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BOREL ORDERINGS

LEO HARRINGTON, DAVID MARKER AND SAHARON SHELAH

ABSTRACT. We show that any Borel linear order can be embedded in an
order preserving way into 2% for some countable ordinal a and that any thin
Borel partial order can be written as a union of countably many Borel chains.

0. Introduction. We say that (X, <) is a Borel order if X and < are Borel
subsets of R and R? respectively and < is reflexive and transitive. Friedman [F]
initiated the study of Borel orders, suggesting that this was an interesting class of
uncountable orderings which avoids many of the pathologies of the uncountable. A
number of results in this direction were proved in [F, H-S and S]. In this paper
we will give several structure theorems for Borel orderings which, in some sense,
explain why pathologies are avoided.

(X, <) is said to be thin if there is no perfect set of pairwise incomparable
elements. Orderings that are thin admit reasonable structure theorems. There is
little to say about nonthin orderings. The main results are

THEOREM 3.1. If (X,<) is a thin Borel order, then for some a < w there s
a Borel f: X — 2% order preserving (where 2% is ordered lexicographically).

THEOREM 5.1. If (X,<) ¢s a thin Borel order, then X can be written as a
countable union of Borel chains.

These results were proved by the first and third authors. The second author
added the results of §4.

To prove these results it is useful to look instead at the lightface (i.e. A})
refinements. The proofs rely on the interplay of effective descriptive set theory
and forcing. The tools we need are developed in §1 and §2. Other descriptive set-
theoretic facts can be found in Moschovakis [M]. As usual in descriptive set theory
we will interchange R and w“ whenever convenient.

Notationally, if < is an order, z ~ yif z < y and y < z and z|y if z and y
are incomparable. Lower case latin letters usually denote reals (with e, m, n, ¢, j
reserved for integers). Upper case latin letters denote sets of reals and script letters
denote sets of sets of reals.

1. The reflection lemmas. Let Wy, Wi, Ws,... be the usual enumeration
of ree. sets. Let U C w x w¥ = {(e,z): Vy 3In (z|n,y|n,n) € W,}. Then U is
w-universal I1. Let U, = {z: (e,z) € U}.

DEFINITION 1.1. If & C #(R) we say & is I1} on I1! if {e: U, € &} is T1].
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LEMMA 1.2 (REFLECTION). If & isIl} on1l} and Y € & is 11}, then there
isa Al X CY such that X € .

PROOF. Let ¥: U — w; be a II}-norm. Let n, m € w such that {e: U, €
A}y =U,andY =Up,. ForecwletV, = {y € Y: ¥(m,y) < ¥(n,e)} (ie:
y € V., & y gets into Y, before U, gets into & ). Each V, is I} and we can easily
find a recursive function f such that V. = Uy(). By the recursion theorem there is
an é € w s.t. Wi = Wy(e). Then by the definition of U and f, Ve = Uy = Us

IfUs; ¢ &, then ¥(n,é) =ccand V; =Y. But Y € & and V; = U, so thisis a
contradiction and U; € % . If @ = ¥(n,é) < wsk, then V; = {y: ¥(m,y) < o} and
this set is Al. Thus U; is the desired set. O

DEFINITION 1.3. Let & C P(R)2. We say & is I} on II} if {(e,€) :
& (Ue,Uer)} is I}, &7 is monotonic upward if whenever & (Y,Z), Y C Y’ and
Z C 7', then & (Y'Z'). We say & is continuous downward if whenever we have
Yo2YV1 DY, 2 - and Zg 2 Z; D Zy 2 -+ such that for all n & (Y,, Z,), then

A (Yn, N Zn).

LEMMA 1.4 (STRONG REFLECTION). If &/ C P(R)? is I} on I}, mono-
tonic upward and continous downward, then if Y € I} and & (Y,-Y), there is a
Al X CY such that & (X,-X).

PROOF.

Claim. If X CY is Al, there is A} X D X such that &/ (X,-X) and X C Y.

