
 
Forcing Minimal Degree of Constructibility
Author(s): Haim Judah and  Saharon Shelah
Source: The Journal of Symbolic Logic, Vol. 56, No. 3 (Sep., 1991), pp. 769-782
Published by: Association for Symbolic Logic
Stable URL: http://www.jstor.org/stable/2275046
Accessed: 27-06-2016 09:37 UTC

 
REFERENCES 
Linked references are available on JSTOR for this article:
http://www.jstor.org/stable/2275046?seq=1&cid=pdf-reference#references_tab_contents 
You may need to log in to JSTOR to access the linked references.

 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

http://about.jstor.org/terms

 

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted

digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about

JSTOR, please contact support@jstor.org.

Cambridge University Press, Association for Symbolic Logic are collaborating with JSTOR to
digitize, preserve and extend access to The Journal of Symbolic Logic

This content downloaded from 198.91.37.2 on Mon, 27 Jun 2016 09:37:11 UTC
All use subject to http://about.jstor.org/terms

Sh:338



 THE JOURNAL OF SYMBOLIC LOGIC

 Volume 56, Number 3, Sept. 1991

 FORCING MINIMAL DEGREE OF CONSTRUCTIBILITY

 HAIM JUDAH1 AND SAHARON SHELAH

 Abstract. In this paper we will study four forcing notions, two of them giving a minimal degree of

 constructibility. These constructions give answers to questions in [Ih].

 ?0. Introduction. In this work we will study the possible connections between
 the structure of the degrees of constructibility and certain properties of the set of
 constructible reals, such as Lebesgue measurability. To be more general, we will use
 the term "constructibility" to denote constructibility over an arbitrary ground
 model V, not necessarily L, but often satisfying CH. We will also show that the
 forcing notions used for "shooting a real through an ultrafilter" produce many
 degrees of constructibility. In the literature [Sa] Sacks introduces a real number (a
 Sacks real) which has minimal degree of constructibility, i.e., if S denotes the Sacks
 forcing, then

 (*) 0 ISF"(Vx Ec R)(x E V or g E VEx])",
 where g is the canonical name for the Sacks real.

 Thisreal number, the Sacks real, is not useful when we are interested in Lebesgue
 measurability or in Baire property of the old set of reals, because

 Fs "R r,) V is not Lebesgue measurable"

 and

 F-S "R r) V does not have the Baire property".

 From this we can ask if the Lebesgue measurability, or the Baire property, of the
 constructible reals implies that the number of degrees of constructibility is more
 than two.

 For the Baire property of the constructible reals the answer is no:
 Gray [Gr], in his Ph.D. thesis, has shown that a Laver real has minimal degree

 of constructibility. Because a Laver real is a dominating real, we have that in such
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 770 HAIM JUDAH AND SAHARON SHELAH

 generic extensions the old reals have the Baire property (they are meager; see [Ih]).
 In [ISh2] we have shown that if we add a Laver real (or a countable support itera-
 tion of such reals) we get an extension where the reals of the ground model have
 outer measure one, i.e. they are not Lebesgue measurable.

 Some time ago, J. Truss conjectured that if the constructible reals have measure

 zero then it is possible to get a Cohen real over L. This conjecture was proved false

 by A. Miller, who remarked that by adding a Mathias real to L, we produce the
 negation of the Truss conjecture [Mi]. In [Ma] it was proved that, over L, Mathias
 reals produce a great number of degrees of constructibility, and therefore it was
 possible to think that the following holds: if L r) R has measure zero then there are

 more than two degrees of constructibility (clearly this is a weakening of the Truss

 conjecture (see [ASh])). In ?3 we will prove that the Blass-Shelah ([BSh]) is a mini-
 mal real. This real has the following property (like a Mathias real): let P be the
 Blass-Shelah forcing; then

 0 Hp(Vx E[o]o r- V)(g x v g 0* -x),

 where g is the canonical name for the generic subset of w. Clearly this implies that

 0 VP "2w r- V has measure zero",

 and this gives an answer to our question. In ?1 we will show that the forcing notion
 used for "shooting a real through an ultrafilter" produces many degrees of con-
 structibility. This will answer a question that appears in [Ih].

 Looking at the forcing notions that have minimal degree of constructibility over

 the ground model, like (*), we see that they do not satisfy the countable chain
 condition (e.g. Silver forcing, Laver forcing, rational perfect forcing). The natural
 question is: if V # ZFC, does there exist P E V satisfying

 (i) P # "ccc",
 (ii) 0 VP"(Vx Ec R)(x E V or g E V[x])"?

 We do not yet have a general answer to this question. We will show, in ?2, that under
 CH (MA) there are such partially ordered sets.

 All our notation is standard. We finish this section by giving some definitions.

