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ZERO-ONE LAWS FOR SPARSE RANDOM GRAPHS 

SAHARON SHELAH AND JOEL SPENCER 

1. INTRODUCTION AND SUMMARY 

Let G = G(n, p) denote the random graph with n vertices and edge proba-
bility p. Let GRA denote the first order theory of graphs, as described at the 
end of this section. For any p E [0, 1] and any statement A in GRA set 

f(n, p, A) = Pr[G(n, p) has A]. 

Fagin [6] and, independently, Glebskii et al. [7] proved that for all p, A , 

lim f(n, p, A) = 0 or 1. 
n-+oo 

For random graph theorists (see, e.g., Bollobas [1] for general reference) p 
"any constant" is not the only, not even the most interesting case. Rather, 
they consider p = p(n), a function approaching zero. In their seminal paper, 
ErdOs and Renyi [5] showed that for many interesting A there is a function 
p(n), which they called a threshold function, so that if r(n) « p(n) then 
f(n, r(n), A) ~ 0 while if p(n) «r(n) then f(n, r(n), A) ~ 1. (Notation: 
p« r means limplr = O. All limits are as n approaches infinity.) Let us say 
p = p(n) satisfies the Zero-One Law if for all A in GRA, limf(n, p, A) = 0 or 
1. We shall partially characterize those p = p(n) which satisfy the Zero-One 
Law. 

When p < n-l+o(l) , the "very sparse" range, we give in §2 a nearly complete 
answer. 

Theorem 1. If either 
(i) p«n-2 , 
( .. ) fi . k -I-Ilk -1-I/(k-l) 11 or some mteger ,n « p « n , 

(iii) n- I - Il « p« n- I for all e> 0, 
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98 SAHARON SHELAH AND JOEL SPENCER 

() -I -II iv n « p « n og n, or,.. 
(v) n-Ilogn« p «n-IH for all e > 0, 

then p satisfies the Zero-One Law. 

The functions n-2 , n- I- I/k , n- I , and n-Ilogn are all known threshold 
functions. In this range the Zero-One Law holds as long as p falls "between the 
cracks" of the spectrum of threshold functions. For completeness we mention 
that Fagin's proof actually gives that if p:» n -6 for all e > 0 then p satisfies 
the Zero-One Law. 

It had been conjectured by the second author that if p(n) were reasonably 
smooth then lim f(n, p, A) would exist. In §3 we give the following counterex-
ample to that conjecture. 

Theorem 2. There is a statement A so that for any p = n- I/7 ql/7 with 
n -I/logo n < q < log n/ logs n the function f(n, p, A) does not approach a 
limit in n. Moreover, if we restrict n to satisfy log* n == 25 mod 100 then 
f( n , p , A) -+ 1 whereas if we restrict n to satisfy log * n == 75 mod 100 then 
f(n,p,A)-+O. 

Here logs n = log log log log log n and log * n is the least k so that the se-
quence Uo = n, U i+1 = logui has Uk < 2 where, for convenience, we assume 
all logs are to base two. 

The statement A will be (theoretically) explicitly given; it allows us to essen-
tially interpret a segment of arithmetic on an appropriate intersection of neigh-
borhoods. The exponent -1/7 and the expression logs n are conveniences; for 
any rational r, 0 < r < 1 , we may find an A so that for p appropriately near 
n -f f( n , p , A) does not approach a limit in n. 

In §4 we prove 

Theorem 6. If 0: is irrational then p = n -Q satisfies the Zero-One Law. 

In the final section we take a dynamic view and examine the behavior of 
Pr[A] as p evolves from 0 to 1 through the functions of n. We define a 
spectrum Spec(A) , giving those spots where Pr[A] changes, and give a partial 
characterization of the possible spectra of first order statements. 

The first order theory of graphs, GRA, consists of two binary predicates, 
equality and adjacency, with adjacency assumed symmetric and anti reflexive. 
The formulae of GRA are built up from atomic formulae of type either Xi = Xj 

or Xi""" x j ' where,...., denotes adjacency, using the logical connectives /\ (and), 
V (or), -, (not), -+ (implies) and also the quantifiers :3 (there is), V (for 
all). Here the Xi are interpreted as the vertices of the underlying graph ("the 
universe") so quantifiers may be read "there is a vertex Xi such that" and "for 
every vertex Xi there holds." Formulae in which all occurring variables are 
bounded by quantifiers are called closed formulae or sentences. One method, 
the method we employ, to prove results on formulae is by induction along the 
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ZERO-ONE LAWS FOR SPARSE RANDOM GRAPHS 99 

way it is built up. By propositional calculus every formula is equivalent to 
another built just by using ...." V, and 3. 

GRA is our framework throughout this paper. In GRA we can make state-
ments such as •• G contains a triangle" or •• G has no isolated points." Other 
statements, such as .. G is planar" or •• G is Hamiltonian," cannot be made in 
this language. This restriction may appear artificial to many graph theorists who 
feel that appropriate Zero-One Laws hold for a much wider class of "natural" 
graph-theoretic statements. There are logical pitfalls. Kaufmann and Shelah [9] 
have shown that even Fagin's Theorem does not hold in monadic second order 
logic. It would be interesting to find a logical structure stronger than GRA in 
which, for example, the statements above could be made and for which analogs 
to Fagin's Theorem and our results could be proven. 

2. VERY SPARSE GRAPHS 

Here we prove Theorem 1, which is really five theorems. The plan, due to 
Fagin, is identical in all cases. If we can find a family s1' of statements in GRA 
such that 

(i) lim f(n, p, A) = 1 for all A E s1' , 
(ii) s1' is complete, i.e., every statement of GRA is either provable or 

refutable from s1' , 
then p satisfies the Zero-One Law. For let B be any statements in GRA. 
Suppose B is provable from s1'. By compactness (the finiteness of proof) 
some finite number AI' ... ,Am of statements in s1' will imply B. As 

m 
f(n,p,A I A···AAm);::: 1- 'L,f(n,p,....,AJ, 

i=1 

limf(n,p,AI A .. ·AAm) = 1 and hence limf(n,p,B) = 1. If B is not prov-
able then by completeness ....,B is provable, limf(n, p, ....,B) = 1 and 
limf(n,p,B) = O. 