Consider B(Z) ={Z: A( ,mX)and X C Z}. Then B is I'Il on IT}. Since & is
monotonic upward and =Y C —X, B(Y). Thus by reflection there is a Al X DX
such that & (X,-X) and X C Y.

Let X, be any Al subset of Y. Given X, let X,4; 2 X, be Al such that
& (Xnt1,-Xyn) and Xn+1 C Y. The procedure for going from X, to X, is
uniform so (X,:n € w) is Al. Let X = (JX,. Then X is A] and X C Y.
Since & (Xp+1,Xy,). By monotonicity for all n & (X,-X,). Thus by continuity
M(X,ﬂﬂXn). But =X = ﬂ—\Xn, so & (X,-X). O

There is a natural way for & ’s that satisfy the hypothesis of strong reflection
to arise. Let P(Z,7) be II}. Let &/ (X,Y) & VT ¢ X V§ ¢ Y P(Z,y). Clearly & is
11 on I}, monotonic upward and continuous downward. The following corollary
gives the flavor of applications of strong reflection.

COROLLARY 1.5. If X is ©} and linearly ordered by < a A}l ordering, then
there is a A} Y D X such that Y is linearly ordered by <.

PROOF. Let & (Y, Z) & Vxo,21,¢ Y 20 < 21 V 21 < 0.

Then & satisfies the hypothesis of strong reflection and & (-X, X). So by strong
reflection there is a Al Z C =X such that & (Z,-Z). Let Y =-Z. O

The reflection lemmas provide a uniform treatment for a number of results which
otherwise would be proved by an ad hoc mix of ¥}-separation and Kreisel uni-
formization arguments.

2. Gandy forcing. Let P = {4 € X1: A # &}. We order P by inclusion (i.e.
A < B iff A C B). This notion of forcing was used by Harrington [H] to give a
new proof of Silver’s theorem on IT! equivalence relations.
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LEMMA 2.1. If G C P is generic, then (\{A: A € G} = {a} for some a € R.

Let A€ Gsay z € A < 3f R(f,z) where R is 1. For 0,n € w* let A, =
{z Do:3f 2n R(f,z)}. For each n we can find op,n, € W" s.t. Ay, 5, € G and
On C Opt1, Tn C Tnt1. Thus if z = lim, 0, and f = lim, n,, then R(f,z). For
eachn {y: yln=2z|n} € G. Thus {z} =nNG. O

If b € R we can view b as coding a pair of reals (bg, b;).

LEMMA 2.2. Ifb is P-generic, then both by and b; are P-generic.

PROOF. We show by is P-generic. Let B € P and let & C P be dense open.
Let B’ = {z: 3y (z,y) € B}, since B’ € P there is C' C B' st. C' € . Let

C ={(z,y): 2 € C'A(z,y) € B}. Then C # &, C C B and ¢ II-ZG C’. Thus

' ={C €P: for some C' € D, C I by € C'} is dense, so by is P-generic. O
In our main results we will be dealing with modified products of Gandy forcing.
DEFINITION 2.3. P*" = {A C R": Ais ©} and A # &}. Let E be a T}
equivalence relation. Let P% = {A C R™: A is &} and if (a1,...,an) € A, then
Vi,j < n a;Ea;}. Let PxgP = {(Y,A) € PxP: (Y x A)NE # @} and
PL xg PL = {(Y,A) € PL x P%: 3(yo,%1) € Y 3(ao,a1) € A yoEy1EaoEa1}.
Each of these sets is ordered by inclusion.

LEMMA 2.4. Ifb is P-generic, then both by and by are P-generic.

