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BOREL ORDERINGS

LEO HARRINGTON, DAVID MARKER AND SAHARON SHELAH

ABSTRACT. We show that any Borel linear order can be embedded in an

order preserving way into 2Q for some countable ordinal a and that any thin

Borel partial order can be written as a union of countably many Borel chains.

0. Introduction. We say that (X, <) is a Borel order if X and < are Borel

subsets of R and R2 respectively and < is reflexive and transitive. Friedman [F]

initiated the study of Borel orders, suggesting that this was an interesting class of

uncountable orderings which avoids many of the pathologies of the uncountable. A

number of results in this direction were proved in [F, H-S and S]. In this paper

we will give several structure theorems for Borel orderings which, in some sense,

explain why pathologies are avoided.

(X, <) is said to be thin if there is no perfect set of pairwise incomparable

elements. Orderings that are thin admit reasonable structure theorems. There is

little to say about nonthin orderings. The main results are

THEOREM 3.1. If (X, <) is a thin Borel order, then for some a < ojy there is

a Borel f: X —> 2a order preserving (where 2a is ordered lexicographically).

THEOREM 5.1. If (X,<) is a thin Borel order, then X can be written as a

countable union of Borel chains.

These results were proved by the first and third authors. The second author

added the results of §4.

To prove these results it is useful to look instead at the lightface (i.e. A})

refinements. The proofs rely on the interplay of effective descriptive set theory

and forcing. The tools we need are developed in §1 and §2. Other descriptive set-

theoretic facts can be found in Moschovakis [M]. As usual in descriptive set theory

we will interchange R and w" whenever convenient.

Notationally, if < is an order, x ss y if x < y and y < x and x\y if x and y

are incomparable. Lower case latin letters usually denote reals (with e, m, n, i, j

reserved for integers). Upper case latin letters denote sets of reals and script letters

denote sets of sets of reals.

1. The reflection lemmas. Let W0, Wy, W2,... be the usual enumeration

of r.e. sets. Let U C u x ww = {(e, x): Vty 3n (x\n,y\n,n) € We}. Then U is

w-universal n}. Let Ue = {x: (e,x) S U}.

DEFINITION 1.1. If sf C^(R) we say sf is n} on nj if {e: Ue E sf } isU\.
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294 LEO HARRINGTON, DAVID MARKER AND SAHARON SHELAH

Lemma 1.2 (Reflection). If sf isH\ onU\ andYesf isTI\, then there
is a A\ X C Y such that X esf.

PROOF. Let $:{/—► toy be a n}-norm. Let n, m G w such that {e: Ue G

sf} = Un and Y = Um. For e G w let Ve = {y € 7: V(m,y) < *(n,e)} (i.e.:

y € Ve «• y gets into ^i before f/e gets into sf). Each Ve is nj and we can easily

find a recursive function / such that Ve = Uf(ey By the recursion theorem there is

an e G w s.t. Wi = Wj^y Then by the definition of U and /, Vi = Ufig) = Ui.

If Ue <fc Sf, then *(n,e) = oo and Ve = Y. But Y esf and Vg = Ue, so this is a
contradiction and Ui G sf. If a = *(n,e) < wjfc, then Vg = {?/: *(m,?/) < a} and

this set is Aj. Thus Ui is the desired set.    □

DEFINITION 1.3. Let sf c ^(R)2. We say J/ is U\ on nj if {(e,e') :

sf(Ue,Ue')} is nj. sf is monotonic upward if whenever j/(Y, Z), Y c Y' and

Z c Z', then sf(Y'Z'). We say J/ is continuous downward if whenever we have

Yo 2 Yj D Y2 D • ■ • and Z0 2 Zi 2 Z2 D ■ ■ ■ such that for all n sf (Yn, Zn), then

sf(f)Yn,f)Zn).

Lemma 1.4 (Strong Reflection). If sf c ^>(R)2 isU\ onTI\, mono-
tonic upward and continous downward, then ifY G Tl{ and sf (Y,->Y), there is a

A\XCY such that sf(X,->X).

Proof.

Claim. If X C Y is A}, there is A} A D A such that sf (X, ->X) and KF.