In each case we give a suitable s1' . Verification of (i) is then an elementary 
exercise in random graphs. To show (ii) it suffices, by the Godel Completeness 
Theorem, to show 

(iii) all countable models of s1' are isomorphic. 
Fagin let s1' be the set of extension axioms A : For all distinct XI ' ... ,xr ' r .s 

Y I ' ... , Ys there is a point z adjacent to all of the Xi and none of the Y j' The 
countable G satisfying all A are isomorphic by a simple "back and forth" r ,s 
argument. 
Case 1. p« n - 2 • s1' consists of the single statement "There are no edges." 

Case 2. n- I- I/k « p « n-I-I/(k-I). For each tree T on at most k points 
(including the tree on one vertex) and each r let AT ,r be the statement •• G 
has (at least) r components T." Let B be the statement •• G does not contain 
k + 1 points whose internal edges contain a tree." Let C be the statement •• G 
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100 SAHARON SHELAH AND JOEL SPENCER 

has no cycles of size at most k." Let .Xi' be all of the above statements. A 
countable model G must then consist precisely of a countable number of copies 
of every tree T of size at most k and (iii) is satisfied. 

In the remaining cases we cannot show (iii) but rather 
(iv) all countable models of .Xi' are elementarily equivalent. 
Proof of (iv) in the cases below can be given in various ways, see, e.g., Marcus 

[8], particularly Lemma 2.1. 

Case 3. n- 1- e « p «n- I for all e > O. For each tree T and r let AT., 
be the statement "There are (at least) r components T." For each r let C, 
be the statement "There are no cycles of length r ."A countable model G then 
consists of countably many copies of each finite tree plus possibly some infinite 
trees. 

Case 4. n -I « p « n -I log n. For each finite tree T let AT., be the statement 
"There are (at least) r components T." For all m ~ 3, r let Hm ., be the 
statement "There are (at least) r cycles of size m." For all m let Cm be the 
statement "There do not exist m vertices containing (at least) m + 1 internal 
edges." For all m, r let D m.' be the statement "There do not exist m vertices 
with exactly m internal edges with one vertex having (total) degree precisely 
r ." A countable model G consists of countably many copies of each finite tree, 
for each m countably many components consisting of a unique cycle of length 
m with all vertices having infinite degree plus possibly some infinite trees. 

Remark. N. Pippenger (San Jose) has noted that the case p = 6(n- l lnn) con-
tains a doubly infinite sequence of "tight" threshold functions. Let !T be the 
class of functions 

f(n) = J...lnn + L Inlnn 
K n K n 

where either K = 1, L = 0 or K ~ 2, L ~ K - 1, both integral. Say 
p(n) <* f(n) if limn(f(n) - p(n)) = +00. The Zero-One Law holds in this 
range for p(n) if for every f(n) E!T either p(n) <* f(n) or f(n) <* p(n). 

Case 5. n-1logn« p « n-1+e for all e > O. For each r let A, be the 
statement "There are no points of degree r." Let H, be the statement "No r 
points have r + 1 internal edges." For each m ~ 3, r let C,.m be the statement 
"There exist r cycles of length m." Let G m be that unique connected graph 
containing a single cycle of length m with all points of infinite degree. Let Go 
be the tree with all points of infinite degree. A countable model G consists of 
countably many copies of each Gm and possibly some copies of Go' 

3. INTERPRETING ARITHMETIC 

The proof of Theorem 2 proceeds in three stages. First we define A. Second 
we show that the random graph almost always has certain properties. Finally, 
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ZERO-ONE LAWS FOR SPARSE RANDOM GRAPHS 101 

we show that when G has these properties A holds when log* n == 25 mod 100 
and A does not hold when log * n == 75 mod 100. 

Statement A will have the form 

3Xl •...• X7.Y.yl •...• Y6 STRAT /\ARITH/\MAX/\LOGSTARCOND. 

We use a number of auxiliary predicates to define A, some of which depend 
on x I ' .•. ,y 6' All variables are distinct unless otherwise stated. 

S(ZI' ... , Z7): --,(3w)(w ~ ZI /\ ... /\ w ~ Z7)' 
NI = {Z: XI ~ Z /\ ... /\ x7 ~ Z} . 

Membership in NI is expressible in GRA. We use y, YI' ... 'Y6 for the (some-
what technical) task of stratifying NI . 

STRAT: For all ZI E NI there exist unique Z2"'" z6 E NI with 
S(y, ZI' ... ,z6)' Furthermore, for all zl E NI ' there is a unique i, 1 ~ i ~ 6 
for which there exist z2' ... ,z6 with S(y;, Z I' ... , z6)' (We shall say Z I is as-
sociated with i in that case.) Furthermore, if S(y, ZI' ... Z6) then ZI' ... ,z6 
are associated with distinct i. 

Set N equal to the set of Z E NI associated with i = I. For zEN set 
Z(I) = Z and zU) equal to that w associated with i so that S(y, z, W, z3' ... , Z6) 
for some z3' ... , z6 E NI . On N define the ordered 6-ary predicate (here the 
Zj may be equal) 

( ) (I) (2) (6) 
H ZI' ... ,z6 : S(x, ZI ,z2 , ... , z6 ). 

ARITH: There is a labelling 1,2, ... ,s of N so that H(zl' ... ,z6) if and 
only if ZI + z2 = z3 and z4 ZS = z6' 

Expression of ARITH in GRA is an elementary exercise in logic. We want to 
say that N is the largest such set over all X I ' .•• , Y 6' If membership in N, N* 
is expressible then we write 

BIGGER (N, N*): There exist v3 "'" v7 so that, writing S(x, y) for 
S(x, y, v3' ... ,v7 ) the relation S gives an injection from N - N* to N* - N 
which is not a bijection. 

In an interpretation with N, N* finite sets if BIGGER (N, N*) then N* is 
indeed bigger (has more elements) than N, though the converse may not hold. 
Now define 

MAX: There do not exist x; , ... ,y: satisfying STRAT and ARITH so that, 
with N* defined analogously to N, BIGGER (N, N*) . 