PROOF. We show by is P-generic. Let B € P and let & C P be dense open.
Let B’ = {z: Jy (z,y) € B}, since B’ € P there is C' C B' st. C' € &. Let

C={(z,y):2€C A(z,y) €B}. ThenC #@,CC BandclFbe C'. Thus

' ={C €P: for some C' € D, C IF by € C'} is dense, so by is P-generic. O
In our main results we will be dealing with modified products of Gandy forcing.
DEFINITION 2.3 P" = {A C R": Ais X! and A # O}. Let E be a X}
equivalence relation. Let P = {A C R™: A is &} and if (a1,...,an) € A, then
Vi,j < na;Ea;}. Let PxgP = {(Y,A) e PxP: (Y x A)NE # J} and
PZ xgPZ = {(Y,A) € P%Z x P%: 3(yo,y1) € Y I(ao,a1) € A yoEy1EaoEa;}.
Each of these sets is ordered by inclusion.

LEMMA 2.4. Ifa,b are P xg P generic, then a and b are P-generic.

PROOF. Let Z C P be dense open, let (A, B) e PxgP. Let A’ ={z € A: Jy €
B zEy}. Let C€ P, C C A'. Then (C,B) € P xg P. Thus &' = {{C,X): C €
D} is dense in P xg P. So a is P-generic. O

LEMMA 2.5. If (ag,a1), (bo,b1) are P% x g P% generic, then each pair (a;,b;)
1s P xg P generic.

PROOF. We will prove this for ag, by. Let & C P xg P be dense. Let (4, B) €
PL xgP%. Let A= {z: 3y zEy A (z,y) € A}, B = {z: 3y zEy and (z,y) € B}.
Then (4,B) € P xg P. Let (C,D) < (4,B), (C,D) € @. Let C = {(z,y) €
A:zEyAz €C}, D = {(z,y) € B: zEy Az € D}. Since 3z¢ € C 3z, € D zoEx,,
2o € A and 2, € B, (C, D) € P% x g P%.

Thus ' = {(X,Y) € P? x P%: ({z: Jy(z,y) € X}, {z: 3y: (z,y) €Y}) € D}
is dense. 0O
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We would like to have that if by, b; are P x g P generic then bgEb;. This seems
unlikely in general but is true for an important class of equivalence relations E.

DEFINITION 2.6. We say E is representable if for every z, y if 2y then there
is A set X such that z€ X,y ¢ X and Vz € X Vy ¢ X zFy.

LEMMA 2.7. If E is representable and a,b are P x g P generic then aEb.

PROOF. Suppose not. Let (A, B) I~ afb. There is a A! set X such that a € X,
b¢ Xandforallze X,y¢ X zFy. Let A= ANX, B= B — X. Since a, b are
P-generic, by Lemma 2.1 (4, B) € P xz P. But clearly (A,B) ¢ P xgP. O

In applications we will be interested in finding perfect sets of mutually generic
reals. To obtain P x P generic reals this is done much as it would be in Cohen
forcing. The only difficulty arises if we reach a condition A which is countable. By
the effective perfect set theorem if A € £ and A is countable, then A is a set of
hyperarithmetic reals. In general we will only be doing forcing below conditions
which do not contain any hyperarithmetic reals.

LEMMA 2.8. IfA€ P and|A| > Ng, then we can add a perfect set of mutually
P-generic reals in A.

PROOF. Let A = {z € A: 2z ¢ A}l}. Then 4 € P and we can do the usual
arguments below 4. O

Obtaining perfect sets of mutually P X g P generic reals is somewhat more deli-
cate. We prove only the special case we need.

LEMMA 2.9. Let < be a Al ordering on R. Suppose for each A € P we have
a Y1-equivalence relation E4 such that if B C A, then zEgy = zE4y. Suppose
there 1s a Y s.t. for all BCY, B € P there are by, by € B such that (by,b,) are
P x g, P generic and by and by are incomparable. Then there is a perfect subset of
Y of pairwise incomparable elements.

PROOF. Let P be the set of finite functions p:t—{BeP: BCY}s.t.

(i) t C 2% is a finite tree,

(ii) p(2) =Y,

(iii) if n C r € ¢, then p(n) 2 (1),

(iv) for "0, n*1 €t (p(n"0), (0" 1)) IFE, ,, Yo incomparable to 7.