Consider B(Z) = {Z: A(Z, ->X) and A C Z}. Then B is n} on U\. Since sf is

monotonic upward and -Y C -<X,B(Y). Thus by reflection there is a AJ X 3 X

such that sf(X, -.A) and X C Y.

Let Ao be any A} subset of Y. Given An let An+i 3 A„ be A J such that

sf(Xn+1,-iXn) and An+i C Y. The procedure for going from Xn to An+i is

uniform so (Xn: n £ u>) is A\. Let X = \JXn. Then X is A} and A C Y.

Since j/(A'n+i,-iA'n). By monotonicity for all n j/(X,-iXn). Thus by continuity

sf(X,f)->Xn). But-.A = n-A„, soJ/(A,^A).    D
There is a natural way for sf's that satisfy the hypothesis of strong reflection

to arise. Let P(x, y) be U\. Let sf (X, Y) o Vx £ X Vy <£ Y P(x, y). Clearly sf is

nj on n}, monotonic upward and continuous downward. The following corollary

gives the flavor of applications of strong reflection.

COROLLARY 1.5. If X is Sj and linearly ordered by < a A\ ordering, then

there is a A\ Y 2 X such that Y is linearly ordered by <.

PROOF. Let Sf (Y, Z) «■ Vx0, xy, £ Y x0 < xi V xy < x0-

Then sf satisfies the hypothesis of strong reflection and sf (->X, X). So by strong

reflection there is a A} ZC-.I such that sf(Z, -.Z). Let Y = ->Z.    D

The reflection lemmas provide a uniform treatment for a number of results which

otherwise would be proved by an ad hoc mix of £}-separation and Kreisel uni-

formization arguments.

2. Gandy forcing. Let P = {A G £}: A ^ 0}. We order P by inclusion (i.e.

A < B iff A C B). This notion of forcing was used by Harrington [H] to give a

new proof of Silver's theorem on II] equivalence relations.
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LEMMA 2.1.   If G CP is generic, then f]{A: A G G} = {a} for some a G R.

Let A G G say x G A o 3/ f?(/,x) where f? is n?. For (T,f|6wu let Aa^ =

{x D cr: 3/ 2 77 R(f,x)}. For each n we can find crra»7n G wn s.t. A^^ G G and

er„ C «rn+1, rn C rn+i. Thus if x = lim„r7n, and / = lim„??„, then R(f,x). For

each n {y: y]n = x\n} G G. Thus {x} = flG.    □

If b G R we can view b as coding a pair of reals (bo, by).

LEMMA 2.2.   Ifb is P-generic, then both bo and by are P-generic.

PROOF. We show 60 is P-generic. Let B G P and let 31 C P be dense open.

Let B' = {x: 3y (x,y) G B}, since B' G P there is G' C B' s.t.   C' G ^.   Let

G = {(x,t/): x G C A (x,y) G B).  Then G / 0, G C S and c lh b G G'.  Thus
O

3' = {C G P: for some G' G 3', C lh 60 G G'} is dense, so b0 is P-generic. D

In our main results we will be dealing with modified products of Gandy forcing.

DEFINITION 2.3. Pn = {A C Rn: A is E} and A ^ 0}. Let E be a E{

equivalence relation. Let P£ = {A C Rn: A is E{ and if (oi,... ,an) G A, then

Vm < n oi^aj}. Let P xE P = {(Y,A) G P x P: (Y x A) n £ ^ 0} and

P| x£ P| = {(Y,A) G P| x P|: 3(yo,i/i) G Y 3(a0,ai) G A yoEyyEa0Eay}.
Each of these sets is ordered by inclusion.

LEMMA 2.4.   Ifbis P-generic, then both b0 and by are P-generic.

PROOF. We show 60 is P-generic. Let BgP and let 3 C P be dense open.

Let B' = {x: 3y (x,y) G B}, since B' G P there is C C B' s.t.   G' G ^.   Let

G = {(x,j/): x G C A (x,y) G S}.  Then G ^ 0, C C B and c lh b G G'.  Thus
O

^' = {C € P: for some C e3, C lh 60 € G'} is dense, so b0 is P-generic. □

In our main results we will be dealing with modified products of Gandy forcing.

