,) with a model of cardinality 

>&,,,>i,) 

Definition 1.2. (1) Let K >LS(A), now c” = x;,‘,“: is the family of Q, proper for linear 

orders (see [14, Ch. VII]) such that 

(a) IT(@)I dk’. 
(b) EM,(Z, @) = EM(I, @) t z(K) E K, 
(c) zcJ*EM,(r.@) f,iEM,(J,@). 

(2) ??” is r$,,;,. 

Definition 1.3. We define partial orders <f’ and <i! on qFr (for K>LS(R)): 

(1) YI <? 'yz if T(%> C z(Y%),EM(I, Y,) C EMTc~~~,,(Z. Y,) and EMJI, Y1) d!; 
Eh&(I, ul, ) for any linear order I. 

Again for ti =Ls(%) we may drop the K. 

(2) For 01. @z E r:‘, we say @z is an inessential extension of @, . @I < :,’ @2 if 

@I <?’ @z and for every linear order I, 

EM,(l, @, ) = EM,(I, @2). 

(note: there may be more functions in r( &)!) 

(3) @I <z’ @I [fl there is Y proper for linear order and producing linear orders such 

that 

(a) r(Y) has cardinality < ti, 

(b) EM(Z, Y) is a linear order which is an extension of I: in fact [t E 1 =+x, = t], 

(c) @: <$@2 where @i= YoOt, i.e. 

EM(I, @;) = EM(EM(I, Y), QI ). 
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(Though we allow further expansion by functions definable from earlier ones (compo- 

sition or even definition by cases), as long as the number is GIG.) 

Claim 1.4. (1) ( y, <F) and ( Yp, < @) are partial orders (and <;y 5 <p). 

(2) Moreover, if (di;: i <6) is a <F-increasing sequence, S < K+, then it has a 

<y-I.u.b. @; EM’(I,@)= lJi,_jEM’(I,@i). Similarly fbr <p. 

Lemma 1.5. VN ditA4, llM[I 3 JQ,)-, @jJNJJ +LS(A), then there is @ proper for 
linear order such that: 

(a) EMU& @) =N, 
(b) N <s EM,(I, @), moreover 

I C J =+ EM,(R,(I, @> <,r EM,(dI, @I. 

(c) EM,(I, @) omits every type p E Y(N) which M omits, moreover if I is finite then 
EM,(I, @) can be d $x-embedded into M. 

Proof. Straight by [ 11, 1.71. 

Lemma 1.6. Assume 

(a) LS(.R)<x<& 

(b) No GRNI <,lM 

(c) IINoIl <x3 WI II = 2 and llM]j > &)+(jL), 
(d) l’, = {pi: i <ir <x} &Y(Nl), each pf/& omitted by M, 
(e) r” = {py: i<i,“} ~,cP(No), each pp omitted by M 
Then we can $nd (N,l: a <CO), CD and (4:: i <iT) such that 

(CL) @ proper for linear order, 
(j?) N,’ E R,, is da-increasing continuous (for CI <w), 

(Y) N,l=No and NglGNl, 

(6) q: l (N:,), 
(E) EM,&fl, @) is N:,, 
(i) for linear order I &J we have EM,(s)(I, @) <$I EM,(,l,(J, @), 
(y) for n, there is a 6,1-increasing sequence (N,,, m: m <CO) with union EM,(a)(n, @) 

and a d n-embedding fn, m of N,, ,,, into M such that 

(i) NA = f;l.mN~.m9 fn,m G f,l,rrI+~ 

(ii) Jf;2.m r NO is the identity, Rang( f~,~) C: N,, 

(iii) .L(qf tNjl) = PI tRang(f,)for i<iT, 

(0) EM,(sj(I, @) omits every pp for i <ii and omits every qi in a strong sense: fog 

every a E EM,(~I,(I, @) for some n we have qf r N,’ # tp(a,Ni,EM,(sl)(I, CD)). 