Let tower(x) be the number-theoretic function defined inductively by 
tower( 1) = 2 and tower (x + 1) = iower(x) so that tower(x) is an exponen-
tial tower of twos of height x. On N we develop arithmetic via the Godel 
p-function and let TOWER (x, y) be the predicate with interpretation y = 
tower(x). Define a unary predicate 

PSEUDOLOGSTAR(x): (3y) TOWER(x ,y) /\ --,(3y) TOWER(x + 1. y). 
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102 SAHARON SHELAH AND JOEL SPENCER 

Finally, still quantifying over N 
LOGSTARCOND: PSEUDOLOGSTAR(x) ~ (3q) 

(x = 100q + 1 V x = 100q + 2 V··· V x = 100q + 50)). 
This defines the statement A. 

We now proceed to properties of random graphs. For any G set 

N(y) = {z: {y, z} E G}, Ny = n N(y) 
yEY 

and let H 7 be the 7 -graph 
7 7 H = {Y E [n] : Ny = O}. 

For every vertex x let Hx denote the 6-graph 
6 Hx = {Y E [n] : YU{x} E H}. 

For any T c [n] with x ~ T let Hx (T) denote the restriction of Hx to T. 
Let us say G has property UNIV (for universal) if for every T c [n] with 

I T I ::; logs n (recall special notation of § 1) and every 6-graph H on T there 
exists x ~ T so that Hx(T) = H. Let us say G has property SIZE if for 
every ( ::; logs n there is a 7-set X with INxl = (. All probabilities will refer 
to the random graph G(n,p) with p satisfying p = n- I /7ql/7 and 

-1/log5 n / n < q < log n 10g5 n . 

The choice of logs n above is not "best possible" but simply a function that 
grows much slower than 10g5 n. (The case q = 1 already contains the basic 
argument.) 
Claim. 

Pr[UNIJ1 = 1 - 0(1), Pr[SIZE] = 1 - 0(1). 
We outline the arguments which use only standard random graph methods. 

For T, H, x as above let A(T, H, x) be the event Hx(t) = H and let A(T, H) 
be the event that for no x, A(T, H, x) holds. Fix T, H. Our object, toward 
the first claim, is to bound Pr[A(T, H)] from above. Call G NICE if 

!np6 < INxl < 2np6 for all X E [n]6, 
7 3 7 INxl < 10np logn::; log n for all X E [n] . 

For fixed X, INxl has binomial distribution B(n - 6, p6) and B(n - 7, p7) 
respectively. The classic Chernoff [3] bounds on the tail of the binomial distri-
bution give that the probability of the above conditions failing goes rapidly to 
zero, even when mUltiplied by the (6 or (7 possible X. We use only 

Pr[not NICE] = o(n -log7 n) 

and we bound 
Pr[A(T, H)] = o(n -log7 n) + Pr[A(t, H)IG NICE]. 
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ZERO-ONE LAWS FOR SPARSE RANDOM GRAPHS 103 

We shall show 

Pr[A(T, H)] = o(n -log7 n). 

It suffices to show (*) conditional on G NICE. We further condition on any 
particular values for N(x), x E T. Let R denote the union of all Nx over all 
X E [T]7 so that, by NICEness, R has at most m log3 n < log4 n elements. 

6 I I 6 For X E [T] let Nx = Nx - R so that all Nx have between O.4np and 
2n p 6 elements. 

Let A* (T, H, x) be the event 
(i) N(x)nR=0. 

(ii) If XcT, IXI=6,and XEH then N(x)nN~=0. 
(iii) If Xc T, IXI = 6, and X ~ H then N(x) n N~ i- 0. 

Since IRI < log4 n, Pr[N(x) n R = 0] > 1 - plRI = 1 - 0(1). The bounds on 
IN~I give 

Pr[N(x) n N~ = 0] = (1 _ p)IN~1 > e -3np7 = e -3q, 

Pr[N(x) n N~ i- 0] = 1 - (1 - p)IN~1 > 1 - e-o.3np7 > O.2q. 

Here we see the asymmetry between q > 1 and q < 1 . Set 
. ( -3q a=mme ,O.2q). 

As R and the N~ are mutually disjoint the above events are mutually inde-
pendent and 

* m (6 Pr[A (T,H,x)]>(I-o(I))a >a. 

* ~ If A (T, H, x) holds then A(T, H, x) holds so Pr[A(T, H, x)] > a . The 
events A(T, H, x) are mutually independent over all x ~ T, x ~ Nx for all 
Xc T, IXI = 6. There are at least nl2 such x so 

n/2 (6 
Pr[A(T, H)] < (1 - e) with e = a . 

Now (*) follows immediately from the bounds on q. There are fewer than 
n10gs n possible T, H. The probability that UNIV does not hold is at most 
n10gs n n - log7 n = 0 ( 1) , giving the first claim. 

An overview of the above argument may be useful. Essentially H 7 behaves 
as a random 6-graph with edge probability (1 - p7)1l "-' e-q • With e-q < ~, 
Pr[Hx = H] ~ (e-q)W, the minimum achieved when H = 0. With e-q > ~, 
Pr[Hx = H] ~ (1 - e -q) W , the minimum achieved when H is complete. With 

q near one a = min[e-q, 1 - e-q] is not too small so Pr[Hx = H] ~ e = am 
is not too small. There are nearly n potential x and the Hx are independent 
so UNIV fails with probability at most (1 - e)n , which is very small. 
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104 SAHARON SHELAH AND JOEL SPENCER 

SIZE is easier. Fix n -0.1 disjoint sets Xj of size 7 and let A j be the event 
that N X; has precisely t elements. Let B be the event that there are no edges 
on UXj so 

Pr[B] = (1- p)Cn~.l) = 0(1). 

Conditioning on B, IN X; I has binomial distribution B (n - 7 n 0.1 , P 7) and so 

Pr[AjIB] = (n - ;nO'')(p7)1(1_ /)n-7nO. 1 -1 

'" (ql/t!)e- q > n-o.ol 

for q in this range. The Aj are then mutually independent so 

Pr[AAj I B] < (1 - n-o.oltOl « 1 

and 
Pr[AAj] ~ Pr[B] + Pr[AAj I B] « 1 . 

Quite easily, Pr[AA j]=0(1/10gsn). As there are only logsn values of T to 
obtain to realize SIZE, Pr[ ....,SIZEj = 0 ( 1) . 

