
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 132, Number 11, Pages 3357–3365
S 0002-9939(04)07580-X
Article electronically published on June 21, 2004

ON TWO PROBLEMS OF ERDŐS AND HECHLER:
NEW METHODS IN SINGULAR MADNESS

MENACHEM KOJMAN, WIES LAW KUBIŚ, AND SAHARON SHELAH

(Communicated by Carl G. Jockusch, Jr.)

Abstract. For an infinite cardinal µ, MAD(µ) denotes the set of all cardi-
nalities of nontrivial maximal almost disjoint families over µ.

Erdős and Hechler proved in 1973 the consistency of µ ∈ MAD(µ) for a
singular cardinal µ and asked if it was ever possible for a singular µ that
µ /∈ MAD(µ), and also whether 2cf µ < µ =⇒ µ ∈ MAD(µ) for every singular
cardinal µ.

We introduce a new method for controlling MAD(µ) for a singular µ and,
among other new results about the structure of MAD(µ) for singular µ, settle
both problems affirmatively.

1. Introduction

1.1. Background. Let µ be an infinite cardinal. A family of sets A is µ-almost
disjoint (µ-ad for short) if |A| = µ = |

⋃
A| for every A ∈ A and |A ∩ B| < µ for

every distinct A,B ∈ A. A is maximal µ-almost disjoint (µ-mad) if there is no
C ⊆

⋃
A such that A ∪ {C} is µ-almost disjoint; in this case we also say that A

is mad in µ. It is clear that every µ-almost disjoint family consisting of fewer than
cf µ sets is mad in µ; such a family will be called trivial. We denote by MAD(µ) the
set of all cardinalities of nontrivial mad families in µ. A standard diagonalization
argument shows that cf µ /∈ MAD(µ). Therefore, MAD(µ) is contained in the
interval of cardinals [cf(µ)+, 2µ].

W. W. Comfort asked (see [7]) under what conditions it follows that µ ∈MAD(µ)
for a singular cardinal µ. P. Erdős and S. Hechler [7] proved that µ ∈ MAD(µ) if
λcf µ < µ for every λ < µ. Thus, if 2ℵ0 < ℵω, then the interval [2ℵ0 ,ℵω] of cardinals
is contained in MAD(ℵω).

Erdős and Hechler asked in [7] whether it is consistent that µ /∈ MAD(µ) for
some singular cardinal µ and, more concretely, whether Martin’s axiom together
with 2ℵ0 > ℵω implies that ℵω /∈ MAD(ℵω). They also asked whether 2cf µ < µ
implies µ ∈MAD(µ) for singular cardinals µ other than ℵω.
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3358 MENACHEM KOJMAN, WIES LAW KUBIŚ, AND SAHARON SHELAH

Both problems are settled affirmatively by the general results below on MAD(µ)
for a singular µ.

1.2. Notation. Let aµ = min MAD(µ), and let a = aℵ0 . For a singular µ it follows
that MAD(cf µ) ⊆ MAD(µ); therefore aµ 6 acf µ.

A crucial role in the results is played by two bounding numbers : bµ and bcf µ.
For every quasi-ordering (P,6) with no maximum, the bounding number b(P,6)

is the least cardinality of a subset of P with no upper bound. For a regular cardinal
κ, let bκ denote the bounding number of (κκ,6∗), where f 6∗ g means that |{i <
κ : f(i) > g(i)}| < κ; let b = bℵ0 . It is well known that κ < bκ 6 aκ for a regular
cardinal κ (for κ = ℵ0 see [6]; the general case is similar) and that under Martin’s
axiom, b = 2ℵ0 .

Suppose that µ is a singular cardinal of cofinality κ and that 〈µi : i < κ〉 is
a strictly increasing sequence of regular cardinals with supremum µ. Standard
diagonalization shows that b(

∏
i<κ µi,6∗) > µ. Denote by bµ the supremum of

b(
∏
µi,6∗) over all strictly increasing sequences of regular cardinals 〈µi : i < κ〉

with supremum µ.
Each of the following three relations is consistent with ZFC: b < bℵω , b = bℵω

and b > bℵω .

1.3. The results. We prove that for every singular cardinal µ:
(1) aµ > min{bµ, bcf µ};
(2) aµ 6 λ < bµ =⇒ λ ∈MAD(µ).

Thus, if bcf µ > µ, it follows from (1) that aµ > µ, and hence µ /∈ MAD(µ); and
if acf µ < µ, it follows from (2) that µ ∈MAD(µ). In particular,

(b) MA+ 2ℵ0 > ℵω =⇒ ℵω /∈ MAD(ℵω),
(a) 2cf µ < µ =⇒ µ ∈ MAD(µ) for every singular µ,

which, respectively, settle in the affirmative both problems of Erdős and Hechler
from [7].