Remark. (1) So we really can replace q,! by (q! / N,‘: n <co), but for o-chains by 

chasing arrows such limit (41) exists. 

(2) Clause (i) follows from Clause (v]). 
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Proof. By[ll, 1,7]wecanfindri, z(A)cti, l~i]<x(herewecanhave <LS(K)<X) 

and an expansion M’ of M to a -ri-model and a set r of quantifier free types (so 

1 l-1 < 2”L1 +lT! i ) such that 

(A) Mt omits every per, 

(U) for LTE”’ ’ M we let Mi =M+ ]c/(C,M+) then M; <,iM’, Rang (Z)CRang(i) 

+M(i IT(%) dstM,f rz(s) where CE”‘>(N,) q \M,Ti CX,. 

Note: Further expansion of M- to M*, as long as l~(M*)lGx 

r(ir\i,lnIM,7t/), /=1,2. 

(D) M,,,, ts(S) d.&‘,t, [r(H) GM,’ tr(.(i), 
(E) for i <i;, the type p: r (MC:, /~(31)) is not realized in M,, 1 z(S). 

Now we choose by induction on n, sequence (.f-:i: r ~(2’) t ) and N,:, such that 

(i) ,ff is a one-to-one function from X,(j,) into M. 

(ii) (,fz([): (; < J,(k)) is n-indiscernible in M+. 

(iii) moreover, if cc<(2”)-, and m<n and i,<.‘.<;,,,<&(i) and ;‘, <...<<,,,c 

J,:(i) then: the sequences a = (,fi(ci ).. ,,fJ;,,,)). 6 = (,fi;(<l ), _,,fi;( r,,,)) realize 

the same quantifier free type in Mm-- over N,‘-, so there is a natural isomorphism 

.“l~.,~ from MC: onto MiF (mapping ,f;(<, ) to fi;( 0 )), moreover 

i<ir =+c!G.,;(P~ t(M$ r $si)))= pf I(Mi, 1 r(A)) and MtJ, 1 r(U) = A’,:,. 

The rest should be clear. 0 

Claim 1.7. Suppose 

(a) @E TJ”‘. 

(b) IZ<W, U, ~11, u2 are subsets of‘ {O,l,..., IZ - 1) anu’ ~i( ._.. .?I .._. ),ti,,. 02 

(...,_ Y, ,... ),+,, upe r(Q)-ferms. 

(c) For ere~~ ‘c4 <(2’*s(‘i’)+ (or at /east Jr/ <p(k-)-see [ 14, Ch. VII, Section 41 hlrt 

qf’ this \ve should be cargful as to omit OMIJ <LS(.Q) types) there are linemr 

orders I i.J. I No-homogeneous inside’ J,l qf‘ cardinalit~~ > 3,, such that ,fiw 

some (eyuir%alently every) to < tl <. <t,,_ 1 qf’ I Ire hutv 

3 ,fkv .sorne automorphism .f’ qf EMT(J. @). ,f 1 EM,(I\{t/: f<n, / @u}. @) is 

the identity and 

.f(fll( . . . . 5, ,.... )/Q,,)=C?( . . . . a, ,... ),EQ. 

THEN ,fbr some @‘, @ <z @’ and eL:en tp <F CD’ and 

;7.~ ,for ever>) linear order I and to =c. . < t,,_, from I. there is an automorphism f qf 

EM,(Z, @’ ) such that 

(a) ,f r EM(Z\{t/: t <n, / 4 u}, @‘) is the identity, and 

(p) f(a,( . . . . n, ,.... )/t!,,)=cQ( . . . . ii I.... )/CZil. 

(7) ,f = F( -. to,. , t,,_ 1) ,for somc~ F E T( @‘). 

