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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 43, Number 3, Sept. 1978 

END EXTENSIONS AND NUMBERS OF 
COUNTABLE MODELS 

SAHARON SHELAH 

Abstract. We prove that every model of T = Th(co, < .... ) (T countable) has an 
end extension; and that every countable theory with an infinite order and Skolem 
functions has 2"o nonisomorphic countable models; and that if every model of T has 
an end extension, then every IT T-universal model of T has an end extension 
definable with parameters. 

?0. Introduction. Let us review this paper. You can think of a countable 
theory T which "says" < orders the universe of the model and has Skolem 
functions. 

In ?1 we present the definitions and theorems known on end extensions and 
definable end extensions: in particular (Keisler [Kl]) T has an 81-like model iff 
it has a model with an end extension iff it satisfies the regularity schema 
(Theorem 1.2); and the basic results of Gaifman [G3] (see [GI], [G2] too) on 
end-extension schemas and the definable end extension they define; the fact 
that every end-extension type defines an almost minimal end extension 
(2.3-1.8, see Gaifman [G3], in particular 2.8, 2.17). 

In ?2 we first prove a theorem of Rubin, that if T satisfies the regularity 
schema, every countable model has (i) a minimal end extension and (ii) an 
81-like end extension with any possible order as the order type of the 
intermediate end extension. 

We then notice that if T satisfies the inaccessability schema, every model 
with cofinality K0 has an end extension. 

Now Gaifman [Gi], [G2], [G3], following MacDowell and Specker [MS], 
proved that any theory T = Th(w, +, *, <,...) has definable end extensions, 
minimal ones, rigid ones, etc. He uses the fact that definitions by induction are 
allowable. We show that for some of the results proof by induction only is 
sufficient, so T = Th(w, <,...) is sufficient (for almost minimal end-extension 
types). This seems the maximum we can get, but we do not have counter- 
examples. 

Lastly, all theorems of the form "every model of T has an end extension" 
here are proved via definable end extensions. One may wonder whether this is 
really necessary. But we prove that if every model of T has an end extension 
then T has a definable end extension with parameters. For the class of 
I T 1-universal models this gives a necessary and sufficient condition. Note that a 
countable model will have end extensions by Keisler's theorem whereas maybe 
every uncountable model necessarily has enough parameters. 
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END EXTENSIONS AND NUMBERS OF COUNTABLE MODELS 551 

In ?3 we prove that T has 2Ho nonisomorphic countable models. Benda and 
Rubin and Silver asked the question and Benda proved there are -N0 
nonisomorphic countable models. After some reductions we show we can 
concentrate on 

(i) T = Th(wj, < .... ); here for any model M we look at the models it is an 
end extension of, order by inclusion. As we showed every complete order with 
first and last element is possible we are finished (this was proved by Rubin). 

(ii) T = Th(w + wc, <, ...)where co is not definable; we define when two 
elements in a model of M of T are "near" (the closure of {z: z < x =z < y} is 
M) the model is decomposed to convex components (closed under nearness) 
and show we can get any reasonable order type for them. 

The results were announced in [SR] and we thank Rubin for many 
discussions and for his kind permission to include here 2.1, 3.5. 

?1. Preliminaries. T will be (in ?1 and ?2) a complete first-order theory in 
the language L, P, < one- and two-place relations in L, and for every model M 
of T, PM = P(M) is infinite, and <M (or <) an order of P(M) (so 
(Vx, y)(x < y -P(x) A P(y)). Usually < has no last element, T is countable 
with Skolem function and I M I = P(M), but we shall mention such assumptions 
explicitly. A model will mean a model of T. (Vx E P), (Vx > y), etc., are the 
obvious abbreviations. 

DEFINITION 1.1. (1) N is an end extension of M, M ? N if N is an 
elementary extension of M, (i.e., M < N) and a E P(M), b E P(N) - P(M) E 

a <b (i.e. Nl= a <b). 
(2) M < N (N is a proper end extension of M) means M ? N and 

P(M) 7 P(N). 
(3) N is A-like if IP(N)I = A but every initial segment of P(N) is of 

cardinality <A. 
THEOREM 1.2. For a countable T, the following conditions are equivalent: 
(1) It has a model with a proper end extension. 
(2) It has an M1-like model. 
(3) T satisfies the regularity schema, i.e. (Vx)(3y)(y > x) E T and for every 

formula p (x, y; f ): if {x E P: (3y < yo)fp (x, y, fo)} is unbounded then for some 
yi < yo, {x E P: (p (x, y,, io)} is unbounded i.e., 

(Vf )[(Vx1 E P)(3x > x1)(3y < yo)fp(x, y, f) -> 

(3y < yo)(Vx1 E P)(3x > x1)sp (x, y, z)] E T. 

(4) Every countable model of T has a countable proper end extension. 
PROOF. Well known, due to Keisler (see [Kl], [K2]). (2) a (1) a (3) are 

easy; for (3) a (4) a (2) by omitting types argument, every countable model 
of T has a proper elementary end extension, so we can build a chain of length 
&vI, whose union is as desired. 

