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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 88, Number 4, August 1983 

TALL a-RECURSIVE STRUCTURES 

SY D. FRIEDMAN' AND SAHARON SHELAH2 

ABSTRACT. The Scott rank of a structure M, sr(M), is a useful measure of 
its model-theoretic complexity. Another useful invariant is o(M), the ordinal 
height of the least admissible set above M, defined by Barwise. Nadel showed 
that sr(M) < o(M) and defined M to be tall if equality holds. For any 
admissible ordinal a there exists a tall structure M such that o(M) = a. We 
show that if a =,3+, the least admissible ordinal greater than /3, then M can 
be chosen to have a /3-recursive presentation. A natural example of such a 
structure is given when /3 = w L and then using similar ideas we compute the 
supremum of the levels at which H I(L. L) singletons appear in L. 

The results in this paper concern structures which are complicated model-theoreti- 
cally, yet recursion-theoretically simple. Fix a structure M for a language L of 
finite similarity type. The Scott rank of M is defined as follows: Let x, y, x', y', ... 
range over IMI<w. By induction define a sequence of relations - on members of 

IMI<w or the same length: 

x - -y iff x,y realize the same atomic type in M, 

y iff V*'3y'(x*x' y*y') and 

vy' 3x'(x*x D y * y') 

x X -y iff x - y for all/3 < X, X limit. 

In the above, * denotes concatenation of sequences. Finally, Scott rank (M) is the 
least a such that VxVy ( - y x y ). Scott rank (M) is a useful measure of the 
model-theoretic complexity of M. 

Nadel [74] provides a bound on the Scott rank of a structure M in terms of 
admissible set theory: Scott rank (M) < o(M) where o(M) is the ordinal height of 
the least admissible set above M (see Barwise [69]). M is tall if equality holds. This 
bound is best possible in that for any admissible ordinal a there is a tall structure 
M such that Scott rank (M) = a. 

Let 3 be a limit ordinal. M is 3-recursive if IMI = , and all of the relations, 
functions of M, are /-recursive. (For a definition of /-recursive, see Friedman [78]. 
In this paper we need only consider those 3 which are either admissible or the limit 
of admissible ordinals, in which case /-recursive coincides with A1(L, c).) It is 
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TALL at-RECURSIVE STRUCTURES 673 

shown in Nadel [74] that there is an w-recursive (=recursive) structure of Scott 
rank wk . (The example is a recursive linear ordering of ordertype wlk + wlk = 
ordertype of the rationals.) ?1 of the present paper shows that for every limit 
ordinal / there is a /-recursive structure of Scott rank 0+, the least admissible 
ordinal greater than 3. Such a structure MO is tall since it belongs to L:+ and 
hence o(Mf) = /+. Define LOOW1-rank (M) in exactly the same way as Scott rank 
(M) except where x, y, x',y',... now range over JMJ<w1. ?2 focuses on the special 
case: / = w1. Using entirely different methods than in ?1 a natural example of 
an wl-recursive structure of LOOw1-rank w+ is presented (from this an wl-recursive 
structure of Scott rank w+ is easily obtained). Similar techniques are then used to 
show that IH1(L,1)-singletons appear cofinally inside La, where a is the least stable 
ordinal greater than w1. 

1. Game rank versus Scott rank. The goal of this section is to prove 

THEOREM 1. For any limit ordinal / there is a /-recursive structure of Scott rank 
= least admissible ordinal greater than /. 

It clearly suffices to treat the case where / is either admissible or the limit of 
admissible ordinals. It will also be convenient to assume that / is greater than w 
(otherwise the result is known). 

The proof of Theorem 1 can be outlined as follows: We first show that there is 
a /-recursive open game with a winning strategy for the "closed player", but none 
inside L:+. This allows one to build a /3-recursive tree T of "game rank" 03+. Then 
a /-recursive structure M of Scott rank 0+ is obtained by building M so that its 
Scott analysis is very similar to the "game analysis" of T. 

We must first describe the "game rank" of a tree. All trees are subtrees of 
3<W =all finite sequences of ordinals less than /. Our definition here is rather 
nonstandard but is designed to allow the transition from game rank to Scott rank 
to go smoothly. 

