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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 58, Number 4, Dec. 1993 

FORCING ISOMORPHISM 

J. T. BALDWIN, M. C. LASKOWSKI, AND S. SHELAH 

If two models of a first-order theory are isomorphic, then they remain isomor- 
phic in any forcing extension of the universe of sets. In general however, such a 
forcing extension may create new isomorphisms. For example, any forcing that 
collapses cardinals may easily make formerly nonisomorphic models isomorphic. 
However, if we place restrictions on the partially-ordered set to ensure that the 
forcing extension preserves certain invariants, then the ability to force nonisomor- 
phic models of some theory T to be isomorphic implies that the invariants are not 
sufficient to characterize the models of T. 

A countable first-order theory is said to be classifiable if it is superstable and 
does not have either the dimensional order property (DOP) or the omitting types 
order property (OTOP). If T is not classifiable, Shelah has shown in [5] that sen- 
tences in LA do not characterize models of T of power A. By contrast, in [8] 
Shelah showed that if a theory T is classifiable, then each model of cardinality A is 
described by a sentence of L In fact, this sentence can be chosen in the L*. (L* 
is the result of enriching the language L1,,D+ by adding for each ji < A a quantifier 
saying the dimension of a dependence structure is greater than yu.) Further work 
([3], [2]) shows that -+ can be replaced by N1. The truth of such sentences will 
be preserved by any forcing that does not collapse cardinals < A and that adds no 
new countable subsets of A, e.g., a A-complete forcing. That is, if two models of a 
classifiable theory of power A are nonisomorphic, they remain nonisomorphic after 
a A-complete forcing. 

In this paper we show that the hypothesis of the forcing adding no new count- 
able subsets of A cannot be eliminated. In particular, we show that nonisomorphism 
of models of a classifiable theory need not be preserved by ccc forcings. The follow- 
ing definition isolates the key issue of this paper. 
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1292 J. T. BALDWIN, M. C. LASKOWSKI, AND S. SHELAH 

0.1. DEFINITION. Two structures M and N are potentially isomorphic if there is a 
ccc-notion of forcing Y such that if G is Y-generic, then V[G] F M N. 

We chose to use ccc forcing as the basic notion due to their familiarity. However, 
all of the forcings mentioned in this paper actually satisfy the stronger requirement 
of being a-centered. A subset J c Y is centered if for all {q1,.. ., qn C J there is a 
p E -7 such that p < qj for each i. A partially ordered set -7 is a-centered if it can be 
partitioned into countably many centered subsets. The reader is referred to [9, ?3] 
for a discussion of a-centered forcings. 

In the first section will show that any theory that is not classifiable has models 
that are not isomorphic but are potentially isomorphic. In the second section we 
show that this phenomenon can also occur for classifiable theories. The reader may 
find it useful to examine first the example discussed in Theorem 2.3. 

?1. Nonclassifiable theories. We begin by describing a class (which we call 
amenable) of subtrees of Q` that are pairwise potentially isomorphic. Then we use 
this fact to show that every nonclassifiable theory has a pair of models that are not 
isomorphic but are potentially isomorphic. 

1.1. Notation. (i) We adopt the following notation for relations on subsets of 
Q?. El denotes the relation of being an initial segment; < denotes lexicographic 
ordering; for oc < co, levy is a unary predicate that holds of sequences of length (level) 
o; A is the operation on two sequences that produces their largest common initial 
segment. We denote the ordering of the rationals by <Q. 

(ii) For q E Qt, let Dt, = {a e Qu: a(2n) = q(n)} and S, = la e D,: a(2n + 1) is 0 
for all but finitely many n}. Let C = UnEQ0 So 

(iii) The language Lt (for tree) contains the symbols C, <, lev , A, and unary 
predicates PI for q E Qu. 

(iv) For any A ' C, A* denotes the Lt-structure with universe A U Q`' under 
the natural interpretations of Cl, <, lev , A, and with PI(A *) = S, r A. 

(v) A substructure of C* is proper if it is the closure of a subset of C under A. 
Note that <C, < > is isomorphic to a subordering of the reals. Since C is dense 

we may assume Q is embedded in C but not necessarily in a natural way. 
1.2. DEFINITION. A substructure A* of C* is amenable if for all C E Q', all n E w3 

and all s E Qn, if P1,(C*) contains an element extending s, then PI(A*) does also. 
1.3. MAIN LEMMA. If A* and B* are amenable substructures of C*, then they 

are potentially isomorphic. In fact, they can be forced isomorphic by a c-centered 
forcing. 