DEFINITION 2.3 Pn = {A C R": A is Ej and A ^ 0}. Let E be a E{

equivalence relation. Let P£ = {A C R™: A is Ej and ii (ay,...,an) G A, then

Vi,j < n a,^}. Let P x£ P = {(Y,A) G P x P: (Y x A) D £ ^ 0} and

P| xE P| = {(y, A) G P2E x P|: 3(2/0,2/i) e Y 3(a0)ai) G A y0EyyEaoEay}.
Each of these sets is ordered by inclusion.

LEMMA 2.4.   If a,b are P xE P generic, then a and b are P-generic.

PROOF. Let 3 C P be dense open, let (A, jB) G P xEP. Let A' = {x G A: 3y G
£ x£y}. Let G G Sr, G C A'. Then (C,B)ePxE P Thus S" = {(G, A): C G
3} is dense in P xE P. So a is P-generic.    □

LEMMA 2.5. If(ao,ay), (bo,by) areP2ExEP2E generic, then each pair (ai,bj)

is P x E P generic.

PROOF. We will prove this for a0, b0. Let 3 C P xE P be dense. Let (A, 5) G

P| x£P|;. Let A = {x: 3y xEy A (x,y) eA},B= {x: 3y x£y and (x,y) G S}.

Then (A,B) ePx£P. Let (C,D) < (A,B), (C,D) G 3. Let G = {(x,y) G

A: x£2/AxGG}, D = {(x,y) G 5: xEyAxED}. Since 3x0 GG 3xi e D x0Exy,

x0 G A and xy G 5, (G, f))£P|x£ P|..

Thus S" = {(X,Y) G P2 x P|: ({x: 3y(x,y) G A}, {x: 3y: (x,y) G Y}) G^}
is dense.    □
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296 LEO HARRINGTON, DAVID MARKER AND SAHARON SHELAH

We would like to have that if bo, by are Px£P generic then b0Eby. This seems

unlikely in general but is true for an important class of equivalence relations E.

DEFINITION 2.6. We say E is representable if for every x, y if x$y then there

is A} set X such that x G X, y $. X and Vx G X Vy ̂  X x$y.

LEMMA 2.7.   If E is representable and a,b are P xE P generic then aEb.

PROOF. Suppose not. Let (A, B) lh a$b. There is a A] set X such that a&X,

b <£ X and for all x G X, y <£ X x$y. Let A = A n X, B = B - X. Since a, b are

P-generic, by Lemma 2.1 (A, B) G P xE P. But clearly (i,fJ)^PxEP.    □

In applications we will be interested in finding perfect sets of mutually generic

reals. To obtain P x P generic reals this is done much as it would be in Cohen

forcing. The only difficulty arises if we reach a condition A which is countable. By

the effective perfect set theorem if A G E] and A is countable, then A is a set of

hyperarithmetic reals. In general we will only be doing forcing below conditions

which do not contain any hyperarithmetic reals.

LEMMA 2.8. If A G P and \A\ > No, then we can add a perfect set of mutually
P-generic reals in A.

PROOF. Let A = {x G A: x ^ A]}. Then A G P and we can do the usual

arguments below A.    □

Obtaining perfect sets of mutually PxjP generic reals is somewhat more deli-

cate. We prove only the special case we need.

LEMMA 2.9. Let < be a A\ ordering on R. Suppose for each A G P we have

a T,\-equivalence relation Ea such that if B C A, then xEgy =i> xE^y. Suppose

there is a Y s.t. for all B C Y, B G P there are bo, by eB such that (bo, by) are

Px£eP generic and b0 and by are incomparable. Then there is a perfect subset of

Y of pairwise incomparable elements.

PROOF. Let P be the set of finite functions tp: t -* {B G P: B C Y} s.t.

(i) t C 2W is a finite tree,

(ii) tp(0) = Y,

(iii) if n C r G t, then tp(n) 3 <p(t),

(iv) for r/A0, ?yAl G t (<p(r)A0),<p(r]Al)) lr-Bp(i|) y0 incomparable to yy.