DEFINITION 1.3. For a theory T with Skolem functions and a model of it, 
M, we define: 

(1) tp, (a,A,M)={ p(x,c):e CA,MI= p[a, j]}wherea EMandA CM. 

This content downloaded from 185.2.32.152 on Tue, 17 Jun 2014 07:16:01 AM
All use subject to JSTOR Terms and Conditions

Sh:66

http://www.jstor.org/page/info/about/policies/terms.jsp


552 SAHARON SHELAH 

(1') Such a type is definable if there is a +i (y) such that for c E A, M= q[j] 
iff (p (x, j) E tp,(a, A, M). We say that fi defines the type. 

(2) t p(a, A, M) = U t p, (a, A, M). 
(2') Such a type is definable if there is a schema (4f(5(yi): (p = (p (x, yp) E L) 

such that 4fi(Ys5) defines tp, (a, A, M). 
We say that the schema defines the type. 
(3) N is a definable extension of M if 

(i) M< N, 
and for some a E P(N) - P(M) 

(ii) N is the Skolem hull of IMI U{a}, 
(iii) tp(a, M, N) is definable. 

(4) N is an almost minimal end extension of M if M < N and there is no N' 
such that M< N'< N. 

(5) N is a minimal extension of M if M < N and for no N' 7 M, N, 
M < N'< N. 

(6) N is rigid [strongly rigid] over M if there is no nontrivial automorphism 
[elementary endomorphism] of it over M. 

(7) A schema T = (4i,: (p E L) is "end-extension", "almost-minimal", "min- 
imal" "rigid", or "strongly rigid" if every extension defined by it satisfies the 
corresponding property. It is strongly minimal if: for every n, and M, < ...< 

Mn, M1+1 the Skolem hull of I MuI U {al}, tp(a, IM I 1, M,+,) defined by P, and 
M,<N <Mn implies N is the Skolem hull of IMoIU{a,: CEI} for some 
I C {O1, .. ., n - 1}. 

(8) We can replace "definable" by "definable with parameters" when we 
allow the qif's to contain parameters from M (or A, in (2), (3)). As we can add 
those elements as individual constants, all results on "definable" can be 
translated to results on "definable with parameters". 

LEMMA 1.4. If T = ('i,: (p E L) is a defining schema and for some model of 
T it defines an end extension then for every model of T it defines a unique end 
extension. The type it defines will be denoted by t(M, P). 

PROOF. Easy. 
DEFINITION 1.5. (1) Let p be a 1-type over M, P(x) E p. We call p 

unbounded if for some a and N, M < N, a E N realizes p and P(M) < a. 
(2) An unbounded type p over M is an end-extension type if for every N, 

M<N and (p and bENexactlyoneofpU{Ip(x,b)}, p U{ p(x,b)} is un- 
bounded over N (always at least one of them is). 

LEMMA 1.6. For p an unbounded type over M 
(A) p is an end-extension type iff 
(B) for every (p (x, Y5) there is a finite pqp C p such that for any b E M, not both 

p9. U{'p(x,b)} and p9p U{ I'p(x,b)} are unbounded (so easily one is). 
REMARK. Note that if p is pure (i.e. without parameters) the choice of the 

model does not matter. 
PROOF. Easy (see Gaifman [G3]). 
DEFINITION 1.7. For any p as in 1.6, we attach a schema IpV = 'qPPp E L) 

where qiP = (Vx1 E P)(3x >x,)[ A pA A 'p(x, Y)] (so Tp has parameters iff p 
has). 
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END EXTENSIONS AND NUMBERS OF COUNTABLE MODELS 553 

LEMMA 1.8 (GAIFMAN [G3]). Suppose 
(A) T has Skolem functions, 
(B) T satisfies the regularity schema (see 1.2(3)), 
(C) p is a pure end-extension type. 

Then: 
(1) TP is an end extension defining schema. 
(2) Moreover, it is an almost minimal defining schema. 
PROOF. (1) Let M be a model of T; it is easy to check q = t(M, p,) (see 1.4) 

is finitely satisfiable in M, and is the only complete type over M extending p 
which is unbounded. So there is N,, M < N1 and a E N1 which realizes q: so 
a 0 j MI, and let N <N1 be the Skolem hull of I MI U {a}; so M <N. Suppose 
not M < N, so for some Skolem function F(x, Y) and b E I MI, F(a, b) 0 I M 
but F(a, b) < c for some c E IMI (hence [F(x, b) < c] E q). Let (p(x; z, Y) = 
(F(x, Y) = z), p, as in 1.6(B), so as p, U {F(x, b) < c} q it is unbounded 
(in M). Hence by the regularity schema for some d < c, d E IMI, pIP U 
{F(x, b) =d} is unbounded. But also p9p U {F(x, b) X d} C q (as 

F(a, b) 1 {MI > (F(x, b) = d) 0 q) so it is unbounded; contradiction to the 
definition of p,. 

