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THE JOURNAL OF SYmBOLIC Looic 
Volume 37, Number 1, March 1972 

UNIQUENESS AND CHARACTERIZATION OF PRIME MODELS 
OVER SETS FOR TOTALLY TRANSCENDENTAL FIRST-ORDER 

THEORIES 

SAHARON SHELAH 

THEoEm. If T is a complete first-order totally transcendental theory then over 
every T-structure A there is a prime model unique up to isomorphism over A. More- 
over M is a prime model over A iff: (1) every finite sequence from M realizes an 
isolated type over A, and (2) there is no uncountable indiscernible set over A in M. 

The existence of prime models was proved by Morley [3] and their uniqueness 
for countable A by Vaught [9]. Sacks asked (see Chang and Keisler [1, question 25]) 
whether the prime model is unique. After proving this I heard Ressayre had proved 
that every two strictly prime models over any T-structure A are isomorphic, by a 
strikingly simple proof. From this follows 

THEOREM. If T is totally transcendental, M a strictly prime model over A then 
every elementary permutation of A can be extended to an automorphism of M. (The 
existence of Mfollows by [3].) 

By our results this holds for any prime model. On the other hand Ressayre's 
result applies to more theories. For more information see [6, ?OA]. A conclusion 
of our theorem is the uniqueness of the prime differentially closed field over a 
differential field. See Blum [8] for the total transcendency of the theory of differen- 
tially closed fields. 

We can note that the prime model Mover A is minimal over A iff in M there is no 
indiscernible set over A (which is infinite). 

In order to help the reader, ??l and 2 contain known results which are from 
Morely [3] (except 2.3, 2.4), with a variation of the definition of rank type. If we 
define T as totally transcendental iff R(x = x) < c, then the restriction " T is 
countable" is superfluous. 

The result of this paper was announced in [6, ?OA.5B] (in more general form) 
and in [7, Theorem 6]. 

Notation. Let Tbe a fixed first-order countable complete theory in the language 
L. For simplicity all the sets and models we shall deal with, will be of cardinality 
< W, for some high enough cardinal K; and let A be a K-saturated model of T. As 
every model of T of cardinality < W is isomorphic to an elementary submodel of M, 
we can deal with them only. (See Morley and Vaught [5], or Chang and Keisler [1] 
for K-saturated models.) So let M, N denote elementary submodels of A (of car- 
dinality < c), A, B, C sets of elements of M (of cardinality < K), a, b, c elements of 

a, 5, c finite sequences of elements of M. Let I MI be the set of elements of M, 
Al the cardinality of A, so I M JJ is the cardinality of M. Let p j, 0 denote formulas 
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108 SAHARON SHELAH 

of L, x, y, z variables, x, y, I finite sequences of variables. M [al **... aj] means M 
satisfies p[al ... an], (so a,, - -. , an E M). As the satisfaction does not depend on the 
particular model we omit it. Rang a is the set of elements appearing in a; we write 
a E A instead of Rang a c A, and a 7 b for concatenation of the sequences a, 5. 
An m-type over A is a set p of formulas q(xl,,* , XM, a), a E A, such that: 

i(X~ a') Ep, i = 1,* , n > i(2) A 9'({, JA). 
i=1 

If m = 1 we omit it. Types are denoted by p, q. 

?1. Rank of types and formulas. 
DEFINMION 1.1. (A) The type c realizes over A is 

p(X, A) = {W(x, a): a e A, 1 9p[c, a]}. 
(B) Sm(A) = {p(e, A): I(c) = m A e CM} [clearly for any m-type p over A, 

there is q E Sm(A)p c q]. S(A) = S'(A). 
(C) T is Ho-stable (= totally transcendental) iff IA I < o implies IS(A)I o. 
DNITION 1.2. We define R[p(x, 4)] (the rank of p(x, a)) by induction: 
(A) R[p(x, a)] = -1 if k-n(3x)p(x, a); 
(B) R[p(x, a)] = a if 

(1) ~(3x)p(x, a), 
(2) for no ,6 < ce, R[rp(x, a)] = A, 
(3) for no +(x, 5), both q(x, a) A +(x, 5), 

9q(x, a) A ---,s(x, 5) satisfies (1) and (2). 
(C) R[p(x, a)] = co if R[p(x, ad)] is not defined by (A) and (B). We stipulate 

-1 < x < co for any ordinal c. 
DEFINITIoN 1.3. For a type p, the rank of p is 

R[p] = min{R[91(x, al) A ... A * n((x, an)]: n < t, mi(x, a) E p}. 
THEOREM 1.1. (A) If i(Vx)[p(x, a) -- /(x, 5)] then R[p(x, a)] c R[O(x, b)]. 
(B) If a = R[p(x, a)] < cc, thenfor no b(x, 5) 

a = R[p(x, a) A +(x, 5)] = R[p(x, a) A -,b(X, 5)]. 

