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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 67, Number 1, March 2002 

THE RELATIVE CONSISTENCY OF g < cf(Sym(©)) 

HEIKE MILDENBERGERt AND SAHARON SHELAH* 

Abstract. We prove the consistency result from the title. By forcing we construct a model of g = Hi, 

b = cf(Sym(co)) = N2. 

§1. Introduction. We recall the definitions of the three cardinal characteristics in 
the title and the abstract. We write A C* B if A \ B is finite. We write / <* g if 
f,g e ma> and {n : fin) > g(n)} is finite. 

DEFINITION 1.1. (1) A subset "S of [cu ]" is called groupwise dense if 

-for all B e&, AC* B we have that A£"§ and 

-for every partition {[nt, 7t,+i) : i & co} ofco into finite intervals there is 
an infinite set A such that \J{[7ii,7ii+\) : / £ A} e %. 

The groupwise density number, g, is the smallest number of groupwise dense 
families with empty intersection. 

(2) Sym(cu) is the group of all permutations ofco. IfSym(a>) = \Ji<KKj and 
K = cf(«) > No, {K-t : i < K) is increasing and continuous, Kt is a proper 
subgroup q/'Sym(co), we call (Kj : i < K) a cofinality witness. We call the 
minimal such K the cofinality of the symmetric group, short cf (Sym(co)). 

(3) The bounding number b is 

b = min{|5H : & C aco A (Vg e mco)(3f G &)f f g}. 

Simon Thomas asked whether g ^ cf (Sym(a»)) is consistent [9, Question 3.1]. In 
this work we prove: 

THEOREM 1.2. g < cf(Sym(co)) is consistent relative to ZFC. 

§2. Forcings destroying many cofinality witnesses. In this section we introduce 
two families of forcings that will be used in certain steps of our planned iteration 
of length H2. The plot is: If b is large, there is some way to destroy all shorter 
cofinality witnesses because by Claims 2.6 and 2.5 none of the subgroups in a 
cofinality witness contains all permutations respecting a given equivalence relation. 
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298 HEIKE MILDENBERGER AND SAHARON SHELAH 

In our intended construction, we shall extend suitable intermediate models with a 
forcing built upon such an equivalence relation and thus prevent possible cofinality 
witnesses to be lifted to the forcing extension and all further extensions (Claim 2.4). 

Here we show some details about destroying one cofinality witness that can be 
put separately before we launch into an iteration. The additional task, to increase 
the bounding number along the way, will be taken care of only in the next section. 

DEFINITION 2.1. (1) We work with the following set of equivalence relations: 
Wcon = {E :E is an equivalence relation ofco, 

each equivalence class [H]E is a finite interval of even length and 

at = liminf(|[«]£| : n < co)}. 

We say b C co respects E G Wcon if [nEm Ameb)-^>n£b. A partial 
permutation n of co respects E if dom(7r) respects E and we have that 
n G dom(7i) —> nEn{n). 

(2) Let Q be the set of p such that 

(a) p is a permutation of some subset dom(p) ofco, 

(b) co \ dom{p) is infinite. 

We order Q by inclusion. 

(3) For E G "Scon, QE is the set of p satisfying (2)(a) - (b) and additionally 

(c) p respects E. 

Part (1) of the following claim is important for later use, whereas part (2) will 
never be used directly. 

CLAIM 2.2. (1) IfE G Wcon and p G QE andz is a Qg-name of an ordinal and 
b is a finite subset of co \ dom(p) respecting E, then there is some q such 
that 

(a) p < q andb C co \ dom(q), 

(b) if n is a permutation ofb and it respects E then q U n forces a value 
tO T. 

(2) QE is proper, w co-bounding, nep {see [6]) and Souslin. 

PROOF. (1) Note that there are only finitely many permutations of b (that respect 
E). So we can treat them consecutively and find stonger and stronger q's. 

(2) Let N -< H{x, G) be such that QE G N and p £ N, x > {2W)+. Let z„, 
n G co, be a list of all QE -names for ordinals that are in N. Let b„, n G co, be 
a list of pairwise disjoint Zs-classes such that \Jnea) bn is infinite. Now take qn by 
induction starting with #o = P- We let /(—1) = 0. If qn, i{n - 1) are chosen, take 
i(n) > i(n — 1) such that dom(qn) n \J0<k<n b^k) = 0. Now take qn+\ treating q„, 
T„ and Uo<i-<« bi(k) a s i n t n e proof of part (1). Hence Uo</t<« b<(k) (^a>\ d ° m ( ^ ) 
for all n, m G co. We have that q = \Jqn G QE and that q \\-QE (Vn G CO)T„ G N. 
By [7, III, Theorem 2.12], QE is proper. 

QE is "'co-bounding: Let / be a name for a function from co to co. Again let b„, 
n G co, be a list of pairwise disjoint .E-classes such that [Jneuj bn is infinite. Now 
take q„ by induction starting with q0 = p. If q„ is chosen, take i(n) such that 
dom(^r„) n £>,•(„) = 0. Now take qn+\ treating qn, r„ and b^ as in part (2) of this 
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THE RELATIVE CONSISTENCY OF fl < cf(Sym(co)) 299 

claim and look which values for / («) the finitely many permutations in (1) (b) force. 
Take g(n) to be the maximum of them. We have that q = \Jq„ £ QE and that 
q l^& (VH)/(#I) < g{n). 

nep (non-elementary properness): We use much less than N -< H(/, £). We use 
t ha t£ eN CH{x,e). See [6]. 

Souslin: p £ QE, q < q and p _L q can be expressed in Ej (£')-formulas. H 

We shall work with the following special subsets of Sym(a>). 

DEFINITION 2.3. (1) For E e g°co„ and A C co we define: 

SE,A := {n e QE : TZ \ (CO\A) = id}. 

(2) We set & := {/ : / e °'co,f{n) > n,\im{f(n) - n : n £ co) = oo}. 
For f £ ^ we set Sf := {ft e Sym(to) : (\/n)(n(n) < f{n) A n~l(n) < 
fin))}. 

The following claim describes the basic step in order to increase cf (Sym(co)). 
CLAIM 2.4. Assume 

(a) (Kj : i < K) is a cofinality witness, and KQ contains all permutations that 
move only finitely many points, 

(b) R is a Qs-name of a forcing notion, 

(c) E £ £?con, and for no i < K and no coinfinite A £ [at]01 respecting E we have 
that Ki D SE,A • 

Then in V®E*^ we cannot find a cofinality witness (K{ : i < K) such that 

A,-<K(*/nSymMF = *,-). 
PROOF. Let / = \J{p : p £ GQE} be a QE-name of a permutation of co. It 

suffices that 
lr-g£"for unboundedly many i < K, 

(*) 
for some g £ Kt we have / o g o ( / ) £ Ki+\ \ Ki" 

Why does this suffice? Suppose that (*) holds and we had found a cofinality 

witness {K't : i < K) in V^*?- such that A,-<« (K- n Sym(co)v = KX Let G be 

QE * R-generic over V. Take j < K such that f[G] £ Kj. Then we find according 

to (*) some / > j and some g £ Kt such that f~[G] og o (f[G])~] £ Ki+X \ Kt C V. 