Finally, we come to the interpretation. Let G be any graph on n vertices 
satisfying UNIV and SIZE. We claim 

(i) If log* n == 25 mod 100 then G satisfies A. 
(ii) If log* n == 75 mod 100 then G does not satisfy A. 

As almost all G have properties UNIV and SIZE this will conclude the proof 
of Theorem 2. 

For (i), set t = 6[(1ogs n)/3]. By SIZE there exist XI' ..•• X6 so that Nx 
has size t. Label Nx by u j , 1 ~ i ~ 6, 1 ~ u ~ t/6 arbitrarily. Let H be the 
6-graph on Nx consisting of the sets {u l • u2 , u3 • u4 , us. u6 }. By UNIV there is 
a vertex y ~ N X so that Hy (N x) is precisely H j • Let H+ be the 6-graph of 
all {a l • b 2 • c3 , d 4 • e S , /'} with a + b = c and de = f. Again by UNIV there 
is an X such that Hx is precisely H+ . These XI' ..•• Y6 satisfy STRAT and 
ARITH. Maybe MAX is not satisfied. However, now take among all choices 
of XI' ... 'Y6 for which STRAT and ARITH are satisfied that one for which 
N has the biggest size. As some choice gives INI = [logs n/3] the maximal 
has INI = s ~ [logs n/3]. This choice will satisfy MAX since BIGGER (N . N*) 
implies that N* is really bigger than N. On this N, if TOWER (x. y) then 
y = tower(x) so X ~ log* s. The converse may not hold since TOWER (x. y) 
requires numbers larger than y in using the G6del P -function. However, 
it is easy to show that no numbers larger than 2Y are needed. That is: if 
tower (x) = y and 2Y < s then TOWER (x. y). Thus PSEUDOLOGSTAR (x) 
implies log* s - 1 ~ x ~ log* s. As 10g9 n == 25 mod 100, x is between 15 and 
25 mod 100 and A holds. 

For (ii), we know there exist x~ . .... y; so that STRAT and ARITH are 
satisfied with N; = [logs n/3]. Suppose XI' •.• 'Y6 satisfy STRAT and ARITH 
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ZERO-ONE LAWS FOR SPARSE RANDOM GRAPHS 105 

and give a set Nx with INxl < [logs nj3]. Pick v3 • •••• v6 E [n] - Nx - N; 
arbitrarily and let T = Nx U N; U {v3 • •.•• v6 } so that ITI ~ logs n. As N; 
is bigger than N x there is a function f from N x - N; into N; - N x which 
is an injection but not a surjection. Let H be the 6-graph on T consisting of 
all sets {x. f(x). v3 • •••• v6}, x E Nx - N;. By UNIV there is a v7 ft T so 
that H = HV7 • Hence BIGGER (Nx . N;) is satisfied. (BIGGER is bigger on 
small sets!) Then MAX is false. That is, any XI' •.•• Y6 such that STRAT and 
ARITH and MAX are satisfied has Nx with s elements, s ~ [logs nj3]. Hence 
that element x with PSEUDOLOGSTAR (x) satisfies log* n -10 ~ x ~ log* n. 
With log* n == 75 mod 100, x must lie between 65 and 75 mod 100; hence A 
is false. 

The analysis of lim f( n • p • A) for this A may be extended to p = n -) /7 -e , 
8 a small constant. With notation as before define properties 

UNIVe : For every T c [n] with ITI ~ 8-)/10 and every 6-graph H on T 
there exists x ft T so that Hx(T) = H. 

SIZE e: For every t < 8- 1/ 2 there is a 7-set X with INxl = t. 
A .a. both UNIV t and SIZE e hold. (The exponents of 8 are not best possible.) 
Furthermore,a.a. INII~8-1 for all x l ••••• X7 • If x l ••••• Y6 are such that 
N satisfies STRAT and ARITH and MAX then 8- 1/ 11 < INI < 8- 1 . It follows 
that: 

(i) If [log* 8- 1] == 25 mod 100 then limf(n. p. A) = 1. 
(ii) If [log* 8- 1] == 75 mod 100 then limf(n. p, A) = o. 

4. IRRATIONAL EXPONENT 

In this section we prove that p = n -a, a irrational, satisfies the Zero-One 
Law. Throughout this section a is a fixed irrational, 0 < a < 1, p = n -a and 
G is the random graph G (n • p). An event occurs almost always-abbreviated 
a.a .-if its probability approaches unity in n. We let HI' E(HI ) denote the 
vertex and edge sets of HI. A rooted graph is a pair (Ho• HI) where HI is a 
graph and Ho is a subset of HI. (Ho. HI) has type (v. e) if v = IHI - Hoi 
and e is the number of {x. y} E E(HI ) with y ft Ho. (Basically, the edges 
inside Ho are to be disregarded.) We employ the interval notation: [Ho. Hd 
is the set of H, Ho c H C HI; (Ho• HI] • [Ho • HI)' (Ho• HI) are the same 
except Ho. HI ' and both Ho and H) respectively are to be excluded from the 
interval. 

Definitions. (Ho • HI) is dense if it has type (v, e) and e j v > a -) . 
(Ho.HI) is sparse if it has type (v.e) and ejv<a- I . 
(Ho• HI) is safe if (Ho• H) is sparse for all HE (Ho• HI]. 
(Ho.HI ) is rigid if (H.HI ) is dense for all HE[Ho.HI). 
(Ho. HI) is hinged if it is safe but for all HE (Ho. H)) (H. HI) is not safe. 

We now give some elementary consequences of these definitions. When H E 
(Ho.H)) and (Ho.H), (H.Ho), (Ho.HI) have types (v'.e'), (v".e"), (v.e) 
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106 SAHARON SHELAH AND JOEL SPENCER 

respectively, counting gives 

(** ) , " V=V+V, , " e=e+e. 

(AI) If (Ho' H) and (H,H,) are sparse then (Ho,H,) is sparse. 
(A2) If (Ho' H) and (H, H,) are dense then (Ho' H,) is dense. 

Proofs. Immediate from (**). 

(B I) If (Ho' H,) is sparse then (H, H,) is safe for some H E [Ho' H,) . 

Proof. Take H c H, maximal with (Ho' H) dense. (If no such H exists 
take H = Ho.) If (H, H,) is not safe some (H, H') is dense but (A2) gives 
(Ho' H') dense, contradicting maximality. 