(2) So suppose M < N* < N and choose a * E P(N*) - P(M); then neces- 
sarily a * = F(a, b), b E M (for some Skolem function F of T). Let (p (x; z, Y5) = 
(F(x,y)= z), p9. as in 1.6(B). So p9. U{F(x,b)= a*} is unbounded in N*, as 
N* < N, and a realizes it. On the other hand p9. U {F(x, b) X a *} is unbounded 
in N* because for every c E M, p9. U {F(x, b) X c} is unbounded. Clearly 
M 1= (Vzo)("p, U {F(x, b) X zo} is unbounded"); so also N* satisfies this, 
contradiction. 

THEOREM 1.9 (GAIFMAN [G3]). Let T be with Skolem function, P be an 
end-extension schema, M be a model of T, and I an order type. Then there is a 
model N such that: 

(1) N is the Skolem hull of I M I U {ai: i E I} and is an end extension of M. 
(2) ai realizes t(Mi, ) where Mi is the Skolem hull of I MI U {aj: j < i} 

(see 1.4). 
(3) Part (2) implies {ai: i E I} is an indiscernible sequence over I MI. 
(4) If the schema is strongly minimal [almost minimal] and M < N* < N 

[M ? N* ? N] then N* is the Skolem hull of {MI U{aj: i E J}, for some J <I 
[some J an initial segment of I]. 

(5) If the schema is strongly rigid any automorphism of N over M is induced by 
an order-preserving permutation of L 

PROOF. Left to the reader. 

?2. Existence of end extensions. 
THEOREM 2.1 (M. RUBIN). Suppose T is a countable theory with Skolem 

functions and satisfies the regularity schema. For any countable model M of T: 
(1) M has a minimal end extension N (i.e. M < N* < N > N* = M or 

N*= N). 
(2) For every countable [Ntr-like] order I there is a countable [Ni-like] 

N, M < N, and a' (i E I) such that M ? N* ? N implies N* is the Skolem hull of 
I M I U {aj: j E J} for some initial segment J of I. 
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554 SAHARON SHELAH 

PROOF. This proof is due to the author. (1) In the proof of 1.2(3) a (4) the 
added fact we need is: 

(*) if in M, p (x, 5) is unbounded, b, c E I M J, F(x, Y5) a function symbol, then 
for some qi(x, b') (b' E M) the following hold: 

(i) /i(x, b') F (p (x, b), 
(ii) q(x, b') is unbounded, 

(iii) on {x E M: q(x, b')}, F(x, c) is constant or one-to-one. 
(For we define inductively (pn(x, bn) whose union is a complete type and N 
generated by I M I and an a realizing {(pn (X, b&): n < w }. If d E I NI - I M I, then 
d = F(a, c) for some C E I M I, F E L so for some n (if we construct properly 
the pn 's) F(x, c) is one-to-one on {x E IMl: (pn(x, bn)}. Hence a is in the 
Skolem hull of I M I U {c }. So all N is in it. In defining the (p, 's we have to take 
care of "deciding" every formula, making the extension an end extension, and 
minimality.) 

PROOF OF (*). If for some d, (p(x, b) A F(x, c) = d is unbounded, we are 
finished. Otherwise let G(y, 4o, z) be a Skolem function for (3x) 
[<p (x, io) A F(x, z ) = y], then 4f = (p (x, b) A x = G(F(x, c), b, T) is as required. 

(2) We can assume I I = N0 (and then by iteration prove forKi like 1). Let I = 

{s (1): 1 < wc} and define inductively formulas (pi (xS(o, . . ., xs(), b1) (b1 E I M I) such 
that: 

(i) (pi is a conjunct of (pi+,, every formula (with variables among {xi: i E I} 
and parameters) it or its negation is a conjunct of some (p,. 

(ii) s(n) < s(k) implies Xs(n) < X,(k) is a conjunct of some (p'. 
(iii) For the permutation uf of {O, . . ., 1} such that s(uf(O)) < s(uf(1)) < ... < 

S (0 (1)), 

M l= (Vyo E P)(3xs(.f(o)) > yo)(Vy1 E P)(3XS((l)) > yi) 

(V y E P) (3 x.s( ()) > yI )(pI (xS(o), . . ., Xs(.), b1)- 

This is equivalent to: "there are models M = Mo < M < ... < Mt such that 
Mi+1 is the Skolem hull of I Mi I U {ai } and Ml+1 1= (p [a-'(),.. ., a b1 ].. 

(iv) Each end extension Mi < Mi+1-form (iii) is minimal". 
(v) Given a term r = r(xS(o), . . ., X5(m), c), for some e either r < Xs((e)) 

A 
Xs(a(e)) =2(r, Xs(a(o)) . . . 