Let T be a tree. If r1 = (r1(O),r(1),...) C T has even length we let (ri)even = 

(rq(O), rq(2), ...). Let Ak = {(?i)even I r1 C T, 1(rq) = length(r1) = 2k}. For v E Ak let 
Bv = {r1 E T j (71)even = V}. If r1 C T has even length we define Rk(r1) by 

Rk(r1) = 0 +-+ there is v D (?i)even such that r1 has no extension in Bv, v C Uk Ak; 

Rk(r7) = ce > 0 +-+0 0 Rk(r1) : / for all / < ae and there is v D (?i)even such that 

r'Dri, r'ECBv--+Rk(r1')=/3forsome/3<a, 

Rk(r1) = oc +-+ Va Rk(r1) : ae, Rk(T) = sup{Rk(r1) I r1 E T and Rk(r1) : c} 
Thus Rk(r1) measures how good a position player I is in after r1 has been played 

in the following game: Players I and II alternately choose vo0 ?70, v1, 771, ... with the 
restrictions that vo C v1 C ..., ) C r7o C ..., rn E Bv,) vi E UkAk. Player I wins if 
at some stage player II can make no legal move. Otherwise player II wins. 

LEMMA 2. There is a /-recursive tree T such that Rk(T) = /+. 

PROOF. We use some ideas from /-logic. Enlarge the language of set theory 
by adjoining (Henkin) constants co, cl,... and a name /' for each ordinal /' < /. 
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674 S. D. FRIEDMAN AND SAHARON SHELAH 

Formulas in this language can be easily coded by ordinals less than 3. Let S consist 
of the following sentences in this language: 

(a) Axioms for admissibility, 
(b) /' is an ordinal, /1 E /2 (whenever /1 < 32 < 03). 

Then the tree T consists of all sequences of sentences (o0,? 1, such that 
(i) if b2, = - .u then 02n+1 = ,l or X, 

(ii) if 02, = 3x V/ then ck2n+1 = '(Ck) some k or - 2n, 
(iii) if 122n = 01J V 'V2 then 02n+1 = i or 4'2 or - ?2n 
(iv) if 02n = "Ck E /3" then ?2n+1 = Ck = /3" some /' < / or g2n 
(v) 01 A 03 A 0/5 A * is consistent with S. 

Since : > w condition (v) is /-recursive. 
CLAIM. Rk(T) =+. 
PROOF OF CLAIM. As the inductive definition of Rk can be carried out in LO+ 

it is clear that Rk(T) < /+. By absoluteness we can assume that / is countable. 
As S has a model where / is standard, Rk(q) = oo. Now suppose Rk(T) = -y < /+. 
Let Vko, ), ... be a listing of the sentences in this language. Define 0o, /,.... by 

02n = On 

>2n+1 = least o such that (o, ... ., 2n, 0b) has Rk> >y. 

As {71 C T I Rk(?7) > -y} C La+ the sequence (qo,ql, ...) C La+. But {&2n+1 I nC 
w} describes the complete Henkin theory of an end extension of Lf+. This is a 
contradiction. Q.E.D. 

We can now describe the structure M to satisfy Theorem 1. Let T be as in 
Lemma 2. Define Ak, B, for V E Uk Ak = A as before. Let Pv = all finite subsets of 
BI, for v C A. Endow each Pv with a distinct 0, so that v, : V2 Pv1 n PV2 = 0. 
The universe of M = IMI = U{P, I v C A}. Introduce predicates for each Pv. 

We now provide P, with an "affine" group structure; that is, a group structure 
without a distinguished identity. Note that P, is a group under the operation /E of 
symmetric difference. For w C Pv let S,,w = {(wl, w2) I wl Aw2 = w}. 

Notice that with these relations, any automorphism of Pv is determined by its 
action at a single argument. 

Finally, we introduce functions connecting the different P 's. If v * (a) C A, then 
fv*(c!) is defined by: f,*(c)(w) = {1 [2n - 2 j r1 C w} for w C PV*(Q); fv*(,)(w) = 

w otherwise. Thus any automorphism of Pv*(a) has a unique extension to P, 
preserving the function fv*(x). 

Thus the desired structure is M = (IMI,Pv,Sv,w,fv*(a)), v C A, w C Pv. It 
remains to compute the Scott rank of M. 

For any collection G of partial functions from M to M define G-Rk(g) for g C G 
by 

G-Rk(g) > O *- g CG; 
G-Rk(g) > a + 1 Vm C IjMIh C G(g C h,m C Dom(h), G-Rk(h) > a) and 

Vm e MI]3h e G(g h, m C Range(h), G-Rk(h) > a); 
G-Rk(g) > X +-* Va < X G-Rk(g) >? a for limit X; 
G-Rk(g) = co x G-Rk(g) > a for all a. 