(B2) If (Ho' H,) is dense then (Ho' H) is rigid for some H E (Ho' Hd . 

Proof. Take H ::J Ho minimal with (H, H,) sparse. (If no such H exists 
take H = H, .) If (Ho' H) is not rigid some (H', H) is sparse but (A I) gives 
(H', H,) sparse, contradicting maximality. 

(C) If (Ho,H,) is hinged of type (v,e), HE (Ho,H,) , and (Ho,H) has 
type (v', e') then e'lv' :5 elv . 

Proof. Ifnot, e'lv'>elv and (H,H,) as type (e-e')/(v-v') <elv and so is 
sparse. (B I) gives H* E [H , H,) with (H*, H,) safe, contradicting definition 
of hinged. 

(D) If (Ho' H,) is dense and X n H, = 0 then (Ho U X, HI U X) is dense. 

Proof. Let (Ho' H,) have type (v, e). Then (HoUX, HI UX) has type (v, e') 
where, as every edge counted in (Ho' HI) is still counted in (Ho U X ,HI U X) , 
e :5 e' . 

(E) If (Ho' H) and (H, H,) are rigid then (Ho' HI) is rigid. 

Proof. Let H* E [Ho,HI ). As (Ho,HI ) is rigid (H n H* ,H) is dense so 
(H*, H U H*) is dense, applying (D) with X = H* - H . As (H, HI) is rigid, 
(H U H*, HI) is dense. By (A2), (H*, H) is dense. 

(F) If (Ho' HI) is hinged and HE (Ho' HI) then (H, HI) is rigid. 

Proof. If not, (H', HI) is sparse for some H' E [H, H,). By (B), (H", H,) is 
safe for some H" E [H, HI)' contradicting the definition of hinged. 

(G) If (Ho,HI) is rigid and XnHI = 0 then (HoUX,HI UX) is rigid. 

Proof. Let H* E (Ho U X, H, U X]. As (Ho' HI) is rigid, (H* - X, HI) is 
dense, so, by (D), (H*, HI U X) is dense. 
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(H) Let n be an arbitrary graph, Ho a subset of the vertex set of n. Let 
H j c (Ho' 0], (Ho' HJ rigid, 1 ~ i ~ s. Then (Ho' H) U ... U Hs) is rigid. 

Proof. Assume s = 2. As (Ho' H2 ) is rigid, (H) nH2, H2) is rigid so, applying 
(G) with X = H) -H2' (H), H) UH2) is rigid. As (Ho' H)) is rigid, (E) implies 
(Ho' H) U H2) is rigid. 

For s > 2 we use induction. 
Given (Ho,H)) we define the I-closure cl,(Ho;H)) as the union of all sets 

HE (Ho' H)] with (Ho,H) rigid and IH - Hoi ~ I. When there is no such 
H we define cl,(Ho; H)) = Ho. We often write cl,(Ho) when there is an 
understood universal set H) . 

(I) (Ho' cl,(Ho)) is rigid. 

Proof. Immediate from (H). 

(J) Suppose Ho c H), y E H) - Ho and (Ho U {y}, H)) is rigid. Set 
H = clIHI-Hol (Ho; H)) . Assume y ¢. H. Then (H, H)) is safe. 

Proof. If not (H, H') is dense for some H' E (H, Hd. By (B2) (H, H") is 
rigid for some H" E (H, H']. By (I) (Ho' H) is rigid so by (E) (Ho' H") is 
rigid which, by definition of closure, would force H" c H , a contradiction. 

Definition. Let (Ho,H)) be a rooted graph and f: Ho -+ G an injection. We 
say g: H) -+ G is a set-extension if 

(i) x E Ho ::::;. g(x) = f{x) . 
We say g is an extension if, in addition, 
(ii) {x, y} E E(H)) , y ¢. Ho::::;' {g(x) , g(y)} E E(G). 
We say g is contained in B (equivalently, B contains g) if g(H) - Ho) 

cB. 

Remark. For technical reasons we do not require f to map edges into edges. 

Definition. N (f , Ho ' H)) is the number of extensions g. 

Theorem 3. Let (Ho,H)) be safe. There exist c)'c sothata.a·forall f:Ho-+ 
G 

nv-oe(logn)-c < N(f,HO,H)) < c)nv- oe. 

Proof. If (Ho' H)) is not hinged let H E (Ho' H)) so that (H, H)) is safe. As 
(Ho' H)) is safe, (Ho' H)) is safe a fortiori. Each f: Ho -+ G can be extended 
to g: H -+ G in N (f , Ho ,H) ways and thence to h: H) -+ G in N (g , H, H)) 
ways so the result follows by induction on IH) - Hoi. Henceforth, we assume 
(Ho' H)) hinged. 

We first show the lower bound. A pair (f, B) with f: Ho -+ G and B C G 
is called bad if there is no extension g: H) -+ G contained in B. 
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Lemma 1. There is a constant k > 0 with the following property. Set m = knOie/v 
and let f: Ho --+ G, BeG with IBI = m be fixed. Then 

Pr[(f, B) bad] < ! . 
Proof. For convenience delete f(Ho) from B, adjusting k if necessary, so 
that f(Ho) nB = 0. 

For each S c B with size IHI -Hoi specify arbitrarily a set-extension g with 
g(HI - Ho) = S. Let Xs = 1 if gs is an extension; otherwise zero. Let 
X = EXs . Then E[Xs] = pe and 

E(X) = (7)pe > e Iv!. 

We want Pr[X = 0] <! for which we calculate the second moment. 

Var(X) = L Var(Xs ) + L Cov(Xs ' X T) 
s S1-T 

v-I 
:5 E(X) + L L Cov(Xs ' X T)· 

j=O IsnTI=j 

When j = 0 XS,XT are independent and Cov(XS'XT) = o. Otherwise 

Cov(Xs ' X T) :5 E(XSXT) = pU. 

