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Abstract. Higman proved in 1952 that every free group is non-commutatively slender, that
is, for a free group G and for a homomorphism h from the free complete product ��oZ of
countably many copies of Z into G, there exists a ®nite subset FJo and a homomorphism
h : �F Z! G such that h � hrF , where rF is the natural map from ��oZ into �F Z. Because of
the corresponding phenomenon for abelian groups this is called the non-commutative Specker
Phenomenon. In the present paper we shall show that Higman's result fails if one passes from
countable to uncountable and thereby answer a question posed by K. Eda. In particular, we
will see that, for an uncountable cardinal l and for non-trivial groups Ga �a A l�, there are 22 l

homomorphisms from the free complete product of the groups Ga into the integers.

Introduction

In 1952 Higman [9] proved that every free group G is non-commutatively slender,
where slenderness means that any homomorphism h from the free complete pro-
duct ��oZ of countably many copies of the integers into G depends on ®nitely many
coordinates only. A similar result was proven by Specker [12] in 1950 for abelian
groups. Specker showed that any homomorphism from the product PoZ of count-
ably many copies of Z into the integers is determined by only ®nitely many entries.
These two phenomena are called the commutative and the non-commutative Specker
Phenomenon, respectively. Eda [3] extended Higman's result by showing that, for
any non-commutatively slender group S, for any non-trivial groups Ga �a A I� and
for any homomorphism h from the free s-product of the groups Ga into S, there
exist a ®nite subset F of I and a homomorphism h : �i AF Gi ! S such that h � hrF

where rF is the natural map from ��s
i A I Gi to �i AF Gi (for the de®nition of s-product
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see 1.2). Motivated by this result Eda [3, Question 3.8] asked whether or not the
non-commutative Specker Phenomenon still holds if one passes from countable to
uncountable cardinals, replacing ��oZ by the free complete product ��lZ for some
uncountable cardinal l (see 1.2). Here we shall give a negative answer to Eda's
question by constructing, for a given uncountable cardinal l and for non-trivial
groups Ga �a A l�, a homomorphism h from the free complete product of the groups
Ga into Z for which the non-commutative Specker Phenomenon fails. In fact, we will
show that there are 22 l

of these homomorphisms and so, in particular, the cardinality
of the set of all homomorphisms from ��a A lGa into the additive group of Z is the
largest one possible. This contrasts with the countable case and also the abelian case.

Basics and notation

Let I be an arbitrary set. For groups Gi �i A I�, the free product is denoted by �i A I Gi

(for details on free products, see [10]).
Given arbitrary subsets XHY of I we write rXY : �i AY Gi ! �i AX Gi for the ca-

nonical homomorphism. Moreover, we use the notation X F I for ®nite subsets X of
I. Then the set f�i AX Gi : X F I g together with the homomorphisms rXY �XHY F I�
form an inverse system; its inverse limit lim ÿ��i AX Gi; rXY : XHY F I� is called the

unrestricted free product of the groups Gi (see [9]).
Eda [3] introduced an in®nite version of free products and de®ned the free complete

product ��i A I Gi of the groups Gi (for the exact de®nition see 1.2); it is isomorphic to
the subgroup 7

FF I
f�i AF Gi � lim ÿ ��i AX Gi; rXY : XHY F I�g of the unrestricted free

product.
For the convenience of the reader unfamiliar with free complete products we recall

the de®nition of words of in®nite length and also the de®nition of and some basic
facts about ��i A I Gi as can be found in [3].

De®nition 1.1. Let Gi �i A I� be non-trivial groups such that Gi VGj � feg for
i0 j A I . The elements of 6

i A I
Gi are called letters.

A word W is a function W : W !6
i A I

Gi from a linearly ordered set W into the

set of all letters 6
i A I

Gi such that Wÿ1�Gi� is ®nite for any i A I . If the domain W of
the word W is countable then we say that W is a s-word.

The class of all words is denoted by W�Gi : i A I� (abbreviated to W) and the class
of all s-words is denoted by Ws�Gi : i A I� (abbreviated to Ws).