A This means that every partial order preserving function h from I to I can be extended to an automorphism 
ofJ. 
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Proof. Expand A4 = EM(J. @), by the predicates Qi = {it: t E I}, (22 = {a,: t E J}. For 

to-=c...<tn_l ~1, let fru,...,t,_, EAUT(EM,(J,@)) as in (@) and let g/ (for &co) be 

functions from M into {a,: t E J} such that VZ EM, x = r,(go(x), . . , gn-, (x)) such that 

g/(x) = a,,,, tx./ -dtx,/+,, let P, = {x: 7, = 7). 

Let F be an (n + 1)-ary function, F(G,,,, . . . ,a,_,, b) = ftu...l,_, (b) when defined. The 

model we get we call M+. Now use the omitting types theorem, i.e. Claim 4.5(5). So 

there is a model N+ and (b,: n <o) indiscernible in it such that N+ EM+, N+ omits 

all types which M+ omits, for every m <o for some SO < . <s,_ I from I the type 

of bo^. ‘. &_I in Nf is equal to the type of u.~,,^. ~*u,~,_, in M+. Define @’ such that 

EM(Z*, Q’) is a r(N+)-model generated by {a,: t E I”} such that to < < tn- I E I* + 

type of f?,,^. .^ii,_, in EM(I*, @‘) is equal to type of &^. *b,_l in N+. 

Why is @ < @ @’ and not just @ < @ @? 

Here we use Qi, Q2 in M+ we have 

(*) every c EM+ is in the r@-Skolem Hull of Qi”’ = {a,: t E J}. 

so 

(*)’ M+ omits the type 

P(X) = 
i 

+Y,,...,Y,_,) 
( 

A Qz(~~>~=a(yo,...,y,): 0~20 0 
/<n )i 

Conclusion 1.8. For K>LS(R) there is @*E rr (in fact for every @E rr there is 

cc> 
(4 

(e> 

(fl 

@ < F @* E rr) satisfying 

if @* satisfies the assumptions of 1.7 for some I, J then it satisfies its conclusion, 

moreover if K >2LS(A), for some x(@*) <,u(K) (see [ 14, Ch. VII, Section 4]), we 

can weaken the assumption M < ll(zh )+ to 3, <I(@*), 

moreover, in Claim 1.7 we can omit ‘I is No-homogeneous inside J”, 

also we can demand the automorphism to be F(-, Z,, . . . , &,, ) for some function 

symbol F E z( @* ), 

also we can replace clause (a) of @ (of Claim 1.7) by: f extends some automor- 

phism of EM(Z\{ tt : e <n, / $! u}, @* ) definable as in clause (y) or @ of 1.7. 

we can deal similarly with automorphisms extending a given f 1 EM(I r {tf: e 

<n}) and having finitely many demands. 

Proof. For (a) iterate Claim 1.7, by bookkeeping looking at all (0i,rs2, U, UI, ~2) and 

use Claim 1.4 for noting that the iteration is possible. Now (b) holds as cf(p(K))> K, 

and the number of terms is <K. For (c) we can let Y be such that EM(I, Y) is an 

No-homogeneous linear order, ]r( Y)] = N 0 and use Iv o @*. The rest are easy, too. 0 

Lemma 1.9. Let @* be as in Conclusion 1.8, and I be a linear order of cardinal- 

ity x(@* ) (where x(@* ) is from Conclusion 1.8). Assume o(X0,. . ,X,,_ 1) is a term 

in z( @* ), for e = 1,2 we have to’ <. . < t,‘_ , and u 2 (8: t,! = t;}, and there is no 
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automorphism ,f of EM(I, @*) such that .f 1 EM(Z\{t,‘, t,‘: /<n, P 4 u}, @*) is the 

identity>, and ,f (o(Z,;,, . . , )) = o(?i,;, , ). 

Then 

( 1 ) ,fbv I> x( @” )- rt’e have Z(x,K) = 2’. 

(2) We huce the I( @*)-order propert?’ in the sense qf’ (see more [ 13, Ch. III, Sec- 

tion 31 or better [17, Ch. III, Section 31). 