Here u is the number of pairs which are images of {x, y} E E (HI)' y ~ Ho 
under gs or gT. As gs' gT are bijections there are e such pairs in each case 
so u = 2e - u' where u' is the number of pairs in both categories. Set H = 
gS'I(SnT) so that IHI = j. Then u' counts at most edges {x, y} E E[HUHo] 
with y ~ Ho. By (C)-using here that (Ho' HI) is hinged- u' fj :5 elv. 

so 

L Cov(XS ,XT):5 m 2v- j ie-j(eM = [mv pe]2- j/v 
ISnTI=j 

v-I 
Var(X) :5 e Iv! + L(e)2- j/v < !E(X)2, 

j=1 

when k is chosen sufficiently large. By Chebyshev's Inequality 

Pf[(f, B) bad] :5 Pr[X = 0] :5 Var(X)1 E(X)2 :5 ! . 

Lemma 2. Fix f: Ho --+ G, C c G with ICI = k' nOie/v log n. For k' sufficiently 
large a.a. 

Pr[(f, C) bad] > !n -IHol. 

Proof. Split C into kIf log n disjoint Bj of size m given by Lemma I. For 
(f, C) to be bad all (f, Bj ) must be bad. But the events" f( , Bj ) bad" involv-
ing disjoint edge sets are mutually independent, so 

Pr[(f, C) bad] < 2-k"logn , 
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which can be made smaller than any power of n. 
With k' as above there are only n lHol injections I: Ho -+ G so a.a. for 

every I at most half the (I, C) are bad. Set M = I q = k' nere/v In n for 
convenience. Each extension g: HI -+ G is contained in c~-=-vv) '" (~)(M/n)V 
m-sets. Together at most IN(I,Ho,HI)I(~-=-vJ M -sets contain an extension 
but at least ! (~) do. Thus 

IN(j,Ho,HI)1 (~r ~!, 
IN(j,Ho,HI)1 ~! (~r > nv-ere(lnn)-v+o(I) , 

completing the proof of the lower bound of Theorem 3. 

Conjecture. A.a. for all I N (I, Ho ' HI) > c' n v-ere where c' depends only on 
Ho and HI' 

The upper bound to Theorem 3 also requires some preliminary lemmas. Two 
extensions gl' g2 of I on (Ho' HI) are called disjoint if 

gl (HI - Ho) n g2(HI - Ho) = 0. 

Lemma3. Let (Ho,HI) be dense. There exist K sothata.a. lor all I: Ho -+ G 
there do not exist K disjoint extensions gl' ... ,gK' 
Prool. Let c = IHol and (Ho,HI) have type (v,e). Pick K so that c+ 
K(v - ae) < O. There are less than nC(nv)K (I,gl'''' ,gK) with gj disjoint 
set-extensions of I. Each gj is an extension with probability pe and since they 
are disjoint they are all extensions with probability peK so the probability of 
(I ) ... h II .. I h c+vK-ereK (1) ,gl' ... ,gK eXIstmg WIt a gj extensIOns IS ess t an n = 0 . 

Lemma 4. Let (Ho' HI) be rigid. There exist K so that a.a. lor all I: Ho -+ G 
there do not exist K extensions gl' ... ,gK' 
Prool. For all HE (Ho,HI), (H,HI) is dense so we may pick Ko so that 
Lemma 3 holds for all (H, HI)' By Erd6s and Rado [4] we may pick K so 
that given any K functions on v = IHI - Hoi points there is a L\ -system of Ko 
functions. These Ko functions would be disjoint extensions of the common 
root H. 

Now we fix I:Ho-+G and bound s'=N(I,Ho,HI) from above. For any 
h E HI' Y E G (Ho u {h}, HI) is rigid (F) so by Lemma 4 there are at most 
K extensions g with g(h) = y. Each extension g is disjoint from all but at 
most K IHi extensions and so there is a set of s = s' /(KIHi + 1) disjoint 
extensions. 

There are less than nC (~t / s! pairs consisting of an I: Ho -+ G and a set 
{gl' ... ,gs} of disjoint set-extensions of I. The probability that all gj are 
extensions is, as before, pes. Thus the probability of I, {gl' ... ,gs} existing 
is at most 
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when s = 3n v- oe • Thus, a.a., 

N(f, Ho' HI) ::; 3(KIHi + l)n v- oe , 

completing the proof of Theorem 3. 

Lemma 5. For all r, I there is a K so that a.a. I el,( Go) I ::; K for all Go C G, 
IGol ::; r. 

Proof. There are a bounded (Lemma 4) number of extensions for each rigid 
(Ho,HI ) with IHol = IGol and only a finite number of such (Ho,HI ) up to 
isomorphism. 

Lemma 6. For all r, 11 ,12 there is an I so that a.a. 

el't (el'2(GO)) ~ el,(Go) 

for all Go c G, IGol::; r. 

Proof. Set I=K+/I where lel'2(Go)I::;K byLemmaS. If YEel't(el'2(GO)) 

then y E G', IG' - el'2(Go)1 ::; II' (el'2(GO),G') rigid. From (I) and (E), 
(Go' G' ) is rigid, IG' - Gol ::; I so Y E el,(Go). 

Let XI' ... ' x, E G. By el,(xl , ••• , x,) we shall mean the graph on 
el,( {XI' ... ,x,}) with points XI' ... ' x, specified. We say (XI' ... x,) , 
(x~ , ... ,x;) have the same I-type if el,(xl ' ••• ,x,) ~ el,(x; , ... ,x;) , the iso-
morphism sending x,' to x'. By Lemma S the family L , of possible I-types 

I '. 
is a.a. bounded. Each one can be considered as a graph HI with specified 
vertices hI' ... ,h, such that HI = el,( {hI' ... ,h,}; HI). 

Now we are ready to deal with first order sentences. Let ¢(XI' ... ,x,) , as 
customary, denote a formula in GRA with free variables XI' ... ,x, . 

Theorem 4. For every ¢(XI ' ... ,x,) there is an f so that a.a. for all XI' ... ,X, 
E G ¢(xl , ••• , x,) depends only on el,(x l , ... , x,). That is, there exist I, 

~ 

N ~ L,.l so that a.a. 

(* * *) G 1= ¢(x l ' ••• ,x,) ¢:> el,(x l ' ... ,x,) EN. 