PROOF. Let Y denote the set of Lt-isomorphisms between finite, proper 
substructures of A* and B*, under the natural partial order of extension. For p E Y, 
let supp(p) = dom(p) n Qu. Note that p I supp(p) uniquely determines p. 

1.4. Claim 1. Y is a-centered. 
For p Ec Y, let k(p) be the least integer k such that a(2n + 1) = 0 and p(a)(2n + 1) = 0 

for all n such that 2n + 1 > k and all a E supp(p). Let D(p) = {a I k(p): a E supp(p)} 
and R(p) = { p(a) I k(p): a E supp(p)}. Define an equivalence relation on Y by 

p q if and only if k(p) = k(q), D(p) = D(q), and R(p) = R(q). 

As Q`' is countable and supp(p) is finite, Y has only countable many --classes. 
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FORCING ISOMORPHISM 1293 

We shall show that if p, q E Z and p q then there is r E Z such that r < p, r < q 
and r p. It follows from this that 9 is a-centered. 

Fix p, q E Z such that p q. Let k = k(p). Choose a E supp(p) and b E supp(q). 
We first claim that if I < k and a I I = b 1, then p(a) I 1 = q(b) I 1. To see this, choose 
Co < < Cr- 1 from supp(p) and do <. . < dr- 1 from supp(q) such that 

D(p) = {co I ki . 5 cre 1 kJ = {do I ki . 5 dr-l 1 kJ = D(q). 

As < is lexicographic order, cj k = dj k for all ] < r. As p, q are each Lt- 
isomorphisms, p(co) I k < < p(cr, 1) I k and q(do) I k < < q(dr- 1) I k, so as 
R(p) = R(q), it follows that p(cj) j k = q(dj) j k for all j < r. Thus, if a I I = b I I 
for some I < k, then we can find j < r such that all = cjIll and bIl = djll, so 
p(a)ll = p(cj)ll = q(dj)Il = q(b)Il. 

We next claim that if a I I = b I I for I > k, then again p(a) I I = q(b) I 1. So choose 
i, k < i < 1. We must show that p(a)(i) = q(b)(i). If i is odd, this is clear as p(a)(i) = 
0 = q(b)(i) by the definition of k. If i is even, then as p and q are Lt-isomorphisms, 

p(a)(i) = a(i) and q(b)(i) = b(i), so p(a)(i) = q(b)(i) as required. 
It follows from what we have shown that p u q is a function that is A -preserving. 

To finish, it suffices to show that p u q preserves <, as then we can take r E 9 to 
be the unique Lt-isomorphism extending p u q with domain AO, where AO is the 
closure of dom(p) u dom(q) under A. So assume that a e supp(p), b e supp(q), 
and a < b. Choose I maximal such that a 1I = b I1. As < is lexicographic order, 
a(l) < b(l). From above, p(a) I I = q(b) | 1, so we must show that p(a)(l) < q(b)(l). 
There are three cases. If I < k, choose a' E supp(p) such that a' I k = b I k. Now as p 
preserves A and <, p(a) I 1 = p(a') I1 and p(a)(l) < p(a')(l). However, p(a')(l) = q(b)(l) 
from above. If l2k and I is even, then p(a)(l)=a(l)<b(l)=q(b)(l). Finally, l2k and 
I odd cannot occur as then a(l) = b(l) = 0 by definition of k. Thus, 9 is u-centered. 

To show the generic object is a map defined on all of A*, it suffices to show that 
that for any p e- and any a E A - supp(p) there is a q E Z with p c q and 
supp(q) = supp(p) u {a}. (The argument that the range is all of B* is symmetric.) 
Let <al, ... , an> enumerate supp(p) in lexicographic order. Fix s < n with a, < a < 
as+1 (the other cases are similar). Let m be least such that a, (m + 1), a (m + 1), 
as+ 1 1 (m + 1) are distinct, and let c denote a t m. Suppose Pp(as), PI(a), and P(a,+ 1). 
Note that since as < a < as+ 1, it is impossible for as and as+ 1 to agree on a larger 
initial segment than a and as do. Thus, without loss of generality we may assume 
that as I m = a I m. Two cases remain. 

Case 1. as I m = a I m = as+ 1 1 m = c. Suppose m is odd. Let b. = p(as) and b,+1 = 

p(as+ 1). Then bs j m = bs + 1 | m and bs(m) < bs+ 1(m). By the definition of amenability 
for any r with bs(m)<r<bs+1(m), there is a beBnS, with bj(m+ 1)=c-r. 
So there is q Ec 9, q =) p u {<a, b>1 as required. 

If m is even choose any element of B r- Sq extending p(c)ia(m/2) to be the image 
of a. 