 0.1. DEFINITION. (a) [EwIJ = {a c w: lal = N0}.
 (b) [E]< = {a ' a: lal < No}
 (c) For a, b in [wIJ o we say

 (i) a* b iff (]n E )(a-n c b), and

 (ii) a =*b iff a c*b and b c*a.
 0.2. DEFINITION. Let D be a filter over w.

 (a) We say that D is selective iff (Vg c` w)(Vn)(g-'(n) E [w]<` -+ (]a E D)(g P a is
 one-to-one)) (also this means "rare").

 (b) We say that D is Ramsey iff D is a nonprincipal ultrafilter and for every

 E: [_)]2 _+ {0, 1} there is x E D such that Iic"[x]I = 1. It is well known (and easy to
 show) that Ramsey ultrafilters are selective.

 In this work we assume that all the filters are proper, are nonprincipal, and
 contain the filter of the cofinite sets.

 We thank the referee for simplifying the proof of 1.2 and for many suggestions
 for improvement of the presentation.
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 FORCING MINIMAL DEGREE OF CONSTRUCTIBILITY 771

 ?1. Ramsey reals and Silver reals. In [Ma] it was proved that forcing with PD,
 when D is a Ramsey filter, produces a great number of reals which have incompa-
 rable degrees of constructibility. In [IShl] we proved that in such cases, i.e. when
 D is a Ramsey ultrafilter, P(D) produces the same generic extension as PD. In this

 section we will show, without any assumption on D, that P(D) produces a great
 number of reals which have incompatible degrees of constructibility. We will also

 show that PD adds a Cohen real (and therefore many degrees of constructibility), if
 D is an ultrafilter that is not Ramsey. This was previously proved by many people.

 1.0. DEFINITION [IShl]. (a) P(D) will denote the following partially ordered set:
 (i) p E P(D) iff p is a subtree of w<o with the property that there exists s ep

 (denoted s(p)) so that Vt E p, t c s or s c t, and if s c t E p then

 pt = {n ce): tA<n> ep} E D

 for every p E P(D) and for every t E p, t is an increasing function;

 (ii) P1 < P2 iff P1 ' P2*
 (b) If s e p then ps = {t e p: t c s or s t}.
 (C) P1 <?P2 iff s(p) = S(P2) and Pi < P2
 (d) We say that A c p E P(D) is a front of p iff, for every s, t E A, s % t, and for

 every branch X of p there exists k E o such that X P k E A.
 This notion of forcing is the same as the Q(U) defined by Blass in [BL, ?5].
 1.1. DEFINITION. If c is a P(D)-name of a subset of o and a e [w] ", we define

 IEa C VP(D) by setting

 OlpD"n C a if 11 n nj -a An nc-"

 Clearly this defines Ta unequivocally from c.
 1.2. THEOREM. If - is the P(D)-name of the generic subset of w, produced by

 forcing with P(D), and a =,* , then

 0 H- " z VE ay.

 PROOF. Suppose a condition p forced - = Val(x, ,a) for a certain name x in the
 ground model. By extending p, we can arrange that pt depends only on max(t) and
 decreases (with respect to c) as max(t) increases; this ensures that, for any path
 through the tree p, any infinite subset that includes the stem is also a path through
 p. Let a be a generic path through p. Clearly, it has two distinct infinite subsets -c

 and -', each containing the stem of p, with ,a = ,a. By [IShl, 1.14], both c and c'
 are generic paths through p. So - = Val(x, ,a) = Val(x, ,,a) = ', a contradiction.

 1.3. DEFINITION. Let D be an ultrafilter on w. Let PD be the following forcing

 notion:

 (a) (a, A) e PD iff a e [o]d< and A e D and sup(a) < inf(A);
 (b) (a, A) < (b, B) iff a c b and B c A and b -a c A.
 This forcing notion was introduced by J. Silver.

 1.4. Fact. If D is not Ramsey, thenforcing with PD produces Cohen reals.

 Proof. If D is not Ramsey, then there is a function -9: [Ew)] 2 -0,4 } such that for
 all x e D, mT"[EX]2 = {0, 1 }. Hence

 (*) Vx e DVi e {0,1}]a, b e x: a < b and -g(a,b) =i.
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 772 HAIM JUDAH AND SAHARON SHELAH

 For any (finite or infinite) y c o with increasing enumeration y = { oY1,i'.
 define

 TY = <Ki(YoY), ic(Y2, Y3), * >-

 Let - be the name for the generic real produced by PD, i.e., [kPD '1 = U {s: (s, A)
 E G}". We will show that 1HPD"7-ru is Cohen-generic over V".

