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THE JOURNAL OF SymsoLIC Logic
Volume 37, Number 1, March 1972

UNIQUENESS AND CHARACTERIZATION OF PRIME MODELS
OVER SETS FOR TOTALLY TRANSCENDENTAL FIRST-ORDER
THEORIES

SAHARON SHELAH

THeOREM. If T is a complete first-order totally transcendental theory then over
every T-structure A there is a prime model unique up to isomorphism over A. More-
over M is a prime model over A iff: (1) every finite sequence from M realizes an
isolated type over A, and (2) there is no uncountable indiscernible set over A in M.

The existence of prime models was proved by Morley [3] and their uniqueness
for countable 4 by Vaught [9]. Sacks asked (see Chang and Keisler [1, question 25])
whether the prime model is unique. After proving this I heard Ressayre had proved
that every two strictly prime models over any T-structure 4 are isomorphic, by a
strikingly simple proof. From this follows

THEOREM. If T is totally transcendental, M a strictly prime model over A then
every elementary permutation of A can be extended to an automorphism of M. (The
existence of M follows by [3].)

By our results this holds for any prime model. On the other hand Ressayre’s
result applies to more theories. For more information see [6, §0A]. A conclusion
of our theorem is the uniqueness of the prime differentially closed field over a
differential field. See Blum [8] for the total transcendency of the theory of differen-
tially closed fields.

We can note that the prime model M over A is minimal over 4 iff in M there is no
indiscernible set over A (which is infinite).

In order to help the reader, §§1 and 2 contain known results which are from
Morely [3] (except 2.3, 2.4), with a variation of the definition of rank type. If we
define T as totally transcendental iff R(x = x) < o0, then the restriction “T is
countable” is superfluous.

The result of this paper was announced in [6, §0A.5B] (in more general form)
and in [7, Theorem 6].

Notation. Let T be a fixed first-order countable complete theory in the language
L. For simplicity all the sets and models we shall deal with, will be of cardinality
< &, for some high enough cardinal &; and let M be a x-saturated model of 7. As
every model of T of cardinality < i is isomorphic to an elementary submodel of M,
we can deal with them only. (See Morley and Vaught [5], or Chang and Keisler [1]
for i-saturated models.) So let M, N denote elementary submodels of M (of car-
dinality <&), 4, B, C sets of elements of M (of cardinality <&), a, b, c elements of
M, a, b, ¢ finite sequences of elements of M. Let | M| be the set of elements of M,
| 4] the cardinality of 4, so || M | is the cardinality of M. Let ¢, , 6 denote formulas
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108 SAHARON SHELAH

of L, x, y, z variables, %, 7, Z finite sequences of variables. M E ¢[a, - - - a,] means M
satisfies p[a; - - - a;], (so ay, - - -, @, € M). As the satisfaction does not depend on the
particular model we omit it. Rang & is the set of elements appearing in a; we write
ae A instead of Rang @ < 4, and a@ " b for concatenation of the sequences &, b.
An m-type over A is a set p of formulas ¢(x4, - - -, X, @), @ € A, such that:

(pi(.i‘, 5‘)€p, i-—- 1,‘ . ',n = F(af) /\ ?{(j, 5‘).
i=1

If m = 1 we omit it. Types are denoted by p, q.

§1. Rank of types and formulas.
DEerFINITION 1.1.  (A) The type ¢ realizes over A is
P, A) ={p(%,a):ac A4, Fo[¢, al}.
(B) S™(4) = {p(¢, A): I(?) = m A e |M]|} [clearly for any m-type p over A,
there is g € S™(A)p < q]. S(4) = S*(A).
(C) T is R,-stable (=totally transcendental) iff |4| < R, implies |S(4)| < R,.
DEerFINITION 1.2. We define R[p(x, @)] (the rank of ¢(x, @) by induction:
(A) Rlp(x, D] = -1 iff F=@x)p(x, @);
(B) Rlp(x, @)] = « iff
(1) FEx)p(x, @), :
(2) for no B < «, R[p(x, 3)] = B,
(3) for no ¢(x, b), both ¢(x, @) A ¥(x, b),
o(x, @) A —y(x, b) satisfies (1) and (2).
(C) Rlgp(x, a)] = o if R[p(x, a)] is not defined by (A) and (B). We stipulate
—1 < ¢ < oo for any ordinal .
DerFNITION 1.3, For a type p, the rank of p is