Also let Rk(G) = sup{G-Rk(g) I g E G, G-Rk(g) < oo}. Thus we are interested in 
showing that Rk(Go) = /+ where Go = all finite partial isomorphisms of M. 

For any D C IMI let D = closure (D) = U{Pv I For some v' D v D n PvP 0}. 
As remarked earlier any partial isomorphism of M with domain D has a unique 
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TALL a-RECURSrVE STRUCTURES 675 

extension to a partial isomorphism with domain (and range) D. Thus it suffices to 
show that Rk(GC) = /+ where G1 = {g E Go I Dom(g) = Dom(g)}. 

Now if g C G1 then g is uniquely determined by g* which is defined by Domain 
(g*) = {v I Pi, C Dom(g)}, g*(v) gv(0). Moreover, g* satisfies 

(*) fv (a)(g* (v * ())) = g* (v). 

Conversely, any function h with domain a finite t C A closed under initial segments, 
obeying (*) must be of the form g* for some 9. Let H = {g* I g E G1}. Then 
Rk(G1) = Deg(H) which is defined by 

Deg(h) > 0 -h C H; 
Deg(h) > a + 1 -Vv C A]h 1 D h(v E Dom(h1), Deg(h) > ?a); 
Deg(h) > X +-* Va < X Deg(h) > a for limit X; 
Deg(h) = oo +-+ Deg(h) > a for all a, Deg(H) = sup{Deg(h) I Deg(h) < oo}. 

Thus it suffices to show that Deg(H) = /+. 
Our final claim establishes the theorem by relating Deg (defined on H) to Rk 

(defined on rj C T, length(nj) even). 
CL, AIM. For h e H, Deg(H) = min{Rk(rj) I E e h(v) for some v}. 
PROOF. By induction on a we show that Deg(h) > a iff Rk(h) > a iff Rk(rq) > a 

for all rj e U Range(h). This is trivial for a = 0 or for limit a (by induction). 
Let a = -y + 1. Suppose Rk(rj) > ?y + I for all j e U Range(h) and v E A. We 
show that ]hi D h (v E Dom(hi) and Rk(rj) > -y for all rj E U Range(hi)). Let 
vo C v be maximal, vo E Dom(h). For each rq E h(vo) choose 71' D 71, 71' E Bv so 
that Rk(rj') > -y (this is possible since Rk(rj) > oy + 1). Then set hl(v') = h(v') for 
v'E Dom(h), hi(v [ k) = {r' [ 2k I r E h(vo)} for k < length(v). 

Conversely suppose Deg(h) > -y + 1, rj E U Range(h). We show that for all v D 
(rev>en there is r' D r such that rj' C Bv, Rk(rj') > -y. For, given V D (q7)even let 
h1 D h, v C Dom(hi ), Deg(h1 ) > oy. By induction, Rk(rj') > oy for all rj' E hi(v). But 
r has an extension ' C hl(v) as h1 e H. Q.E.D. 

F'inally as Rk(T) = /+ we conclude Deg(H) = 3+ and hence the theorem. 

2. wl-recursive trees. We use here Godel condensation methods to build an 
wl-recursive tree T of L,,,,,-rank wj = least admissible ordinal greater than w1. 
For simplicity assume w1 = wL. The general case follows from the fact that the 
proof given below can be easily adapted to any L-cardinal s such that z is regular 
in L, a = least admissible greater than i 

Let S = {ca < w, I a admissible, L,, k w1 exists and is the largest admissible}. 
A typical member of S is a where L, is the transitive collapse of a countable 
elementary submodel of L<=,+. 

We first define the tree T' = {(ao, .C. , an) I For all i, a'> E S, a' < ai+ and there 
exists HI: L, - L,,,+, }. Note that HI as above must be the identity on wi and 

every element of L,,, is definable over L,, from ordinals < wLa Thus if II exists 
in the definition of T' then fl-1 must be the transitive collapse of H = Skolem hull 
of wut inside L,+l. This proves that T' is w1-recursive. 