 Let <si: i < o> be a maximal antichain of the Cohen forcing 2'<, and let (s, A)
 E PD. It is enough to find (t, B) ? (s, A) and i < a such that iTt D si, because clearly

 (t, B) I k -Tr= -t.
 Find i such that i-s is compatible with si, say (TS) K<C1,. .Ck> =) si. By (*)

 we can find a, < b, in A such that m(al, bl) = cl . Let s, = s u {a,, b1} and A1 =
 A - (b1 + 1). Then (sl,A1) - (s,A), and 7-s1 = -s' <Cl>. Continuing by induc-
 tion, we can find (sl, A) < (s2,A2) ? ? (SkA) = (t, B) such that iAt = j~~~~5A~~~~C1C~2 <..>D5k.J. Lii) uc ta
 7TrSA <Cl X*. *XCO > = Si- -

 (This fact is mentioned without proof in [BL], and was probably first noticed by
 Baumgartner.)

 1.5. REMARK. We call r E [W] o a Ramsey real over V, if for every -t in V, c: [O] 2

 - {O, 1 } there is an n such that I E"[r - n] I = 1. If D is a Ramsey ultrafilter, then PD
 or P(D) produces Ramsey reals. Conversely, if r is a Ramsey real over V, we can
 define D c P(o) r V by

 a E D r c* a.

 D will be a Ramsey ultrafilter over P(o) r- V, and if p(_)v[D] = p(o)V, then r is P(D)-
 generic over V[D] (see [IShl]). We do not know if Ramsey reals could have
 minimal degree.

 ?2. Minimal degrees. In this section we introduce a new forcing notion which is
 similar to the Laver forcing and Mathias forcing with an ultrafilter. The aim is to
 force a minimal degree of constructibility and satisfy c.c.c. First we will give these
 two facts under the assumption of the existence of some family of filters; then in the
 end we will show that CH implies this assumption. (The same proof works from
 MA.)

 2.1. DEFINITION. (i) We say that D = <D,: q E ow<> is a sequence of filters (on
 )) if for every q E w <", D, is an ultrafilter over w.

 (ii) For a sequence D of filters, let P(D) be the following partially ordered set:
 (a) p E P(D) iff p c-- w is a tree and there exists s E p, called the stem of p, such

 that for every t E p, t _ s or s _ t, and ifs t then {n E w: tA <n> E p} E Dt;
 (b) if p, q E P(D) we say that p < q iff q p.
 (iii) If p E P(D) and t E p, we define

 pit] - {s E p: s _ t or t _ s} E P(D).

 (iv) If P1, P2 P(D) then we say that P1 <?P2 iff P1 < P2 and stem(p1) =
 stem(P2).

 2.2. DEFINITION. If I _ P(D) is a dense open subset of <P(D), < > and p E P(D),
 we define rk': p -* ORD by induction on the ordinals:

 (i) rk'(s) = 0 if and only if there exists q E I such that p[S] <0 q;
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 FORCING MINIMAL DEGREE OF CONSTRUCTIBILITY 773

 (ii) rk'(s) < oc > 0 iff {n: s A <n> e p and rk'(s A <n>) is well defined and less than
 ae cDs;

 (iii) rk'(s) = oo iff there does not exist o e ORD such that rk'(s) =o.
 2.3. Claim. For every stem(p) c s c p we have that rk'(s) < oo.
 Proof. Let s e p be such that rk'(s) = oo and s(p) s. We define p* = {t e p:

 t c s or s c t and for every k e [lg(s), lg(t)), rk'(t P k) = oo}. Clearly p* c p, and

 by definition of rk', if s c t e p* then {n: t < n> e p*} e D, (D, is an ultrafilter).
 Therefore p* e P(D) and, as I is dense open in P(D), there exists p** such that
 p* < p** e I. By hypothesis stem (p**) e p*, and this implies that rk'(stem(p**))
 = oo; but clearly rk'(stem(p**)) = 0. F

 2.4. LEMMA. If I c P(D) is a dense open subset of P(D) and p e P(D), then there
 exists q e P(D) such that

 (i) p <? q, and
 (ii) {s e q: q(S] e I} contains a front.

 (Remember that A c p e P(D) is a front of p iff for every s, t e A, s 9 t and for
 every branch x of p there exists k e o such that x P k e A.)
 PROOF. By induction on rk'(stem(p)). DG
 2.5. THEOREM. If 1 is a P(D)-sentence and p e (D) then there exists q e P(D) such

 that p <? q and

 q Ik 66099or q ---i 0
 PROOF. Let I = {q: q [-"P" or q [--1i"}. Clearly I is a dense open subset of

 <P(D), < >. We will prove by induction on rk'(t) (for stem(p) c t e p) that there
 exists q, p(t] <0 q, such that q Ik "P" or q It "n -P". If rk'(t) = 0 then this is clear. If
 rk'(t) = oc then {n: rk'(t A <n>) < al = a e Dt. For each n e a, let qn, p[tA <n>] <? qn, be

 such that qn I-"P" or qn -"--i ". Let a. = {n e a: qn 1-"P"} and a-,,,-= a - as.
 Therefore, without loss of generality, a,0 e Dt, and we define q e P(D) by q =
 UnEao qn- Clearly p(t] <0 q and q 1F" 0"*

 (This theorem was also proved in [Bl].)