(v) Let Ly = {n € t: Y7 D n 7 ¢ t}, then there is (a,: n € L) s.t. a, € ©(n)
and if 0,7 € Ly, then a, E maryar (n AT =0 where 0 C n,7 and n(|o]) # 7(|o}])).
Order P by extension. Suppose ¥: T — P is generic. Let ¥: [T] — R by U(f) =
N{¥(f|n): n € w} it is routine to see that if f,g € [T}, then ¥(f) and ¥(g) are
P XE, ., P generic and hence incomparable. We need only show that T is perfect.

Suppose p:t — P is in P and € L;. Let A, = {z € p(n): Ibs)oeL, by =
and b, Ey(onr)br for allo,7 € L,}. Let By, By C Ay, Bo, By € Ps.t. (Bo,B1) I+ 3o
and y; are incomparable. Let @: t U{n”0,n"1} — P s.t. $ D ¢ and $(ni) = B;.
Then ¢ € P. Thus if ¥: T — P is generic, T is perfect.
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3. Representing A}l orderings.

THEOREM 3.1. If (X <) is a thin A} order, then there is o < w§¥ and a A
order preserving f: X — 2%.

PROOF. Without loss of generality X = R.

Let F ={f:R—-2*:a<w, feAlandz <y = f(z) < f(y)}

Claim 1. F is I1}.

n = (ng,n1) codes an element of &,

(1) ng codes a recursive ordinal «,

(2) n; is a A} code for a subset G of R x 2%,

(3) Yz3y € Al(z) (G(z,y) AV2(G(z,2) — 2z = y)) and

(4) Vz,y,2,w ((z <y AG(z,2) ANG(y,w)) — z < w [in 2).

Since the quantifier 3y € Al(z) is really universal, this is easily seen to be II}.

For F € F we define an equivalence relation Er by zEpy if and only if F(z) =
F(y). Let E=(\{Er: F€%}. Then zEy & VF € A} (F € ¥ = F(z) = F(y)).
Since .F is I1! and VF € Al is really existential, E is a £}-equivalence relation.

Our main claim is that £ =~. Before establishing the main claim we will show
how to establish the theorem from it. For the moment assume E ==~.

Consider the following & C P (R), & (X) & Vz,y (z ¢y — IF € A{F € X,
F e and F(z) # F(y)). Then & is I1] on II{ and & (&) so by reflection there
isaAl XCF st.Ve,yzs#y— 3IFeX F(z) # F(y))-

Let Fy, Fy, F»,... be a Al enumeration of X. Define Fy, FY,... as follows.

(i) F§ = Fo.

(ii) Suppose F*: R — 27 and Fn41: R — 2%. Define Fj;,;: R — 2**7 by
Fi1(2) = F2(X) Fasa(2).

It is easily seen that Fj,, is order preserving and if F;(z) # Fi(y) for any
i < n+1,then F (z) # Fy 1 (y). Let F* = lim,, F;. Then F* is Al (note:
By boundedness we can find § < w$* s.t. for all n F,,: R — 2° for some a < 4.
Thus F*: R — 2* for some o < § -w) and if z # y, F*(z) # F*(y). Thus F is the
desired function. Thus we need only establish that E =~.

Let Z = {z: 3y zEy Az # y}. Clearly Z is £1. If Z = @, then E ==, so we
assume for purposes of contradiction that Z # &. Let P = {A € £}: A # & and
AC Z}.

Claim 2. If a and b are P x g P generic, then it is not the case that a < b (or
symmetrically it is not the case that b < a.).

Let (A, B) € P xg P s.t. (A,B)IFa<b.

Case 1. YVa € AVb€ B (aEb=a } b).

Let Ap = {z: 3y € AyEx Ay > z}. Let By = {z: 3y € B yEx Ay < z}.
Now Ag and By are ©1. Ag is the downward closure of A in each E class and By
is the upward closure of B in each E-class. Clearly Ag and By are disjoint. Let
F(X,)Y)eoVry(z¢g XAy¢Y o zByVy £ z)AVz (2¢ X — 2 ¢ By). Then
&/ satisfies the requirements for strong reflection and & (—Ag, Ag). Thus there is
a Al C 2 Aps.t. & (=C,C). Thus C is downward closed and disjoint from Bo.