But this contradicts the facts that f[G] ogo (f[G])~l £ K[ (because this is a 

subgroup) and K[ D Sym(co) = Kt. 
Proof of (*): Let p £ QE and j < K. Let co \ dom(/?) be the disjoint union of 

AQ,A\, both infinite subsets of co respecting E. 
Let go £ Sym(co) be such that it has order two and {« : go(n) ^ «} = A0. Take 

A'Q D AO such that A'0 \ A0 is infinite. Let g'0 £ Sym(co) be such that it has order 
two and {n : g'0{n) ^ «} = A'0. Let g0,g^ £ KiM, /(*) > j . 

Also S' = {g £ SE,A' '• g has order two and does not have a fixed point in 
some coinfinite subset of A'0 or does not have a fixed point in A'0} together with all 
permutations that move only finitely many points generates SE,A' • I n order to see 
this, write each element n of SE,A' as a union of disjoint cycles. All cycles are of 
finite length, because n respects E. Let 7t(, £ < L, enumerate all the disjoint cycles 
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300 HEIKE MILDENBERGER AND SAHARON SHELAH 

in one fixed £-class [H]E, SO that n \ [H]E = Yle<L i*t- First we write any cycle as 
m — (ao. ci\,..., ak-i), which means that 71/(0,-) = ai+\ and 7^(^-1) = #o-

In the case of even k, we write ne as a product of two permutations of or­
der two, whose domain is {ao.fli,.. ..fl/t-i} and {ai , . . . ,a*_1 ,a*+ 1 , . . . ,afc- i} 
respectively: 71/ = TE] o 7r°, where 7t" = (ao,«/t-i)(«2, tf/t-i) • • • (#*_!>£*) a n d 
71] = (ai,afc-i)(a3>flfc-2)...(at_1,a|+1). 

For odd k, we have that (ao.^i. • • •. flfc-i) = (tfo,«/t-i)(«o, • • • ,ak-i)- We write 
7t| = (a0,0^-1) and treat TÎ  = (a0, • • •, 0^-2) according to the former case and thus 
get ni = n\ o n\ o n\. In order to have more uniform notation we choose nj to be 
the identity on the domain of the cycle in the case of even length. 

So we decompose n \ [n]E = Y[i<Ln<l ° Yie<Lnl ° Yli<Lne- For j = 0,1,2, 
nL]E

 = He<L nl ls a permutation of order 2, and depending on the the number 
of cycles of uneven length in n there may be fixed points in A'0 in n?n, . There are 
fixed points in n^E and n^. We set nJ = \J{n^£ : n e R} for some set of 
representatives R for E. Now the set of fixed points of nj is either a> \ A'0 or co \ A 
for some subset A of A'0. W.l.o.g. we assume that A is infinite. 

By assumption SE,A' is n ° t included in any Kt, so in particular not included in 
#;(„). Hence there is g\ G 5" \ Kt^y Take i such that g\ e Ki+\ \ Kt. Necessarily 
we have « > i > /(*) > j . 

First case: g\ has finitely many fixed points in A'0. By changing it slightly we 
may assume that is has no fixed point in A'0. Now there is a permutation / of A'0 

respecting E such that / is an isomorphism from (A'0,g\) onto {A'G,g^), because 
any two permutations of order two without fixed points are conjugated. Hence 
/ !€ 4 , =>/ (gJ ( l t ) )=g l (/(#!)). 

Second case: g\ has infinitely many fixed points in A'0. Of course g\ moves 
infinitely many points in A'0. Now there is a permutation / of A'0 respecting E such 
that / is an isomorphism from (A'0, g\) onto (A'0, go), because any two permutations 
of order two with an infinite and coinfinite set of fixed points are conjugated. Hence 
neA'0=*f(g0(n))=gl(f(n)). 

Letq = plif. The condition^ forces t h a t / o g0 o ( / ) ' = gx, or fog'Go{f) ' = 
gi,gi£ Ki+i \ Kt, and i G (j, K), g0, g'a G KiM C Kt, so (*) is proved. H 

CLAIM 2.5. Assume that (Kt : i < K) is a cofinality witness. Assume that KQ 

contains all permutations that move only finitely many points. Then the following are 
equivalent: 

(a) There is some E G fco„, such that for every i < K and for every E-respecting 
A £ [<y]No we do have Kt 2 SE,A-

(/?) For every E G %con,for every i < K and for every E-respecting A e [cof*0 we 
do have Kt 2 SE,A • 

(7) There is some f e 9r, such that for every i < K do we have that Sf % Kt. 

(S) For every f G & ,for every i < K do we have that Sf % Kt. 

PROOF. The implications (/?) =>• (a) and (5) => (y) are trivial. We shall not use 
(/?) => (a) but close a circle of implications as follows: (/?) => (5) and (a) =>• (/?) 
and (y) => (a). 

Now we prove -1 (<$)=>• ->(/?). Let / and i* exemplify the failure of (S). 
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By the definition of & we have that lim(/(«) — n : n e co) = oc. Hence we 
may choose a strictly increasing sequence (kt : i G co) such that (Vi G co)(Vn > 
ki)lf(n) > i + n). Then we take E = {[kt,ki + i) : i G co} U {[kt + i,ki+i) : 
i G co} and A = \Jieco[ki,ki + i). A is infinite and coinfinite. Then we have that 
SE,AQSf CKi., so ^{0). 

Now we show -•(/?) implies ->(a). This follows from 
Subclaim 1: For all E, E' e %?Con and £-respecting A G [co]H° there are f\,fi G 

Sym(co) such that 

SE>* C ( ( / I ) " 1 o SE,A o / , ) o ( ( / j ) " 1 o SEA o f2). 

PROOF. Enumerate the £'-classes with order type co. Let f\ inject the even-
numbered is'-classes into high enough (there are large enough ones by the definition 
of "Scon) E classes that lie in A. The ^-classes need not be covered, it is enough 
that nE'm —> f\(n)Ef\{m). We fill this function up to a permutation of co and 
call it f\. Let fi do the same with the odd-numbered ^'-classes. If g G SE',CO 

then g = g\ o g2 where g\ is the identity on odd-numbered ^'-classes and g2 is the 
identity on even-numbered is'-classes. We have that /,- o gt o (/,-)_1 G SE,A for 
1 = 1,2 and thus Subclaim 1 and (->(/?) implies _ i(a)) are proved. H 

To complete a cycle of implications, we show -i(a) => -i(y). First we need a 
similar claim: 

Subclaim 2: For all E G £?«,„, is-respecting 4̂ G [co]N° there are there is / G 
Sym(co) such that 

SE,CO\A C / ~ O S£,^ O / . 