(C) If a < R[p(x, a)] then there is 24(x, 5) such that 

R[p(x, a) A 24(x, 5)] >c a, R[p(x, a) A .-,(x, 5)] > en 

(D) If a, b realize the same type, R[p(x, a)] = R[p(x, 5)]. 
(E) There is a0 < (2to)+ such that no p(x, a) has rank a0. 

THEOREM 1.2. (A) p C q implies R[p] > R[q] (by Theorem 1.1, Definition 1.3). 
(B) Every type has a finite subtype of the same rank (so if p e S(A), we can take 

one formula) (by Definition 3.1). 
(C) Ifp is a type over A, R[p] < ct, then there is at most one q, p c q e S(A), 

R[p] = R[q] (by 1.1B). 
THEOREM 1.3. T is No-stable if R[x = x] < oc (by Theorem 1.1. This means 

R[p] < cc for every p.) 
PROOF. If R(x = x) = cc, then R[x = x] > ao, so by repeated use of Theorem 

1.1(C), T is not No-stable. If R(x = x) < cc, then every p E S(A) has a finite sub- 
type p* of the same rank. By Theorem 1.2(C) IS(A)I = I{p*: p e S(A)}t < IAI + go. 
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PRIME MODELS 109 

Remark. We can define, similarly, ranks for m-types, and the same theorems 
hold; as Tis No-stable iff IS"'(A)j A IA + NO for every m < w. From now on T 
is totally transcendental. 

?2. Prime models and indiscernible sets. 
DEFITnoN 2.1. A function f; Rang f, Dom f c IMI, is elementary if for 

a,, * * * , a,, e Domf, T e L 0 (p[aj, * * -*, a,,]-U=Tfaj), * *. *f(a^)]- 
DEFINmoN 2.2. M is a prime model over A, if every elementary function from 

A into a model N can be extended to an elementary function from M into N. 
DEFNnoN 2.3. A type p e Sm(A) is isolated if there is a finitep' c p such that 

p is the unique extension of p' in S(A). We say then that p is isolated over Ap'. 
DEFINITION 2.4. M is strictly prime over A by IMI = AU{aj: i < a} if each 

a1 realizes an isolated type over Al = AU{aj: i < j}. 
THEOREM 2.1. (A) For everyformula T(x, 4), a e A, there is an isolatedp e S(A), 

(x, d) E p. 
(B) Over every A there is a strictly prime model; and every strictly prime model 

over A is a prime model over A. 
(C) Everyfinite sequence in a model, M, prime over A realizes over A an isolated 

type. 
PROOF. (A) We choose p with minimal rank. (B) follows by repeated use of 

(A). (C) by Definition 2.2, Theorem 2.1(B), it suffices to prove it for a model strictly 
prime over A by, say, [MI = AU{ai: i < i0} which is proved by induction on io. 

DEFINInoN 2.5. The set {aj: i < a} is indiscernible over A, ifaO # a, and for every 
distinct f1j, - ? ? 9 An < A, distinct y *... ., yn < a, p e L and a E A, 0qF[a81,.*?, amn, 4] 

TIEosmm 2.2. If A, = AU{aj: i < j}, p(aO, AO) c p(al, A,), R[p(a0, AO)] = 

R[p(af, A>)] for any j < a > w, then {ai: i < a} is indiscernible over A. (See [3].) 
THEOREM 2.3. For any Wo(x, y) there is r= r0 < co such that for any indiscernible 

{as: i < a}, and 5, 

I{i < c: q 4[a1, ]}j < r or j{i < a: .-,[aj,S]} < r. 
PROOF. Otherwise r = {q(x1, n), .-,p(x, yin): I wco, n E I, m 0 I} is consistent. 

Let SM realize , a, realize x,, A = U.<, Rang m. So IS(A)I ? I {p(al, A): I C w}I 
=2Wo > IA 1, contradiction. 

THEOREM 2.4. If {a,: i < a} is indiscernible over A, then for any 5 there is afinite 
I c a such that {aj: i < a, i 0 I} is indiscernible over AU{at: i e I}U Rang (5). 