X Xs)(a(e-i)), 
or r > Xs(a(e)) A IT 

2 (Xs (a (0))* X (a(e)) 6) is a disjunct of some po where r2 is a term in b E M. 

We arrange the assignments in such a way that each of the possible formulas and 
terms will be dealt in the construction of one of the psi's . (This is possible as we 
have only N0 terms and formulas with our N0 variables and parameters from 
M). Having built (p, we use part (1) of the theorem 1 times to get the chain 
Mo < ... < Ml+1, and then we decide for (i) and (v) according to the situation 
in Ml+1, (v) is possible as each of the extensions is minimal. Now F = {PI: 1 < W} 
is finitely satisfiable in M so we have an elementary extension N1, M < N1 with 
a set (ai: i < W) realizing F (when ai stands for xS(i)) and we take N to be the 
Skolem hull of this sequence and I MI in N1. Given N*, M c N* ? N, we look 
at {ai: i <w } Fn I N * j; as N is an end extension of N * this is an initial segment 
and condition (v) assures us that N* is generated by it and M. 

DEFINITION 2.2. T satisfies the inaccessibility schema if (Vx) (3 y) (y > x) E 
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T and there is a rank function R into P (i.e. (Vx)P(R(x))E T) which is the 
identity over P and for every (p (x; f ), for every zo E P, for some z1 any (p -type 
over {x: R (x) < zo} realizes in P, is realized by some z < z 1. 

(Vzo E P)(3z1 > zo)[(Vyo E P)(3y1 < z1)E,(yo, y'; zo)] 

where 

Eq,(yo, yi; x) = P(yo) A P(yi) A P(x) 

A (VZo, Z, *.*.* ) [A R(zj) < x--> (yo; zo,z. . Z *** - (yi; zozi *.**.)]. 

REMARK. The inaccessibility schema implies the regularity schema by the 
following lemma and 1.3. 

LEMMA 2.3 (FOLK?). Suppose T satisfies the inaccessibility schema, is count - 
able and has Skolem functions. Then every model of T cofinality No has an end 
extension (in fact, not only M < N but also a E I N I - I MI I R N"(a) Z jM ). 

PROOF. First we prove, for any model M of T that: 
(*) if sp (x, a) is unbounded (in P of course), then for any zo, 4f for some xo, 

(p(x, a) A Eq(x, xo; zo) is unbounded. 
Let us prove (*). For let z1 be such that M 1= (Vx E P)(3x1 < z1)E,(x, xi; zo) 

(exists by 2.2). Let F be a function (of L) such that if (p (x, yo) A E,,,(x, xo; zo) is 
bounded, then F(Yo, xo, o) is such a bound. If there is no xo as required in (*), 
then {F(a, x1, zo); x1 < z1} is unbounded. But then we get a contradiction to the 
assumption that T satisfies the inaccessibility schema. 

Let us continue the proof of 2.3. Let {fpn(x, Zn): n < } be a list of all 
formulas of L, each appearing infinitely many times, and an E I M I (n < w) an 
unbounded sequence in P(M). We then define inductively i./in(x, bn) such that 

Oni(x, bn) is unbounded and 

ufn+1(X, bn+i) = u/n(x, bn) A E'Pn(x, cn, an) 

for some cn. We let qio be P(x). Then p = f/in (x, bn): n < w} determines the 
extension: p is finitely satisfiable in M, hence realized by an element a * in 
some N*, M < N*, clearly N* I= an < a * for each n, so a * 0 M. Let N be the 
Skolem hull of M U {a *} so M < N and MI N. We now prove M N. 

Suppose not, so for some function symbol F and d E M and n, FN(a, d) M, 
N 1= FN(a, d) < an, but for some n, Pn = [F(x, y) = z ] and we get a contradic- 
tion to the construction. 

DEFINITION 2.4. (1) T satisfies the wellordering schema, if in every (defin- 
able) nonempty set of elements, there is a first one: 

(V5Y)[(3x)p (x, y) -> (3xo)(p (x(, y) A (Vx < XO) ---(x, y))]. 

(2) T satisfies the induction schema if also there is no limit element. We then 
denote by 0, z + 1 the first element and the successor of z (when it exists) resp. 

THEOREM 2.5. If T satisfies the induction schema VxP(x) E T then: 
(1) T has definable Skolem functions (here only the wellordering schema is 

needed). 
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556 SAHARON SHELAH 

(2) If (Vx ) (3 y ) (y > x) E T then T satisfies the inaccessibility schema (hence 
the regularity schema, by 2.3). [Notice (Vx)P(x) E T, so letR be the identity.] 

(3) If (Vx)(3y)(y >x)EE T, T is countable, then in addition T has an 
end-extension type; moreover each unbounded formula +(x) belongs to such a 
type. 

Conclusion 2.6. If T is countable, satisfies the induction schema and 
(Vx)(3y)(y > x) E T then every model of T has an almost minimal end 
extension; moreover T has an almost minimal end-extension type. 