Proof. Without loss of generality I is dense. 

We can find ti <, < ti_. , such that 

f @ u3 t,? & {t,l,,tf,: m<n}. 

CY, there is no automorphism ,f of EM(Z,@*) such that ,f rEM;(l\{tj,t,:.t?: /<n. 

/@u},@) is the identity and ,f(o(C,l;....))=o(Z,;....) 

[Why’? If there is easily some @ contradicts Conclusion 1.8(a)] 

ci:l for some k E { 1,2}, there is no automorphism ,f of EM(Z, @) which is the identity 

of EM(l\{tj,tj,t,?: f<n, fq?u}.@) and ,f(a(Z,; ,... ))=@a,,; ,...) 

[Why? If not such ,f,,.fi exists and ,fi_’ ofi contradict (*);I. 

1%~ For some k E { 1.2) there is no automorphism f of EM(Z, @) which is the identity 

on EM(l\{$, tj: I <n, (@a}, @) and .f(o(G,~.. . .)) = ~(a,,;, .) [Why? We negate 0 
a stronger demand than in (*)z]. 

By renaming we get that without loss of generality 

t; =tf 3 /=kEu. 

By the transitivity of “there is an automorphism” we can assume that just for a 

singleton !(*), t:(,) # tfc*,. Now if we increase u, surely such isomorphism does 

not exist so without loss of generality II = {f < n: f # /( *)} and tf(,) <I tf, ~ ,. Let 

I” ={tEZ: t <I tj(,)}, I’ = {tEZ: tj,,,<jt <,t/?,*,}, Z’={tEZ: t/?(*, <It} (yes: <I 

not <,). 

Now for ev:ery linear order J we can define Z(J) as follows: Z(J) is a linear order 

which is the sum I” + C ,EJZf’(J) +I’, Z,‘(J) is isomorphic to I’, so let ,f;:f’ 4 

Z,‘(J) be such an isomorphism. Let b’ list EM(Z” + Z,‘(J) + I’) (such that for t..c. 

(id,,) + ,fy,f;- ’ + id,?) induces a mapping from b” onto b’). Let C’ = ,f,(a(tti,. _. t,: ~, )). 

Now 

(*)I if SO <.I Y <,I si then there is no automorphism ,f of EM,(Z(J).@*) over b’ 

mapping C’” to I?“ 

(* j2 if J is %-homogeneous (or just 2-transitive) and Y <J so & I <.I s I or SO <,/ I 

& si <,I I’ then there is an automorphism ,f of EM,(I(J),@“) over b’ mapping 
(;‘” to ?‘I, 

So by [17, Ch. III, Section 31 (or earlier version [13, Ch. III, Section 3]), we have the 

order property for sequences of length I( @* ); the formula appearing in the definition 
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of the order is preserved by automorphisms of the model; though it looks as second 

order, it does not matter. So conclusion (2) holds and (1) follows. El 

Claim 1.10. Assume 
(a) K is categorical in 2, 

(b) the ME K;. is X+-saturated (holds if cf (n) > I), 

(c) x >LS(A). 
Then every ME K of cardinality 3 11(2,)+ (or just 3 &, ifx >2Ls(“)) is X+-saturated. 

Proof. If M is a counterexample, let N <wM, (jN[J dx and PE Y(N) be omitted by N. 

By the omitting type theorem for abstract elementary classes (see Lemma 1.5, i.e. [l l]), 

we get M’ E K;., N <<K M’, M’ omitting p a contradiction. 

Claim 1.11. Assume 

(a) LS(fi) d x, 
(b) for every a < (2”)+ there are M, < )< N, (so M, #NT), JIM, /I 3 1% and pi Y(M,) 

such that CEN, + ‘pE, tp(c,M,, 6). 
(1) For every 0 > x there are M ($1 N in KO and p E 9(Mx) as in clause (b). 