Case 2. asIm = aim = c but as+ 1lm 0 c. Again let bs = p(as) and bs+ 1 = p(as+ 1), 
and denote bs I m by d. By amenability there is a b E B r- S, with b I m = d. (If m is 
odd, then we require that b(m) = b,(m) + 1 as well.) Any such b is less than bs+ 1. If 
m is even, b > bs is guaranteed by u(m/2) > p(m/2); if m is odd, then b > bs by the 
additional requirement on b(m). 
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1294 J. T. BALDWIN, M. C. LASKOWSKI, AND S. SHELAH 

We deduce three results from this lemma. First, we note that there are non- 
isomorphic but potentially isomorphic suborderings of the reals. Then we will show 
in two stages that any countable theory that is not classifiable has a pair of models 
of power 2'0 that are not isomorphic but are potentially isomorphic. 

1.5. THEOREM. Any two suborderings of <C, <> that induce amenable Lt- 
structures are potentially isomorphic. 

PROOF. Since the isomorphism we constructed in proving Lemma 1.3 preserves 
levels, restricting it to the infinite sequences and reducting to < yields the required 
isomorphism. 

1.6. DEFINITION. Let M be an L-structure. We say that <at, E M: C E Q-O> is a 
set of L-tree indiscernibles if for any two sequences a, v from Qua: 

If i and realize the same atomic type in <Q<'; K, <, lev, A >, then <aKl, ... ., an> 
and <aKd,.. ., an> satisfy the same L-type. 

1.7. THEOREM. Let T be a complete unsuperstable theory in a language L. Suppose 
L c L1 and T c T1 with I T1, < 2'. Then there are L1-structures M1, M2 1= T1 such 
that each Mi I L is a model of T of cardinality 2', M1 and M2 are not L-isomorphic, 
but in a a-centered forcing extension of the universe M1 EL, M2. 

PROOF. We may assume that T1 is Skolemized. Note there is no assumption that 
T1 is stable. Let M be a reasonably saturated model of T1. By [4, VII.3.5(2)] there 
are L-formulas O(x, y-) for i E co and a tree of elements <aK e M: q E Q w> such that 
for any n E co, q E Qt, and v E Qn+l if vIn = In, then On+I 1(a ,av) if and only if 
v E q. By [4, VII.3.6(3)] (applied in L1!) we may assume that <a-, e M: q E Qe'> 
is a collection of L1-tree indiscernibles. 

Let Y = <a-v E M: v E Q<'>. For q E Qt, let pa be the type over Y containing 
in + (x; a?,1jn~-(n)) A m(1 On + 1(x; atin-,i(n) + 1) for all n E co. 
Now a direct calculation from the definition of tree indiscernibility shows 
Claim. For any j E QO) and any Skolem term f, if f (a-,,..., a-i) realizes pv, then 

some qj = v. 
Let M2 be the Skolem hull of C' = Yu {a,: q E C}, where C is chosen as in 

1.1. Since Y is countable, there are at most 2'0 embeddings of Y into M2; let 
f, for q E Q' enumerate them. For q E Q', define b,, E St, by bt,(2n) = iq(n) and 
bt,(2n + 1) = 0 for all n e co. 

Let A = U,1eQ ),So where S' = S, -{b} if M2 realizes f(pb ) and S' = SQ if 
M2 omits f,(Pb,)- 

It is easy to check that A* c C* is amenable. Let M, be the Skolem Hull of 
A'= Yu{la qcA}. 

Since A* and C* are amenable, there is a ccc-forcing notion8Y such that V[G] I 
A* C*. Since A' and C' are sets of L,-tree indiscernibles, the induced map is an 
L1-isomorphism. Thus, V[G] F M,1 M2. Thus, we need only show that M1 
and M2 are not isomorphic in the ground universe. Suppose h were such an isomor- 
phism. Choose rj E Q' such that h I Y = ft. Now if b,, E A the construction of A 
guarantees that M2 omits f,(Pb,) = h(pb,), but abN realizes Pb, in M1. On the other 
hand, if b,, 0 A, then by the claim, M1 omits Pb,, but M2 realizes f,,(Pb,). 

We now want to show the same result for theories with DOP or OTOP. We 
introduce some specialized notation to clarify the functioning of DOP. 

1.8. Notation. For a structure M elementarily embedded in a sufficiently satu- 
rated structure M*, b from M, and a- from M*, dim(a-, b, M) is the minimal cardi- 
nality of a maximal, independent over b, set of realizations of stp(d/b) in M. For 
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FORCING ISOMORPHISM 1295 

models M of superstable theories, if dim(a-, b, M) is infinite, then it is equal to 
the cardinality of any such maximal set. For p(x, Y) E S(0) and b from M, let 
d(p(x-; b); M) = sup{dim(a-', b, M): tp(a-'/b) = p}. 