Subclaim. There is F* € # s.t. Vz,y (zEr xyAy<zAz€C) -yeC).

Let & (X) @ Vz,y (3f € Alf e XA f(z) # f(y) Vyfzvz g CVyel).
Then .% is I} on I} and & (¥). Thus by reflection there is a A] X C.F s.t.
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& (X). As above we can build F* € ¥ such that zEp-y iff for all F € X zEFy.
SoVz,y ((zEr-yANy<zAzeC)—-yel).
Suppose F*R — 2. Let G: R — 2°*! by

_ [ F*(»)"0, z€C,
Gx) = { F*(z)M, z¢C.

It is easy to see that G €  and if zEp-y, = € C and y ¢ C, then zfgy. In
particular if a € A and b € B, then a afb, contradicting the assumption that
(A, B) e€eP xgP.

Case 2. There area€ A, b€ Bs.t. aEband b< a.

Let D = {(a,b): a € A, b€ B, aEb and b < a} € P%. Let (as,b1), (az,b2) be
PZ x g PZ generic such that (a1,b1), (az,b2) € D. By 2.5 (a1, b2) and (a2,b;) are
each P x g P generic, so since a; € A, b; € B, a; < by and as < b;. But a3 > b;
and ag > by so a; < a; a contradiction.

This completes the proof of Claim 2.

Claim 3. If a and b are P x g P generic, then it is not the case that a = b.

Suppose (A, B) € P xg P and (A, B) I+ aab.

Casel. Ja€ A,be BaEbAa<b(orJac Abe BaEbAb<a).

Let D = {(a,b):a € A, b € B, aEb and a < b}. Let (ag,bo), (ai,b1) be
PZ x g P% generic with both generic filters containing D. Then by 2.5 (ao,b;1) and
(a1,bo) are P x g P generic. Thus ag < by &~ a; < b; = ap a contradiction.

Case 2. 3a€ A, b€ B aEbAalb.

Let D = {(a,b): a € A, b € B, aEb and a|b}. Let (ag, bo), (a1, b1) and (az, b2) be
mutually P x g PZ generic with all three generic filters containing D. Then ao|bo
and by 2.5 (aq, bo), (az,b1) and (a1, b;) are Px gP generic. Thus by =~ a2 = b1 ~ ao.
So we have a contradiction.

Case 3. Vae AVbe BaEb=a=b.

Let C={z: 2 € ANy € B zEy}. Then C is £} and Vz,y € C (zEy = z ~ y).
Since AC Z,C C Z. Thus Vz € C Jy (zEy Az # y). We claim this is impossible.

Subclaim. Let X be Li. Suppose Vz,y € X (zEy = z =~ y). Then Vz € X Vy
(zEy = z ~ y).

Suppose not. Let Bt = {z: 3y€ X tEyA(z > yVzly)}and B~ ={z: Iy € X
zEy A (z < y veez|y)}. One of these is nonempty assume it is B*. Let Ag =
{z: 3y € X zEy Az < y}. Since E/X ==, AgN Bt =@. As in Case 1 of Claim
3 by strong reflection we can find a A} C st. 49 CC, BtNC = J and C is
downward closed in each E class it intersects. By a second reflection argument we
can find an F €% st. ifz € CAzEry Az > y, then y € C. Letting

_ [ F(z)"0, z€C,
Gle) = { Fx)M, z¢C.

We see that if zEpy and z € Ag and y € BT, then z¥cy, a contradiction. This
establishes the subclaim and Claim 3.

Thus if a and b are P xg P generic, they are incomparable in <. By 2.9 it
is possible to add a perfect set of mutually P xg P generic elements. But then
in the generic extension there is a perfect set of pairwise incomparable elements.
This is 3 so by Shoenfield absoluteness, there is already a perfect set of pairwise
incomparable elements. Thus < is not thin, a contradiction.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



Sh:215

BOREL ORDERINGS 299

COROLLARY 3.2 (HARRINGTON-SHELAH [HS]). If < is a thin Borel order,
there are no wy-chains.