(2) Moreover, tf @ is proper for orders as usual, /z(Q)1 <I, J(2,)- <A, K categorical 
in ;1 and I a linear order of cardinality 8, then n)e can demand M = EM,(I, @). 

Proof. Straightforward. 

2. Small pieces are enough and categoricity 

Context 2.1. 

(i) R an abstract elementary class, 

(ii) si categorical in 1, l>LS(fi), 

(iii) some (- any) MEK;. is saturated (if /z is regular this holds), 

(iv) @* is as in Conclusion 1.8. 

Hence 

Fact 2.2. For ,~E[LS(R),/~), there is a saturated model of cardinality u, (why? by 
part I 6.5(3A)) and there is also @*E YT as in Conclusion 1.8. 

Main Claim 2.3. If M E K is a saturated model of cardinality x, x(@* ) < x <cf (A) d/z 
then Y(M) has character <x( @* ). i.e. if p, # p2 are in Y(M) then for some 

N6fiM NEK~(P) we have pi rNfp2 /N. 

Proof. We can find I C J, 111 =x, IJI = /2, M=EM,(I, @*)d,r N* = EM,(J, @*) and 

I,J are No-homogeneous. So by Claim I 6.7: every KEY is realized in N* and 
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say p is realized by ~,,(a,,, (), a,,>, , , . , iit,, ,,,, ~, ) where tll.o <t,,. I < < t,,,,g -I. If the 
conclusion fails, then we can find q # p in Y’(M) such that 

Choose I’ C J, dense, homogeneous inside J, iI’1 = x(@*) such that {t,., : f -en,,} C I’ 

and {t,,,: /<n,} C I’ and let M’= EM,(I’nI,~*)~,;M,I’\{t,,,,,t,~,~:l<n,~, h<n,} c I. 

So p 1 M’=q /M’; so Claim 1.7 becomes relevant (i.e. Conclusion 1.8(b)) consid- 

ering the &~-homogeneity of J) hence by the choice of @“, p= q contradiction. ä I 

Conclusion 2.4. Assume ME Kj: is saturated, x(46’ ) <x < A, I directed, (A4,: t E I) is a 

< >;-increasing family of Q g-submodels of M, each saturated and [t <s + M, saturated 

over M,] and ]IM,/1<x(@*), then for every PEY(U,,,M,) for some t*EI: 

(*) p does not n-split over A4,* 

(and even does not X-split over M,* ). 

Proof. Clearly by the proof of 2.3. 

Claim 2.5. !f’ T is categorical in 3,, the M E K, is p--saturated, LS( 53) f x( @* ) < p < i, 

(M,: i <6) an <$i-increasing sequence of y+-saturated models then U,,,,, M, is 1_1-- 

saturated. 

Remark. (1) Hence this holds for limit cardinals > LS(R). 

(2) The addition compared to Claim I 6.7 is the case cf(i,) = p+. /l-+ e.g. i = /l 

Proof. Let M,j = (J, <d Id, and assume M,, is not AL+ -saturated. So there are N < 1)~ M,, 

of cardinality < 11 and pa Y(N) which is not realized in M,i. Choose p1 E .(y( M,,) such 

that pl 1 N = p. 

Without loss of generality N is saturated (by I 6.7 or induction on ~1). 

Let x= I(@*), without loss of generality S=cf(a). 

We claim 

~1 there are i(*)<S and N*<s;A4,c., of cardinality x such that p does not x-split 

over N”. 

Why? Assume toward contradiction that this fails. The proof of @ splits to two 

cases. 

Case I: cf(6)6X. 

We can choose by induction on i<6, Np,N,’ such that 

(a) Np d >; A4, has cardinality x, 

(b) N,” is increasingly continuous, 

(c) N,” <:.,,N;,> 
(d) N;‘f,iN,‘b,iMj, 
(e) N,’ has cardinality < x, 

(f) pl 1 N,’ does X-split over N:, 

(g) for c, ;<i, N,,’ nM: CN!. 
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There is no problem to carry the definition and then Nj’ C Ujcii N,a and (N/: i < 6), pl r 

U, < 6 N: contradicts Lemma 6.3. 