R[p] = min{R[‘Pl(xs 61) A-es A 931;(35, &n)]: n < w, ¢i(x9 &‘) Ep}'

THEOREM 1.1. (A) If E(Vx)[p(x, @) — ¥(x, b)] then R[p(x, @)] < R[Y(x, b)).
(B) If « = R[p(x, @)] < oo, then for no y(x, b)
a = Rlg(x, ) A $(x,b)] = Rlgp(x, @) A —§(x, b)].
(C) If @ < Rlg(x, @)] then there is Y(x, b) such that
Rlgp(x,a) A (x,b)] 2 @,  Rlp(x,a) A —¢(x,b)] = c.

(D) If a, b realize the same type, R[p(x, @)] = R[p(x, b)].

(E) There is ay < (2%0)* such that no ¢(x, a) has rank «,.

THEOREM 1.2. (A) p < g implies R[p] = Rlq] (by Theorem 1.1, Definition 1.3).

(B) Every type has a finite subtype of the same rank (so if p € S(A), we can take
one formula) (by Definition 3.1).

(C) If p is a type over A, R[p] < <o, then there is at most one q, p < q € S(A),
R[p] = Rlgq] (by 1.1B).

THEOREM 1.3. T is Ro-stable iff R[x = x] < oo (by Theorem 1.1. This means
R[p] < oo for every p.)

ProoF. If R(x = x) = oo, then R[x = x] > «,, so by repeated use of Theorem
1.1(C), T is not NXy-stable. If R(x = x) < o, then every p € S(A) has a finite sub-
type p* of the same rank. By Theorem 1.2(C) |S(4)| = [{p*: pe S(4A)}] < |4] + R,.
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Remark. We can define, similarly, ranks for m-types, and the same theorems
hold; as T is R,-stable iff [S™(4)| < |4| + X, for every m < w. From now on T
is totally transcendental.

§2. Prime models and indiscernible sets.

DEerINITION 2.1. A function f; Rang f, Dom f < |M|, is elementary if for
a,--,a,€eDomf, pe LEglay,- -, a,] = ¢[f(@), -+ -, f(an)]

DEFINITION 2.2. M is a prime model over A4, if every elementary function from
A into a model N can be extended to an elementary function from M into N.

DEerFINITION 2.3. A type p € S™(A) is isolated if there is a finite p’ < p such that
p is the unique extension of p’ in S(4). We say then that p is isolated over Ap'.

DEFINITION 2.4. M is strictly prime over 4 by |M| = AU{a,: i < o} if each
a, realizes an isolated type over 4; = A U{a;: i < j}.

THeEOREM 2.1. (A) For every formula ¢(x, a), a € A, there is an isolated p € S(A),
P(x, @) € p.

(B) Over every A there is a strictly prime model; and every strictly prime model
over A is a prime model over A.

(C) Every finite sequence in a model, M, prime over A realizes over A an isolated
type.

Proor. (A) We choose p with minimal rank. (B) follows by repeated use of
(A). (C) by Definition 2.2, Theorem 2.1(B), it suffices to prove it for a model strictly
prime over A by, say, |M| = A\ J{a,: i < ip} which is proved by induction on i,.

DerFINITION 2.5. The set {q,: i < o} is indiscernible over 4, ifa, # a, and for every
distinct By, - - -, B, < o, distinct y;,- -+, ¥, < e,pe L and a€ 4, Folag,, - -, ag,, al
= glay, -+ -, ay,, al.

THEOREM 2.2. If A; = A Mai:i <j}, p(as, o) < play, Ag), Rlp(ae, Ao)] =
Rip(ay, Ap)] for any j < « = w, then{a;: i < «} is indiscernible over A. (See [3].)

THEOREM 2.3. For any ¢(x, ¥) there is r=r, < w such that for any indiscernible
{a:i < o}, and b,

i < a:Fola, b} <r or |{i < a:F —gla,bl}| <r.

Proor. Otherwise I' = {p(x;, 7,), m@(X1, Fm): I < @, n€ I, m ¢ I} is consistent.
Let b,, realize 7, a, realize x;, A = \Upn <, Rang b,. So |S(4)| = [{p(a;, A): I < w}|
=2% > |A|, contradiction.