1.9. LEMMA. If a complete, first-order, superstable theory T of cardinality A has 
DOP, then there is a type p(v, i, x, -) such that for any cardinal K there is a model M 
and a sequence {a-a: E KI} from M such that for all a, El - K and all c- from M, 
d(p(v; c-, a-, a- ); M) < A' and 

(1) (]u c M)[d(p(-v; , a-, a-#); M) = A'] if and only if a < 3. 

PROOF. This is the content of condition (st 1) [8, p. 517]. (As for any infinite 
indiscernible I there is a finite J C I such that if d E I\J, then tp(d, UJ) is a station- 
ary type and Av(I, UI) is a nonforking extension of it). 

1.10. PROPOSITION. Suppose ILI = A and T is a superstable L-theory with either 
DOP or O TOP. There is an expansion T1 T, IT1, = A such that T1 is Skolemized, 
and an L-type p (p = p(vu, x, Y) if T has DOP, p = p(vx, Y) if T has 0 TOP) such 
that Iv, i, x, iy are finite, lg x = lg y and for any order type (I, <) there is a model 
MI of T1 and a sequence {a-i: i E I} from MI of L1-order indiscernibles such that 

(a) MI is the Skolem Hull of {a-i: i E I 
(b) If T has DOP, then for all i, j E I, 

(]u- E M1)[d(p(v; , a-, a-j); MI) ? ] if and only if i < j; 

(c) If T has 0 TOP, then for all i, j E I, MI # (3]v)p(v, a-i, aj) iff i <, j. 
PROOF. Let K be the Hanf number for omitting types for first-order languages 

of cardinality A'. If T has OTOP, then by its definition (see [8, XII ?4]) there is 
a model M of T and sequence {a: Ca E K} of finite tuples from M and type p(v-, x, y) 
such that M # (3v)p(v a-, a-,) iff a < 

By Lemma 1.9 when T has DOP we can find a model M of T, a sequence 
CX e K}, and a type p(v, u, x, y) so that d(p(v; c, a, a-,); M) < A' for all O,, EK 

and c and (3u E M) [d(p(v; 6,dada); M) = ai] if and only if a </3. 
Let Lo be a minimal Skolem expansion of L. That is, Lo is a minimal expansion 

of L such that there is a function symbol FJ(-) E Lo for each formula 4(x, j) E Lo. 
Let MO be any expansion of M satisfying the Skolem axioms V-[(3x)4(x,y) 
O(Fo(y),y)], and let To = Th(MO). Without loss of generality A' + 1 c Mo. 

From now on assume we are in the DOP case as the OTOP case is similar 
and does not require a further expansion of the language (i.e., take L1 = Lo and 
T1 = To.) Expand Lo to L'0 by adding relation symbols <, e, P, constants for all 
ordinals less than or equal to ;,+, and a new function symbol f(w, u-, x, yj). Let M'0 
be an expansion of Mo so that < linearly orders the a- and the set of a- is the 
denotation of P. Interpret the constants and E in the natural way. For all a, /3 E K 
and all realizations d-c of p(v,u, a, a-) in Mo, let (;,w)f(w,caa-,) be a l-l map 
from an initial segment of A+ to a maximal, independent over c-u a- u a-,, set of 
realizations of stp(d/c-a- a-,). 

Let L1 be a minimal Skolem expansion of L'0, let M1 be a Skolem expansion of 
M' to an L1-structure, and let T1 denote the theory of M1. So T11 =a 

Note that if, for some c-, the domain of (.w)f(w, c-, a- a-X) is A+, then a < fi. Also, 
for all a, fi E K and c- from M1 the independence of the range of (;w)f(w, c-,a- ,a-,) 
is expressed by an L,-type. Thus, M1 omits the type q(Pv; u, x, vi) which implies that 
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1296 J. T. BALDWIN, M. C. LASKOWSKI, AND S. SHELAH 

p(vI, i, ,y) holds, that v is independent from {f(y,u i, 9 jy): y < } over uxy, that 
P(xi) and P(57) hold, and that x- -j as well as the type r(v)= {vE ): i}3. 

To complete the proof of the proposition construct an Ehrenfeucht-Mostowski 
model M, of T1 built from a set ofL,-order indiscernibles {di: i E I} omitting both 
q(v,u ,x ,y ) and r(-v). The existence of such a model follows as in the proof of 
Morley's omitting types theorem (see, e.g., [4, VII.5.4]). 