Example. Let t +!k < Q < t + !(k - 1) and set 

¢(x, y, z): (3w)('v'a)[a '" X t\ a'" y t\ a", z --t (3! b # a)(3v) 

b '" X t\ b '" Y t\ b '" z t\ v '" a t\ v '" b t\ v '" w], 

¢(x, y, z) depends on el3k+1 (x, y, z). el,(x, y, z) contains all points aI' ... , 
a2s adjacent to x, y, z. (If there are an odd number of such points G 1= --,¢ .) If 
s < k then G 1= ¢ since the extension by W, vI ' ... ,vs with w '" Vi '" a2i _1 ,a2i 
is safe. When s ~ k, G 1= ¢ if and only if el3k+1 (x, y, z) contains points 
w, VI ' ... ,vs so that, after renumbering, W '" vi '" a2i _1 ,a2i . An examination 
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of el3k (X, y, z) would not suffice since if el3k (X, y, z) consists of a" ... , a2k 
joined to x, y, z the desired w, v,, ... , vk might exist outside el3k (X, y, z). 

Proof. We use induction on the length of cP. Let us say [ , .')/ give cP if (* * *) 
holds. Let ..." v, (3y) be the only logical connectives. For atomic formulae 
Xi '" Xj or Xi = Xj simply take [ = O. If cP = ""1// and [,.')/ give 1// then 

[ , L -.')/ give cP. If I < I' then ell' (x, ' ... , x,) determines el/(x" ... , x,) 
so that if 1,.')/ give cP and [< [' there is an .')/' so that [',.')/' give cP. If 
cP = cPt V cP2 and, by induction, I".w; give cPt and 12 ,.w; give cP2 then set 
1= max(l" 12 ) so that I ,.w;' give cPt and I,.w;' give cP2 • cP is then given by 
I ,.w;' u.w;'. This leaves the critical case cP(x" ... ,x,): (3Y)I//(x" ... ,x" y). 
By the inductive hypothesis there exist 1,.')/ ~ L,+l.l giving 1//. Thus 

G 1= cP(x, ' ... , x,) ¢:} for some y E G type/(x" ... , x" y) E.')/ . 

It suffices to show the following. 

~ 

Theorem S. Let Ho = (h, ' ... , h" h*) and let (Ho' H,) E L,+l.l' Then there 

exists [' and fB ~ L/, " so that a.a. for all x, ' ... , x, E G 

(3y)type/(x, ' '" , x" y) = (Ho' H,) ¢:} type/, (x, ' ... , x,) E fB . 

Assume Theorem 5 and let .')/ , above, consist of types T', ... , T S • For 
each Ti there are Ii ,fBi satisfying Theorem 5. We replace all [i by I = 
max(l' , '" f) and fBi by fBi*. Then cP is given by [,.')/ where .')/ = fB ,* u 
... ufBs* . 

To prove Theorem 5 we set 

H = elIHd[{h" ... ,h,};H,]. 

Case I. h*EH. As ({h" ... ,h"h*},H,) is rigid by (E) ({h" ... ,h,},H,) 
is also rigid and so H = H,. Let I' be such that el/(el/(X)) c el/,(X) for all 
X c G, IXI = r. Let fB be the set of all I' -types ((h, . .... h,). H2 ) so that 
for some h* E H2 

((h, . .... h,. h*. el/( {h, . .... h,. h*}; H2 )) ::= (Ho' H,). 

If type /(x" .... x,) E fB then with y the image of h* type /(x, ..... x" y) = 
(Ho.H,). Conversely if there exists y with type/(x, .... . x,.y) = (Ho,H,) 
then y E el/(x" .... x,) so el/(x, ..... x,.y) c el/'(x, ..... x,) and so 
ell' (x, •.... x,) E fB . 

Case 2. h* ~ H . We elaim 

(3y)type/(x, . ... • x,. y) = ((h, . .... h,. h*). H,) 
¢:} type/(x, ..... x,) = ((h, ..... h,); H). 
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As type [(XI' ... , X" y) determines type [(XI' ... , x,), => is immediate. Now 
assume type [(XI' ... , x,) = ((hi' ... , h,), H) ; we must find a "witness" y. By 
(J) the rooted graph (H, HI) is safe. Fix f: H --+ G with f(hJ = Xi and 
{h', h"} E E(H) ¢:} {f(h'), f(h")} E E(G). (f exists by definition of type.) 
Let (H, HI) have type (v, e). Theorem 3 bounds the number of extensions 
g: HI --+ G. If g: HI --+ G is an extension, setting y = g(h*) might not work 
as cl[(xl , .. . x" y) might have more vertices or edges than (HI' E(HI)). This 
is critical-we need to find a witness y with the desired special properties and 
no others. 

Let Jl" be the family of types ((hi' ... , h" h*), H*) E L'+I.l such that HI 
is a subgraph of H*. Let M(H*) be the number of y so that there is an 
extension g:H*--+G of f relative to (Ho,H*) with g(h*)=y. For each y 
Lemma 4 gives there are at most K such f. Let (v * , e *) denote the type of 
(Ho, H*). Theorem 3 gives 

n V'-ae' (lnn)-c < M(H*) < clnv'-ae' 

for adjusted constants c, ci . There are M(HI ) y such that cl[(xl , ... , x" y) 
contains (HI' E (HI)) as a subgraph. Let Jl"* be Jl" with (HI' E (HI)) deleted. 
For each (H*, E(H*)) E Jl"* there are at most M(H*) y so that 
cl[(XI ' ... , x" y) ~ (H* , E(H*)). Thus there are at least 

M(H) - L M(H*) 
H'EJ[" 

y with type [(XI' ... , x" y) = ((hi' ... , h,), HI) . 
Let (H*, E(H*)) E Jl"* have type (v*, e*). Suppose HI ~ H*. Since 

({hi' ... , h" h*}, H*) is rigid so is (HI' H*), hence (e* - e)/(v - v*) > 0:- 1 

d * * Wh H H* h * * . an v - e 0: < V - o:e . en I = we ave v = v so e > e and agam 
v* - e* 0: < V - o:e. In all cases M(H*) is much smaller than M(H). Then 

M(H) - L M(H*) > nv-ae(lnn)-c - Lclnv'-ae' 

_ v-ae+o(l) > 0 -n . 
The witness y exists, giving Case 2, Theorem 5 and Theorem 4. 

Theorem 6. If 0: is irrational then p = n -a satisfies the Zero-One Law. 

Proof. Let if> be a closed formula. By Theorem 4 there exist 1,.91 so that a.a. 