PROOF. Enumerate the E -classes which lie in co \ A with order type less or equal co. 
Let / inject them into high enough E classes that lie in A. As above, the is-classes 
need not be covered, it is enough that nEm —> f{n)Ef(m). We fill this function up 
to a permutation of co and call it / . If g e SE,CO\A we have that / o g o / - 1

 G SE,A, 

and thus Subclaim 2 is proved. H 

Now suppose -i (a). To prove-1(7) l e t / G 9r. We choose by induction on A: e co, 
nii such that mo = 0, rrik+\ > mk and (Vn < mk)(f(n) < m^+i). 

Now we define two equivalence relations. 

EQ = {[m2k,m2k+2) : k eco}, 

E\ = {[m2k+i,m2k+3) : k G co} U {[0,mi)}. 

By our assumption -i(a) there is some / < K and there are is-respecting A$,A\ G 
[cof such that S ^ , C Kt for ^ = 0,1. Now note that 

(*)i If n G Sf then we can find ni G SE{,O> for ^ = 0,1 such that n = 711 o 7:0-
Why? 

By the definition of Sf and £>, for any x e co, xE(,n(x) or xE\n(x). 
Now we choose floOO and n\ (x) by cases. 

We write n as a (possibly infinite) product of disjoint finite or infinite 
cycles. It is enough to show how to decompose each cycle. We write it 
explicitly for a finite cycle (ao, a\,... ak-\). Infinite cycles are not harder 
to treat. We write aE[b for (aE\b and not aE$b). Then we have, say, 
aoEoa\,...,dii-iEocij^dilElajt+i,ail+\Eoail+2,...,a^-iE^a^,ai2E[aj2+i, 
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302 HEIKE MILDENBERGER AND SAHARON SHELAH 

ail+\Eoai2+2, ... ,cii E[cii +\, ..., ak-iEoao through the whole cycle. 
We assumed that irmax < k — 1. The complementary case is treated similarly. 

Since (ao,a\,... a/t-i) is a cycle, for each «2t+i we have: If it appears for 
some r as a border in airE[air+\ in the sense that air < n^k+\ < fl/r+i then 
there is a matching iri, call it h(ir) such that ah(ir)E[ah(ir^+\ and ah(ir) > 
«2/t+i > «A(I,)+I- F ° r a u involved nat+i. w e choose matching pairs so that 
{ir : 0 < r < rmax} is partitioned into pairs {ir,h{ir)}. We set g = hL)h~] 

and thus get a bijection of {ir : 0 < r < rmax\. 

Now we set n^af) = Uj+\ if j ¥" h for all r. We set 7io(fl;,) = <*h(ir)+i l ° r 

0 < r < rmax. So ̂ o is a bijection of {ao,.. . a^t-i} and it respects EQ. 
Now we set TTI (fly) = ajifj ^ /r+l(modA:)forall/\ Weset7Ci(aA(,-r)+1) = 

air+\ for 0 < r < rmax. So n\ is a bijection of {ao,... fl/t-i} and it respects 
Ei. Now it is easy to check that n = n\ o 7r0. 

(*)2 Let for £ = 0,1 choose /^ G AT, as in Subclaim 2, such that SEt,w\Ai £ 
( / * ) - 1 o % A ° /*• W.l.o.g. j > i. Since SE,,a = SEe,At o S ^ , ^ , we 
have that 5 ^ ro Q Kj for £ = 0,1 and hence by (*)i that Sf C Â y, that is 

CLAIM 2.6. Assume that {Kt : i < K) is a cofinality witness such that Ao contains 
all the permutations that move only finitely any points. Ifb>K, then clause (y) of 
Claim 2.5 holds (and hence all the other clauses hold as well). 

PROOF. For each i < K choose rc,- e Sym(co) \ Kt. Since b > K there is some 
f ewa> such that (Vz < K)(V00n)(7r,(«) < / ( « ) ) and w.l.o.g. / G &. if 5 / were 
a subset of AT,-, then we had that 7i,- G AT,, which is not the case. So / exemplifies 
clause (y) of Claim 2.5. H 

DEFINITION 2.7. (1) Let E <Egcon. We set 

Q'E = {f '• f is a permutation of some coinfinite subset ofco such that 

(a) n G dom(f) =>• nEf(n), 

(b) for every k < cofor some n we have k < \[n]E) \ dom(/) |} . 

The order is by inclusion. 

(2) We call f = (ft : i < a), Q'E-o.k. if a < a>\ and for i < j < a, 
fi C* fj G Q'E [i.e., {n G dom(/,-) : n £ dom(/y) V / , (« ) ^ /,-(»)} is 
finite). For f being Q'E-o.k. we set Q'E(f) = {g G Q'E '• g =* fifor some 
i}, where ft =* g iff fi C* g andg C* /,-. The order is inherited from Q'E. 

(3) We write <for the initial segment relation for sequences of ordinal length, 
i.e., (gp : P < y) < (fp : /? < a) iff ^ : fi < y) = (f„ : fi < y). 

Remarks. 1) Claims 2.4 and 2.5 hold for Q'E as well with the analogously modified 
definition of S'E A. This is shown with the same proofs. The domains of the involved 
partial permutations must be arranged such that they respect 2.7(l)(b), but they 
need not be unions of equivalence classes. The q G QE fulfil requirement 2.7(1 )(b) 
automatically, because we have that lim(|[n]£| : n G w) = co and that the domain 
of q needs to be coinfinite and needs to be a union of equivalence classes. 

2) Both QE and Q'E can serve for our purpose. Q'E exhibits the following "indepen­
dence of E": F o r £ 0 , £ i e %con (V/? G Q'E{) (3q) (p < q G Q'El A (Q'E])>P = Q'Ea). 
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3) Note that for a < a>\. if / = (fp : P G a) Q'E-o.k., then we have that Q'E{f) 
is Cohen forcing. 

CLAIM 2.8. Let E be as in Definition 2.7. 

(1) Q'E is proper, even strongly proper, with the Sacks property {the last is more 
than QE). 

(2) If f = (fp : P < a) is as in 2.7(2), and a < a>\ and Q'E(f) C M, 
co + 1 C M C (H(%), G), M a countable model of ZFC~, then we can find 
fa such that 

(a) f'fa is Q'E-o.k. 

(b) If f'fa < / ' and f> is Q'E-o.k., then fa is (M, Q'E{f'))-generic. 
The genericity is independent off in the following sense: For every 
I there is some finite J C / , J £ M such that for all f the following 
holds: If I C Q'E{f) is predense and a member of M, then J is 
predense above fa in Q'E(f). 