Note that in the DOP case of the proposition above the argument shows 
d(p(Uv; C-,adj); M,) < i for all i, j e Iand C. 

We have included a sketch of the proof of Lemma 1.10 which is essentially 
[8, Fact X.2.5B + 6209] and [6, Theorem 0.2] to clarify two points. We would 
not include this had not experience showed that some readers miss these points. 
Note that the parameter c-is needed in the DOP case not only to fix the strong type, 
but because in general we cannot ensure the existence of a large set of realizations 
that are independent over a-, u a-X. Also, it is essential that we pass to a Skolemized 
expansion to carry out the omitting types argument and that the final set of indis- 
cernibles are indiscernible in the Skolem language. We can then reduct to L for the 
many models argument (if we use [7, 111.3.10] not just [8, VIII ?3]) but for the pur- 
poses of this paper we cannot afford to take reducts as the proof of Theorem 1.13 
requires that an isomorphism between linear orders ,, I2 induces an isomorphism 
of the corresponding models. 

Let us expand on why we quote [7] above. In [7, Theorem 111.3.10] it is proved 
that for all uncountable cardinals i and all vocabularies T, if there is a formula 
O(xi, y-) such that for every linear order (J, <) of cardinality i, there is a T-structure 
Mj of cardinality i and a subset of elements {as: s E J} satisfying 

(i) MJ # P(ads, a-i) if and only if s <j t and 
(ii) The sequence <ad: s E J> is skeleton like in Mj (i.e., any formula of the form 

J(x, b) or P(b, x-) divides <a-: s E J> into finitely many intervals), 
then there are 2' nonisomorphic Mj's. 

The point, compared with earlier many-models proofs, is that we do not demand 
that the Mj's be constructed from J in any specified way. It is true that the natural 
example satisfying these conditions is an Ehrenfeucht-Mostowski model built from 
<ad: s E J> in some expanded language, but this is not required. In particular, our 
generality allows taking reducts, so long as the formula ' remains in the vocabu- 
lary. Further, there is no requirement that ' be first order. 

However, in Theorem 1.13 we want to introduce an isomorphism between two 
previously nonisomorphic models. The natural way of doing this is to produce two 
nonisomorphic but potentially isomorphic orderings J1 and J2 and then conclude 
that Mj1 and Mj2 become isomorphic. Consequently, it is important for us to know 
that the models are E.M. models. 

We can simplify the statement of the conclusion of Lemma 1.10 if we define the 
logic with 'dimension quantifiers'. In this logic we demand that in addition to the 
requirement that 'equality' is a special predicate to be interpreted as identity, we 
require that another family of predicates also be given a canonical interpretation. 

1.11. Notation. Expand the vocabulary L to L by adding new predicate sym- 
bols Q(xi, -) of each finite arity for all cardinals Mu < A+. Now define the logic Lo+0,, 
by first demanding that each predicate Q, is interpreted in an L-structure M by 

M # Q(ii, b) if and only if dim(a- b, M) = 
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FORCING ISOMORPHISM 1297 

Then define the quantifiers and connectives as usual. We will only be concerned 
with the satisfaction of sentences of this logic for models of superstable theories. 

1.12. REMARKS. (i) The property coded in condition (1) of Lemma 1.10 is ex- 
pressible by a formula P(xi,yj) in the logic LA+,.. Each formula in L., and in 
particular, this formula P is absolute relative to any extension of the universe that 
preserves cardinals. More precisely P is absolute relative to any extension of the 
universe that preserves A'. 

(ii) If T has OTOP, the formula ' can be taken in the logic L+ ,0. So in this case ' 
is preserved in any forcing extension. 

(iii) Alternatively, the property coded in condition (1) of Lemma 1.10 is also 
expressible in L,+,+. That is, there is a formula 'P(xi, yi) e L,+,+ (in the original 
vocabulary L) so that 

MI V- f (ai, aj-) if and only if i <I j. 

The reader should note that satisfaction of arbitrary sentences of Lo+ + is, in 
general, not absolute for cardinal-preserving forcings. However, the particular 
statements MI # fP(a, a-j) and MI # mP(di , aj) will be preserved under any 
cardinal-preserving forcing by the first remark. 

(iv) Note that we could have chosen the type p (in the DOP case) such that 
, v; a., a- a) is a stationary regular type. Note also that had we followed [8, X2.5B] 

more closely, we could have insisted that IT I = A. In fact, we could have arranged 
that in MI, every dimension would be <?o or 11MI1. However, neither of these 
observations improve the statement of Theorem 1.13. 