G F if> ¢:} cl[(0) E.9I . 

A dense rooted graph (0,BI ) of type (v,e) appears an expected number 
nV pe = 0(1) of times in G. For a given I there are only a fixed number 
of such HI so a.a. no such HI appears. That is, a.a. cl[(0) = 0. Hence 
a.a. 
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Either 0 E.s;I or 0 ¢.s;I so either a .a. G ~ ¢ or a .a. G ~ ..,¢ . 

5. THRESHOLD SPECTRA 

The analysis of §4 was essentially static. Now consider A fixed and consider 
the property A over the "evolution" of the random graph. We would like to 
describe this evolution in terms of a spectrum of threshold functions, though 
the results of §3 force us to use some care. 

Call a > 0 a point of continuity if there is an e > 0 and 0 E {O, I} 
so that if n-a- e < p < n-aH then Limf(n,p,A) = o. Otherwise, call a 
an evolutionary discontinuity and define the threshold spectrum Spec(A) as 
the set of such a. From the methods of §4 it follows that all irrational a 
are points of continuity and that Spec (A) is a closed nowhere dense set of 
rational numbers. Many interesting A analyzed by Erd6s, Renyi, and others 
have threshold spectrum consisting of a single point. For monotone A, not 
necessarily in GRA, the existence of a threshold function is shown by Bollobas 
and Thomason [2] to follow from purely combinatorial argument. The analysis 
concluding §3 shows that Spec (A) may have a limit point. 

A set of real numbers S is called scattered if it is closed and the sequence 
S = So' SI ' ... , with Sj+1 the set of limit points of Sj , has Sm = 0 for some 
m. 

Theorem 7. Spec(A) is scattered. 

We outline the argument, which requires proving Theorem 6 in a manner 
uniform on a. The example following the statement of Theorem 4 illustrates 
that the I of Theorem 4 need not be bounded uniformly in a. The essential 
induction of Theorem 4 becomes the following. 

Lemma 7. For every ¢(XI' ... ,x,) there is a scattered S = Scat(¢) C Q so that 
foralla,b with [a,b]nS=0 there is an 1,.s;I so that ijn-b <p<n-a then 
a.a. for all XI'''' ,x, E G 

G ~ ¢(XI ' ... ,x,) {:} cl/(xl , ... ,x,) E.s;I . 

The proof is by induction. We let S = {O, 2} for the null statement to set up 
boundaries. The cases ¢ ="''1' and ¢ = ¢I V ¢2 are simple; again the critical 
case is 

¢(X): (3y)rp(x,y), 

where we abbreviate XI' ... ,x, as x. Let So = Scat(rp). We expand So in 
four stages. 

For each consecutive a, at E So add a doubly infinite monotonic sequence 
bn , n E Z, of rationals from a to at . To be explicit: bn = at - (at - a)2-n- 1 

for n ~ 0; bn = a + (at - a)2n- 1 for n < O. Let SI be the enlarged set. For 
every consecutive b, bt E SI (note: the a E So are now limit points so b = bn ' 
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b' = bn+1 ) find, by induction, !, .s;1' so that for n -b' < p < n -b a.a. for all 
x 
(* * * *) G F ¢(x) ¢:} (3y) clt(x, y) E.s;1' . 

When (Ho' HI) E.s;1' , Ho = (hi' ... ,hr' h*) we consider 

H = clIHd[{h l , ••• ,hr} ;Hd 

as a function of a E [b', b]. Fix M with M ~ r +! and M ~ IHII for all 
(Ho' HI) E.s;1' • In [b', b] add all rationals xl y with y :::; (~) , giving S2. The 
value of H can change only at a E S2. For consecutive c, c' E S2 (* * * * ) 
still holds and H is well defined over a E (c, c'). When h* fI. H 

(3y) clt(x, y) = (Ho' HI) ¢:} clt(x) = ((hi' ... ,hr); H). 

For each consecutive c, c' E S2 add a doubly infinite sequence dn of ra-
tionals from c to c' giving S3. Let d, d' be consecutive elements of S3. All 
rooted graphs (H,HI ) with IHII:::;r+! with type (v,e) that are dense over 
a E (c, c') will have v - ae < -e where e is constant over all a E [d, d']. 
Lemma 3 gives a K so that no f: H -+ G has more than K disjoint exten-
sions to g: HI -+ G. Lemmas 4, 5, and 6 follow and there is an r so that if 
n~d' <p<n-d thena.a. cl,(clt(x))cclt_(X) for all XcG, IXI=r. When 
h* E H the statement (3y) cl,(x, y) = (Ho' HI) is determined by cl,_ (x). For 
every consecutive d, d' add all rational xly E (d, d') with y:::; r+t) , giving 
S4· 

Assume [A, B] n S4 = 0. There is an e > 0 so that la - xlyl > e for all 
x, y above. As before, there is a constant K so that if n -B < p < n -A then 
a.a. Icl,_(X)I:::;K for all XcG, IXI=r. Then 

(3y) clt(x, y) = (Ho' HI) ¢:} clt- (x) E ~ 

where ~ is that set of possible closures that have an h * generating HI . 
As .s;1' is a finite set and we can do this for all (Ho' HI) E .s;1' , there is an 

[* , ~* so that with n-B < p < n-A a .a. 

(3y) cl,(x, y) E.s;1' ¢:} cl,_ (x) E ~ 

and so we may set Scat(¢) = S4. 
S is precisely the set of accumulation points of S4 so S4 is scattered by 

induction, completing Lemma 7. 
Now let A be a closed sentence of GRA and let S = Scat(A) be given by 

Lemma 7. Suppose a fI. S. As S is closed some [a-e,a+e]nS=0. Hence 
there are !,.s;1' so that for all p with n -{}-t < p < n -{}H a .a. 

G FA¢:} cl,(0) E.s;1' . 

But, as before, a .a. clt (0) = 0. If 0 E.s;1' then a .a. G FA, otherwise a .a. 
G F ...,A. Hence a fI. Spec(A). Spec(A) is a closed subset of a scattered set, 
hence it is scattered. 
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A full characterization of the threshold spectra of first order statements has 
proven elusive_ In particular, we do not know if Spec(A) may contain an 
infinite number of limit points. 
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