PROOF. (1) We prove the Sacks property. Let / G VQE n wco. We take b^„) as in 
the proof of the (uco-boundedness for QE (which applies also to Q'E) in Claim 2.2, 
but we do not require that &,(„) respects E. Additionally we choose £,-(„) so small that 
there are only fewer than n permutations of \Jk<n b^k). So often, but not cofinitely 
often, &,(„) will be empty. Then we take q„ as there and collect into S(n) all the 
possible values forced by q„ U n for fin), when n ranges over the permutations of 

b"-
(2) Let ( / ' : n G co) enumerate all the y9-sequences in M that are Q'E-o.k. for all 

P G [Q,C«I]. Let T„, b„,n G co be as in the proof of 2.2, xn a Q'E(f )-name. We take 
an enumeration such that each T„ appears infinitely often. First we choose fa D* fp 
for all p < a. Here we use that a < coi. Next we choose / £ C*-increasing with n, 
and/(«) strictly increasing with n such that \Jk<n 6,(/ t)ndom(/„) = 0 and such that 
if f'fa ^ / ' and n is a permutation of \Jk<n b^) then fa U n \\-Q> T„ G V. Let / 
contain one member / of/ for each permutation n of (Jk<„ b^k) that / is compatible 
with f^ U n. Thus J is a finite subset of / . The choice of fa is independent of 
/ ' " , because (fa U n lh% T„ G V and / " / » < / ' ) implies / ^ U n l h % ( / / ) T„ G K, 

independently of the choice of / ' . We set fa = \}n^0)f
n
a, and by one of the 

equivalent characterizations of (M, i0£(/'))-genericity [7 m Theorem 2.12] we 
are done. -\ 

§3. Arranging g = Ni, b = cf(Sym(a»)) = ^2- Starting from a ground model 
with a suitable diamond sequence we find a forcing extension with the constellation 
from the section headline. The requirements on the ground model can be established 
by a well-known forcing (see [4, Chapter 7]) starting from any ground model, and 
are also true in L (see [3]). 

DEFINITION 3.1. (1) We say s# is a (K, g)-witness if K — cf(«) > Ho and 

(a) tf C [cof\ 

(P) if k < co and fi'.co —> co is injective for t < k then for some 
$#' C s4 of cardinality < n we have that for any A that is a finite 
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304 HEIKE MILDENBERGER AND SAHARON SHELAH 

union of members of si \ si1 

{n : A fe(n) $ A} is infinite. 

(2) We say M K-exemplifies sf if 

(a) sf is a (K, Q)-witness, 

(b) M = {Mt : i < K) is ̂ -increasing and continuous, and W + \ C MQ 
and&{co) C\Ji<KMh 

(c) Mj C (H(x), e) is a model of ZFC~ and |M,-| < K and (Mi |= 
\X\ < K) => X C Mi, 

(d) M \(i + l)eMi+1, 

(e) for i non-limit, there issfi £ Mi such that J / ( 1 ¥ J = s/i, 

(f) ifi<K,k<co and fe € M, is an injective function from w to w 
for l<k, andk' <co, Ae e s/\ Mi for I < k', then 

{n : A fi(n) & Ao U • • • U A^-i} is infinite. 
e<k 

(3) We say M leisurely exemplifies si if (a) to (f) above are fulfilled and addi­
tionally; 

(g) K = sup{i : Mi+i f= "sfi+i = N0"}-

DEFINITION 3.2. (1) We say (P, sf) is a (p., K) -approximation if 

(a) P is a c.c.c. forcing notion, \P\ < ju, 

(/?) sf is a set of P-names of members of([co]i*°)v , each hereditarily 
countable, and for simplicity they are forced to be pairwise distinct, 

(?) "~P "& is a (K> Q)-witness." 

(2) Ifju = Kwe may write just K-approximation. Ifn = Ki we may omit it. We 
write (*, ^-approximation if it is a (/u, K) -approximation for some p.. 

(3) (Pusfx)<«app(P2,sf2)if. 
(a) (P(, sf t) is a (*, ^-approximation. 

(b) Px < P2, 

(c) sfxQ sf2 (as a set of names, for simplicity), 

(d) ifk < co and A0, ... ,Ak-i 6 3f2 \ffi tnen 

\\-p1"ifBG([(0fo)V,\ 

fe 6 (Bco)v 'for i < k are injective, then 

n e B : A fe(n) g M Ai > is infinite". 
^ l<k t<k ) 

Remark. We mean sf x C sf2 as a set of names. It is no real difference if sf is a 
P-name in 3.2(1) and if in (3) we have lh A0,... ,Ak-\ G sf2 \sfv 
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CLAIM 3.3. < „ „ „ is a partial order. 

PROOF. We check (3) clause (d) of the definition. Let (P\. s/]) <" (P2, s/2) and 
(Pi,srf2) —app (P^'^i)- Let& < co, fe be P\ -names ofinjective functions from to to 
co . Let G C Pi, be generic over V. So let ^ G .?f 3[G] for ^ < m. We assume that for 
< < f f l i < m w e have that ^ G J / 2

 an<^ that that {/4<> : £ < m] C j / 3 \ ,s/2. By the 
assumptions on Pi we have that B\ = \n < co : j \ l < k fe(n) g \J{A( : £ < mo}} 
is infinite. It belongs to V[G n P2]. Since we have that (P2,stf2) <K

app ( F 3 , ^ 3 ) 
and { ^ : £ G [m0,m)} C jaf3 \ ^ 2 and Bu fQ...., fk_x e F[G n f 2 ] , by 
Definition 3.2(3) clause (d) we are done. H 

CLAIM 3.4. If((Pj,s/i) : i <d) is a <*pp-increasing continuous sequence {contin­
uous means that in the limit steps we take unions), then {P, s/) = {{Ji<3 Pi, (J/<(5 sf ,•) 
is a« <K

app-upper bound of the sequence, in particular, a (*, ^-approximation. 

PROOF. The only problem is "(P, $f) is a ^-approximation." 
Case 1: cf (8) > Ho. Let k < co, fe be P-names ofinjective functions from co to co . 

So for some / < 8 we have that (/^ : £ < k) is a P, -name. Let G C P be generic over 
K In JTG n Pi], there is some > ' C si such that ^ ' G {[tf t[G n />,.]]<«)^cnP/] a s 

requiredin F[GnP, ] for ( /^ [GnP, ] : £<k). We shall show that st' is as required 
in V[G] for (/)[G n P,] :~£ <k). So let ̂  e ^ [ G ] \ ^"[G] for £ < m, w.l.o.g. 
At ^ srf, At = Ae[G]. We assume that for £ < m0 < m we have that Ae e .sf ,• and 
that j < 8 is such that { ^ : £ < m} C sfj. By the assumptions on P, we have that 
B{ = {« < co : /\^</t /'<?(«) £ \j{Ae : £ < m0}} is infinite. It belongs to F[GnP,] . 
Since we have that (P, s/t) <K

upp (Pj,J?j) and {Ae : £ £ [m0, m)} C ^ . \ s£{ and 
B\,fo, . • • ,fk-\ ^ V[G H Pi], by Definition 3.2(3) clause (d) we are done. 