Theorem 3.1 is similar in spirit to the following result in mathematical economics.

THEOREM 3.3 (DEBREU [D]). If (X, <) is a closed prelinear order then there
s a continuous order preserving f: X — R.

4. Separable A} orders.

DEFINITION 4.1. We say (X, <) is separable iff there is a countable S C X such
that for any zg, ; € X if 79 < 1, there is s € S zp < 5 < z7.

If (X, <) is a separable Borel prelinear order, then it is easy to see that there is
a order preserving Borel f: X — R. The main goal of this section is to prove the
effective version of this result.

LEMMA 4.2. If (X,<) is a Al prelinear order then either
(i) there is a perfect set of pairwise disjoint closed intervals [a,b] with a < b or
(ii) if To < z1, there is a Al downward closed Y such that 7o €Y and 2, ¢ Y.

PROOF. Without loss of generality X = R. We view each real z as coding a
pair (9, 2;). Let A = {z: 20 < z; AVY € Al V2,y ( SyAy€Y)—2z€Y)] -
(zo ¢ Y Vz; € Y)}. The quantifier VY € Al is essentially existential so A4 is T].
Let P={Be¥x!: B#02}.

Claim 1. If r € R and 4 is a name for a generic real then A I- (2o < r < a).

Suppose not. Let B C A such that B I+ ao <1 < ay.

Case 1. There are b,b’ € B s.t. by < bp.

Let C ={c: co € B, ¢1 € BAcjg > co1}- Let ¢ be P generic below C. Then by
2.2 ¢g and c¢; are also P generic so cgg < 7 < ¢g1 and ¢10 < 7 < ¢11. But ¢ € C so
co1 < c19. Thus r < r a contradiction.

Case 2. For all b,b' € B by < b}.

Let B- = {z:3y € Bz < y} and Bt = {z: 3y € B z > y1}. Then B~
and BY are disjoint £} sets which are downward and upward closed respectively.
Let (X, Y) ©Vz¢ X 2¢ Bt AVz ¢ X Vy ¢ Y y £ 2. Then & satisfies the
hypothesis for strong reflection and & (-~B~, B~). Thus by strong reflection there
is a A} C such that B~ C C, C is downward closed and C N Bt = . But then if
beBbyeC andb; ¢ C. Thus B¢ A a contradiction.

Claim 2. If r € R, then A I+ a9 # r and a@; # r. Suppose B€ P, BC A
and BI- ao =r. If b € B and by # r, choose n such that bo(n) # 7(n). Then
B' ={c€ B: ¢(n) =by(n)} € P and B’ I ag = r. Thus for all b€ B by = r. But
then {r} = {z: 3b € B by = z} is a T] singleton, so r € A}. Then Y = {z: z <r}
is a downward closed A} set separating by from b; for b € B, a contradiction.

Claim 3. If a and b are P x P generic, below A then [ag,a1] N [bo, b1] = .

This is clear from Claims 1 and 2 since b is generic over a.

To prove the lemma we find a perfect set of mutually P generic reals below A.
By Claim 3 these give rise to a perfect set of pairwise disjoint intervals. 0O

THEOREM 4.3. If (X, <) is a A} prelinear order, then either
(1) there is a perfect set of pairwise disjoint closed intervals [a,b] with a < b, or
(ii) there is a A} F: X — R order preserving.
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PROOF. Assume (i) fails. Let & = {f: X - R: fis Al and 2 < y = f(2) <
f(y)}. Asin 3.1 ¥ is I1}.

Claim 1. If z < y, then there is f € F s.t. f(z) < f(y). By Lemma 4.2 there is
a downward closed Y € A} such that z € y and y ¢ Y. Let

0, Y,
f(z)={1 zZY

Clearly f separates z and y.

Claim 2. There is a A} C C.% such that for all z < y there if f € C such that
f(z) < f(y).