(v) Let Lt = {n G t: Vr D n r £ t}, then there is (an: n G Lt) s.t. av G <p(n)

and if n,r G Lt, then an£,^(r;AT)aT (n At = a where tr C n,r and n[]o-\) / r(|cr|)).

Order P by extension. Suppose *: T —► P is generic. Let *: [T] —► R by *(/) =

n{#(/|rc): n G w} it is routine to see that ii f,g e [T], then 4f(f) and ^f(g) are

Pxg ,.A   P generic and hence incomparable. We need only show that T is perfect.

Suppose <p: t —> P is in P and n G f-«. Let Av = {x G ^(r?): 3(6CT)CTGz,( bn = x

and bvE^^^br for alitor G Lt}. Let 50, By C A,,, 50, Bi G P s.t. (Bo,^) lh y0

and yi are incomparable. Let tp: t U {?7A0, ??A1} —> P s.t. tp D <p and <p(nAi) = B^.

Then v3 G P. Thus if *: T -+ P is generic, T is perfect.
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3. Representing A} orderings.

THEOREM 3.1. If (X <) is a thin A\ order, then there is a < u\k and a A\

order preserving f: X —* 2a.

PROOF. Without loss of generality X = R.

Let^ = {/: R->2a: a< wJfc,/G A\ and x < y =► f(x) < f(y)}.

Claim 1. & is nj.
n = (no,ny) codes an element of !ff ,

(1) no codes a recursive ordinal a,

(2) ny is a A} code for a subset G of R x 2a,

(3) Vx3y G A} (x) (G(x, y) A Wz(G(x, z) -» z = y)) and

(4) Vx, y, z,w((x<y/\ G(x, z) A G(y, w))-+x<w [in 2a]).

Since the quantifier 3y G A\(x) is really universal, this is easily seen to be nj.

For Fe^we define an equivalence relation EF by xEEy if and only if F(x) =

F(y). Let E = f]{EF: F G 9r}. Then xEy o VF G A\ (f€^=> F(x) = F(|/)).
Since ,9~ is nj and VF G Aj is really existential, E is a Ej-equivalence relation.

Our main claim is that E =&. Before establishing the main claim we will show

how to establish the theorem from it. For the moment assume E =^.

Consider the following sf C <^(R), sf (X) «• Vx,y (x £ y -> 3F G AJF G X,
F G ̂  and F(x) / F(y)). Then J/ is nj on nj and sf (9~) so by reflection there

isaAjXCF s.t. Vx, j/ x gt y -» 3F G A F(x) # F(y)).
Let F0, Fi, F2,... bea A] enumeration of X. Define Fq, Fy,... as follows.

(i) *o = *b-
(ii) Suppose F*: R -» 2^ and Fn+i: R -» 2a. Define F*+1: R -> 2a+^ by

Fn*+1(x) = F*(X)^n+1(x).

It is easily seen that F*+1 is order preserving and if F;(x) ^ F^(y) for any

t < n+ 1, then F^+1(x) # F^+1(y). Let F* = lim„F*. Then F* is A} (note:

By boundedness we can find 6 < Uyh s.t. for all n Fn: R —► 2a for some a < 6.

Thus F*: R -» 2Q for some a < <S • w) and if x =£ y, F*(x) ^ F*(y). Thus F is the

desired function. Thus we need only establish that E =ss.

Let Z = {x: By xEy A x ^ y}. Clearly Z is Ej. If Z = 0, then F =«, so we

assume for purposes of contradiction that Z ^ 0. Let P = {A G Ej: A ^ 0 and

ACZ}.
Claim 2. Ii a and 6 are Px£P generic, then it is not the case that a < b (or

symmetrically it is not the case that b < a.).

Let (A, 5) G P xE P s.t. (A, 5) lh a < b.

Case 1. Va G A Vo G B (aF6 =>a£b).

Let A0 = {x: 3y G A yFx A y > x}. Let S0 = {x: 3y G B yEx A y < x}.

Now Ao and So are Ej. Ao is the downward closure of A in each E class and Bo

is the upward closure of B in each F-class. Clearly A0 and B0 are disjoint. Let

sf(X,Y) oVx,y (x<£ XAy£ Y ^x$yVy ^x)AVz (z (£ X -+ z £ B0). Then

j/ satisfies the requirements for strong reflection and J/(-iAo, Aq). Thus there is

a Aj G D Ao s.t. sf(-iC,C). Thus G is downward closed and disjoint from B0.