Theorem 2.4 can be proved like Theorem 2.3, see [6, Theorem 6.13, Theorem 5.9], 
compare with [2, Theorem 1.3], Theorem 2.4 was independently noted by V. 
Harnik and the author. 

?3. Indiscernible sets in a prime model. 
LEMMA 3.1. If a',.-. - , al E IMI, M is a strictly prime model over A; [by MI = 

A U {a*: i < io}] then M is strictly prime over A u {a', , an} [by IM =(A u 
{al, * - *, an}) U {as: i < io}]. 

PROOF. Let I < io, and we should prove only that a1 realizes an isolated type 
over A u {a', * * , an} u {at: i < j}. By the Definition 2.4 M is strictly prime over 
Aj = A u {aj: i < j} by MI = Aj u {ai:j < i < io}, So by Theorem 2.1(c) 
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110 SAHARON SHELAH 

<a,, * , all> realizes an isolated type over Aj, say isolated over 9p(xL,, 2,.. ,xn+ 

c), c e A,. Clearly the type ay realizes over Aj u {a', * * *, an} is isolated by p(xl, 
al, * **, an, C). 

LEMMA 3.2. If B = A U {as: i < a}, a 2 X, and {ai: i < a} is an indiscernible 
set over A, then {a,: i < a} is a maximal indiscernible set over A, in any prime model 
M over A. 

PROOF. Let p={97(x, c): c e B, and for infinitely many i < w, frq[a1, c]}. By 
Theorem 2.3 p is consistent and complete, sop e S(B). It is easy to see that p is not 
isolated-as if it is isolated over cp(x, c), c e B, then for infinitely many ai's {w(x, c) A 

x = aj} is consistent. So by Theorem 2.1(C) p is not realized in M. Now if the con- 
clusion of the lemma fails, for some c e IMl, {aj: i < a} u {c} is an indiscernible 
set over A, then clearly c realizes p, contradiction. 

THEoREM 3.3. In any strictly prime model M over A there is no uncountable 
indiscernible set over A. 

PROOF. Suppose {b!: i < H,} is an indiscernible set over A in M. Let 
p = {p(x, c): c e MJ, {i: 17[b', E]} is infinite). As before by Theorem 2.3,pe S( IMI). 
By Theorem 1.2(B) there is cp(x, ZO) ep, R[p] = R[q~x, e')]. By Lemma 3.1 M is 
strictly prime over Al = A U Rang ZO, and by Theorem 2.4 for some finite I, 
{b': i < Xi, i}I) is an indiscernible set over Al. Let {bi: i < X1} = {b': i < R,, 
i lI. 

Let B = A, U {bi: i < w}. Then by Theorem 2.1(B) there is a prime model N 
over B, and as B c M, using Definition 2.2 (with Fthe identity on B) we can assume 

INI c jMj. Using the definition again, as A, c B c N, M a prime model over 
A,, there is an elementary function F from IMI into N, such that for a e Al, 
F(a) = a. Let bl = F(bj) for every i < Al. Clearly {bt: i < Kl} is an indiscernible 
set over A,. By Theorem 2.4 there is a < W1, such that {b1: a < i < K,} is an in- 
discernible set over B. Let q be the type bU realizes over B. It is easy to see that for 
any c, c realizes p I B iff {bj: i < w} U {c} is an indiscernible set over A,. So by 
Lemma 3.2 bG does not realize p I B. But by Theorem 1.2(A) and the definition of 
tp(x, cO), and as Z' e Al 

R[Ug(x, ZO)] 2 R[p I A,] 2 R[p I B] ? R[p] = R[x, v)]. 

So q # p I B, q e S(B), q I Al = p I Al, so byTheorem 1.2(A) and C C R[q] < 

RFp]. So by Theorem 1.2(B) there is 9p1(x, El) e q, (so El e B), R[(l(x, C1)] = R[q] < 
R[p]. Let r = r01 (from Theorem 2.3); yI(x, y, , - * , y,, a)( e Al) isolate the type 
Oln<b+lg *... , baTr> realize over Al, so 1(3x)&(X, b+l * *.. , b"T, a). As Fwas an 
elementary function,f(b) = bl and a cA =- F(a) = a, clearly I({3X)(x, bl, .. * , br, 4). 
So for some e I Ml, I2,b[, b,b, . , *br, ]. Now by the definition of a, b', 
ba , , bar+ r realize the same type over B. so Irl(be + , cl),*., Irpl(b' , cl). 
So by the definition of ,b, Fw7(bl, E2), i = 1, * * *, r, and al, 62 realize the same type 
over A,. Hence by Theorem 1.1(D), R[rpl(x, a2)] = R[cpl(x, El)] < R(p), and 
J{i < M,: hpl(big x, 2)}j 2 r. So by Theorem 2.3 j{i < Ml: Ipq[bi, 2 ]}I = M,, so 
rpl(x, Z2) ep, so R[p] s R[rpl(x, M2)] contradiction. 