The desired tree T is obtained via a minor modification of T'. This modification is 
needed to eliminate certain inhomogeneities on T Define T {((ao, io),... , (cn in)) I 
For all k, ak E S, ik E a, ak < ak+l and there exists 1I: Lak 

= 
Lak+l }. (Thus an 
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676 S. D. FRIEDMAN AND SAHARON SHELAH 

ordinal a C S can be "repeated" countably often.) As before T is wl-recursive. 
Our goal is to show that T has LO,l,-rank w+. (We shall in fact show that T is 
isomorphic to the tree T in ?1 of Friedman [81].) 

We begin by analyzing the structure of T. We show that the structure of T 
below ((ao, i0o)..., (an, i)) is determined by the S-rank (an). This is defined by 

S-rk(a) > O - a cS; 
S-rk(a) > -y + 1 +- For uncountably many a'3IU: L,> L,-L, S-rk(a') > ; 
S-rk(a) > X S-rk(a) > -y for all -y < X, for limit X; 
S-rk(a) = oo S-rk(a) > -y for all -y. 

Also set Rank(S) = sup{S-rk(a) Ia c S, S-rk(a) < oo}. 
We can also define rk((ao, io), .. ., (a,n in)) = S-rk (an), when ((ao, io),... , (a,n in)) 

C T. Then a node on T of rk 0 has exactly w-many immediate extensions on T. 
A node on T of rk -y > 0 has exactly w-many immediate extensions of rk -y and 
wl-many immediate extensions of rk 6 for 6 < y. A node on T of rk oo has WI-many 
immediate extensions of rk oo. 

Our main goal is to show that for each uo C T, rk u0 = oo or u0 = 0, {u C T 
a D uo and rk u = cc} ? L,?. From this it follows that LO1-rank of T = w+: Note 
that the inductive definition of rk as well as the inductive analysis of the LO,+,1-rank 
of T can be carried out in Lw+. If u0 C T, rk uo = oo then uo must have immediate 

extensions of rk -y for each < w+ as otherwise {u C T I u D uo and rk u = oo}= 
{ C T I u D u0 and rk u > ty} for some -Y < w+ and this latter set is a member of 

L,LO+. Thus we can conclude that if two nodes on T lie on the same level and have 
the same rk, they can be mapped to each other by an automorphism of T. Thus 
determining the LO,l,-type of nodes on T is nothing more than determining their 
rk and the level of T on which they lie. If LO,l,-rank of T is less than w+ then 
{ C T I rku = oo} = {u C T I rku > ?y} for some < w+ and this latter set belongs 
to L.+. This contradicts our main claim. 

CLAIM. S-rk(a) = oo a < w, and MU: La, L,L+. 
From this claim it is clear that {u C T I u D uo, rk u = ool} L,,+ when rk uo = cc 

or uo = 0, as otherwise {oa < w1 I 1: Lce --*L ?} C L,+ which is impossible. 

PROOF OF CLAIM. Clearly if a < w, and 3II: L,>-=LW+ then S-rk(a) = oo 
as if X is the set of all such a's then X is uncountable and each element of 
X can be elementarily embedded in all larger elements of X. For the converse 
suppose a C S, S-rk(a) oo. Choose / > a, 3U: L,-=-L,+. Now inductively 

define L,>- L,1 -'L2 * and LQ -'4 - 2 * * such that S-rk az, 
S-rk /h = oo for each i and /h < a, < /3+ (This is possible by the definition of S- 
rk.) If Direct Lim(L,, i < w) is well-founded then it is isomorphic to some La . If 
Direct LimKLoI i < w) is well-founded then it is isomorphic to some Lo,. But wL' = 

a s So ' since a', /' C S. We conclude that 3II : L, L,>I, U1: Lo La-L, 
so H` o II: LL, -*L (since Ul1, Ul1 is just the inverse of the transitive collapse of 

the Skolem hull of w, wLo in L,>). So 11: L=L+ 

It remains to justify the well-foundedness of the direct limits. This is provided 

by our final subelaim. 

SUBCLAIM. Direct LimKL, | i < w) is well-founded if L 1- La2 * *, with a1 < 

a2 < in S. 
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TALL &-RECURSrVE STRUCTURES 677 

PROOF. Let M = Direct Limit(L,, I i < w) and we identify sp(M) = standard 
part of M with some L,. Note that w{ = sup{w i < w} < -y. But 'y is 
admissible as either L? = M or L? is the standard part of a model of KP. As 
M k w, is the largest admissible, we can conclude that -y - (wM)+ 

Now suppose L? 4 M and choose i and Il: L,, M so that Range(H) % L_. 
Let X < a, be so that U(X) 0 Lf. Then w> < X. L,>? h w, is the largest admissible, 

we may choose 17 C T such that Rk(17) = X where T is the w i-recursive tree 

constructed in Lemma 2 (where w3 =ci). Note that for arbitrary r' C T, Rk(r1') < 
oo if and only if player I has a winning strategy at position q1' for the game described 
immediately before Lemma 2. 