Two words U and V are said to be isomorphic �U GV� if there exists an order-

isomorphism j : U ! V between the linearly ordered sets U and V such that U�a� �
V�j�a�� for all a A U . Identifying isomorphic words it is easily seen that W is, in fact,
a set. Moreover, for words of ®nite length (i.e. with ®nite domain) the above de®-
nition obviously coincides with the usual de®nition of words.

For a subset X of I, the restricted word (or subword ) WX of W is given by the
function WX : WX !6

i AX
Gi with WX � fa A W : W�a� A 6

i AX
Gig and WX �a� �

W�a� for all a A WX . Therefore WX A W. Using restricted words with respect to
®nite subsets of I we de®ne an equivalence relation on W by saying that two words
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U and V are equivalent �U @V� if UF � VF for all F F I , where we consider UF

and VF as elements of the free product �i AF Gi. The equivalence class of a word W
is denoted by �W � and the composition of two words as well as the inverse of a
word are de®ned naturally. Thus W=@� f�W � : W A Wg together with the repre-
sentative-wise de®ned composition forms a group.

De®nition 1.2. Given groups Gi �i A I�, the free complete product ��i A I Gi is de®ned
to be the group W�Gi : i A I�=@ as described above. Moreover, the free s-product

��s
i A I Gi is the group Ws�Gi : i A I�=@, which is a subgroup of ��i A I Gi.
If Gi is isomorphic to a ®xed group G for all i A I then we write ��I G and ��s

I G
instead of ��i A I Gi and ��s

i A I Gi.

Note that for a ®nite set I both ��i A I Gi and ��s
i A I Gi are obviously isomorphic

to �i A I Gi. In general, by [3, Proposition 1.8], the free complete product ��i A I Gi

is isomorphic to the subgroup 7
FF I
f�i AF Gi � lim ÿ ��i AX Gi; rXY : XHY F I�g of the

unrestricted free product. Moreover, Eda [3] proved that each equivalence class �W �
is determined uniquely by a reduced word; a word W A W�Gi : i A I� is said to be
reduced if W GUXV implies �X �0 e for any non-empty word X, where e is the
identity, and it never occurs that the letters W�a� and W�b� belong to the same Gi

for neighbouring elements a and b of W .

Lemma 1.3 (Eda [3]). For any word W A W�Gi : i A I� there exists a reduced word

V A W�Gi : i A I� such that �W � � �V �, and V is unique up to isomorphism.

Furthermore, Eda [3] proved the following lemma; a word W A W�Gi : i A I� is
called quasi-reduced if the reduced word of W can be obtained by multiplying neigh-
bouring elements without cancellation.

Lemma 1.4 (Eda [3]). For any two reduced words W ;V A W�Gi : i A I� there exist

reduced words V1;W1;M A W�Gi : i A I� such that W GW1M, V GMÿ1V1 and

W1V1 is quasi-reduced.

We would like to remark that the free s-product ��s
I Z is isomorphic to the funda-

mental group (see [3]) and the free complete product ��I Z is isomorphic to the big
fundamental group of the Hawaiian earring with jI j circles (see [1]). Hence free
complete products are also of topological interest.

The uncountable Specker Phenomenon

In 1950, E. Specker [12] proved that, for any homomorphism h from the direct
product Zo of countably many copies of Z into the additive group of the ring of
integers Z, there exist a ®nite subset F of o and a homomorphism h : ZF ! Z sat-
isfying h � hrF where rF : Zo ! ZF is the canonical projection. This result is called
the Specker Phenomenon. It can be easily seen that Specker's result still holds for
homomorphisms into any free abelian group instead of homomorphisms into Z, i.e.,
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free abelian groups are slender. In general, an abelian group G is said to be slender

if G satis®es the above property for any homomorphism h : Zo ! G. For general-
izations to products of uncountably many copies of Z within the category of abelian
groups we refer to [6] or [7].