THEoREM 3.4. If M is a prime model of A then (A) every finite sequence from M 
realizes over A an isolated type, (B) in M, there is no uncountable indiscernible set 
over A. 
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PROOF. (A) is Theorem 2.1(C). For (B) let N be a strictly prime model over 
A, and F an elementary function from M into N, such that for a e A, F(a) = a 
(which exists by Definition 2.2). If {aj: i < Xl} c IMj is indiscernible over A, then 
{F(aj): i < Ml} c INI is also indiscernible over A, contradition to Theorem 3.3. 

?4. The uniqueness theorem. 
TEOREM 4.1. Suppose A ' IM J, B c N, F is an elementary function from A 

onto B. Moreover assume 
(1) everyfinite sequence from M(N) realizes over A(B) an isolated type, 
(2) in M(N) there is no uncountable indiscernible set over A. 
Then F can be extended to an isomorphism from M onto N. 

Remark. Together with Theorems 2.1(B), 3.4, this proves the main theorem. 
We shall extend gradually F, such that (1), (2) remain true with A, B replaced by 

Dom F, Rang F. Condition (2) clearly remains true, but we should be careful about 
(1). We shall need the following two lemmas: 

LEMMA 4.2. Suppose A C IJM 1j, every finite sequence from Ml realizes over A, 
an isolated type, al, * e * , an I MlM, A2 = A, U {a,, ... * an}. Then every finite 
sequence from Ml realizes over A2 is an isolated type. 

PROOF. Let c be a sequence from Ml. By hypothesis, ell<a,,. *, an> realizes 
over Al an isolated type, say isolated over (pX, y,, ... y,, y6 ), 6 E Al. So the type c 
realizes over A2 is isolated by p(., a,, .. *, a,,, 5). 

LEMMA 4.3. Suppose Al c jM, , every finite sequence from Ml realizes over Al 
an isolated type; pi e S(Al) for i < io. Let A2 = Al U Ui<0{a E IMI: a realizes 
Pi}- 

Then every sequence from Ml realizes over A2 an isolated type. 
PROOF. Let c be any sequence from Ml and p be the type c realizes over A2. 

Let Ei(x, 6') ep be such that R[(pl(x, 6')] - R[p] (it exists by Theorem 1.2(B)). By 
the hypothesis and Lemma 4.2, the type p (A, u Rang 6') is isolated, so let it be 
isolated over P2(X, 2), 62 e (A u Rang 6'), and let Ap3(X, 53) = 4p,(., 6') A 

A2(x, 62). So by Theorem 1.1(A) R[p3(x, 53)] = R[p] andp I (A, U Rang 61) is isolated. 
Suppose this fails, sop is not isolated over 'P(X, 53), so there are 54 E A2, p4 eL such 
that cp4Mx 54) ep, but F(3X)[PA(x, 53) A -p4(X1 be)], so there ise* c* IME I such that 

p3(C*, 53) A i(4(C*, 64). But the definition of p3, c* realizes p I (A, U Rang 6'). 
As in the proof of Theorem 3.3, as c, c* realize the same type over A U Rang 61, and 
as every finite sequence from Ml realizes an isolated type over A, U Rang 61 there is 

e5 E IMlI such that 0* r54, F155 realize the same type over A1 U Rang 61. By the 
definition of A2, as 54 e A2, also 55 E A2. As i=_p4(c*, 54) clearly F6--q4(c, ,5) SO 

(pQx 65) E p. So we can conclude: by 55 realizes the same type over Al u Rang 6l, 
p4(X, 64) p, -_94(X., b6) E p. 

Now Ip3(X, 63)} C T3(x, 63), P4(x, 64)} C p, so 

R[p3(x, 63)] ? R9p3(x, 63) A Cp4(x, 64)] ? R[p] = R[i1P(x, 6')] = R[Ip3(X 33)]. 