Case 2: cf (<5) = K0. W.l.o.g. 8 = co. So let k < co, p e P, p lh " for £<k,fe e 
wco is injective." By renaming we may assume w.l.o.g. that p G Po- For every m~<co 
we find {fp : l<k) such that 

(*)i j'™ is a Pm-name for a P/Gm-name for an injective function from co to co. 

(*)2 if p G Gm C Pm, Gm generic over K and m,n < co, then for densely many 
? G P/Gm we have that /> !hPm "q U-P/Gm f\e<k(fj) \ n = {fJ[Gm])) \ «". 

We give explicit names in the case that fe is written in the form fe = {((n,ae,„),p) : 
p G Ae,n,n e co, ae.n G co} and Ae,„ are suitable maximal antichains. Then we write 
IT = {((("' «<?,«)</?[G»>]).P f A*) : P 6 ^ ,n ,« ^ <o,a£„ G co}. Here the f is a 
projection function that comes with Pm<P (is a complete suborder of) as explained 
in[l]. 

Let A be the union of all antichains appearing in the names f™. By the c.c.c. A 
is countable. So easily p \\-pm "f™ G '"A is injective". 

By the hypothesis on Pm and sfm we have that p lh/>m "there is ,s/m G [sfm]<K as 
in 3.2(1)". As Pm is c.c.c. and because of the form of sf m there is sf'm a set of < K 
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names from srfm such that 

ifAo,...,Ak-\ est m\tf'm then 

P ^P„ " { n • A / 7 ( « ) £ Ao u • • • u Ak'-i } is infinite." "{« • /\fj(n)?A 
[ e<k 

So it is enough to show that sf' = \Jm<aj stf'm is as required. Let k' < co, 
Ao,..., A^-i £ s4 \ srf' and towards a contradiction assume that c/ lh "{« < co : 
l\i<k ft{n) $ Ao U • • • U Ak>_i} C [0, w*]." So for some m we have that q £ Pm, 
AQ— , Ak'-\ e si m \ stf'm. Let q e Gm C Pm be Pm generic over K. In K[Gm] we 
have that B' = {n £ co : f\e<k f?[Gm](n) g A0[Gm] U • • • U Ak>-\[Gm]} is infinite. 
So we can find n £ B' such that n > m*. Now there are densely many q' £ P/Gm 

forcing fi{n) = f™(n), so w.l.o.g. q < q1 £ P/Gm, and we find p' £ G such that 
p< p' £P and / Ih "/*(n) = / " ( « ) " • Contradiction. H 

CLAIM 3.5. Assume that (P, sf) is a n-approximation. 

(1) lf\Y "Q is Cohen or just < K-centred ", then {P * Q, srf) is a K-approxima-
tion, and {P, tf) <K

app {P*Q,tf). 

(2) If in addition \\-p "(w„ : n < co) is a set of finite non-empty pairwise disjoint 
subsets of co", and Q is Cohen forcing, and n is the P * Q-name of the 
generic, then (P * Q,srf U {lj{ic„ : n(n) = I}}) is a ^-approximation, and 
<%p-above{P,s/). 

PROOF. (1) Let G C P be f-generic over V. We work in V[G]. It is enough 
to prove that in (V[G])Q, stf = s#[G] is a (K,g)-witness. let Q = \JmeM 2m- 2m 
directed, p. < K. SO let \\-Q " /o- • • • / / t - i 6 0Ju> are injective." For each m < /u we 
find ( / f : £ < A:) such that 

(*) i ft1 is a partial function from co to co, 

(*)2 if q £ 2m- m < p, n < co then cy l/g 
" V/<*(3«' < « ) ( / f («') is defined and / , ( « ' ) ^ / f («'))"• 

Just take /™ = fe[Qm]- Since 2m is directed, this is well-defined. If there is some 
£ such that dom(/™) is infinite, then for (/£" : £ < k, dom(/™) infinite) we choose 
some J/^, e [ J / ] < K as required in Definition 3.1(1). If there is so such £, then we 
let s4'm = 0. Let stf' = LL<« ^m-- it is clearly as required. This is shown similarly 
to 3.4. In the the end of the proof of 3.4 write {0} instead of Gm and Qm instead of 
p 

(2) We prove clause (d) of 3.2(3). Let G C P be P-generic over V. So 
let fo,...,fk-\ e V[G], B £ ( [ c o f ) ^ 1 and we should prove that {n £ B : 
f\t<kfi(n) & U{wm '• >l[G]{n) = 1}} is infinite. As n is Cohen and the w„ are 
pairwise disjoint and finite and non-empty, this follows from a density argument. -\ 

An ultrafilter D on co is called Ramsey iff for every function / ' : co —» co there is 
some A e D such that / \ A is injective or is constant. 

CLAIM 3.6. Assume that 

(a) V f= CH, 

(b) P = {(Pj,sf)) : i < S) is <^pp-increasing and continuous and \Pi\ < Ni, 
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(c) cf(<5) = K, = |<5|. 

(d) 8 = sup{i < 3 : Pi+i = P, * Cohen, sfj+l = J / , } , 

(e) G C Ps is P^-generic over V.andin V[G] we have sf = \Ji<K$f \G]. 

Then 

(1) In V[G] there is M leisurely exemplifying sf. 

(2) In V[G] there is a Ramsey ultrafilter D such that for every f g OJw which is 
not constant on any set in D and for all but countably [< K] many A £ sf 
we have that {n : f(n) 0 A} £ D. In short we say "D is Sf'-Ramsey 
[(«, sf)-Ramsey]"'. 

PROOF. (1) By renaming, w.l.o.g. 8 = H,. Let / > (2*°)+ and let M° = {Mf : 
i < cwi) be increasing and continuous and Mf -< ( / / ( / ) , e, <*), Mf countable and 
sft £ Mf and MQ \ (i + 1) £ Mf+l and such that SP{w) C \Ji<v}] Mf and hence 
U/<M| ¥i e Mf- L e t Mi = Mf[G], sfi = &i[G]. Since P is proper, we have that 
M} is countable. For any ;' < co\ we shall find j{i) > i,j(i - 1) + 1 and A ,̂-) such 
that 

{a)M)(i)QNj{l)CM)(i)+v 

w%ei; ( , ) + , . 
(*) (S) s*s n Nm = s/s n M}{i). 

(e) (f £ | J Mf A f[G] £ M} n mw) -+ f is a P,.(,rname. 
/<C'J] 

(C)M,1 |=|jr|<N, =>jrcMj( ; ) . 

In M/, choose / = j(i) according to the premise (d) such that sup(M/ n w\) < 
j < io\ and Pj+\ — Pj * Cohen, sf j+l = sf • and such that (e) and (f) are true. In 
M(-+l we define the forcing notion Rj = {g : g is a function from some n < co into 
J / / + 1 n M7°+|}. This is a variant of Cohen forcing, and hence we can interpret R, as 
the Cohen forcing in Pj+\. We let g be generic and set N/ = Mj[g]. Now we take 
a club C in w\ such that (Va £ C)(Vy? < a){j{fl) < a). We let (c(0 : z < co\) be 
an increasing enumeration of C. Finally we let for i < co\. M, = Ml> for limit /. 