PROOF OF 2.6. Immediate by 2.5 and 1.8. 
PROOF OF 2.5. (1) Obvious (we choose the first element). 
We now make some notations and observations. 
Notation 2.6. Let < = <(xo,.. ., xm_-; y0o.. ., yn-1) be the formula ex- 

pressing the lexicographic order among sequences of length m, x <s y for 
convenience. Let <m = <m (xo,. . ., Xm-i; yo,. .., ymi) be the formula saying 
max {xo.... }<max{yo,...} or max{xo,...}=max{yo,...} and x <.'xY. Again 
we write xk <m Y for convenience and Sm. c5' have the obvious meaning. Let 
xM = (x, .. ., x) (m x's appear). 

Observation 2.7. If T satisfies the induction schema, then also <m satisfies 
the induction schema, i.e. if a definable set of m -sequences include the first 
element and is closed under successor, then it includes all sequences [the same 
holds for the regularity, wellordering and inaccessibility schemas]. 

PROOF. For a counterexample Sa (x, c) in a model M, we choose a minimal 
a, for which there is x, x Cm aO A 90 (x, c) then we continue to choose ao, a,,... 
till we get the <r -minimal (ao,..., amil). 

Notation 2.8. For every m < w, 'p = 'p (x, 5) (5 of length m) and m - 
sequences i we define the formula: 

E 0(u, v; z) = (by<mz)[9o(uvy) = 9(vvy)], E*(u, v; z) = E(u, v, zm) 

and an order, essentially on the family of E'(u, v,; )-equivalence classes 

Lx,(u, v; )= (3y<m)[ I (u, Y) A (V, Y) AE,(u, v;5)] 

(this is a lexicographic order on Rp-types). 
Observation 2.9. (1) For every 'p and 4o, EZ(-, - ;zo) is an equivalence 

relation. 
(2) For every 'p and 4o, Lxo(-, - ;fo) is an order on the family of 

E,. ( -, - ; zo)-equivalence classes provided that T satisfies the wellordering 
schema. 

(3) In (2) this order satisfies the induction schema and has a last element 
provided that T satisfies the induction schema. 

PROOF. (1) and (2) are immediate and (3) follows by induction on fo (in the 
order <n )- 

PROOF OF 2.5(2). Let 'p = ' (x; z0, ., Zm-1 ). We prove that 

(V ) (3 x ) [(V yo(3 yI < x 1)E '(yo, Y.; f )] E T. 

As VxP(x)E T, R is the identity and E*(yo,yIz), E+ (yo,y1,zm) are equiva- 
lent so we shall finish. 
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END EXTENSIONS AND NUMBERS OF COUNTABLE MODELS 557 

So for each f0, we prove by induction on x * that 

(3x I) (tyo) [Lx., (yo, x*; fo) v E Up(yo, x *; fo)--> (3y, < x,)E +p(yo, y I; fo)] 

holds. This is possible by 2.9(3) and gives the desired assertion as Lx. (- - -; ) 
has a first element (equivalence class, more exactly). 

From now until the proof of 2.5(3), we assume the induction schema and that 
(Vx) (3y) (y >x) E T. 

Observation 2.10. Suppose Zl <mZ 2, x1IE (-, -; ,) (1 = 0, 1) is an 
Lx, fl- ; i1)-minimal Ep(-, - ; ,)-equivalence class intersecting 
{x: 4'(x,z)} by an unbounded set. Then E (x ,x2;fI). 

PROOF OF 2.10. Otherwise there are two possibilities: (A) Lx<, (xl, x2; fl) but 
then x2IE p(-, -; z2) is a subset of x2/E p(-, - ; i) hence the latter is 
unbounded too, contradicting the Lx< (-, -; il)-minimality of 
xIIE+(-, - ;fl). (B) Lx,(xl,x2; fl) then as 2.5(2) was proved, and 
{u: E +(u, x,; f2)} is unbounded, by 2.3(*) for some x 'E,(x ,x,;fl) and 
{u: E p(u, x '; Z2)} is unbounded, contradicting the Lx< ( -, -f; 2)-minimality of 
x2/E+(-,;2)- 

Observation 2.1 1. For any formulas i['(u, u) and (p (u, v) there is t['(u, f) 
such that: if {u: qi(u, z)} is unbounded, then {u: qil(u, f)} is unbounded and for 
every i3l, exactly one of {U: q,(u, ? ) A (P (U, 01)}, {U: qi1(U, Z) A - p (U, 0,)} is 
unbounded. 

PROOF OF 2.11. qi,(xo, f) will say: there is f, such that 
(i) xo is the first element in its E +(u, v; i1)-equivalence class. 

(ii) This class is the Lx, (u, v, f )-minimal E +(u, v; ff)-equivalence class 
which has an unbounded intersection with {u: qi(u, z)} (there is such an 
element for every f, by 2.3(*) and the wellordering schema; qi, satisfies the 
conclusion on 2.11 by 2.10). 