In [4], Eda introduced the non-commutative version of slenderness that we shall
consider here.

De®nition 2.1. A group G is non-commutatively slender if, for any homomorphism
h : ��oZ! G, there exists a natural number n such that h���onf1;...;ngZ� � feg, where
e denotes the identity element of G.

Eda proved that non-commutatively slender groups are torsion-free and that non-
commutative slenderness for abelian groups is the same as ordinary (commutative)
slenderness (see [3, Theorem 3.3. and Corollary 3.4.]). Moreover, he proved that non-
commutatively slender groups have the following nice property:

Proposition 2.2 (Eda [3]). Let Gi �i A I� be non-trivial groups, let S be a non-

commutatively slender group, and let h : ��s
i A I Gi ! S be a homomorphism. Then there

exist a ®nite subset F of I and a homomorphism h : �i AF Gi ! S such that h � hrF ,
where rF is the canonical map from ��s

i A I Gi to �i AF Gi.

Another interesting result is that the restricted direct product and the free pro-
duct of non-commutatively slender groups Sj � j A J� are non-commutatively slender
(see [3, Theorem 3.6.]). However, the ®rst fundamental result on the class of non-
commutatively slender groups was obtained by Higman [9] in 1952:

Theorem 2.3 (Higman [9]). Every free group is non-commutatively slender.

In contrast to Higman's result, we will show that the non-commutative Specker
Phenomenon fails if one replaces the product of countably many groups by a product
of uncountably many groups. To be more precise, we show that, for an uncountable
cardinal l, there are 22 l

homomorphisms from the free complete product ��a A lGa of
non-trivial groups Ga �a A l� into the additive group of the ring of integers.

To make the proof more transparent we ®rst construct one homomorphism for
which the Specker Phenomenon fails and then modify the construction to obtain our
main result.

Theorem 2.4. Let l be any uncountable cardinal and Ga �a A l� non-trivial groups.

Then there exists a homomorphism j : ��a A lGa ! Z for which the Specker Phenome-

non fails.

Proof. Let Ga �a A l� be a collection of non-trivial groups with identity elements ea

and choose elements ga 0 ea of Ga for each a A l. For any regular uncountable car-
dinal kW l we de®ne the word Mk A ��a A lGa as follows:
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Mk : �k; <� ! 6
a A l

Ga via b 7! gb

where < is the natural ordering of l. Note that Mk is a word of uncountable co-
®nality (i.e., the domain of Mk has uncountable co®nality) since k is regular and
uncountable. For b < k we de®ne Mk;b to be the subword Mk Z� b;k� of Mk.

Now let X be any reduced word in ��a A lGa. We recall that a subset J J �X ; <� is
called convex if x < y < z and x; z A J imply y A J. We de®ne

Occ�k �X� :� fJ J �X ; <� : J is convex and X ZJ GMk;b for some b < kg:

Thus Occ�k �X� counts the occurencies of end segments of Mk in X. Similarly we let

Occÿk �X � :� fJ J �X ; <� : J is convex and X ZJ GMÿ1
k;b for some b < kg:

In order to avoid counting subsets of �X ; <� more often than necessary we de®ne the
following equivalence relation on Occ�k �X� and Occÿk �X �.

Dealing with Occ�, we call two convex subsets J1; J2 of �X ; <� equivalent
�J1@k J2� if they have a common end segment; in other words J1@k J2 if there
exist j1 A J1, j2 A J2 such that X ZS1

GX ZS2
where Si � f j A Ji : j X jig �i � 1; 2�.

Similarly, for Occÿ, we de®ne the equivalence relation substituting end segments by
initial segments. For simplicity we denote both equivalence relations by @k but the
reader should keep in mind that @k is de®ned di¨erently for Occ� and Occÿ.