THEOREM 2.4. If{a,: i < o} is indiscernible over A, then for any b there is a finite
I < « such that {a,: i < «, i¢ I} is indiscernible over A\U{a,: i € I}{J Rang (5).

Theorem 2.4 can be proved like Theorem 2.3, see [6, Theorem 6.13, Theorem 5.9],
compare with [2, Theorem 1.3], Theorem 2.4 was independently noted by V.
Harnik and the author.

§3. Indiscernible sets in a prime model.

LeMMA 3.1. Ifad*,---,a*e|M|, M is a strictly prime model over A; [by |M| =
AV {a:i < iy}] then M is strictly prime over AV {a*,---,a"} [by |[M| =(4vV
{@,---,ahuia:i<igl

ProoF. Let j < iy, and we should prove only that g, realizes an isolated type
over AU {a*,---,a"} U {a;: i < j}. By the Definition 2.4 M is strictly prime over
A;=AV{a:i<jl by [M|=A4,9{a:j<i<iy}, So by Theorem 2.1(c)
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{a;,a*, - - - ,a™y realizes an isolated type over 4, say isolated over (x;, Xa, * * * y Xp 41,
?), ¢ € A;. Clearly the type a; realizes over 4; VU {a%,- .-, a"} is isolated by ¢(x,,
at,---,a" q).

LEMMA 3.2. IfB=AV{a;:i< o}, « > w, and {a;:i < &} is an indiscernible
set over A, then {a,: i < o} is a maximal indiscernible set over A, in any prime model
M over A.

Proor. Let p={@(x, ¢): c€ B, and for infinitely many i < w, Fela;, ¢]}. By
Theorem 2.3 p is consistent and complete, so p € S(B). It is easy to see that p is not
isolated—as if it is isolated over ¢(x, ¢), ¢ € B, then for infinitely many a;’s {p(x, ¢) A
x = a;}is consistent. So by Theorem 2.1(C) p is not realized in M. Now if the con-
clusion of the lemma fails, for some c € [M|, {a;:i < o} U {c} is an indiscernible
set over A, then clearly c realizes p, contradiction.

THEOREM 3.3. In any strictly prime model M over A there is no uncountable
indiscernible set over A.

ProOF. Suppose {bj:i < X;} is an indiscernible set over 4 in M. Let
p = {p(x, &): ¢ € | M|, {i: Fp[bi, ¢]}isinfinite}. As before by Theorem 2.3, p € S(| M|).
By Theorem 1.2(B) there is ¢(x, °) € p, R[p] = Rle(x, ¢°)]. By Lemma 3.1 M is
strictly prime over A; = A U Rang &°, and by Theorem 2.4 for some finite I,
{bi:i < R, i¢ I} is an indiscernible set over 4;. Let {b;:i < R;} = {b]:i < N,
ie¢l}.

Let B = A, U {b;:i < w}. Then by Theorem 2.1(B) there is a prime model N
over B,and as B < M, using Definition 2.2 (with F the identity on B) we can assume
|[N| = |M|. Using the definition again, as 4, < B < N, M a prime model over
A,, there is an elementary function F from |[M| into N, such that for a € 4,,
F(a) = a. Let b = F(b,) for every i < R,. Clearly {b*: i < R} is an indiscernible
set over A,. By Theorem 2.4 there is @ < w,, such that {$*: « < i < N,} is an in-
discernible set over B. Let g be the type b® realizes over B. It is easy to see that for
any c, c realizes p | B iff {b;:i < w} U {c} is an indiscernible set over 4;. So by
Lemma 3.2 b* does not realize p | B. But by Theorem 1.2(A) and the definition of
@(x, &°), and as ° € 4,

Rlgp(x, )] = Rlp | 4] = R[p | B] 2 R[p] = Rig(x, &°)].

Soqg#p|B,qeS(B), q| A, =p | A;, so by Theorem 1.2(A) and C = R[q] <
R[p]. So by Theorem 1.2(B) there is ¢;(x, ¢*) €4, (so &* € B), Rlg,(x,¢*)] = R[q] <
R[p]. Let r = r,, (from Theorem 2.3); ¥(X, y1,- - -, ¥r, @)@ € 4,) isolate the type
b+, . .., b**7) realize over A4y, so FAXW(X, b**L, ..., b**", @). As F was an
elementary function, (b;) = b'and ae 4 = F(a) = a, clearly F@AX)W(X, by, - - « , by, G).
So for some ¢&*e |M|, F[% by,---,b,,al. Now by the definition of «, b7,
b+l ... b%*T realize the same type over B, so Fp,(b%*%, €),.- -, Epy(b%*7, &%).
So by the definition of ¢, kg, (b, €3),i = 1,---, r, and &, ¢ realize the same type
over A4;. Hence by Theorem 1.1(D), Rlpi(x, ¢*)] = Rlpi(x, ¢})] < R(p), and
i < R;: Epy(by, x, 8} = r. So by Theorem 2.3 [{i < X,: kg;[b, &} = R,, so
oi(x, &%) € p, so R[p] < Rlp:(x, ¢*)] contradiction.