Let & (Z) @ Vz,ye X (z<y—3f €A}l fe€ ZA f(z) < f(y)). Clearly & is
I} on II{ and & (F), so by reflection there is a A} C C.F such that &7 (C).

Let fo, f1, f2 be a A} enumeration of C. By composing f,, with an isomorphism
hn: R — (1/2"*11/2™) we may assume F,: X — (1/27t1,1/2"). Let F(z) =
Yomeo fn(z). It is easy to see that F is well defined and Al.

Suppose z < y, then for any n € w fo(z) < fa(y). Thus Y ooy fulz) <
om0 fn(y). If 2 < y, there is a least n s.t. fn(z) < fn(y). Clearly Y ongi fi(z) <
Yongi fiy), s0 F(z) = fu(@) + 2,4, fi(2) < fa(y) + s fily) = F(y). Thus F
is order preserving. F' is the desired function. 0O

COROLLARY 4.4. If (X,<) is a separable A} prelinear order there is a A}
f: X — R order preserving.

COROLLARY 4.5 (FRIEDMAN [F]). If (X, <) is a Borel prelinear order then
(X, <) s separable or there is a perfect set of totally isolated points.

COROLLARY 4.6 (FRIEDMAN-SHELAH [F, St|). There s no Borel Suslin
line.

5. Decomposing thin A] orders. The following result is an analog of Dil-
worth’s result [Di] that every partial order of width n can be written as a union of
n chains.

THEOREM 5.1. If(X, <) is a thin A} prepartial order, then there are Al chains
(Xn:n€w) such that X =, ., Xn.

new

PROOF. Without loss of generality assume X = R. Let Z = {Y € £}: <
is a prelinear ordering on Y}. Let Wy = |J{Y:Y € Z}. f Y € Z, then by 1.5
there is a A} X D Y such that X € Z. Thus z € Wy < 3Y € A} (Vz,y € Y
(z<yvVy<z)Az€eY). Soby familiar arguments Wy is A}. Let W = -Wy. If
W = @, then X is the union of countably many A1l chains. So we assume W # &.
We will reach a contradiction if we can show there is a nonempty linearly orderly
lycw.

ForY eZh Y #0,Y CW,let % = {F € A}: 3a < w§k F: R — 2% sit.
Ve,y €Y F(z) < F(y) - z < y}. For F € % let zEpy & F(z) = F(y) and
zEyy & VF € % F(z) = F(y). As in 3.1 each % is 1} and each Ey is £} and
representable.

If z,y € Y and zEyy, then there is F € % such that F(z) # F(y). Thus z and
y must be comparable. If for all z,y € Y zEyy = z =~ y, then < linear orders Y,
a contradiction. Thus for each Y we may assume 3z,y €Y (zEyy Az #y).
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Main claim. For Y C W either (a) there are a,b € Y P Xg, P generic with a
and b incomparable or (b) Y is linearly ordered. If (a) holds then by 2.9 < is not
thin and if b holds we reach a contradiction. Thus the main claim suffices. So far
now we assume that any two P x g, P generic elements of Y are comparable.

Let A={a€Y:3be€Y bEyaAb#a}. If A=, Y is linearly ordered so we
may assume A # .

Clatm 1. If b and ¢ are P x g, P generic then b % c.

Suppose (Bg, Co) I+ Z ~ ¢ Let B = {z € Bp: 3y € Cy zEyy}. C = {z €
Co: Jy € B zEyy}. Since (By,Cy) € P Xg, PB and C are nonempty.

Subclaim. Vb € BVe € C bEyc = ¢ =~ b.

Assume there are b € B, ¢ € C, such that b < ¢ (the case b > ¢ is symmetric).
Let D = {(b ¢):b € B,c € C,bEyc and b < c}. Let (by,co), (b1,c1) € D be
P%, xg, P}, generic. Then (bo,c1) and (b1, co) are P x g, P generic so by < co ~
b1 < ¢1 = bg, a contradiction.