We have to show that in V[G], M K-exemplifies sf. That is, according to 3.1(2): 

(a) sf is an (Ni,g)-witness, 

(b) M = {Mj : / < Ni) is -<-increasing and continuous, and w + 1 C Mo and 

(c) Mi C (H(x),e) is a model of ZFC~ and |M,-| < Ni and (M« f= |J5T| < 
Ni) => X C Mi, 

(d) M f ( / + 1 ) 6 % , 

(e) for non-limit i there is sft £ Mj such that sf n M,- = J / , . 
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(f) if / < Hi, k < co and ft G M,- is an injective function from co to co for 
£ < k, and k' < co, A t e sf \ M,- for £ < k', then 

A 0 U • • • U v4jt'_i|- is infinite. 
e<k 

I tem (a) follows from 3.4. The items (b) and (c) follow from Mf •< {H(x), G, <*) , 
M,° countable and M ° \ (/' + 1) G M?+ 1 and such that &>(co) C U; < ( U | MP. 

The item (d) is clear by our choice of M, . 
The item (e) follows from (3) in (*) and the fact that the c(/) 's are limits and 

Dp<c(i) NJ(P) = U/J<f(/)
 M;(/?)+l-

To show item (f), suppose that i < co\ and ft G M,- for £ < k and / ^ e J / \ M,-. 
Then we have that ft e VPi and i < e i \ j / , - (the latter holds by (e)) and stfj = 
^ , [ G ] = ^ , [ G , ] by" our choice of C. Hence we may use (P,-,.sf;) < ^ {P^,^) 
and get from 3.2(3)(d) if A: < co and ̂ 0 , • ..,Ak-\ ^ ^ \ ^ itnen 

H-j^ ' i fAe ( [co f f f / , 

/ ) G (Bco)vFi for £ < k, then 

i « G fi : / \ / ) (« ) 0 | J ^ > is infinite", 
I £<k t<k J 

so we get the desired property in V[G]. 
(2) We work in V[G]. We take (M, : i < co\) as in (1), and choose by induction 

on i < co i sets 5 , such that 

(a) 5 ,-GM+i, 

(/?) j < / => Bt C* Bj, 

(y) if / = j + 1 and / G M/ (~l raft; is injective and i e i f l (M,- \ M,), then 
5,c*{« : / ( « ) 0 ^ } , ' 

(t)) if i is limit and / G M,- n com then for some n* we have that / \ {Bt \ «*) 
is constant or / \ (Bt \ n*) is injective. 

(e) 5,- is <*-first of the sets fulfilling ( a ) - (S). 

N o w it is easy to carry out the induction and to show that D, the filter generated 
by {Bj : / < co\} is as required. We use property (f) of M in order to show that 
requirement (y) is no problem. H 

CLAIM 3.7. Assume that in V 

{a) stf is a («, g)-witness, 

(b) D is a (K, srf)-Ramsey, 

(c) QD = {{w, A) : w G [co]<0}, A G £>}, (w, A) < (w', A') iffw C u>' C wU/4 
and A ' C ^4. 

TAe« ll-gD " ^ « fl (K, {O-w/fnesx". 

PROOF. For w G [co]<t<0 let Qu = {(w, A) : A e D}. This is a directed subset and 
we have that QD — \J{QU : u G [co]<No}. So assume that p — (w, A) G QD and 

/> ""go " /* e t0(U i s injective for £ < k". 
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For q G QD we write pos(q) = {s G [co]<H° : 3B (s, B) > q], the set of possible 
finite extensions. For s G pos(i/, 5 ) we set q^ = (s,B\ max(j)). As usual we write 
p\\ip itp \\- tp or p II—up and q >tr p iff q > /? and g = {wq ,Aq), p = (wp,Ap) 
and w* = u^ . 

For every w G pos(/>) we define f" G "(cu + 1) as follows: 

/ ; ( « ) = IH if (3/> G &)(/> lh fjin) = m), 

/?(#») = co if (VmhQp G Qu){p lh fj{n) = m). 

Since D is Ramsey [5] (without Ramsey but using memory [8]) we have that QD 

has the pure decision property: 

V/7 G QD3q >tr p W < k Vm G co Vw G (co + 1) 

(OV > ?)(?' | | /*(«) = «i)) - ( 3 J G poste ' ) ) teWl | / / (») = ™ 

We apply this to our initial /? and get some q as in ((g)®), which we fix. For every 
u G pos(^) and £ < k we can find g" G "co injective, such that if {n : f"(n) < 
co}£D then {« : / ? (« ) = # ( « ) } G / ) . 

We call w (v, n)-critical if 

(a) u G [eo]<0\ 

0?) 0 ^ u C { O , . . . , A : - l } , 

U)u (y) £ £ ( ) = > / ; ( » ) = Q J , 

(S) {m : (W G ̂ ) / ; u { m } (« ) < co} G D, 

(e) £<kA£?v ^{m : fu
t
u{m){n) = fu

e{n)} e D.. 

For w (u, «)-critical and £ e v note that lim/j(/^ («) : w < co) = oo. 
Proof: If for some k < co, {m : f^m{n) < k} G Z>, then there is some k' < k 
such that X = {w : / 7 («) = k'} G Z>. For m G X, we choose a witness 
Pm G 2«u{m}> /̂ m lh ./*(«) = &'• Since D is Ramsey, we may glue all the witnesses 
together (find a common second component), and thus get a condition in Qu that 
shows that fu

t{n) < co, in contrast to condition (y). 

As D is Ramsey for some A = AU_VM G D we have iff G i; then ( / ; u { m } («) : 
w G A) is without repetition. 

So we can find for £ e v injective functions hu
l'

vn e wco such that {m : 

ffJ{m\n) = hu
l
v-n(m)}&D. 

For each injective function h G wco we have that sih = {A e si : {« : h(n) G 
,4} G D} is empty or at least of cardinality strictly less than K. Let si' = \J{s/h • 
h = g% for some £ < h, u G [co]<N° or h = /?"'"'" where u is (u,n)-critical and 
£ e v and 0 ^ u C A: }. So J / ' c jjf is of cardinality strictly less than K and it 
is enough to prove that if Ao,... Ak>-\ G si' \si' then Ihg "{« : /\^<jt /^(n) G-

/4o U • • • U/4/f_i} is infinite". 
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Let AQ, . . . , Ak'-i be given. Set B* = AQ U • • • U Ak>-\. Towards a contradiction 
we assume that p* G Qr>, p* > q and n* < co and 

p* lh "(V«) in* <n<co V Mn)eB*Y\ 
e<k J 

Let M -< (H(x). G) be countable such that the following are elements of M: p*, D, 
ft for£< k, Ae for^ < k'. sf'', (gu

t : u e [co]<H°J < k), {hf™ : u G [<u]<K°,* G 
vjj^v Ck). 