1.13. THEOREM. If T is a complete theory in a vocabulary L with ILI < 2' and T 
has either OTOP or DOP, then there are models M1 and M2 of T with cardinality 
the continuum that are not isomorphic but are potentially isomorphic. 

PROOF. By Theorem 1.7 we may assume that T is superstable. By Proposition 
1.10 and Remark 1.12(i) there is a model M of a theory T1- :T in a Skolemized 
language L1, :L containing a set of L1-order indiscernibles {la: i E Q?(o} and an 
LA+,-formula i(xi, yJ) so that 0(aai), a holds in M if and only if q is lexicographi- 
cally less than v. Further, the statements "M # 0(a- ,a-)" and "MLVI - 0(a-#a- 
are preserved under any ccc forcing. Note that this L1-order indiscernibility cer- 
tainly implies L1-tree-indiscernibility in the sense of Definition 1.6. 

Thus, the construction of potentially isomorphic but not isomorphic models 
proceeds as in the last few paragraphs of the proof of Theorem 1.7 once we estab- 
lish the following claim. 

Claim. For any v E Q` there is a collection pJ(x) of Boolean combinations of 
p(x, a-) as a-ranges over Y such that for any 

- 
E Qe and any L,-term f, iff(d1,... , (a- ) 

realizes pv in M, then some ii = v. 
Proof. The conjunction of the P(x-; avIn^<v(n)+l>) and vP(x; 7 avIn-<v(n)+l>) 

that define the 'cut' of a-v will constitute pv. Now if v is not among the 'h choose 
any n such that q, I n, 172 | n, . . ., Ilk n, v I n are distinct. Then the sequences 
<Kl,..., kvIn-<v(n) + 1 >> and <Kl,...,lkvIn-<v(n) - 1>> have the same type 
in the lexicographic order, so 

M Thus f((a,,. . .. ank); avlin<v(n)+z1>) e.(a, ak); avIn<v(n)-1> 

Thus, f (a-l,,. .. ark cannot realize pv. 
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1.14. REMARKS. (i) Note that in Theorem 1.7 we were able to use any expansion 
of T as T1, so the result is actually for PQ-classes. In Theorem 1.13 our choice of 
T1 was constrained, so the result is true for only elementary as opposed to pseudo- 
elementary classes. The case of unstable elementary classes could be handled by 
the second method thus simplifying the combinatorics at the cost of weakening 
the result. 

(ii) While we have dealt only with models and theories of cardinality 20, The- 
orems 1.7 and 1.13 extend immediately to models of any larger cardinality and 
straightforwardly to theories of cardinality K with K'0 = K if we replace the notion 
of ccc-forcing by K+-CC forcing in the definition of potential isomorphism. 

?2. Classifiable examples. We begin by giving an example of a classifiable theory 
having a pair of nonisomorphic, potentially isomorphic models. We then extend 
this result to a class of weakly minimal theories. 

Let the language Lo consist of a countable family Ei of binary relation symbols, 
and let the language L1 contain an additional uncountable set of unary predicates 
Pa, e E 2'0. We first construct an L0-structure that is rigid but can be forced by a 
ccc-forcing to be nonrigid. Our example will be in the language Lo, but we will use 
expansions of the L0-structures to L1-structures in the argument. 

We now revise the definitions leading up to the notion of an amenable structure 
in ?1 by replacing the underlying structure on Q"'0 by one with universe 2(0. In par- 
ticular, D,,, S,,, and C are now being redefined. 

2.1. Notation. (i) For i E 2'0, let D,, = {o E 20: o(2n) = q(n)} and 

St, = la E D,,: o(2n + 1) is 0 for all but finitely many n} u {bj}, 

where bN is any element of D,, satisfying b,,(2n + 1) = 1 for infinitely many n. Let 
C= U= E2'SSN 

(ii) Let M* be the L1-structure with universe 2'0, where Ei, a) holds if a I i = S I i, 
and the unary relation symbol PI holds on the set S,. Let M1 be the L1-substructure 
of M* with universe C. 

(iii) Any subset A of C inherits a natural L1 structure from M1 with PI inter- 
preted as S,, n A. 

2.2. DEFINITION. An L1-substructure MO of M1 is amenable if for all C E 2'0, all 
n E w, and all s E 2n, if there is a v E P,1(M1) with v I n = s, then there is a v' E P,1(MO) 
with v' n = s. 

Note that any L1-elementary substructure of M1 is amenable. Moreover, it easy 
to see that (i) each D,1 is a perfect tree, (ii) 2'0 is a disjoint union of the D,1, and (iii) for 
each s E 2<'0 there are 2'0 sequences i such that s has an extension b E D,1. 