If one assumes the consistency of large cardinals, bℵω can be shifted up arbitrarily
high below ℵω1 . Following this with a ccc forcing for controlling b proves the
following:

(3) for every regular λ ∈ (ℵω,ℵω1) and regular uncountable θ 6 λ+, it is
consistent that

MAD(ℵω) = [θ, λ+].
So, e.g., the following are consistent:
• MAD(ℵω) = {ℵ1,ℵ2, . . . ,ℵω+β+2 = 2ℵω} for an arbitrary β < ω1,
• MAD(ℵω) = {ℵω+β+2} for an arbitrary β < ω1,
• MAD(ℵω) = [ℵω+α+1,ℵω+β+2] for arbitrary α 6 β < ω1,

and so on.
We refer the reader to the comprehensive list of references in D. Monk’s recent

paper [12], in which maximal almost disjoint families are viewed as partitions of
unity in the Boolean algebra P(µ)/[µ]<µ .

1.4. Preliminary facts. We will use the following facts from [7]:
(1) MAD(cf µ) ⊆ MAD(µ), and
(2) MAD(µ) is closed under singular suprema.

The latter fact is stated in [7] in a less general form. So we give a proof here.
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SINGULAR MADNESS 3359

Lemma 1.1. Assume that λ = supi<θ λi, where {λi : i < θ} ⊆ MAD(µ) and θ < λ.
Then λ ∈MAD(µ).

Proof. We may assume that θ 6 λ0. Let A be a mad family in µ with |A| = λ0.
Write A = {Ai : i < λ0} and for each i < θ choose a mad family Bi with

⋃
Bi = Ai

and |Bi| = λi. Set
C =

⋃
i<θ

Bi ∪ {Aj : θ 6 j < λ0}.

Then |C| = λ and C is mad in µ. �

The following fact will also be used in some proofs.

Lemma 1.2. Let κ = cf µ, and let A be a µ-almost disjoint family of size κ. Then
there exists a mad family A′ ⊇ A such that |A′| = aµ and

⋃
A′ =

⋃
A.

Proof. Fix a µ-mad family B with |B| = aµ. Choose B0 = {Bi : i < κ} ⊆ B. Let
X =

⋃
i<κBi and define

B′ = {B ∩X : X ∈ B \ B0 & |X ∩B| = µ}.
Let 〈Ai : i < κ〉 be a one-to-one enumeration of A. Define a bijection f :

⋃
A → X

so that f [Ai \
⋃
j<iAj ] = Bi \

⋃
j<iBj . Finally, set A′ = A ∪ {f−1[B] : B ∈ B′}.

Observe that A′ is mad and |A′| = aµ. �

2. Inequalities

From now on, µ will always denote a singular cardinal whose cofinality is denoted
by κ.

2.1. Bounding numbers and madness in singular cardinals.

Theorem 2.1. For every singular cardinal µ,

(1) aµ > min{bµ, bcf µ}.

Proof. Let κ = cf µ. Suppose to the contrary that aµ < min{bµ, bκ}, and fix a
strictly increasing sequence of regular cardinals 〈µi : i < κ〉 with supremum µ such
that b(

∏
i<κ µi,6∗) > aµ.

Let A =
{
{i} × µ : i < κ

}
. By Lemma 1.2, there exists a family B ⊆ [κ × µ]µ

such that B ∪ A is mad in µ, B ∩ A = ∅ and |B| = aµ.
For each B ∈ B, define a function fB : κ→ κ by fB(i) = min{j < κ : |B∩ ({i}×

µ)| < µj}. This function is well defined, since |B ∩ ({i} × µ)| < µ for each i < κ.
Since |B| = aµ < bκ, there exists a function f : κ → κ so that fB <∗ f for all

B ∈ B. Without loss of generality, we may assume that f is strictly increasing.
For each B ∈ B, for all but boundedly many i < κ, it follows that sup{α <

µf(i) : (i, α) ∈ B} < µf(i). Let gB(i) be defined by

gB(i) =

{
0 if sup{α < µf(i) : (i, α) ∈ B} = µf(i),

sup{α < µf(i) : (i, α) ∈ B} otherwise.

For each B ∈ B the function gB belongs to
∏
i<κ µf(i). Since

b(
∏
i<κ

µf(i),6∗ ) > b(
∏
i<κ

µi) > aµ,

we can fix a function g ∈
∏
i<κ µf(i) so that gB <∗ g for all B ∈ B.
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3360 MENACHEM KOJMAN, WIES LAW KUBIŚ, AND SAHARON SHELAH

Define
C =

⋃
i<κ

{i} × [g(i), µf(i)).