 2.6. DEFINITION. We say that D = <DI: q e ow<> is good if D is a sequence of
 filters and

 (i) for each q e w<', DU is a Ramsey filter,
 (ii) nD = {a: (Vt1 e w<)<)(a e DU)} is a selective filter, and
 (iii) there exists <A,: q e o<"> such that

 AeD, for every q ew <w,
 AN n A= 0 for every tpq ,

 UA, = o.
 For the rest of this section we will assume that D is a good sequence of filters and
 that r is a P(D)-name for a member of 2" = IR, and p e P(D) is such that

 P Ikp(b)r V.
 2.7. Fact. There exists Pi e P(D) such that

 (i) p <0 p1, and
 (ii) for every n e w, {Iq e Pi: pl13 r n} contains a front.
 Proof. Use induction and 2.4. DG
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 774 HAIM JUDAH AND SAHARON SHELAH

 For every q e pi and k e w, we define vk to be the unique member of 2k such that
 there exists q e P(D) satisfying

 PI"j <0 q HP(b) "ir k = vi

 (use 2.5 2k times).

 Clearly vk +1 Then we define vU to be such that (Vk e w)(Vk v). Let Po =
 stem(p1), and let JO = {z: v, = vp0}. We say that "G passes outside JO" if there exist c
 ? JO and q e G extending Pi such that stem(q) = c.

 2.8. Fact. There exists P2 such that

 P1 <0 P2 lp(D)"G passes outside JO''

 Proof. Because "G passes outside JO" is a sentence in the P(D)-language, if the
 conclusion of the fact is false, there exists P2 such that

 P1 <0 P2 [-P(b) "G does not pass outside fO''

 Then there is no q ? P2 such that q [-p(b) "r 7& vpo". Therefore P2 [-P(D)"r = vP0", a
 contradiction DG

 Now fix po > po > p satisfying 2.8.

 Let J2={PeP2:PO-p and p Jo and for every PO c/cp if r Ap then
 q e JO}.. Also, by using 2.4, we can assume that J2 is a front.

 Set J1 = {p: (3k)(p A<k> e J2 r) P2)}
 Clearly for every p e J1 we have that vp = vp0, and for every p e J2 we have that

 VP =P vo*
 We define, for every p e J2,

 k(p) = min{k: VP ~ k =v vP0 jk}.

 2.9. Fact. We may assume that for every p e J1

 {1: pA <1> C J2} c Dp.

 Proof. We define J1 = {jq: (V C J1)(q _ p)}. For every q C J1, we define

 rk(q)=O iff {l: _2l>eJf2}eDu,

 rk(q) 2 o iff {1: rk(qA<1>) 2 ,B} eD, for every , < oc,
 rk(q) = oo iff there is not o such that rk(q) = o.

 Clearly for every p C J1, rk(p) : o (J2 is a front).

 Let JY = {p: rk(p) = 0} _ J1, and let pi = {jq: (3p C J1)(t1 ' p or p c q)}
 It is easy to show that P2 <0 P'2 C P(D) and p' satisfies the requirements, and we

 can work with p' instead of P2- So let P2 = P'2. D
 Therefore Ji n P2 is a front of P2. Let J1 = J1 r) P2.
 2.10. Fact. {1: k(p A <1>) > m} C Dp for each m w o and for every p C J1.
 Proof. If not, then {1: k(p A K<>) = m} e Dp, and this implies that

 {1: VpA<<> m =A vP0 m} e DP.

 Hence {1: VPA<1> P m = t =A vP , m} e Dp for some t C m, and thus vP m =A vP0 , m,
 contradicting p e JO. DG
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 FORCING MINIMAL DEGREE OF CONSTRUCTIBILITY 775

 2.11. Fact. We can assume that <k <p ^ <?> >: p ^ <I > e J2> is one-to-one, as a
 function of 1, for each p.

 Proof. Use the fact that Dp is a Ramsey filter. ED
 2.12. Fact. There exists p3 e P(D) such that P2 <? p3 and, for every p e J2,

 pIfP l-"r k(p) = vp , k(p)".
 Proof. Use 2.5. ED
 Therefore we have p <? Pi <? P2 <? P3 satisfying all the above facts.
 2.13. Fact. We can assume that if 11 < 12 and p K<11> e J2 and p^ <12 > e J2, then

 (*) vpA<l1> P k(p<11>) and VPA <12> P k(p^<l2>) are incomparable.