First we prove that two subsets J1; J2 A Occ�k �X � are either disjoint or equivalent.
To do so assume that J1; J2 A Occ�k �X� are not disjoint and let j � A J1 V J2 �0q�.
Moreover, there are ordinals b1; b2 < k �W l� and isomorphisms hi : Mk;bi

! X ZJi�i � 1; 2� since J1; J2 are elements of Occ�k �X�. Thus we can ®nd gi X bi such that
hi�gi� � j � and therefore X � j �� � ggi

for i � 1; 2. Hence g1 � g2 and by trans®nite
induction we conclude that X ZT1

GX ZT2
, where Ti � f j A Ji : j X j �g. Note that

hi is an isomorphism of linearly ordered sets and hence hi commutes with limits
and the successor function.

Similarly, two subsets J1; J2 of Occÿk �X � are either disjoint or equivalent.
Next we show that the set Occ�k �X�=@k is ®nite; by similar arguments it then

also follows that Occÿk �X�=@k is ®nite. Let us assume the contrary, that is, there exist
in®nitely many pairwise non-equivalent Jn A Occ�k �X� �n A o�. Then Jn and Jm are
disjoint for any n0m from above. For each n A o let X ZJn

GMk;bn
for some bn < k.

Thus b �6
n Ao

bn is strictly less than k as k is regular uncountable and hence
cf�k� > @0. Since b A �bn; k� for all n A o we can ®nd jn A Jn such that

X � jn� �Mk;bn
�b� �Mk;b�b�

for all n A o. But all Jn are pairwise disjoint and therefore Xÿ1�Gb� is in®nite,
which contradicts the de®nition of a word (see 1.1). Thus Occ�k �X �=@k and also
Occÿk �X�=@k are ®nite sets.
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We now de®ne jk : ��a A lGa ! Z as follows:

W 7! jOcc�k �X�=@kj ÿ jOccÿk �X�=@kj

where X is the reduced word corresponding to W. Note that jk is well de®ned by
Lemma 1.3. Moreover, it follows immediately from the de®nition that jk�Xÿ1� �
ÿjk�X� and also the Specker Phenomenon obviously fails for jk. Note that in gen-
eral the sets Occ�k �X� and Occÿk �X� are not of the same size, e.g. j�Mk;b� � 1. It
remains to show, however, that jk is a homomorphism. Therefore let X and Y be
reduced words. By Lemma 1.4 there exist reduced words X1;Y1 and M such that
X GX1M and Y GMÿ1Y1 and X1Y1 is quasi-reduced. Now it is easy to check that
jk�XY � � jk�X1Y1� by de®nition and the fact that XY � X1MMÿ1Y1. Hence

jk�XY � � jk�X1Y1� � jk�X1� � jk�Y1� � jk�X � � jk�Y�;

as X1Y1 is quasi-reduced and thus the reduced word of X1Y1 is obtained without
cancellation.

We remark that the uncountability of k in Theorem 2.4 is essential for the de®-
nition of the homomorphism jk and cannot be omitted because of Higman's theo-
rem. Modifying the proof of Theorem 2.4 we obtain

Theorem 2.5. Let l be any uncountable cardinal and Ga �a A l� be non-trivial groups.

Then there are 22l

homomorphisms from the free complete product of the groups Ga

into the additive group of the ring of integers. In fact there is an epimorphism from

��a A lGa onto the free abelian group of 2l copies of the integers.

Proof. Let l be uncountable and fGa : a A lg be given as stated. We choose the fol-
lowing family of reduced words Ma for a A 2l. First we choose non-trivial elements
eg 0 gg A Gg for g A l. Let fIe : e A o1g be a family of pairwise disjoint subsets of l
each of which has cardinality l. It is well known (see e.g. [5]) that for every e A o1

we can ®nd a family fIe;a J Ie : a A 2lg of subsets of Ie such that any ®nite Boolean
combination of them is of cardinality l and moreover there is ge A Ie that belongs

to each Ie;a for every a A 2l. For every e A o1 and for every a A 2l we choose a word
Me;a such that its domain Me;a equals Ie;a and Me;a�s� � gs for s A Ie;a.