THEOREM 3.4. If M is a prime model of A then (A) every finite sequence from M
realizes over A an isolated type, (B) in M, there is no uncountable indiscernible set
over A.
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ProOF. (A) is Theorem 2.1(C). For (B) let N be a strictly prime model over
4, and F an elementary function from M into N, such that for ae 4, F(a@) = a
(which exists by Definition 2.2). If {a;: i < X,} = |M] is indiscernible over 4, then
{F(a)): i <X} < |N| is also indiscernible over 4, contradition to Theorem 3.3.

§4. The uniqueness theorem.
THEOREM 4.1. Suppose A = |M|, B < N, F is an elementary function from A
onto B. Moreover assume

(1) every finite sequence from M(N) realizes over A(B) an isolated type,
(2) in M(N) there is no uncountable indiscernible set over A.
Then F can be extended to an isomorphism from M onto N.

Remark. Together with Theorems 2.1(B), 3.4, this proves the main theorem.

We shall extend gradually F, such that (1), (2) remain true with A4, B replaced by
Dom F, Rang F. Condition (2) clearly remains true, but we should be careful about
(1). We shall need the following two lemmas:

LeMMA 4.2. Suppose A, < |M,|, every finite sequence from M, realizes over A,
an isolated type, ay,---,a,€|M,|, Ay = A, V{ay, -, a,}. Then every finite
sequence from M, realizes over A, is an isolated type.

Proor. Let ¢ be a sequence from M;. By hypothesis, ¢*<ay, - - -, a,> realizes
over 4 an isolated type, say isolated over (%, ¥, - -+, ¥, 8), b € 4;. So the type &
realizes over A4, is isolated by ¢(%, ay, - - - , ay, b).

LEMMA 4.3. Suppose A; < |M,|, every finite sequence from M, realizes over A,
an isolated type; p, € S(A4;) for i < ig. Let Ay = A; U Ui« {ac |M,y|: a realizes
P}

Then every sequence from M, realizes over A an isolated type.

Proor. Let ¢ be any sequence from M, and p be the type ¢ realizes over 4,.
Let ¢,(%, b*) € p be such that R[e,(%, 5*)] = R[p] (it exists by Theorem 1.2(B)). By
the hypothesis and Lemma 4.2, the type p | (4, U Rang b?) is isolated, so let it be
isolated over o (X,5%), b2e(4 U Rangb?), and let @4(F, b%) = @i(X, bY) A
@4(%, 5%). So by Theorem 1.1(A) R[p,(%, 5%)] = R[pland p | (4, U Rang b?)isisolated.
Suppose this fails, so p is not isolated over @3(%, 5%), so there are 5* € 4,, ¢, € L such
that (%, b*) € p, but F@X)[ps(%, 5%) A —@4(X, bY)], so there is ¢* € | M, | such that
Epa(C*, 5%) A —@4(C*, b%). But the definition of ¢;, ¢* realizes p | (4; U Rang b%).
As in the proof of Theorem 3.3, as ¢, ¢* realize the same type over 4 U Rang 5%, and
as every finite sequence from M, realizes an isolated type over 4; U Rang b* there is
5° e | M| such that &*0b%, ¢°b° realize the same type over 4, U Rang 5. By the
definition of A,, as b* € A,, also b° € A,. As F—,(¢*, b%) clearly F—g4(C, b°), so
— (%, 5°) € p. So we can conclude: 5*, 5° realizes the same type over 4, U Rang b?,
‘P&(fs 54) €p, —"Pé(f, 55) €p.