If T' = tree obtained from Lemma 2 when 3 = wj then U(T) = T' and Ul(r1) = q 
has nonstandard Rk' (= Rk for T'). But then player II has a winning strategy in 
the T'-game. This easily yields a winning strategy for player II in the T-game, 
contradicting Rk(17) < oo. Q.E.D. 

Thus we have established 

THEOREM 3. T is an w, -recursive tree of Loo, -rank w+ 

An wl-recursive structure of Scott rank w+ can now be obtained by considering 
T- = infinite direct product of w-many copies of T. For then the analysis of Locwi- 
rank for T reduces to the Scott analysis of T'. 

We end with an observation concerning U1 (Lt,,)-singletons. Assume V = L. A 
function f: L,1 -- L,1 is a H1 (L,,1 )-singleton if it is the unique solution to a LI1 (L,1) 
formula q(f) with a single variable for a total function. An w,-recursive tree with 
a unique branch of length w, yields a IU1(L,1,)-singleton. We will show that for 
any 3 < a = least stable > w1 there is an w1-recursive tree with a unique branch of 
length w, which is constructed in L past 3. Note that any Ill(L,1)-singleton must 
be a member of L,. 

Note that L, = El Skolem hull (L,, U {L,1 }). Thus we can choose a El formula 
i(x, y,z) and p C L,1 such that v3 is the unique solution to O(x,wl,p). Let a be 
the least admissible such that ,3 < a, L,, k 0(, wl,p) and a* = El projection of 
a = W1. 

We describe now an w1-recursive tree T whose unique path f consists of an wl- 
sequence of elementary submodels of L,,. This will suffice as clearly f 0 L/. S 
consists of all oi < w1 such that 

(a) Lui k KP + ?w exists, a* = W; 
(b) p C L? where =wL-, L kq( p) for someK < a; 
(C) LbX l There are no admissible 6 > ,B s.t. 8* = WI. 

Then the tree T = { ,o-1,...) C w<W i 6 C S for all 8, -6 greatest - < 

u6+1 s.t. MU:&-' *LJ9x3 wx = U{wi 6< X}, X limit, E3l a< aoj: 
L-a}. It is not hard to check that II as above is uniquely determined as every 
element of L- is definable over L, from 3 together with ordinals < WLi, for os E S. 
So T is w1-recursive. 

Now define an wl-sequence of elementary submodels Mo - M1 ... of Lc, by: 
Mo = Skolem hull of {p, w1, /} in L, -yo = Mo n w1; M8+1 = Skolem hull of -y6 U 
{p,wl,/3} inside L., y+1 = M5+1 nw1; A)\ = J{M3 1 6 <X}, }Y = U{E'5 1 6 < X} 
for limit X. Then (ao, ?i,...) forms an wl-branch through T where od = transitive 
collapse (Ma). 
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678 S. D. FRIEDMAN AND SAHARON SHELAH 

If f is an w1-branch through T then there are elementary embeddings Lf(o) 

Lf(i) -* and we can form the direct limit La. Now &' must be the least ,t such 
that ,u is admissible, ,* = t', ,> p', Lk k 0(3', ',p) for some 3' < a' ' = wi'. 
But ' = w1. So 3' = 3 since 3 is the unique solution to o(x, w1,p). It follows that 
a'= a and hence f(6) = a6 for all 8. Thus T has a unique wl-branch. 

We have shown that rIH(L,1)-singletons are constructed in L cofinally in the least 
stable ordinal a > wl. By way of contrast all Hj(LQ)-singletons are constructed in 
L before w+ = wCK. The disparity here is due to the fact that well-foundedness is 
easily expressible over L,1. 

FINAL NOTE. The second author has found a way to modify the construction in 
?1 to produce an w1-recursive structure of L,, 4-rank w+. The key to the argument 
is in establishing the existence of an w1-recursive tree of w1-Rkw+, where w1-Rk is 
defined in analogy to our earlier definition of Rk. Then the appropriate structure 
is obtained from such a tree much as the structure M was obtained from T in ?1. 
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