Then the composition Ma �
P

e Ao1
Me;a is a well-de®ned reduced word in

W�Gg : g A l� for every a A 2l. Before de®ning the claimed homomorphism let us
®rst state the crucial condition satis®ed by the groups Ma �a A 2l�:

the domain Ma of Ma is well ordered of order type lo1 (the ordinal product)
for each a A 2l and therefore has uncountable co®nality.

Now we repeat the construction given in Theorem 2.4 replacing k by Ma and for
a reduced word X and a A 2l we de®ne

Occ�a �X � � fJ J �X ; <� : J convex; X ZJ GMa;s for some s A Mag
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and

Occÿa �X� :� fJ J �X ; <� : J convex; X ZJ GMÿ1
a;s for some s A Mag;

where Ma;s is the end segment of Ma starting with the element s, i.e. Ma;s �
Ma Zfr AMa : rXsg. As in the proof of Theorem 2.4 two equivalence relations are

de®ned on the sets Occ�a �X� and Occÿa �X�, both denoted by@a.
We are now able to de®ne homomorphisms ja from the free complete product

of the groups Gg to the integers for each a A 2l. As in the proof of Theorem 2.4 we
can see that the sets Occ�a �X�=@a and Occÿa �X �=@a are ®nite for any reduced word
X and a A 2l. Moreover, the maps ja : ��b A lGb ! Z de®ned by

V 7! jOcc�a �X �=@aj ÿ jOccÿa �X�=@aj;

where X is the reduced word corresponding to V, are well-de®ned homomorphisms

since ge A Ie;a for every a A 2l. To obtain 22 l

homomorphisms we will show that there
is a surjection onto the free abelian group of 2l copies of Z. De®ne

F : ��a A lGa !
Y

a A 2 l

Z

via

F�V��a� � ja�X�

for a word V, where X is the reduced word corresponding to V. As all the mappings
ja �a A 2l� are homomorphisms, so is F. We claim that F is a homomorphism from
the free complete product of the groups Ga onto the direct sum 0

a A 2l Z of 2l copies
of Z. First assume that this mapping is not into. Then there exist a reduced word X

and a sequence of pairwise distinct ordinals an �n A o� such that Fan
�X�0 0 for all

n A o. Thus for each n A o there is a convex subset Jn JX such that without loss of
generality

X ZJn
GMan;sn

for some sn A Men;an
JMan

�en A o1�. But now, if k A o1 such that en < k for all
n A o, then the element gk (since gk belongs to all sets Ik;an

) appears in®nitely many
times in X, i.e. X ÿ1�Gk� is in®nite, a contradiction. Thus the image of F is contained
in the direct sum of 2l copies of the integers.

On the other hand, by the choice of the sets Ie;a we certainly have

Occ�a �Mb� � 0 � Occÿa �Mb�

for distinct a; b A 2l. Moreover,
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Occ�a �Ma� � 1 and Occÿa �Ma� � 0

for any a A 2l. Thus we obtain

F�Ma� � �0; . . . ; 0; 1a; 0; . . .� A 0
b A 2 l

Z;

and therefore F is obviously surjective. Since there are 22 l

homomorphisms from
the direct sum of copies of Z to Z itself we are done.

Remark 2.6. Note that the above proof gives us that the free complete product
G � ��a A lGa contains a free subgroup H (the group generated by the words Ma), and
there is a projection onto H.

The following theorem gives us a complete description of all `interesting'
homomorphisms from G � ��a A lGa to the integers for uncountable l and groups
Ga �a A l�. By `interesting', we mean interesting with respect to the Specker Phe-
nomenon, i.e., if W is a ®nite subset of l, then all homomorphisms from the sub-
product GW � ��a AW Ga to the integers extend naturally to a homomorphism from G
to Z. However these homomorphisms are not of particular interest to us and are
well understood, and hence we will restrict ourselves to homomorphisms from G to Z
which are zero on every ®nite subproduct of G. First note that the de®nition of jMa

in
the proof of Theorem 2.5 did not really depend on the particular word Ma but only
on the fact that Ma had uncountable co®nality. One sees immediately that for any
word M whose domain M has uncountable co®nality we can de®ne such a homo-
morphism jM : G ! Z. Hence we de®ne the following set:

IG � fM A G : cf�M�X@1g

and let

FG : G !
Y

M A IG

ZM

be de®ned by FG�V� � �jM�X� : M A IG� where X is the reduced word correspond-
ing to V. Now FG is well de®ned and we have the following theorem.