PROOFOF2.5(3). Let {pn(u, On) n > wt} be a list of all formulas of L(T). We 
define by induction unbounded formulas frk(x) such that ii = t/, 

(Vx)(frn+l(x)-* fr.(x)) and we get Ifn+1 from in,, po, as in 2.11. Now {lif(x): n > 

w} is an end-extension type by 1.6 (p,,n = {if,,}). 
Claim 2.12. Suppose M is a model of T. 
(1) If M is K-like, K regular, then T satisfies the regularity schema. 
(2) If M is K-like, K strongly inaccessible, VxP(x) E T then T satisfies the 

inaccessibility schema (instead VxP(x) E T we can assume {b: R M(b) = ao}I < 

K for every a0, RM a one-place function into P, (Vx E P)(R(x) = x)). 
(3) If M is N0-like (e.g. M = (a <,...)) then T satisfies the induction 

schema (here pM = M if you want). 
(4) If P(M) is wellordered, T satisfies the wellordering schema. 
PROOF. Easy. 
Conclusion 2.13. Every model of a countable theory T= Th(w, <,...) 

has an end extension. 
PROOF. See 2.12, 2.6. 
Claim 2.14. ForACIM1,MI=T let 
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let T((co,... M, Al) be T({co,... }, M). [So we extend the language by individual 
constants: the elements of A.] 

(1) A defining end-extension schema for T is (essentially) a defining 
end-extension schema for T(A, M). Similar assertions hold for a defining 
almost minimal [minimal] [strongly minimal] [rigid] schema. 

(2) If p is an [almost minimal] [minimal] [strongly minimal] [rigid] end- 
extension type in T, them so is it in T(A, M). 

PROOF. Immediate. 
THEOREM 2.15. (1) (Gaifman [G3]). If T satisfies the induction schema and 

also definition by induction is possible (i.e. T contains Peano arithmetic, 
VxP(x) E T and T is countable) then for each unbounded qf (x), there is a rigid 
strongly minimal end-extension type p, +fr(x) E p. 

(2) If T satisfies the wellordering schema, and also definition by induction is 
possible. M l= T, M, T are countable, I a countable order, then there are N, a, 
(sEI) such that M?N, N is the Skolem hull of IMIU{a,:sEI}, and 
M < N* < N implies N* is the Skolem hull of I M I U {a,: N E J} for some J C I. 

PROOF. (1) See [G3]. 
(2) Left to the reader. 
Claim 2.16. Every finite end-extension type is minimal. 
PROOF. Easy. 
EXAMPLES 2.17. (1) T = Th(co, < ). T has (essentially) only one unbounded 

(pure) type, the empty one and it is strongly minimal but not rigid (as any 
model of T has the form w + ZI). 

(2) T = Th(w, <, + ). Every complete pure unbounded type (consistent with 
T) is an end-extension type (and vice versa) and any such type is minimal but 
not strongly minimal nor rigid. (We add names to every natural n (which is 
definable, of course) and to Pn(x) = (3y)(x = ny + r). Now we have elimina- 
tion of quantifiers and a complete unbounded type is p = {Prn~)(x): n < WI} 
(when it is consistent). If in M there is an element divisible by every n, the 
extension by p is not rigid.) 

(3) For T = true arithmetic, there is an almost minimal not minimal end- 
extension type. 

(4) For T = true arithmetic, there is a strongly rigid not almost minimal 
end-extension type (essentially extend twice and use a type of the pair of 
generators). 

Question 2.18. (1) Give an example of a countable T = Th(w, <,...) with 
no minimal end-extension type. 

(2) Give an example of a countable T = Th(o, < ...) with a finite not 
strongly minimal end-extension type. 

THEOREM 2.19. (1) Suppose T has Skolem functions, VxP(x) and T satisfies 
the inaccessibility schema. If every model of T has an end extension then for some 
A C IMl, M = T, T(A, M) has a definable end-extension schema (so every 
model of T(A, M) hence every I TI-universal model of T (note that w.l.o.g. 
A J < J T J + M0) has an end extension). 

(2) In (1) we can replace the second clause by: for some regular A- T 1, every 
model of T of cardinality A+ and cofinality A+ has an end extension. 
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PROOF. For every formula p (x, Y) and M = T we correspond a tree 
Tr(<, M): 

(i) the set of levels is P ordered by <; 

(ii) the elements of the tree of level a are of the form (a, bIE *(u, v; a)); 
(iii) the tree is ordered by (a1, b1/E *(u, v; a,)) ? (a2, b2E (u, v, a2)) if al 

a2 and E*(b1, b2, a,). 
Suppose M < N l= T, b E IN - jMj; then for every a E M, for some ba E M, 

N k E *[ba, b, a ] (by the inaccessibility schema), and ba (a E M) form a branch 
of Tr(p, M), and tp, (a, M , N) is definable in M, with parameters, iff this 
branch is. But by Shelah [S] T has a model M such that no tree Tr(qp, M) has an 
undefined (with parameters) branch. By the hypothesis for some N, M < N, so 
each a E I N I - I M I gives us the required schema. 