Now {‘Ps(x, 53)} < ‘PS(x’ 58)’ q’4(x9 54)} < b, S0

Rigg(x, b°)] = Rlpa(x, 5°) A ulx, 5] 2 RIp] = Rlpa(x, 59)] = Rlgs(x, b1

But this implies R[ps(x, 5°) A —@u(x, b%)] < R[p]. As b%e A; U Rang b,
b30b%, b3S realizes the same type, so R[ps(x, 5%) A —@4(x, 5°)] = Rlps(x, 5% A
—p4(x, 5%)] < R[p] but @s(x, b3) A —p4(x, b°) € p, contradiction.
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ProoF oF THEOREM 4.1. We shall prove by induction on « that:
(*) If ¢e A, Rlp(x,¢)] = «, then we can extend F to an elementary function F'.

Dom (F') = AV {be |M]|: F ¢[b, ]},

Rang (F') =4V {b € IMI: E ?’[b, F(é)]} where F<a1a e,y = <F(a1), ) F(au)>°

This is sufficient because for ¢(x, ¢) = (x = x) this is the theorem.

Suppose that (*) holds for every B < «, and ¢ € 4, R[g(x, &)] = «.

Let us define by induction g, € |M|: a, will be any element in M,, which realizes
over AU {a,;:j < i} a type p,, o(x, ¢) € p;, Rlp(x, )] = R[p]. Let «, be the first
ordinal for which a,, is not defined. By Theorem 2.2, if &, > w then {a,:j < oo} is
an indiscernible set over 4. So by assumption (2), ¢y < w;. So we can rename the
a;’s so that ¢y < w, and clearly all the demands in their definition remain valid.
Similarly we can find b, i < o < win N, such that Fe[b,, F(¢)] for i < By, and the
type b; realizes over B U {b;: j < i} has rank R[g(x, F(¢)], but b,, is not defined.
(It is easy to prove «p = Bo, but we do not need this.)

Now we define by induction F, n < w, such that:

** A, =DomF, < |M|, B,=RangF, < |N|,

every sequence from M realizes an isolated type over 4,, and every sequence from
N realizes an isolated type over B,.

(1) Let F, = F.

(2) Suppose F, is defined, n=3r+ 1. If r = By, Fpyy = F,. If r < By, as
a, € | M|, it realizes an isolated type over A4,; say isolated over (x, c%,---, c").
Thus F@Ex}(x, ¢t ---, c™), so F@AxW(x, F(c'),---, F(c")) and for some aje N
Fla;, F(cY), - - -, F(c®)]. Extend F, to F,.; by defining F,.;(a,) = a;. By Lemma
4.2 (**) is satisfied for n+1; as clearly F, ., is elementary.

(3) Suppose F, is defined n = 3r + 2. Define F,,; as in the previous case,
transposing the roles of M, N; so b,€ Rang F, ..,.

(4) Suppose F, is defined n = 3r + 3. Let {p,: i < io} be the list of types in
S(A,) which are realized in M, ¢(x, ) € p; and their rank is <a. By (**) each p;
is isolated, say over y(x, &), and without loss of generality R[(x, &)] = R[p] <
a, E(VX)[(x, &) — o(x, ¢)]. Define by induction F3, i < i, such that: Dom F} =
An v Ui<i{c € IMI: h)l‘t[ca a‘]}’ Rang Ffi = Bn v Ul<£{c € ‘Nl: h/’![cs F(El)]}a and
F} is an elementary function. For i=0, F} = F,, for a limit ordinal i, F} = U, ;F3;
for a successor ordinal i = j 4+ 1; we can use the induction hypothesis (on «, not
on i) because R[y(x, &)] < «, and because by Lemma 4.3 the hypothesis of (*)
is satisfied; this means there exists F;: as required. Let F,,.; = Fo.

So we have defined F,, and let F’ = (J,<.Fy. Clearly F’ is an elementary func-
tion, Rang F’ < |N|, Dom F’ = |M|. It suffices to show

Rang F' = |B| U {ac|N|: kpla, F(®)]}, DomF = AU {ac|M|:Eg[a,él}.

As the proofs are similar let us prove for Dom F'. Let a € | M|, kgla, ¢, and let a
realize pe S(4 V {a;: i < «p}). By the definition of ey, R[p] < «, so for some
J<o R[p|(AV{a;:i<j< a < w})] < a, so for some n < wR[p| 4,] < o,
so {a' € |[M|: a’ realizes p | A3} < Agp+1, 50 a € Dom F3, < Dom F'.
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