Let/?* = {u\A*). L e t ^ 0 e dandA& C A * be such that (V Y G DnM)(AQ C* 
Y) andmin(y40) > sup(«*). It is obvious that u*L)AQ is generic real forgo over M. 
i.e.,: {{u',A') e QDV\M : u' C w* UAQ C u'UA'} is a subset of a (Qz))M-generic 
over M. 

As AQ, ..., Ak,_\ e i \ i ' C i \ (J£<A. j / „. there is nQ e [«*, w) such that 

£<k=> gf(nQ) # B* a n d g f («0) = ff(n&). Let 

% = {u : u* CUCu*L)Ae\u finite, (W < k){f"t(n°) < co -> ,/7(«0) £ 5*}. 

Nowclearlyy* £ ^ . Chooser0 G ^ such that \{£ : ff^{nQ) = co}\ is minimal. 
If it is zero, we are done. So assume that is is not zero. 

We choose by induction on / < co «, such that 

m G AQ, 

nt < ni+\. 

*' sup(w0) < «,-. 

t<k-+ ff(nQ) = ffu{"> : /</}(«0). 

By the pure decision property there is some s € pos(w0, A&) such that (s, AQ \ 
max(.s')) decides fi{nQ). So for some i and {tij : 0 < j < i} we cannot choose 

m. Let H A = u& U {«,- : j < / } . Let v = {£ < k : {m : ffu{m}(nQ) ^ 

ff{nQ)} G £>} C {0, . . . , / t - 1}. Let C = {w : (£ G v ^ / ; A u { m } ( « 0 ) ^ 

ff{nQ)) and (* £ u - ffu{m](nQ) = / £ " A (« 0 ) )} . So C G £> and necessarily 

^ G I ; A W G C = ^ / ; A u W ( « 0 ) < ff{nQ) = co. So wA is (u,«0)-critical. 

Hence Q = {m : /\levhf-v-n&{m) <£ B*} e D. Choose m G C, n C n / I 0 

large enough. If v = 0, it can serve as «, and we have a contradiction. Recall that 

hf-v-"e{ni) = ffu{"i}(nQ) < oo. If u ^ 0, then M
A U {«,•} contradicts the choice 

of w0, because we had required that | {£ : fu
t (n0) = co}\ is minimal. H 

Later we shall use Claim 2.6 in order to fulfil premise (2) of the following 
Claim 3.8, which is together with 3.4, 3.5, 3.6, 3.7 the justification of the single 
steps of our final construction of length K2. Claim 3.8 serves to show that certain 
(and in the end we want to have: all) cofinality witnesses in intermediate ZFC 
models are not cofinality witnesses any more in any forcing extension. 

CLAIM 3.8. Assume that V, cf(S) = w\, ((P,, ^f,) : i <8) are as in 3.6, and 

(1) \\-ps "(Kj : / < coi) is a cofinality witness and'{/ G Sym(a>) : (V°°n)/(n) = 
«} 'c K0". 
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(2) Let E{) = {(nun2) : (3n)(nun2 e [n2,(n + \)2)}, A = \J{[(2n)\(2n + 
l)2) : n G co}. (Any E G Wam and A G [o»]N° could have served as well.) 
Assume that in VPs, SE0.A is n°t included in any Kj. 

(3) d = sup{a : Qa is Cohen, ̂ a = stfa+l}. 

Then there is a Pa-name Q such that 

(a) (Ps,s?s)<:pp(Ps*Q.sfs), 

(P) n-ft "Q Q QEB (
where Qk isfrom 2 - 7 )-

(?) ""/V6 "S = U l / • (P'f) 6 Q(Ps * Q)} is a permutation of co and for 

arbitrarily large i < co\, (g, ̂ ,)Sym(oj) n Sym(<a) '' ^ Kt". 

PROOF. AS in 3.6, we assume w.l.o.g. 8 = co\. We can find in V, g* = (g* : i < 
an) such that \\-Pm^ "gf G Sym(w) \ Kt, gj G SEo,A, and g0* G M0 -< (H(x~e), M0 

countable". In V we now choose by induction on i < co\ Mi,Ni,pi,a,- such that 

(a) (Mj : j < i) is a sequence of VPi-names as in 3.6, 

(b) \YPi Q,sf,£*,{Ki : i<cox) G M0, 

(c) Nt = {ji „ : n G co} is a countable Pa.-name such that \\-Pa. "Mt[GPa.] c 

Ni C (H(x)v^\ G), HMH = N„, AT,- h ZFC-" , 

(d) />,• G (?£ is hereditarily countable and a PQ.-name of a member Q'E , 
^Pa (Pj '• J — i) is ^'-increasing and 6 Nt, pt G Nj, 

(e) in VPs we have Mj[Gs] = M, and (Nj : j < i) G Mi+[, sup(M,- n co\) < 
a,- G M,-+|, gQ, is Cohen and J/«, = $fa,+\, 

(f) if / G Nj is a PQ/-name of a predense subset of Q'E ((pj : j < /)) = QQ;, 

then some finite . /(/) C / , J(I) g AT,-, is predense above pt in Q'E({pj • 

j < i)) in the universe VPa>^. 

At limit stages / we take for M, the union of the former Mj. Otherwise choose 
Mi as required. Next we choose a, such that sup(M, n co\) < a, < co\ and Qa/ 

is Cohen and stfa. = stfa.+r We work in V[Pai]. We set Af = Mi[GPa.]. We now 
interpret the Cohen forcing as 7?o x ^ i x Ri where 

/?o = {A : (3n<co)h: n -> 2P(co)Mi} 

ordered by inclusion. In N] = N?[GRo] = Mi[GPa.][GRo] we let 

Ri = {(«,<?) : n < co.q G e^oU/v : j < /))}, 

ordered by («i,</i) < (n2,q2) <=> «i < n2 A q\ \ n = q2 \ n f\ q\ < q2. Since 
(G/so)^' i s countable we have that /?, is Cohen forcing. Let Nf = N^[GRll, GRl] = 
Mi[GPni][GRo][GRll q\ = \J{q • (n,q) G GRl}. 

Now we choose qt 3* q\ such that qt has the properties of fa in 2.8(2)(b) for the 
sequence/ = (/)/ : j <i). So clearly ^ G (QEo)

vlPa>"], A;<«/>; ^* 9<-
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We can find in Nf a sequence (w'k : k < to) and ft* such that 

wk, n wl ki ^k2 

w'k is included in some i'o-equivalence class, 
w'k C co \ dom(<7,-), 

(*){ \/n3m[ [m]E\dom{qi)\\Jk > n 

ft* e Sym(co), 
ft* maps {[«]£„ : n e A} onto {w'k : k < w} 
more precise, ft,* does this, where for b C co, A,*(6) = range(ft* f ft). 