Clearly, |C| = µ. For each B ∈ B there exists jB < κ such that gB(i) < g(i)
for all i > jB. This implies that {i} × [g(i), µf(i)) is disjoint from B for all i > jB.
Hence |B ∩ C| 6 µf(jB) < µ. Clearly, |C ∩ ({i} × µ)| 6 µf(i) < µ for all i < κ; so
A∪ B ∪ {C} is µ-almost disjoint, contrary to the maximality of A∪ B. �

A positive answer to the first question of Comfort, Erdős and Hechler follows
now as a corollary:

Corollary 2.2. If Martin’s Axiom holds and 2ℵ0 > µ > cf µ = ℵ0, then µ /∈
MAD(µ).

2.2. Between aµ and bµ. In this section we shall show that MAD(µ) contains the
interval of cardinals [aµ, bµ) and even [aµ, bµ] in the case that bµ is a successor of
a regular cardinal.

Theorem 2.3. For every singular cardinal µ and every cardinal λ,

(2) aµ 6 λ < bµ =⇒ λ ∈ MAD(µ).

If bµ is a successor of a regular cardinal, then aµ 6 bµ =⇒ bµ ∈ MAD(µ).

To prove the theorem it suffices, by Lemma 1.1, to show that every regular
λ ∈ [aµ, bµ) belongs to MAD(µ).

The proof of this will now be divided into two cases. First we prove that every
regular aµ < λ < µ belongs to MAD(µ). The proof in this case does not require
any specialized techniques. Then we prove the same for regular µ < λ < bµ and
for bµ itself when it is the successor of a regular cardinal. In this case the proof
requires some machinery from pcf theory.

Despite the technical differences between both proofs, they are similar, and could,
in fact, be combined to a single proof. Both follow the same scheme of gluing
together λ different µ-mad families, each of size aµ, to a single µ-mad family of size
λ. In the case λ < µ, a simple presentation of µ as a disjoint union of λ parts works;
in the second part we need to rely on smooth pcf scales to get a presentation of µ
as an almost increasing and continuous union of length λ of sets of size µ.

2.2.1. The case λ < µ.

Lemma 2.4. Suppose µ > cf µ = κ. Then for every regular cardinal λ,

aµ 6 λ < µ =⇒ λ ∈MAD(µ).

Proof. Suppose λ is regular and aµ 6 λ < µ. Since aµ > κ = cf µ, λ > κ.
Fix a strictly increasing sequence of regular cardinals 〈µi : i < κ〉 such that

supi<κ µi = µ and λ < µ0. We will work in µ × λ instead of µ. Let S = {δ <
λ : cf δ = κ}. For each δ ∈ S fix a strictly increasing, continuous sequence Dδ =
〈γδi : i < κ〉 with limit δ such that γδ0 = 0. Define

F δj =
⋃
{µ× {β} : γδj 6 β < γδj+1}.

Thus Fδ = {F δj : j < κ} is a disjoint family of sets, each set of size µ, which covers
µ× δ. Let Aδ ⊆ [µ × δ]µ be such that Aδ ∪ Fδ is mad in µ × δ, Aδ ∩ Fδ = ∅ and
|Aδ| = aµ.
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SINGULAR MADNESS 3361

Define
B = {µ× {α} : α < λ} ∪

⋃
δ∈S
Aδ.

Then |B| = λ and B ⊆ [µ× λ]µ. We will show that B is µ-mad.
First, observe that B is almost disjoint: clearly each element of Aδ is almost

disjoint from any set of the form µ× {α}, because if α < δ, then µ× {α} ⊆ F δj for
j < κ such that γδj 6 α < γδj+1. Finally, consider Ai ∈ Aδi , i < 2, with δ0 < δ1.
Then A0 ⊆

⋃
j<j0

F δ1j , where j0 < κ is such that δ0 < γδ1j0 . Thus |A0 ∩A1| < µ.
To see that B is mad, fix an arbitrary Z ∈ [µ × λ]µ. There exists a sequence

〈αi : i < κ〉 in λ such that

|Z ∩ (µ× {αi})| > µi.
If |{αi : i < κ}| < κ, then |Z ∩ (µ × {α})| = µ for some α. So suppose that

|Z ∩ (µ × {αi})| < µ for every i < κ. Taking a subsequence, we may assume that
〈αi : i < κ〉 is strictly increasing. Let δ be its supremum. By regularity of λ, δ ∈ S
and therefore Z ∈ [µ×δ]µ. Shrinking Z if necessary, assume that Z ⊆

⋃
i<κ µ×{αi}.

Then |Z ∩ F δj | < µ for every j < κ. Thus, |Z ∩ A| = µ for some A ∈ Aδ. This
completes the proof. �

Corollary 2.5. Let µ > cf µ = κ. If aκ 6 µ, then [aκ, µ] ⊆MAD(µ). In particular,
if 2κ < µ, then µ ∈MAD(µ).

Corollary 2.5 anwers affirmatively the second question of Erdős and Hechler in
[7].