But this implies R[3(x, 63) A p4(xb4)] < R[p]. As 53 e Al U Rang 5', 
53nb54, 631b56 realizes the same type, so R[T3(x, 53) A -,p4(X, 65)] = R[Tr 3(x, 6) A 

_,p'4(x, 54)] < R[p] but TA3(x, 53) A -94(X, o5) eP, contradiction. 
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112 SAHARON SHELAH 

PROOF OF THEOREM 4.1. We shall prove by induction on a that: 

(*) If c e A, R[p(x, c)] = a, then we can extend F to an elementary function F'. 

Dom(F') = A u{be IMI: Ip[b,c]}, 

Rang (F') = A u {b E IMI: F rp[b, F(c)]} where F<aj, * - *, a,,> = <F(aj), * , F(an)>. 
This is sufficient because for p(x, c) = (x = x) this is the theorem. 
Suppose that (*) holds for every fi < a, and c e A, R[p(x, c)] = a. 
Let us define by induction a, c {M I: a, will be any element in MI, which realizes 

over A U {a,: j < i} a type pi, cp(x, c) epi, R[cp(x, c)] = R[pi]. Let a0 be the first 
ordinal for which aao is not defined. By Theorem 2.2, if ao > w then {ai: j < ao} is 
an indiscernible set over A. So by assumption (2), a0 < c1. So we can rename the 
aj's so that ao < co, and clearly all the demands in their definition remain valid. 
Similarly we can find bi, i < Po < co in N, such that Ip[bi, F(e)] for i < Po, and the 
type bi realizes over B u {by:j < i} has rank R[p(x, F(6)], but b80 is not defined. 
(It is easy to prove aO = P0, but we do not need this.) 

Now we define by induction Fn n < w, such that: 

(**) An, = DomE, c IMI, Bn = Rang Fn c INI, 

every sequence from M realizes an isolated type over An, and every sequence from 
N realizes an isolated type over B, 

(1) Let F0 = F. 
(2) Suppose Fn is defined, n = 3r + 1. If r ?: P0b F,,+I = F,. If r < Po, as 

ar E IM J, it realizes an isolated type over A-,; say isolated over +(x, cl, .., cn). 
Thus i(3x)b(x, cl, . ?, cn), so I(3x)b(x, F(c'), * * , F(Qn)) and for some a; e N 
hf[a;, F(c'), * * *, F(cn)]. Extend Fn to Fn +I by defining Fn ,+(a,) = a;. By Lemma 
4.2 (**) is satisfied for n + 1; as clearly Fn, +I is elementary. 

(3) Suppose Fn is defined n = 3r + 2. Define Fn + 1 as in the previous case, 
transposing the roles of M, N; so b, E Rang Fn,+1. 

(4) Suppose Fn is defined ni = 3r + 3. Let {pi: i < 1o} be the list of types in 
S(A,,) which are realized in M, p(x, c) e pi and their rank is <ac. By (**) each pi 
is isolated, say over ,j(x, a), and without loss of generality R[pb(x, M)] = R[pJ] < 
a, k(Vx)[Oi(x, el) -> cp(x, 0)]. Define by induction F,1, i < io such that: Dom F, = 

An U U,<t{c e IMI: FIa[C, e]}, Rang Fi = B, u U,<i{c e INI: 1/j[c, F(e)]}, and 
F,' is an elementary function. For i=0, F1 = Fn, for a limit ordinal i, Fii U= Fi ; 
for a successor ordinal i = j + 1; we can use the induction hypothesis (on a, not 
on i) because R[oj(x, c)] < a, and because by Lemma 4.3 the hypothesis of (*) 
is satisfied; this means there exists F,1 as required. Let Fn,, = F,?o. 

So we have defined Fn, and let F' = Un,,,,Fn. Clearly F' is an elementary func- 
tion, Rang F' c INI, Dom F' c [M 1. It suffices to show 

Rang F' = IB U {a e IJN: fI:p[a, F(e)]}, Dom F' = A u {a e IMI: i[a, c]}. 

As the proofs are similar let us prove for Dom F'. Let a e I MI, h[a, c], and let a 
realize p e S(A U {ai: i < ao}). By the definition of a0, R[p] < a, so for some 
j < ao, R[p I (A U {a:: i < j < aD ? co})] < a, so for some n < wR[p I A,] <a, 
so {a' e IMI: a' realizesp I A3,} c A3u+1, so aeDomF3,, c DomF'. 
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