 Proof. Let A = {l: p^<1> e J2;we define -9: [A]2 2-2 by

 9(<11, 12 >) = {O if holds,
 (< 1 2 >) 1 if ()fails.

 Then there exists B c Al B e Dp, such that -g [B] 2 is constant. Then if Lg [B] 2 = {O}
 we finish. Otherwise we have that p e J2, because the sequence defined by B will be

 VP, a contradiction. ED
 Now we assume p3 satisfies the condition in 2.13. We define

 jk = {pA<l> e J2: k(p^<l>) = k}.

 Let J1 = <pi: i < w>. Then also we may assume that

 Pi' <1> C_ p3 =k(pi^ <1>) > i.

 Therefore Jk is finite. We define the partial function h: o - '. Suppose 1 e A
 (see 2.6(iii)) and p e J2 n p3. Then

 h(l) = Vp^<A> P k(p^<l>) + 1.

 Clearly h is well defined on UP Ap, p e J1.
 2.14. Fact. h is a finite-to-one function.
 Proof. By the remark on JA. El

 Therefore there exists A e nE,<oD, such that h P A is one-to-one.
 2.15. Fact. For every 11, 12 in A

 h(11) is incomparable with h(12).

 Proof. If not, we assume without loss of generality that h(11) c h(12). This im-
 plies that k(pi ^ <A1>) = k(p2 ^ <12>), where 11 e AP1 and 12 e Ap2, contradicting the
 fact that h P A is one-to-one. ED

 For every p e J1 let

 Jp = {p<l> e J2: 1 A},

 and let

 p4 =q: (3p)(36)(p G J, A 6 e Jp A (t V q ) A C p3)}-

 2.16. Fact. (a) p4 e P(D).

 (b) PO 0 P1 <0P2 <?P3 <?P4-
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 776 HAIM JUDAH AND SAHARON SHELAH

 (c) I = JJP p E J1} is a front of p4.
 (d) If Pi and P2 are in J, then

 p[i] I"r P k(pi) = v P k(pi)", i = 1 2

 and vp1 P k(p1) + 1 is incomparable with vP2 P k(p2) + 1.
 (e) Without loss of generality, inf{k(p): p E J} > m for some fixed m.
 Proof. Clear. ED
 2.17. LEMMA. For every p E P such that p [k "r ? V" there exist p. e P, and

 <IK: i < w> and k: wo<) -+ and <vp P k(p) + 1: p E w<`> such that the following
 conditions hold:

 (a) p <? pro.
 (b) Ii is a front of p. for every i E co.
 (c) If pIi +1 then (]me))(p [meh1).
 (d) inf{k(p): p e Ii} > i for every i e w.
 (e) If P1, P2 E Ii, then

 p[pi] [- "r P k(pj) + 1 = vpj P k(pj) + 1", j = 1,2,

 and

 vp1 P k(p1) + 1 is incomparable with vP2 k(p2) + 1.

 PROOF. Build p, <IK: i < w>, k: o' - o and <vp k(p): p E o<'> by induc-
 tion on o using 2.16. L

 2.18. LEMMA. For every r E VP, if 0 lk r E 2' then

 Olk"re VorGe V[r]".

 PROOF. By a density argument, we may assume that p Ik "r ? V". Then there exist

 P), <IK: i < w>, k: w<) -+ w and <vp O k(p) + 1: p e w<`> satisfying 2.17(a)-(e).
 2.19. Claim. p. Ih "q E V[r]".
 Proof of the Claim. Let G be generic over V such that p. E G. Then from r[G], we

 can choose only one member pi of each Ii such that vpi P k(pi) + 1 c r[G]. Then the
 sequence <Pi: i < w> belongs to V[r] and this sequence generates G. This proves
 the claim.

 Clearly this finishes the proof of the lemma also. D
 Now we will produce good sequences of filters.
 2.20. LEMMA. CH implies that there are good sequences of filters.
 PROOF. Fix <AN: C E o<C`>, a partition of o into infinite sets. Fix <g,( : o < 01>,

 an enumeration of the one-to-one functions from o to w, and fix <B<,: oc E w1 >, an
 enumeration of the infinite subsets of O. Assume we have <<A': a < f>: C E a<C>
 satisfying the following conditions:

 (i) A" C AQ
 (ii) AQ2 c*A", for every L2 > oc and q E I'm

 (iii) g,( r U {A': q E Ow<} is one-to-one.
 Induction. The case o + 1 = , We choose {in: n < w} such that gp [ {in: n < a}

 is one-to-one and if C~ E w<C then {in: n < w} n A' is infinite. Then we set Af =
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 FORCING MINIMAL DEGREE OF CONSTRUCTIBILITY 777

 The case ft = UP. Let <ocj: j < w> be an increasing sequence of ordinals with
 limit /3. Then let DO be such that DU '* Ag,] j < w. Then pick {in: n < w} such that

 90 {in: n < w} is one-to-one and, for each - E w<', DO r) {in: n < w} is infinite.
 Then set

 A= DO rin n<o>.