(2) Same proof. 
LEMMA 2.20. Suppose VxP(x) E T (for simplicity) and every model of T of 

cardinality ,t :- A, t C 2A, has an end extension, A-? T1. Then T satisfies the 
inaccessibility schema. 

PROOF. Let M k T have cardinality A, a E I M, p (x, Y) E L. We define 
inductively models Mi (i E (2A)+) such that a < i g Mo < Mi, Mo = M, and 

IIMiI'<A + I i, and let ai EIMi+ I-IMi . Let N= UMi. The number of 
E *(u, v, a)-equivalence classes is c 21{b:b<a}I <2A; hence for some i < (2A)+, for 
every b E I N I there is b' E I Mi N l= E *[b, b', a]. So ai exemplifies the satisfac- 
tion of (3x1)(Vyo)(3y1<x1)E (yo,y1,a) in N hence in M. As a EIM was 
arbitrary, the schema is satisfied. 

Conclusion 2.21. If T has Skolem functions, (Vx)P(x) E T then 
(A) every I TI-universal model of T has an end extension iff 
(B) for some A C I M |, M l= T, T(A, M) has an end-extension schema. 
REMARK. In 1.2 we characterize when every countable model has an end 

extension; in 2.21 we characterize when every model has an end extension. 
"Every model of cofinality No has an end extension" is not clear. The case "for 
every M l= T and I there is N, M < N, and a, (s E I), satisfying 1.9(4)" 
("strong minimal" case) is not clear either. 

?3. The number of countable nonisomorphic models. In this section T is 
always complete first-order theory in a language L, L countable, and we are 
interested in I(No, T) -the number of nonisomorphic models of T of cardinal- 
ity No. We make some observations and then use them to get some conclusions. 
Of course, we assume T has only infinite models. 

Observation 3.1. Let Tdf be the definitional closure of T, i.e. 

Td = T U {(Vx) (<p(xk) R, (Jx)): 9(x) E L} 

(Rap = new and distinct predicates) then I(Qo, T)= I(Qo, Tdf). 

Claim 3.2 (Vaught). For a one-place predicate P, let Tp={4: f' E TI, 
where UP is di relativized to P. For a model M let M, be the submodel of M 
with universe pM. Then 

(1) if M is a model of T, M, is a model of T,. 
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(2) If Nis a countable model of Tdf [i.e. (Tdf)p] then N = NP for some model 
M of Tdf. 

PROOF. (1) is trivial and (2) is a straightforward application of the theorem 
on omitting nonprincipal type [the theory is Tdf U {p (a,,...): NP[a,.. . 

E L(T d), the type {P(x) A X7 a: a E NI}}]. 
Observation 3.3. I(No, Td) C I(No, Tdf). 

(Immediate by 3.2). 
Observation 3.4. Let j E M, M a model of T, then I(No, T(j))> No => 

I(NoT(j)) = I(Qo, T). 
THEOREM 3.5 (RUBIN). If T = Th(co), <, R...), T o, I(o, T) = 2H0. 

PROOF. Clearly T satisfies the induction schema (Vx)(3y)(y > x) E T 
(2.12(3)). So T has Skolem function (2.5(1)) so it has a prime minimal model Mo 
which is the Skolem hull of the empty set and also an end-extension type p 
(2.5(3)). Clearly Mo is countable and for every order I it has a model MI, 
JIM < III + o such that {M: Mo < M < MI} ordered by inclusion has order 
type I', the completion of I (with a last element added, and if there is no 
first -a first element added) [see 1.9]. As M MI => Mo < M, from the 
isomorphism type of MI we can reconstruct that of I'. As there are 2Mo pairwise 
nonisomorphic complete countable orders, I(Qo, T) = 2'o. 

REMARK. In fact, Rubin proved that if T has Skolem functions, is counta- 
ble, and has a model with end extension, then I(4o, T) = 2H0; he used 2.1(2) of 
course. 

Observation 3.6. If T has Skolem functions, < an order, Mo the prime 
model of T, and < Mo contains a copy of the order of the rationals then 
I(No, T) = 204o. 

PROOF OF 3.6. All elements of Mo are interpretations of terms, so every 
Dedekind kind type of <M corresponds to a different type. So the number of 
types tp(a, 0, M), M l= T, is 2H0, and as is well known, this implies IQ(No, T) = 2o0. 

LEMMA 3.7. If T =Th(Mo), Mo= (c + t*, <, R 1,...) and t is not defina - 
ble in Mo, then I(No, T) = 2Ho. 