2.3. THEOREM. The theory FER.0 of countably many refining equivalence relations 
with binary splitting has a pair of models of size the continuum which are not isomor- 
phic but are potentially isomorphic. 

This result follows from the next two propositions and the fact that M1 I Lo is 
not rigid. 

2.4. PROPOSITION. There is an L1-elementary substructure MO of M1 such that 

(i) I P(M) -P(MO) I < 1g 

(ii) MO I Lo is rigid. 
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PROOF. Note that each automorphism of M1 I L is determined by its restriction 
to the eventually constant sequences, so there are only 2' such. Thus, we may let 
<fJ: i < 2C> enumerate the nontrivial automorphisms of M1 I L. We define by in- 
duction disjoint subsets Ai, B. of M1 each with cardinality less than the continuum. 
We denote U< j Ai by A4. At stage i, choose a E M1 such that fi moves a. Then by 
continuity, there is a finite sequence s such that every element of Ws = {S: s c 'E is 
moved by f'. Since IA'I, IB.I < 2( and by the definition of an amenable substructure, 
there is an C E 2' and a / E Pe r- (fi(Ws) - Ai). Then let B. = {/3} and Ai = S- {/3}. 
Finally, let MO = M- B2 w. 

Since no element is ever removed from an Ai, condition (i) is satisfied. It is easy 
to see that MO is rigid, as any nontrivial automorphism h of MO would extend in a 
unique way to an automorphism f' of M1 but at step i we ensured that the restric- 
tion of f' to MO is not an automorphism. It is easy to verify that MO ? M1; hence, 
MO is an amenable substructure of M1. 

2.5. PROPOSITION. If MO is an amenable substructure of M1, then MO and M1 are 
potentially isomorphic. 

PROOF. Let BP be the collection of all finite partial L1-isomorphisms between 
MO and M1. The verification that BP is a-centered and that the generic map will be 
an isomorphism of MO onto M1 is nearly identical to the argument in Lemma 1.3 
and so is left to the reader. 

2.6. REMARK. The notion of a classifiable theory having two nonisomorphic, 
potentially isomorphic models is not very robust and, in particular, can be lost by 
adding constants. As-an example, let FER* be an expansion of FER(0 formed by 
adding constants for the elements of a given countable model of FER(. Then every 
type in this expanded language is stationary and the isomorphism type of any 
model of FER* is determined by the number of realizations of each of the 2W non- 
algebraic 1-types. Thus, if two models of FER* are nonisomorphic, then they re- 
main nonisomorphic under any cardinal-preserving forcing. 

Similarly, nonisomorphism of models of the theory CEF(0 of countably many 
crosscutting equivalence relations (i.e., Th(2?,Ei)iec0, where Ei(,r) iff v(i) = r(i)) 
is preserved under ccc forcings. 

We next want to extend the result from Theorem 2.3 to a larger class of theories. 
Suppose T is superstable and there is a type q, possibly over a finite set e-of param- 
eters, and an e--definable family {En: n Ec w} of properly refining equivalence rela- 
tions, each with finitely many classes that determine the strong types extending q. 
Let T be such a theory in a language L, and let M be a model of T. Let Lo be the 
reduct of L to the language with only the En's. 

We say <a, e M: il E 2)> is a set of unordered tree L-indiscernibles if the follow- 
ing holds for any two sequences C-, V from 2w: 

If 
- 
and V realize the same atomic LO-type, then <a,1,... an> and <a ...Vn> 

satisfy the same L-type. 
We say that a superstable theory T with a type of infinite multiplicity as above 

embeds an unordered tree if there is a model M of T containing a set of unordered 
tree L-indiscernibles indexed by 2). (Note that the index set of the tree is 2' regard- 
less of the number of En-classes.) We deduce below the existence of potentially 
isomorphic nonisomorphic models of weakly minimal theories that embed an un- 
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ordered tree. Every small superstable, non-w)-stable theory has a type of infinite 
multiplicity with an associated family of {E": n < w(} of refining equivalence rela- 
tions and a set of tree indiscernibles in the sense of [1]. The existence of such a tree 
of indiscernibles suffices for the many model arguments but does not in itself suffice 
for this result. Marker has constructed an example of such a theory which does 
not embed an unordered tree. However, an apparently ad hoc argument shows this 
example does have potentially isomorphic but not isomorphic models. 