Case II: cf(6) > x. 

Now by Claim 3.3 

(*) for some N*<.Q IV& of cardinality x we have pl does not X-split over NT 

As 6 = cf(6) > ,u > x, for some i(*) < 6 we have N” < ,I Mi(*). This ends the proof of @I. 

So i(*), N* are well defined wlog N* is saturated. Let c~a realize ~1. We can 

find a da-embedding h of EM,(pi + /A+, @) into (1. such that 

(a) N* is the h-image of EM&, @), 

(b) h maps EM&+, @) onto M’<K k&,1, 

(c) every d EN and c belong to the range of h. 

By renaming, h is the identity, clearly for some SI < p+ we have N U {c} C EM,(cr U 

[p+, ,u’+ + oz)), so some list 6 of the members of N is 6(. . . , iii,. . . , alct+,)lca,j<r (as- 

sume c( > p for simplicity) and c = g*(. . . , CT;, . . . , ali++j,. . .)lEu.je u, (u, w C_ p+ finite as, 

of course, only finitely many &‘s are needed for the term o* ). 
For each ‘/ <$ we define by = 5(. . . ,&, . . . ,a(l+;,),+i,. . .)icr,jcr and 6 = D*(. . ., 

a,, . . . , a( 1 +:ja+,, . . .)L,l and stipulate 6”’ = b, CL” = c and let q = tp(b *c, N*, 6). Clearly 
_I, 

(b ’ * cy: y < p+)^b ^c is a strictly indiscernible sequence over N* and C Md U {c}, so 

also ($7: y < p} C A4,r is strictly indiscernible over N. [Why? Use I > p+ + p+ which 

is a strongly p++ saturated dense linear order and use automorphisms of EM(1, @) 

induced by an automorphism of 1.1 

As c realizes p1 clearly tp(c,M~) does not X-split over N* hence by Main claim 2.3 

necessarily tp(&j’^c,N*,Q) is the same for all y<p+, hence “J<P+ + tp(6;‘” ci’+,N*, 

6) = q, so by the indiscernibility /3 < y d p+ + tp(b”- cF,N*, (5) = q. 

By the indiscernibility for some 91, 

fl<y < CL+ =s tp(b;‘*&N*JX)=q,. 

If qfql, then tp(co,i;‘,(5)#tp(c2,bi,Q), but Rang(%) is a model NT_<% M;,,,, 

N* <e N;, so by Lemma 1.9, for some t’ C: eg(b;‘) of cardinal@ x, tp(co, b’ 1 u, 6) # 

tp(cl, b’ 1 ~,a;). So clearly we get the (x,x, 1)-order property contradiction to Claim 

4.14. 

Hence necessarily p 6 p+ & y d p+ & /? # y + tp(b&‘, N*, 6) = q. For /?I = pi, y = 0 

we get that c;’ EM,(,) <KM& realizes tp(&‘, N, K) = pl t N as desired. 0 

We could have proved earlier 

Observation 2.6. 

( 1) If M is Q-saturated, 1 > 0 > LS(R) and N d H M, N E KG0 then there is N’, N d w 

N’ < H M, N’ E K,j and every PE Y(N) realized in M is realized in N’. 

(2) Assume (N,: i ,< 6) is <H-increasingly continuous, N, E K, Ni GM, M is 

Q-saturated, and every PEY(N~) realized in M is realized in Ni+l then 

(a) if 6=0 x G, LS(fij<a=cf(a)<8, then Nd is o-saturated 

(b) if 6 = 8 x 8, 8 >LS(%), then N,> is saturated. 
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Theorem 2.7 (The Downward categoricity theorem for 1. successors). If’;, is ~14~ 

cessor 3 p(x( @* )) = p < x <A, then K is categorical in x. 