PROOF. Notice that: 
(i) Every element of Mo is definable, so for Mo "definable", "definable with 

parameters" are equivalent. 
(ii) In Mo (hence in T) every definable (with parameters) nonempty set has a 

last element and a first element (otherwise to is definable). 
(iii) T has definable Skolem functions (by (ii)); let us enumerate them 

{Fn: n < co}, Fo the identity. 
Let us define cld (x, y, Mo) = {F' (y,,...): l c m, and for every i, y. < x, y or 

y? ' x, y } (if M = Mo we omit it). (So this closure always includes the outside of 
the interval x, y determined; clearly z E clm (x, y) is definable by a formula in 
L(T). 

Define inductively on l < wt, a1mE to such that a7m<a7m+1 and 
clm (a Im, a 7m+,) I MoI. This is possible as for each b E to *, clm (a m, b) is finite 

hence k Mo|. So the first b E Mo such that a Im < b, clm (a m, b) Mo I should 

be in to by (ii), and we call it am1+1. 
Nowchoose bl EIMo -clm(alM, aMl), so am < b m < a, m and clearly b7m < 
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bm1+l E to, b7m+i 0 clm(b m, bm+2). By Ramsey's theorem and compactness for every 
order I, T has a model M,, which is the Skolem hull of the indiscernible 
sequence {a,: s E I}, and for SI < S2 < S3E I, as,< aS2< aS3 and aS2 Z 

clm (asi, as, MI) for every m. 
We define a relation EM on models M of T: aEMb if there are m, n and 

coCO < Cn E M such that c0 < a, b Cc n and Um< r iwm (cl l c, c,+M)= M1 
Clearly EM is an equivalence relation and each equivalence class is convex. In 
MI, clearly if s2 is the successor of SI in I then asE EaS2, and if {s E I: SI < S < S2} 

is infinite, then not as5Ea,2. Note that if c E MI, c = Fm(as,,..., as, ) for some m, 
s1 < . . .*< Sn E I, hence by the indiscernibility, for some 1, for every s E I, 

c <as < s <s, or r<< *S sse or(Vs)c<asor(Vs)c>as. So if II isacon- 
verse subset of I of type Z, necessarily the convex hull of {as: s E I, } is an EMI- 
equivalence class. Assume I = ZJ, then from the isomorphism type of MI we can 

reconstruct J, except that we do not know what occurs before and after all the as. 
Either by looking more at the theory or taking I = Z({s0} + J + {s1 }) and add aso, 

as, as individual constants and using 3.4, we see that I(No, T) = 2H0. 

THEOREM 3.8. I(Qo, T) = 21o provided that: 
(A) T has Skolem functions and in some M l= T, for some (p E L, c E M, 

< E L, <M is an order on the infinite set {b E M: M l= (p [b, c]} (instead <M we 
can use < (x, y, f )) or 

(B) there are formulas (p (x, z), < (x, y,z) such that for every n there are 
Mn l=T. n E Mn, such that < (x, y, cn) is an order of {b E Mn: Mnl= (p[b, in]} 
which is a finite set of cardinality 2 n. 

PROOF. Possibility B: Let p = p(z) be the set of formulas saying 
(i) {u: p (u, )} is infinite; 

(ii) {u: (p (u,)} is ordered by < (u, v; f); 

(iii),, for every y, {u: p(u, ) A qfi(u, Y)} is empty or has a first element by 
< (u, v; f ). 

Clearly p is consistent with T, so in some model M of T, some j realized p. 
By 3.4 it suffices to prove I(No, T(j, M)) = 2%o so by 3.1 it suffices to prove 

M~~~df) 0 M~~~~~~~- df 
__)) 

I(@o, T(j, M)df) - 2No, so by 3.3 it suffices to prove I(No, T(j, P(x,)= 2o. The 
last theory we consider satisfies hypothesis (A) (every definable set has a first 
element so there are definable Skolem functions). 

Possibility A: As in the previous case we can assume <M is an order of M 
for any M l= T. As T has Skolem functions, it has a prime model Mo. 

Case 1. If <Mo contains a copy of the rational, we are finished by 3.6. 
Otherwise <Mo is scattered. 

Case II. If some formula So (x, c), c E Mo, define a set of order type to. The 
conclusion follows by 3.6 (using 3.3, 3.4). 

Case III. Not I nor II. Then <Mo has an interval [ao, b0] of order type 
w + C *. By 3.4, 3.3, we can assume I MoI = [ao, bo], and by not II, the hypothesis 
of 3.7 holds, so we are finished. 

A limit on the possibility of extending 3.8 is provided by 
EXAMPLE 3.9. For every T, we define T* which consists of 
(i) the sentences of T, with equality replaced by E, 
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562 SAHARON SHELAH 

(ii) the sentences saying E is an equivalence relation, < an order, and each 
equivalence class is dense (in the model) without first and last element. 

Then I (No, T) 1 I(No, T*). 
Question 3.10 (Rubin). Suppose T is countable complete, and "says" < 

orders the universe; and T [{ = < } is not N0-categorical. Is I(Mo, T) = 2Ho? 
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