 This concludes the induction.

 Clearly (a) ){D,: il E w`O} is a selective filter, and (b) each D, generates an
 ultrafilter D, which is selective, and we can assume that D, is Ramsey.

 This shows that <Dt,: q < wo> is a good sequence of filters.

 As the referee remarked, a sequence <D,: tC E w< > of Ramsey ultrafilters is good
 iff the Dy's are pairwise nonisomorphic. This makes the existence of good sequences
 under CH trivial.

 2.21. THEOREM. If V = L (or V # CH), then there exists a forcing notion P such
 that P # "ccc" and P produces a minimal degree of constructibility.

 PROOF. Clearly P(D) t "ccc".

 ?3. Minimal degree and splitting families. In this section we will show that the

 forcing notion introduced in [BSh] produces a minimal degree of constructibility.
 This forcing notion also produces a subset of w, say a, with the following property:

 (V b e [O)I )(a c* b or a * o - b)

 (see [BSh]). The following definitions and lemmas are from [BSh].
 3.1. DEFINITION. For natural numbers n < m, let Knm be the set of all binary

 relations t c 91#(n) x 9(m) such that, for each a c n, (a, a) E t and if (a, b) E t then
 b r) n = a. (We think of each t e Kn m as specifying, for each a c n, some permissi-
 ble extensions of a to subsets of m, each extension being obtained by adjoining to

 a some elements of [n, m).) If t e Kn m and s E Km,1, then we write ts for the ordi-

 nary composition of these binary relations, so ts e Kn,1
 3.2. DEFINITION. (a) For t E Kn m and Y c [n, m) we define ty E Knm by

 ty = {(a, b) E- t: b\a c- YJ.

 (b) We define the depth Dp(t) of each t e Kn m by the following induction

 Dp(t) > 0 always,

 Dp(t) > 1 if, for every a c n, there is b c m
 such that (a, b) E t and b =A a,

 Dp(t) > d + 1 for d ? 1, if, for every partition { Y, Z} of
 [n, m), at least one of Dp(ty) and Dp(tz) is > d.

 3.3. LEMMA [BSh,2.1]. For any t E Kn, m and s E Km,,

 max{Dp(t), Dp(s)} < Dp(ts) < 1 + max{Dp(t), Dp(s)}. E

 Now we will give the definition of the forcing Q.

 3.4. DEFINITION. A condition in Q is a pair <w, T> consisting of a finite subset w

 of o and a sequence T = KtI: 1 E w> such that for some increasing function n: o -+ o
 (a) w c n(O),
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 778 HAIM JUDAH AND SAHARON SHELAH

 (b) tj e Kn(l) n(l +1) for each 1, and
 (c) Dp(tl) - so as 1 -- oo.
 (Notice that <w, T> determines the function n uniquely, since ?(n(l)) is the

 domain of tj.) Another such condition <w', T'> is an extension of <w, T> if and
 only if there is an increasing function k: e -+ w such that, writing t* for

 tk(l) tk(l) + 1 ... tk(l + 1) )-1X

 (a) (w, w') E tot,*. tk(O) 1, by which we mean w = w' if k(O) = 0,
 (b) t' e Kf(k(l)), f(k(l+ 1)) for all 1 E (0, and
 (c) tj c to

 Thus, any extension of <w, T> is obtained by a succession of operations of the
 following three sorts.

 Compose relations. Partition the sequence T into finite blocks of consecutive ti's;

 and compose the ti's within each block, leave w unchanged. (In the description of

 extensions above, this is the special case where k(O) = 0 and t; = t*.)

 Shrink relations. Replace each tj by a subset t; in Kn(l) n(l+1) and leave w un-
 changed. Of course the t;'s must be big enough so that their depths tend to oo with 1.
 (This is the special case where k(l) = 1 for all 1.)

 Fix values. Replace w by some w' such that (w, w') E to tm -1 for some m, and
 delete the initial segment to tm-1 from T, so t' = tk +1 (This is the special case
 where k(l) = m + 1 and t; = t*.)

 We think of a condition (w, T) as providing the following information about
 the generic W c o being produced: W r- n(O) = w, and, for each 1, (W n n(l),

 W n n(l + 1)) E tj. It will be useful to view a condition (w, T) as a labeled tree in
 which the root (at level 0) is labeled w and, if a node at level 1 is labeled with a set
 a c n(l), then its immediate successors are labeled with the sets b c n(l + 1) such

 that (a, b) E tj. Thus, the set of labels at level m is

 Lev(W, T)(m) = {a (w, a) E to * *tm - 1 }.