Remark. (1) We intend to try to prove in titure work that also in K;, we have 

categoricity and deal with 1_ not successor. This calls for using 8-(n)-diagram as 

in [9], etc. 

(2) We need some theory of orthogonality and regular types parallel to [8, Ch. V] = 

[14, Ch. V], as done in [20] and then [5] (which appeared) and then 14, 191. Then the 

categoricity can be proved as in those papers. 

Proof. Let K’= (A4 E K: M is x(@*)-saturated of cardinality a~(@*)}. So 

( *)I K’ is closed under <ii-increasing unions, and there is a saturated M E K, 

(*)2 if x> +,,.3,)+ (x(@*)) and ME K, then A4 EK: 

[Why? Otherwise by Claim 1.5 there is a non LS(W)+-saturated AI E K; contra- 

dicting Lemma 2.21, 

(*)3 if M E K’, p E Y(M) then for some MO 6,; M, MO E K’ and p does not x( a*)- 

split over h/lo so (lMoI/ = x(@*). 

(*)4 Definition: for 51 E [x(@*),i) and ME K: and p t Y(M) we say p is minimal if 

(a) p is not algebraic which means p is not realized by any c EM, 

(b) if M <>I M’ E Ki and ~1, pz E ,Y(M’) are non-algebraic extending p, then 

PI =p2. 

(*)s Fact: if M E Ki is saturated, x E [x( @* ), n), then some p E Y(M) is minimal 

[Why? If not, we choose by induction on CI < I for every q E “2 and triple (M,,, N,,, 

a,,) and h,,,,l,,i for /? d x such that 

(a) M,, < $ N,, and a,, E N,,\Mtl, 
(b) (M,/ i/i: p d u) is d ,;-increasingly continuous, 

(c) M,,IP <!.&/K,~+u, 
(cl) h,,,,, l/i is a d Al-embedding of N,,ip into N,, which is the identity on M,l’,i and 

maps a,,t/j to a,!, 

(e) if’?dPG@, tl~“2, then h,l.,it;,=h,l,,lliioh,ltli,,ri:,, 

(f) &, ‘lo\ = M,l ‘(1) but 

~P(U,,-(~~.M,,-(~),N,~-(O))#~P(~~~-(I),M~-(I),N,~-!I~). 
No problem to carry the definition and then we can get a contradiction to stability 

in x; for successor use 16.31. 

(*)h Fix A[* E KiCG*) and minimal px E ,Y(M*). 

(*)7 If M* G 5; M E K>;., then p* has a non-algebraic extension of p E Y(M), more- 

over it is unique and also p is minimal if M saturated. 

[Why‘? Existence by Lemma 6.3, uniqueness modulo E,(,J-) follows hence unique- 

ness. Applying this to an extension M’ of M of cardinality < i we get p is 

minimal.] 

(*)x There are no MI,M2 E K’ such that 

(a) M* Gs~MI GRML 

(b) MI, M? are saturated of cardinality i,, i: = I%, 

Sh:394



292 S. ShelahlAnnals of Pure and Applied Logic 98 (1999) 261-294 

cc> Ml #M2, 

(d) no c E Mz\M, realizes p*. 

[Why? If there are, we choose by induction on [ < /2, N: E K;., is < Ji-increasingly 

continuous, each N; is saturated, No = MI, N; # N;+ I and no c E N;, I \Nc realizes 

p*. If we succeed, then N = UC<;. NC is in K; (as NC #NC+, !) but no c E N\No 

realizes p* so it is not saturated (as {[: c 6 N;} is an initial segment of /2, 

non-empty (0 is in)) so it has a last element [, so c E N;+l \Nc as c realizes 

P* cont.; so N is not saturated, contradiction. For [ = 0, NQ =Ml is okay by 

clause (b). If [ is limit <i, let N; = UC_,; N,:, clearly N; E K;., and it is saturated 

by 2.5. If [= E + 1, note that as N;, A41 are saturated in K;., and <w-extends 

M* which has smaller cardinality, there is an isomorphism f; from Mt onto N,: 

which is the identity on M*. We define N; such that there is an isomorphism 

f;’ from M2 onto N; extending f. By assumption (b), NC E K;., is saturated 

by assumption (c), N; # N;+i , and by assumption (d), no c E N,-+I \N,- realizes 

p* (as f; /Al* = the identity). So as said above, we have derived the desired 

contradiction.] 