2.7. Notation. Given A = {a,: ?I E 2?} a set of unordered tree indiscernibles let 
D = {a, e A: t1(n) = 0 for all but finitely many n}. For i E 2' let pa(x) e S1(D) be 
q(x) u {E.(x, aJ): a, E D and v I n = l I n}. Note that D is a dense subset of A, each 

a,, realizes pa and each pa is stationary. 
2.8. LEMMA. Let T be a weakly minimal theory that embeds an unordered tree. 

Fix A and D as described in Notation 2.7. There is a set X satisfying the following 
conditions: 

(i) X u A is independent over the empty set; 
(ii) for any Y with D c Y c A, and any ?I E 2', pa is realized in acl(X Y) if and 

only if p,, is realized in Y; 
(iii) for any Y with D c Y A, acl(XY) is a model of T. 
PROOF. It is easy to see from the definition of unordered tree indiscernibility 

that if X- 0 then conditions (i) and (ii) of the lemma are satisfied for any Y c A. 
We will show that for any X and Y with D c Y c A with X Y satisfying conditions 
(i) and (ii) and any consistent formula /(v) over acl(XY) that is not satisfied in 
acl(XY) it is possible to adjoin a solution of 0 to X while preserving the condi- 
tions. By iterating this procedure we obtain a model of T. 

Now suppose there is a Y with D c Y c A such that acl(XY) is not an elemen- 
tary submodel of the monster. Choose a formula 4(x, , a) with c E X and a E Y 
such that O(x, , a) has a solution d in X' but not in acl(X Y). If we adjoin d to X 
we must check that conditions (i) and (ii) are not violated. Since T is weakly mini- 
mal and d 0 acl(XY), XYd is independent. As Y is dense in A it follows from com- 
pactness that XAd is independent. Suppose for contradiction that for some a' E Y, 
P" is not realized in a' but p, is realized in acl(Xda') by say e. Since condition (ii) 
holds for XY, e 0 acl(XJ'). Therefore, by the exchange lemma d E acl(Xed'). Let 
O(v, c', a', e) with c' E X witness this algebraicity. Then 

x(c5 ', 5 ', z) = (3x)[O(x,ed) A O(x,5 ', d',5z)] A (3=mx)(x,5',d',z) 

is a formula over Xda-' satisfied by e. Moreover, e 0 acl(Xiaa'). For if so, transi- 
tivity would give d E acl(Xd-a') c acl(XY). Now tp(e/Xd-a'), and in particular, 
x(5 c',a i, d', z) is implied by p, and the assertion that z 0 acl(Xda'). Since XA is 
independent, it follows by compactness that there is b E D such that x(-,- c5 ', a', b) 
holds. So there is a solution of +(x, -, a) in the algebraic closure of XY. This contra- 
dicts the original choice of 0, so we conclude that condition (ii) cannot be violated. 

2.9. THEOREM. If T is a weakly minimal theory in a language of cardinality at 
most 2'0 that embeds an unordered tree, then T has two models that are not isomor- 
phic but are potentially isomorphic (by a a-centered forcing). 

PROOF. Let L be the language of T. Assume that the type q is based on a finite 
set F. Let T' be the expansion of T formed by adding constants for e. Let X be a 
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large saturated model of the theory T', and let the sets A, X, and D be chosen as in 
Lemma 2.8 applied in L' to T'. 

Recall the definition of C from Notation 2.1. For any W c C, let M'w be the 
L'-structure with universe acl(X u {a:Q eW}) and denote M'W IL by Mw. We 
will construct an amenable set W such that Mw $ Mc. Since both are amenable, 
there is a forcing extension where W C as L1-structures. Since {as: tj E C} is a 
set of unordered tree L'-indiscernibles, the induced mapping of {as: ?I E W} into 
{as: q E C} is L'-elementary. Thus, M'W %L' M' and a fortiori Mw ~L M. 

To construct W, let {If: q E 2W} enumerate all L-embeddings of DeT into Mc. 
Note that each p. can be considered as a complete L-type over De. 

Let W= Unc-2-, S , where S = S - {be} if Mc realizes ft(Pb,) and S' = So if 
MC omits f,,(Pb). (See Notation 2.1.) 

Suppose for contradiction that g is an L-isomorphism between Mw and Mc. 
Then for some I, g I D = f,. Now if c, E W, the definition of W yields f,,(p,,) is not 
realized in Mc. This contradicts the choice of g as an isomorphism. But if c. is not 
in W, then by the construction of W. f,,(ct,) = g(ct,) does not realize g(pt,). But this 
is impossible since g is a homomorphism. 

The large number of hypotheses of Theorem 2.9 suggests a number of questions: 
Does the conclusion of Theorem 2.9 hold for any weakly minimal but not co-stable 
theory? Is there an co-stable example? Work is continuing on these and related 
problems. 
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