 We also write Tree(w, T) for the set Um Lev(m) of all the labels occurring in the tree.
 3.5. LEMMA [BSh, 2.6]. Let (w, T) E Q and let C map the finite subsets of O into

 {0, 1}. Then either there is an extension (w', T') of (w, T) such that C maps Tree(w', T')
 to 0, or there is an extension (w, T') of (w, T) such that C maps Tree(w, T') - {w}
 to 1. L

 3.6. LEMMA [BSh, 2.9]. Let A be a Q-name for a subset of w. Then every con-
 dition (w, T) has an extension (w, S) with the following property. If 1 E w, if n = n(l)

 is the number such that s, has domain 9(n), if (w, w*) E s 0 s,_ 1 and if i < n, then
 (w*,S - 1) decides whether i E A (where S - 1 = <sk+l: k < w>). E

 All the above material was taken, almost without changes, from [BSh]. Now we
 will prove new propositions about Q.

 3.7. LEMMA. If n, d < o are given, then there are m > n and r E Knm such that

 Dp(r) 2 d and if

 wa 7 wb and warwc and wbrwd,
 then wc = Wd-

 PROOF. We will show that this is possible by induction on d. In order to fix

 notation we will assume that m was given. Let a: k(In, m)) - (I0, n)) be a function.
 We will give a probability measure to the space of such functions.
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 First take the equidistributed probability on the space 9?(IO, n)). This says that
 every member of (O, n)) has measure 2-n. Then take the product measure for

 {a: 9(In, m)) -* 9(10, n))}; that is, the measure of a is (2-n)2m -n for each such
 function.

 For each such function a, define a member ra c Kn m by

 wrawf uw iff a(w')=worw=w'.

 We will show, by induction on d, that if Y c [n, m) and I YI > f (n, d), then there is
 1 ? c(n, d) > 0 such that the probability (Pr) of the a's such that

 Dp(r a) ? d

 is greater or equal than 1 - c(n, d)2('YI/2d).
 Case d = 0. Put f(n, 0) = 0 and c(n, d) = 0.
 Case d = 1. For each w E ??(NO, n)) we have

 Pr(there is no w' =5 0 such that wraw' u w)

 = Pr((Vw' E 9?(Y) - {0})(a(w') :A w))

 - 1H Pr(a(w') =A w) = (1 - 2-n)2Yl-1.
 W'E, 9(Y) - {O}

 Therefore

 Pr{a: Dp(r a) < 1} < 2n . (1 - 2-n)21Y1-
 = [(2fnl2Yl )(1 - 2-n)1-2Y21YI

 Then fix f (n, 1) such that if I YI ? f (n, 1) we obtain that

 (2 n2IY)(1 - 2n) < 1;

 take this to be c(n, 1).

 Case d' = d + 1. We have

 Pr{a: Dp(r a) ; d + 1} = Pr{a: Dp(r a) < d}
 < Z Pr{a: Dp(ra) $ d} < E c(n,d)2JZJ/2d
 z Y z Y

 IZI 2 IYI/2 IZI 2 IYI/2

 ? 2l'l x c(n, d)21YI/2d+ [2 IYI2Y/2d+l c(n d)21YI/2d+

 Then fix f(n, d + 1) > f(n, d) such that if I YI > f(n, d + 1) we obtain that

 21Y1/2 . c(n,d) < 1;

 take this to be c(n, d + 1).

 Now we finish the proof of the lemma by taking m > f(n, d). D
 From now on we will assume that A is a Q-name for a real, i.e., a subset of w, and

 that

 (w, S) l"A V".

 The reader may check that without loss of generality we may assume that w = 0,
 and by 3.6 we may assume that, over (0, S), W r- [O, n(l)) decides A r- [O, n(l)),
 where W is the canonical name for Q and n(l) is the domain of s,. Also we write C(w')
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 for A r) [0, n(l)) when w' = W r) [0, n(l)), and we write C(w u 90[n(l), n(l+1))) for A q
 [0, n(l + 1)) when W n [0, n(l + 1)) = w.

 3.8. LEMMA. For every n(l), if w e A([0, n(l))) then there exists S' such that
 (w, S - 1) < (w,S'), and for every k, if ws'w' and w' - w # 0, then C(w')
 # C(W U (P[n(1),n'(k+ 1)))

 PROOF. For fixed 1, for fixed w e P([O, n(l))), for every k> I we have that

 C(W U (P[n(l),n(k))) is an increasing sequence of partial characteristic functions, such
 that the union defines a real r(w). Clearly (0, S) l- "A = r(w)". Therefore there is w'
 and 1' > 1 such that wsl w' and C(w') ! r(w). This will induce the following coloring

 function on Tree(w, S - 1): ", is 1" if there is k < wo such that , e bY(n(k)), Y
 e Tree(w, s - 1) and C(,) 5 r(w); " is O" otherwise.