(*)9 If A4 E K:, and M* <M <pi N, M has cardinality 3 8* = J(,,,v,)+ (or just 3 d* 

=: ,u(x(@*))), then some c E N\M realizes p*. 

[Why? By (*)z,M, N are 8*-saturated. So we can find saturated M’ <AIM, N’ d,lN 

of cardinality 0* such that M’ = N’ nM, M* #N’ (why‘? by Observation 2.6). So 

still no c E N’\M’ realizes p*. We would like to transfer the appropriate omitting 

type theorem of this situation from 0* to J-1 ; the least trivial point is preserving 

the saturation. But this can be expressed as: “is isomorphic to EM(Z, @) for some 

linear order I” for appropriate @, and this is easily transferred.] 

(*)ro If A4 E K& has cardinality 38* = Jc2 ,,v,), then it is 8*-saturated (so E K!,,). 

[why? included in the proof of (*)v]. 

(*),I If M E K& has cardinality >Q*, then M is saturated 

[why? Assume not by (*)io, M is 0*-saturated let A4 be d-saturated not 

P-saturated by (*)lo, 19 > IT, without loss of generality M” < $1 M. Let M,, <R M 

be such that M* <,J4o E Ko and some q E Y(Mo) is omitted by M. Now choose 

by induction on i <8+ a triple (N/, N,‘,J;) such that 

(a) N,’ dx Nj belong to Ko and are saturated, 

(b) Nio is < ,I-increasingly continuous, 

(c) N/ is <,+-increasingly continuous, 

(d) Ni =A40 and d E Nd realizes q, 

(e) fi is a <,,-embedding of NF into M, increasing continuous, fo = id, 

(f) for each i, for some ci E Nj’ \Np we have ci EN:+, . 

If we succeed, let E = (6 < l3+: 6 limit and for every i < 6 and c E N/ we have 

(3j< @)(c, = c) + (3j< S)(cj = c)}. Clearly E is a club of P, and for each 

6 E E, cg belongs to Ni = lJic6 N;’ so there is i < 6 such that q EN,‘, so for 

some j < 6, c = ci SO cg = ci E Ni+, < 51 NC:, contradiction to clause (f). 

So we are stuck for some [, now [#O trivially. [ not limit by Claim 2.5, so 

[ = E+ 1. Now if N,” = N,:, then fL(d) EM realizes q a contradiction, so N,” < 5; N,! 
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Also ,fi(Nf) <s\M by cardinality consideration. Now by (*)c) some I’, E N8’\Ns” 

realizes p*. 

We can find NJ < >; M such that ,f;,(N!) -c J; N_! E K+ Nt saturated (why? by Ob- 

servation 2.6). 

Again by (*)q we can find c> E Ni\,f, (Nf) realizing p*. By (*)s clearly tp(cl. 

.J.(No), M) = jJf;:(tp(c;,NJy, N!,!)) so we can find saturated, N; E K~I which <>(- 

extended N,’ and gi is a 6 $,-embedding of N; into NJ extending ,f;-’ and 

gJ(c:)=c;. Let Nf=Nf+, =g,(NJ). 

So we can carry the construction, contradiction, so (*), , holds.] 

(*)rz K;, is categorical in every x E [3,2,~,,J*~j ,A) 

[why? by (*)I 1 every model is saturated and the saturated model is unique]. CJ 
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