Thus for all b, ¥’ € B if bEy b, then 3¢ € C bEycEyl. But then b ~ ¢ ~ ¥
so Vb, b’ € B bEyb' = b ~ b'. Next consider {d € Y: 3b € B bEyd and b,d are
incomparable}. This must be empty else we can find b, d € B x D P x g, P generic
and incomparable, contradicting our assumption. Thus for any d € Y b € B if
bEyd, then b is comparable with d}. Let B~ = {z: 3y € B zEyy Az < y} and
Bt ={z:3y € BzEyyAz > y}. Since on B Ey =~, Bt N B~ = &. Let
K (UV) & VugUVv &V (uEyv Vv > u). Then & (~B~,B~) so by strong
reflection we can find B € A! such that B2 B~, BNB* = @ and Yu € B Wo ¢B
uEyv = u < v. Let.@(U)@szeY (EIFGA1 FeUF@E)#FlyvVveaé¢
BvyeBVvz <y ThenZ is I} on 11} and @ (%v). Hence by reflection there
s XCH st. XisAlandforallz,y€Y (z€ BAy¢ BAz ¢ y) o IFeX

F(z) # F(y). Asin 3.1 we can find an F* € % such that for all z, y F*(z) # F*(y)
iff there is an F' € X such that F(z) # F(y). Let

Glz) = F(z)"0, =z € B,
o= F(z)M, z¢B.

Suppose z,y € Y if G(z) < G(y), then either F(z) < F(y), in which case z < y,
or F(z) = F(y) and z € Bandy ¢ Bsoz<y. Thus G € % . Moreover since
BN Bt =, G splits an Ey class, a contradiction.

Claim 2. If (B,C) I+ b < ¢, then Vb,c € B X g, C b < c. (We abbreviate this as
B<g, C)

Let B' = {b: 3c € C bEyc A b ¢ ¢} and assume B’ # &. Suppose by, b; €
B'zg,B’' and P xg, P generic. By our assumption by < b; or b; < bg. By Claim

1 bo % b;. Assume bop < b;. Let By, B, C B’ s.t. (B(),Bl) IF bo < b;. Let

= {(bo,c) € Bo xg, C: by ¢ c}. Let (by,c),b; be PEY X g, P generic with
(bo,c) € D, by € By. By 2.7 (bg,b1) are P xg, P generic so by < b;. Further ¢
and b; are P xg, P generic. Thus since b; € B, b; < c. But then by < b; < ¢ a
contradiction.
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Suppose (B,C) - b < ¢. Then by Claim 2 B <g, C. Let B = {z: 3b € B
tEybAz <b}. Let (U, V) & Vu@U Vo ¢V (uByvVovfu)AVz¢ ZVyeC
z < y. Then & (=B, B) so by strong reflection there isa Al1B D Bs.t. BNC =0
and B is downward closed in each FEvy class it intersects.

Claim 3. Yzy (z € BAy ¢ BAzEyh) — z < y.

Suppose not. Let D = {d ¢ B: 3b € B bEydAb ¢ dAd € Y}. We can find
do, di € D s.t. dyp and d; are Pxg, P generic. By our assumption and Claim
1 do < d; or d; < dp. Say (DO,DI) I+ do < d;. By Claim 2 Dg <Ey D;. Let
By ={be B:3d € D, (bEydAb ¢ dy)}. Let (b,dg) € B xg, Do be P generic.
Then by assumption and Claim 1 b and do are comparable. Since B is downward
closed b < bo. Thus for all d; € D, if bEydy, then b < dy < d;, a contradiction.

Thus B is Al, downward closed and if 3b € B yE€Y yEyband y ¢ B y > b
Now by reﬁectlon arguments similar to those in Claim 1, we can find a G € H#A
which splits some Fy class. This gives the contradiction which proves the main
claim and the theorem. 0O

COROLLARY 5.2 (SHELAH [S]). If (X,<) is a Borel order and there is an
uncountable set of pairwise incomparable elements, then there is a perfect set of
pairwise incomparable elements.
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