 By Lemma 3.5 we obtain an extension (w, S') of (w, s - 1) such that the coloring
 function is constant and equal to 1 on Tree(w, S') - {w}. El

 3.9. LEMMA. There exists (0, S') e Q such that (0, S) < (0, S') and for every
 w, w' e Tree(0, S') we have that

 C(W U (P[n'(1),n'(k))) =# C(W')

 (where (w, w') e s').

 PROOF. Use 3.8 and a fusion argument as in [BSh]. D

 From now on we will assume that S = S', satisfying Lemma 3.9, and also that the

 function D (sl) grows very fast. Now by induction on 1 e wo we will define r, and k(l)
 such that <0, <rl: I < o?>> will be an extension of <0, S>.

 Let the power set of n'(l) be dom(rl).
 Suppose we are at the stage I + 1. Then we proceed as follows:
 By Lemma 3.7 for n = n'(l) and d = n'(l) there are m and r e Knm satisfying the

 requirements of 3.7.

 Let k(l + 1) = k(l) + m

 Let S [ [k(l), k(l) + m) = Sk(l)' . Sk(l)+m-1- Then we define r, = {(w,u): w e
 i(n'(l)) and w = u r) [0, n'(l)), and there is v e Yi(m), wrv, such that (a) if n < i < m
 and i ? v, then u r) [n(k(l) + i), n(k(l) + i + 1)) = 0; (b) if n < i < m and i e v,
 then

 u rq [n(k(l) + i), n(k(l) + i + 1)) =# 0

 and (u q [0, n(k(l) + i)))Sk(l)+i(U q [0, n(k(l) + i + 1)))}.
 Clearly r, = rj(sk(l),. . ., Sk(l)+m, r) (this notation will be used in the proof of 3.10).

 It is not hard to see that r, e Kn(1), n'(1+ 1) where n'(1 + 1) = n(k(l + 1)).
 3.10. Claim. Dp(rl) 2 d.
 Proof. By induction on d' < d. The case DR(rl) > 1 follows easily from the def-

 inition if we take v - w =A 0.
 Case Dp(rl) ? d' + 1. Suppose Y c [n'(l), n'(l + 1)).
 For every i = 0, 1,..., m - 1, there is

 Zi e {Y r) [n(k(l) + i), n(k(l) + i + 1)), [n(k(l) + i), n(k(l) + i + 1)) - Y}

 such that Dp(sk(l) + i) d' + 1 (here we use the fast growth of Dp). Set

 Z* = {i: Zi = Y q [n(k(l) + i), n(k(l) + i + 1))}.
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 Then Dp(rz*) ? d' or Dp(rm-z*) ? d'. Without loss of generality we assume that
 Dp(rz*) ? d'.

 By the induction hypothesis

 DP(rl((Sk(l))Zo, . * (Sk(l) + m - 1)zm , ruz)) ? d';

 but

 rj((Sk(1))Zo ,** (Sk(l) + m - l)Zm -,, rz.) c (rl)y.,

 where Y* = U{Y r) [n(k(l) + i), n(k(l) + i + 1)): i E Z*}. FII

 This shows that (0, <rl: I < co>) is a condition extending (0, S); we call this
 condition (0, R), or simply (*).

 3.11. LEMMA. Fix I < co. Suppose that the following conditions hold:

 (a) w1rlwl and v1 witnesses this, i.e. w1rvj.
 (b) w2r1w' and V2 witnesses this, i.e. w2rv2.

 (C) W1 A W2.
 Then C(wl) = C(w').
 PROOF. There is n'(l) < i < n'(l + 1) such that i E v1 i ? v2 . Suppose that i E v1

 and i ? v2.
 Now in the interval [n(k(l) + i), n(k(l) + i + 1) = I, w' is not empty and w' is

 empty. Then C(wl r) n(k(l) + i + 1)) =# C(wl rq n(k(l + 1)) u (PI) (by 3.9), and this

 says that C(wl) =# C(w' )
 3.12. THEOREM. 0 k (Vx e- R)(x e V or W e V[x]).
 PROOF. Let A be a Q-name for a subset of wo; without loss of generality we may

 assume that 0 IkQ "A ? V". Let (s, S) be a member of Q. Without loss of generality we
 can take s = 0. We may also assume that (0, S) satisfies the condition of 3.9 and
 that (0, R) is an extension of (0, S) satisfying (*). Then if W[G] is the realization of
 W using G and (0, R) e G, then by 3.11 we may compute W [G] from A [G]. This

 shows that (0, R) IkQ "W e V[A]". This ends the proof of the theorem. LII
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