Subclaim. There is F* G ̂ " s.t. Vx, y ((xEF *yAy<xAxGG)-»yGG).

LetJ/(X) <*Vx,y ((3/ G Aj/ G A A f(x) ± f(y)) V y £ x V x g G V y G G).
Then sf is nj on nj and sf (9r). Thus by reflection there is a Aj X C y   s.t.
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298 LEO HARRINGTON, DAVID MARKER AND SAHARON SHELAH

sf(X). As above we can build F* G SF such that xFF-y iff for all F G X xEFy.

So Vx,y ((xEF.y Ay < x A x G G) -> y G G).

Suppose F*R -> 2Q. Let G: R — 2Q+1 by

G(X,"\F*(x)Al,    x£G.

It is easy to see that Ge J and if xEF.y, x G G and y £ C, then x$ay- Ln

particular if a G A and 6 G B, then a a#6, contradicting the assumption that

(A,S)GPxBP.

Case 2. There are a G A, 6 G B s.t. aF6 and 6 < a.

Let f? = {(a,b): a G A, 6 G B, aEb and 6 < a) G P|;. Let (ai,&i), (02,62) be

Ps x£ P2E generic such that (ay,by), (a2,b2) G D. By 2.5 (ai,62) and (02,61) are

each Px^P generic, so since a; G A, 6^ G B, ay < b2 and 02 < 61. But ai > 61

and 02 > 62 so ai < ai a contradiction.

This completes the proof of Claim 2.

Claim 3. If a and 6 are PxgP generic, then it is not the case that o ss 6.

Suppose (A, B) G P xE P and (A, B) lh a ss 6.

Case 1. 3a G A, 6 G B aEb A a < 6 (or 3a G A 6 G B aF6 A 6 < a).
Let D = {(a,6): a G A, 6 G B, aF6 and a < b}. Let (ao,6o), (ay,by) be

P| XfjPg generic with both generic filters containing D. Then by 2.5 (a0,6i) and

(ai, 60) are PxgP generic. Thus 00 < 60 ~ 01 < 61 ss ao a contradiction.

Case 2. 3o G A, 6 G B aF6 A a|6.
Let D = {(a, 6): a G A, b G B, aF6 and a|6}. Let (ao,6o), (ai,6i) and (02,62) be

mutually P2E x^P^ generic with all three generic filters containing D. Then ao|6o

and by 2.5 (02,60), (a2,6i) and (01,61) arePxEP generic. Thus 60 ss o2 rs 61 ss a0.

So we have a contradiction.

Case 3. Vo G A V6 G B 0F6 => a ss 6.
Let G = {x: x G A A 3y G B xFy}. Then G is Ej and Vx, y G G (xFy =*• x ss y).

Since A C Z, G C Z. Thus Vx G G 3y (xFy A x ^ y). We claim this is impossible.

Subclaim. Let A be Ej. Suppose Vx, y G A (xFy => x ss y). Then Vx G X Vy

(xFy =► x ss y).

Suppose not. Let B+ = {x: 3y G X xEy A(x > y Vx|y)} and B~ = {x: 3y G X

xEy A (x < y veex|y)}. One of these is nonempty assume it is B+. Let A0 =

{x: 3y G X xEy A x < y}. Since E/X =«, A0 n B+ = 0. As in Case 1 of Claim

3 by strong reflection we can find a Aj G s.t. A0 C G, B+ D G = 0 and G is

downward closed in each E class it intersects. By a second reflection argument we

can find an F G S?~ s.t. if x G G A xEFy A x > y, then y G G. Letting

f F(x)A0,    x G C,

[X>      lF(x)Al,    x(/-C.

We see that if xEFy and x G A0 and y E B+, then xtfcy, a contradiction. This

establishes the subclaim and Claim 3.

Thus if a and 6 are PxEP generic, they are incomparable in <. By 2.9 it

is possible to add a perfect set of mutually Px£P generic elements. But then

in the generic extension there is a perfect set of pairwise incomparable elements.