Theorem 2.7. Let G � ��a A lGa for some uncountable cardinal l and groups Ga �a A l�.
Then any homomorphism c : G ! Z which is zero on every ®nite subproduct of G

factors through FG.

Proof. For simplicity we assume that all words are already in reduced form. First
we will show that the kernel of FG is exactly

Ker�FG� � fM A G : M contains no monotonic sequence of length o1g;
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where a monotonic sequence of length o1 is just a subset of M which is isomorphic
to o1 or its inverse. Clearly

Ker�FG�J fM A G : M contains no monotonic sequence of length o1g:

Conversely, if M is a reduced word that contains no monotonic sequence of length
o1 and FG�M�0 0, then there exists a reduced word N A IG, i.e. N has uncountable
co®nality, such that jN�M�0 0. But then Occ�N�M� or OccÿN�M� is non-trivial and
hence M must contain a monotonic sequence of length o1, a contradiction. It is
now enough to prove that any homomorphism f : G ! Z which is zero on any ®nite
subproduct of G acts trivially on Ker�FG�. For this, assume that M is a reduced word
which contains no monotonic sequence of length o1 such that f �M�0 0 for some
homomorphism f : G ! Z. We distinguish three cases.

Case (a). There exist subwords Nn of M �n A o� such that

(i) Nn is a convex subset of M;

(ii) the subsets Nn �n A o� are pairwise (almost) disjoint;

(iii) f �Nn�0 0 (without loss of generality f �Nn� > 0).

Hence the composition N of the words Nn �n A o� is a well-de®ned word in G and
applying Theorem 2.3 together with [3, Proposition 1.9] leads to a contradiction.

Case (b). There is an initial segment M � of M such that

(i) f �M ��0 0, where M � �M ZM � ;

(ii) for every proper initial segment N of M � we have f �N� � 0, where N �M ZN ;

(iii) M � has no largest element or for every t A M � there exists a convex subset
Nt J fm A M � : mX tg such that f �Nt�0 0, where Nt �M ZNt

.

Then the co®nality of M � has to be @0 by the assumptions and we choose an in-
creasing, unbounded sequence ftn : n A og in M � and put

Nn � fm A M � : mX tng or Nn � Ntn
�hence f �Nn�0 0�:

In both cases we easily obtain a contradiction. The same arguments apply for the
inverse of M and give a contradiction.

Case (c). Neither Case (a) nor Case (b) applies. Then it is easy to see that the set

J � ft A M : f �Mt�0 0g

is ®nite, where Mt �M Zftg (e.g. use Ramsey's Theorem). So without loss of gener-
ality we may assume that J is the empty set. We let I be the set of convex subsets of M

such that f �M ZB� � 0 for each convex BJA. Then I contains all singletons t A M,
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the empty set and it is downwards closed. Moreover, if A and B are elements of I and
AUB is convex, then AUB A I . Finally every initial segment of M with no largest
element has an end segment in I and hence M A I , a contradiction. Similarly we ob-
tain a contradiction using the inverse Mÿ1 instead of M. This ®nishes the proof.

For completeness let us make the following remark.

Remark 2.8. If h : G ! Z is any homomorphism, then an application of Theorem
2.3 shows that the set fa A l : h�Ga�0 f0gg � F is ®nite. Hence, regarding �a AF Ga

as a subgroup of G we let h0 � �h Z�a AF Ga
�rF . Then hÿ h0 satis®es the assumptions

of Theorem 2.7 and thus factors through FG.
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