Let 

i?2 = < / : (3w < <a) I / is a permutation of [ J w'k mapping w'k into itself) >, 

ordered by inclusion. In N? = N2[G*2] let ff = U G«, so Nf = Nf[ffl 
So Nf e Vp"i+K and hence is a fa ;+i-name. As Pa,-+i has the c.c.c, we can 

assume that this name is hereditarily countable. Now Nf (~\w\= Nf n co\ = 
M,-[GQ,.] n co! = <5, < coi, hence Nf n Sym(co)Kt/>,sl C A[5i.. Let 

/P = (A;og;,o(A;)-1 f [ J < ) o / f . 
£<co 

It is still generic for i?2 over Vp"> [GR{), GRf\. We set Nf = Nf[ffl it = 9/ U / ,Q . 
Now (Nf,qf) are as required. We choose {Nhqf) by taking />„,-names {Nj,qf) 

in F for them. Finally we choose by 2.8(2) some pt such that />,• > </f and p, is 
(Nj, Qai)-generic over Nt and as in (f). 

Item (a) of the conclusion is seen as follows: We have for / < o»i that Vp"' \= 

"Q'EMPJ
 : J < ')) i s c-c-c-"- H e n c e w e h a v e by 3-5 t h a t (Ps,J*s) <KapP (ps * 

Q'EMPJ • J < i))^s)-^d(Ps*Q'Eo((Pj : j < i)),sf3) <K
upp (Ps*Q'E(MPj • J < 

k)),sfs) for/ < k e to\. Since Q =~QEo((Pj • J < ">i» = U/<t0, Q'E0((PJ '• J < ' » 
we can apply 3.4. 

Item (/?) of the conclusion follows from the choice of Q. 

Foritem(y): Fix/. Note that 5,- > i. We have in Vp'"< t h a t / , a e KSi = ^,.[Gm|]. 

We have that /?,• e ( g ^ ) ^ " ' and 

Pi^p^Qg\{}K=ff\ \Jw[ 
k£co kew 

and hence 

(0) pi " -»„ , . e 4 ^ = (^r)"1 °? o ( / f ) - 1 o (/*,*) r A 
and thus, since gs, f 4̂ contains the same information as g .̂ since the latter is in 
SE0.A , the equation 0 gives a witness in (g, Ks, )symMn Sym(co) '"' \ AT̂,- and hence 
shows the inequality claimed in (y). H 
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In order to organize the bookkeeping in our final construction of length K2 we 
use OCSf) in order to guess the names (Kt : i < co\) of objects that we do not want 
to have as cofinality witnesses. We recall Sf — {a £ a>2 • cf(a) = Hi}. 

For E C C02 being stationary in co2 we have the combinatorial principle §{E): 
There is a sequence (Xg : S £ E) such that for every X C a>2 the set {3 £ E : Xs = 
X n S} is stationary in coj. 

For more information about this and related principles and their relative consis­
tency we refer the reader to [3, 2]. 

CONCLUSION 3.9. Assume that V fulfils 2H° = Hi and§si. Then for some forcing 

notion P £ V of cardinality H2 in Vp we have that Q = Hi and of (Sym(co)) — b = H2. 

PROOF. Let //(H2) = |J,.<N Bt, Bt increasing and continuous, Bi+\ D [i?,]-No 

and (Xj C Bj : i £ Sf) is a <>S2-sequence. We choose by induction on / < H2 

(Pi,tfi,di) such that 
(a) {Pi,srf',•) is an Hi-approximation, |P,| < Hi, 

(/?) (P,-, J / ; ) is <£ -increasing and continuous, 

(7) dj is a function from .af ,• to coi, 

(<S) if / < H2 and (wk '• k < 00) is a P,-name and 11-/.,. (10̂  : k < co) are 
non-empty pairwise distinct and 7 < a>i then for some j £ (z, co2) we 
have that lh/>j+l for some infinite u C co and some 4̂ e ^j+\ we have that 
U e „ wk CAe tfJ+l A ^ / + i ( ^ ) = y, 

(e) for arbitrarily large i < (x>2 we have that \\-Pj "g , = g/j, and D, is a Ramsey 
ultrafilter", 

(() if / £ Sj and P, C P,, Xt code of the P,-name (Kj : j < co\) and 

lh/>, "(-£/ : y £ coi) is a cofinality witness of Sym(co) and {/ £ 

Sym(a>) respects £0 and D idm\A()} is not included in any K/\ then 
!hp,H "for some / £ Sym(co) for arbitrarily large j < a>\ we have 
(Kj,f)Sym{a)n(KJtl)

y^(K^". 

Can we carry out such an iteration? We freely use the existence of limits from 
Claim 3.4 and that <* is a partial order 3.3. The step / = 0 is trivial. So we have 
to take care of successor steps. 

If i = j + 1 and j e- Sj then we can use 3.5 to define (Pa,sfa), and taking care 
of clause (S) by bookkeeping. 

If / = j + 1 and j £ Si and the assumption of clause (f) holds, we apply 3.8 to 
satisfy clause (£), using Q[ = Q from 3.8(/?). 

If j = 7 + 1 and / £ S\ but the assumption of clause (£) fails (which necessarily 
occurs stationarily often), we apply 3.6 and 3.7. 

Having carried out the induction we let P = [}a<ail Pa, s? = {Ja<U)1 s?a, d = 

\Ja<0J2 da. So (P, sf) is an (H2, Hi)-approximation. For y £ co\ we set .sp7' = {̂ 4 £ 
stf : d{A) = y}. Now clearly Vp«2 \= 2N° = 2Nl = H2. Let G C P be generic. 

We show: lh/> g = Hi. For <S < Hi we have that stf^[G] is groupwise dense 
by clause (S), and always Q > Hj. So it is enough to show that the intersection 
of the sf^lG] is empty. Suppose that it is not, i.e., that there is some B £ [co]w 
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such that for S < at\ there is some As £ ^ W [ G ] such that for all S, B C* As. 
Now let h: co —> B be an injective function. But now we have a contradiction to 
(P,tf) being (H2, Ki ^approximation (see 3.2(3)) and to property (3.1(/?)) of ^f is a 
(Hi.g)-witness. 

We show that \\-p b = H2. This follows from clause (e). 
Finally we show that 11- cf(Sym(cu)) > Ni. Suppose that (Kj[GVJ2] : j < u>\) is 

a cofinality witness in F[GM2]. Then there is a club subset C in £02 such that for 
i e C we have that (K/[Gi] : j < co\) is a cofinality witness in V[Gj]. By 0(S?) 
there is some / G 5^ such that Xt is a code of a P, name of (AT7[G,] : j < co\). By 
(the analogues of) Claims 2.4 and 2.6 for Q'E and because of b = N2 and because of 
clause (0 we get that the sequence (Kj[Gt] : j < co\) does not lift to a cofinality 
witness in K[Go,2] such that for all j < a>\ we have that K/[Gj] = ^ / [ G ^ ] n V[G{\. 
Hence (Kj[GOJ2] : j < co\) was no cofinality witness in V[GUJ2]. H 
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