This is E2 so by Shoenfield absoluteness, there is already a perfect set of pairwise

incomparable elements. Thus < is not thin, a contradiction.
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COROLLARY 3.2 (HARRINGTON- SHELAH [HS]). If < is a thin Borel order,

there are no uiy -chains.

Theorem 3.1 is similar in spirit to the following result in mathematical economics.

THEOREM 3.3 (DEBREU [D]). If (X,<) is a closed prelinear order then there

is a continuous order preserving f: X —► R.

4. Separable Aj orders.

DEFINITION 4.1. We say (X, <) is separable iff there is a countable SCX such

that for any xo, xi G X if xo < xy, there is s G S Xo < s < xy.

If (X, <) is a separable Borel prelinear order, then it is easy to see that there is

a order preserving Borel /: X —► R. The main goal of this section is to prove the

effective version of this result.

LEMMA 4.2.   f/(X, <) is a Aj prelinear order then either

(i) there is a perfect set of pairwise disjoint closed intervals [a, b] with a < b or

(ii) if xo < Xy, there is a Aj downward closed Y such that xo G Y and xy £ Y.

PROOF. Without loss of generality X = R. We view each real x as coding a

pair (x0,xy). Let A = {x: x0 < xx AVY G Aj [Vz,y ((z < y Ay G Y) -+ zGY)]-^

(xo ^ Y V Xy G Y)}. The quantifier VY G Aj is essentially existential so A is Ej.

LetP = {BGEj: B ^ 0}.

Claim 1. If r G R and a is a name for a generic real then A II—'(ao < r < ay).

Suppose not. Let B C A such that B lh a0 < r < ay.

Case 1. There are 6,6' G B s.t. by <b'0.

Let C = {c: co E B, cy G B Acio > coi}. Let c be P generic below G. Then by

2.2 Co and ci are also P generic so coo < r < coi and cio < r < eyy. But c G G so

coi < cio- Thus r < r a contradiction.

Case 2. For all b,b' e B b0 < b'v

Let B~ = {x: 3y G B x < y0} and B+ = {x: 3y G B x > yi}. Then B~

and B+ are disjoint Ej sets which are downward and upward closed respectively.

Let sf(X, Y) «■ Wz i X z £ B+ A Vx £ X Vy g Y y £ x. Then sf satisfies the

hypothesis for strong reflection and sf(-iB~,B~). Thus by strong reflection there

is a A j G such that B~ C G, G is downward closed and G fl B+ = 0. But then if

6 G B 60 G G and by £ C. Thus B £ A a contradiction.

G/ai'm 2. If r G R, then A lh a0 7^ r and ay / r. Suppose B G P, B C A

and B lh ao = r. If 6 G B and 60 ^ r, choose n such that 60(n) ^ r(n). Then

B' = {c G B: c(n) = 60(n)} G P and B' lh a0 = r. Thus for all 6 G B 60 = r. But

then {r} = {x: 36 G B 60 = x} is a Ej singleton, so r G Aj. Then Y = {x: x < r}

is a downward closed Aj set separating 60 from 61 for 6 G B, a contradiction.

Claim 3. If a and 6 are P x P generic, below A then [a0, ay] D [60,61] = 0.

This is clear from Claims 1 and 2 since 6 is generic over a.

To prove the lemma we find a perfect set of mutually P generic reals below A.

By Claim 3 these give rise to a perfect set of pairwise disjoint intervals.    □

THEOREM 4.3.   f/(X, <) is a Aj prelinear order, then either

(i) there is a perfect set of pairwise disjoint closed intervals [a, b] with a < b, or

(ii) there is a Aj F: X —► R order preserving.
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PROOF. Assume (i) fails. Let & = {/: X -» R: / is A J and x < y => f(x) <

f(y)}. As in 3.1 9~ is nj.
Claim 1. If x < y, then there is / G SF s.t. f(x) < f(y). By Lemma 4.2 there is

a downward closed Y G Aj such that x Ey and y £Y. Let

^ *  = 1  i ^ vI 1,    z£Y.

Clearly / separates x and y.

G/at'm 2. There is a Aj CC^ such that for all x < y there if / G G such that

fix) < f(y).
Let Sf (Z) o Vx, y G X (x < y -► 3/ G Aj / G Z A f(x) < f(y)). Clearly sf is

nj on nj and sf (SF), so by reflection there is a Aj CCF such that sf (C).

Let /o, /i, /2 be a Aj enumeration ofG. By composing /„ with an isomorphism

hn: R — (l/2n+1,l/2") we may assume Fn: X -> (l/2n+1,1/2"). Let F(x) =

XZ^Lo fn(x)- H is easy to see that F is well defined and Aj.

Suppose x < y, then for any n G w /„(x) < /„(y). Thus £^°=o/n(z) ^

E^=o /n(y)- If x < V, there is a least n s.t. /n(x) < fn(y). Clearly £n?ti /,(x) <

£„* /<(»), so F(x) = /„(*) + En#i /<(*) < fn(y) + E„#i /*(?/) = W Thus F
is order preserving. F is the desired function.    □

COROLLARY 4.4. If (X, <) is a separable Aj prelinear order there is a Aj

/: X —> R order preserving.

COROLLARY 4.5 (FRIEDMAN [F]). f/(X, <) is a Borel prelinear order then

(X, <) is separable or there is a perfect set of totally isolated points.

COROLLARY 4.6 (FRIEDMAN-SHELAH [F, St]). There is no Borel Suslin

line.

5. Decomposing thin Aj orders. The following result is an analog of Dil-

worth's result [Di] that every partial order of width n can be written as a union of

n chains.

THEOREM 5.1. If (X, <) is a thin Aj prepartial order, then there are A j chains

(Xn : nEuj) such that X = \Jn€u Xn.

PROOF. Without loss of generality assume X = R. Let Z = {Y G Ej: <

is a prelinear ordering on Y}. Let W0 = (j{Y: Y E Z}. If Y G Z, then by 1.5

there is a Aj X 2 Y such that X E Z. Thus z E W0 <* 3Y G Aj (Vx,y G Y

(x < y\/ y < x) A z E Y). So by familiar arguments Wo is Aj. Let W = -Wq- If

W = 0, then X is the union of countably many Aj chains. So we assume W ^ 0.

We will reach a contradiction if we can show there is a nonempty linearly orderly

Ej Y C W.
For Y G Ej, Y # 0, Y C W, let .9y = {F E Aj: 3a < wj* F: R -► 2a s.t.

Vx,y G Y F(x) < F(y) -> x < y}. For F G ^- let xFFy o F(x) = F(j/) and

xFyy «VF€^ F(x) = F(y). As in 3.1 each ,9y is nj and each EY is Ej and

representable.

If x, y G Y and xEyy, then there is F G .^ such that F(x) ^ F(y). Thus x and

y must be comparable. If for all x,y E Y xEyy => x ss y, then < linear orders Y,

a contradiction. Thus for each Y we may assume 3x, y G Y (xEyy A x =£ y).
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Main claim. For Y CW either (a) there are a, 6 G Y P xEy P generic with a

and 6 incomparable or (b) Y is linearly ordered. If (a) holds then by 2.9 < is not

thin and if 6 holds we reach a contradiction. Thus the main claim suffices. So far

now we assume that any two PxjKP generic elements of Y are comparable.

Let A = {a E Y: 36 G Y bEYa Abjka}. If A = 0, Y is linearly ordered so we
may assume A ^ 0.

Claim 1. If 6 and c are P xEy P generic then 6 ^ c.

Suppose (B0, G0) lh 6 ss c. Let B = {x G B0: 3y G G0 xEYy}. C = {x E

Cq: 3y G B xFyy}. Since (Bo,G0) G P xEy PB and G are nonempty.

Subclaim. V6 G B Vc G G 6Fyc =► c ss 6.

Assume there are 6 G B, c G G, such that 6 < c (the case 6 > c is symmetric).

Let D = {(b,c): 6 G B,c E C,bEYc and 6 < c}. Let (60,c0), (by,cy) G D be

P|y Xes P2ey generic. Then (60, ci) and (by, c0) are P xEy P generic so 60 < c0 ss

6i < ci ss 6o, a contradiction.

Thus for all 6, 6' G B if 6Fy6', then 3c G G bEYcEYb'. But then 6 ss c ss 6'
so V6, 6' G B 6Fy6' => b ss 6'. Next consider {d G Y: 36 G B 6Fyd and 6, d are
incomparable}. This must be empty else we can find 6, dE BxDPxFyP generic

and incomparable, contradicting our assumption. Thus for any d E Y b E B if

bEyd, then 6 is comparable with d}. Let B~ = {x: 3y G B xFyy A x < y} and

B+ = {x: 3y G B xFyy A x > y}. Since on B EY =ss, B+ n B~ = 0. Let

j/(ff,V) «• Vu g [/ Vv g V (uFyv V»>u). Then sf(^B-,B~) so by strong

reflection we can find B G Aj such that B D B", B D B+ = 0 and Vu G B Vv £ B

uEYv => u < v. Let 3(U) «• Vx,y G Y (3F G Aj F G Cf F(x) ^ F(y) V x g

BVyGBVx<y. Then ^ is nj on nj and 3(3y). Hence by reflection there

is X C J*y s.t. X is A j and for all x, y G Y (x G B A y £ B A x ft y) -» 3F G A

F(x) ^ F(y). As in 3.1 we can find an F* G &, such that for all x, y F*(x) ^ F*(y)
iff there is an F G X such that F(x) ^ F(y). Let

|F(x)A0,     XGB,

\ F(x)Al,    x^B.

Suppose x,y G Y if G(x) < G(y), then either F(x) < F(y), in which case x < y,

or F(x) = F(y) and x E B and y ^ B so x < y. Thus G G <^y. Moreover since

B fl B+ = 0, G splits an EY class, a contradiction.

Claim 2. If (B, G) lh 6 < c, then V6, c G B xEy C b < c. (We abbreviate this as
B <Ey C.)

Let B' = {6: 3c G G 6Fyc A 6 ft c} and assume B' ^ 0. Suppose 6o, 6X G

B'xEyB' and P x#y P generic. By our assumption 6o < 6X or 6i < 6o. By Claim
o o

1 60 £ by. Assume 60 < by. Let B0, By C B' s.t. (B0,Bi) lh 60 < by. Let

D = {(b0,c) E Bo xEy C: 60 ft c}. Let (6o,c),6i be P2Ey xEy P generic with

(60,c) G D, by E By. By 2.7 (60,6i) are P xEy P generic so 60 < 6x. Further c

and by are Px£yP generic. Thus since 6i E B, by < c. But then b0 < by < c a

contradiction.
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o

Suppose (B,C) lh 6 < c. Then by Claim 2 B <Ey C. Let B = {x: 36 G B

xEYbAx < 6}. Let sf(U,V) *>\/u(£UVv<£V (u$Yv\Jv $ u) AVz £ Z Vy G G

z < y. Then j/(-fB, B) so by strong reflection there is a AjB D B s.t. B n G = 0

and B is downward closed in each EY class it intersects.

Claim 3. Vxy (xE B Ay £ B A xEYh) —> x < y.

Suppose not. Let B = {d £ B: 36 G B 6Fyd A 6 ft d A d E Y}. We can find
do, dy E D s.t. do and di are PxFy P generic. By our assumption and Claim

1 d0 < di or dy < d0. Say (D0,Dy) lh d0 < dx. By Claim 2 B0 <ek B^ Let

Bi = {6 G B: 3d G Bj (bEYdAb ft di)}. Let (6,d0) G B x£y B0 be P generic.

Then by assumption and Claim 1 6 and do are comparable. Since B is downward

closed 6 < 6o- Thus for all di G Bi if bEYdy, then 6 < do < dy, a contradiction.

Thus B is Aj, downward closed and if 36 G B y G Y yFy6 and y ^ B y > 6.

Now by reflection arguments similar to those in Claim 1, we can find a G G &y

which splits some EY class. This gives the contradiction which proves the main

claim and the theorem.    □

COROLLARY 5.2 (SHELAH [S]). If (X, <) is a Borel order and there is an

uncountable set of pairwise incomparable elements, then there is a perfect set of

pairwise incomparable elements.
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