2.2.2. The case λ > µ. A (µ, λ)-scale, for a regular cardinal λ > µ, is a sequence
f = 〈fα : α < λ〉 ⊆

∏
i<κ µi such that 〈µi : i < κ〉 is a strictly increasing sequence

of regular cardinals with limit µ, and so that α < β < λ =⇒ fα <∗ fβ and
for every g ∈

∏
i<κ µi there is α < λ with g <∗ fα. The relation f <∗ g means

that the set {i < κ : f(i) > g(i)} is bounded in κ. When µ is fixed, “(µ, λ)-scale”
will be abbreviated by “λ-scale”. A λ-scale f is smooth if for every δ < λ with
cf δ > κ, the sequence f � δ = 〈fα : α < δ〉 is cofinal in (

∏
i<κ fδ(i), <

∗). In this
case we say that fδ is an exact upper bound of f � δ. We will denote by [f, g) the
set {(i, α) : i < κ ∧ f(i) 6 α < g(i)}.

The proof in the present case goes through two steps. First, it is shown that
whenever a smooth (µ, λ)-scale exists and aµ < λ, it follows that λ ∈ MAD(µ).
Then it is shown that for every µ < λ < bµ there is a smooth (µ, λ)-scale and that
in case bµ is a successor of a regular cardinal there is also a smooth (µ, bµ)-scale.

Lemma 2.6. Assume λ > µ > cf µ = κ and there exists a smooth (µ, λ)-scale. If
aµ 6 λ, then λ ∈MAD(µ).

Proof. Suppose there exists a smooth λ-scale 〈gξ : ξ < λ〉 ⊆
∏
i<κ µi. Let S = {δ <

λ : cf δ = κ}, and for each δ ∈ S fix a strictly increasing, continuous, sequence
〈γδi : i < κ〉 with limit δ such that γδ0 = 0 and put Dδ = {γδi : i < κ}.

By induction on ξ < λ we construct a smooth λ-scale f = 〈fξ : ξ < λ〉 ⊆
∏
i<κ µi

that satisfies the following two conditions:
(1) If δ < λ is a limit and cf δ 6 κ, then fδ(i) = supξ∈Dδ fξ(i).
(2) For each ξ < λ the set [fξ, fξ+1) = {(i, α) : fξ(i) 6 α < fξ+1(i)} has

cardinality µ.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:793
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By induction on ξ < λ we define an increasing and continuous sequence of
ordinals ζ(ξ) < λ and a <∗-increasing sequence of functions fξ ∈

∏
i<κ µi so that

fξ = gζ(ξ) for all ξ < λ except when ξ is limit of cofinality 6 κ. Then f := 〈fξ : ξ <
λ〉 will be a smooth λ-scale as required.

At a limit stage ξ of cofinality 6 κ, let ζ(ξ) =
⋃
ξ′<ξ ζ(ξ

′) and use condition (1)
to define fξ; at successor ξ+1 choose ζ(ξ+1) so that max{fξ, gζ(ξ)} <∗ gζ(ξ+1) and
(2) holds, and let fξ+1 = gζ(ξ+1). Suppose now that ξ is a limit of cofinality > κ.
By the smoothness of g, and since 〈gζ(ξ′) : ξ′ < ξ〉 is <∗-increasing, after defining
ζ(ξ) =

⋃
ξ′<ξ ζ(ξ

′) we get that gζ(ξ) is an exact upper bound of 〈gζ(ξ′) : ξ′ < ξ〉. But
then gζ(ξ) is also an exact upper bound of 〈fζ(ξ′) : ξ′ < ξ〉, and we let fξ = gζ(ξ).

Let fλ be defined on κ by fλ(i) = µi.

Claim 2.7. Suppose δ 6 λ and A ⊆ [0, fδ) has cardinality µ. If cf δ > κ, there is
some δ′ < δ so that |A ∩ [0, fδ′)| = µ.

Proof. Find g < fδ so that
∑
i<κ |A ∩ (i × g(i))| = µ. By smoothness there exists

some δ′ < δ so that g <∗ gδ′ . �

For every ξ < λ, let Aξ = [fξ, fξ+1) and let A = {Aξ : ξ < λ}. Then A ⊆
P
(
[0, fλ)

)
is µ-almost disjoint and |A| = λ.

For each δ ∈ S and i < κ, let F δi = [fγδi , fγδi+1
). Then Fδ = {F δi : i < κ} is a

µ-almost disjoint family whose union is, by condition (1) on f , equal to [0, fδ). Fix
a µ-ad family Bδ ⊆ P([0, fδ)) such that |Bδ| = aµ, Bδ∪Fδ is µ-mad and Bδ∩Fδ = ∅
(by Lemma 1.2).

Claim 2.8. If δ ∈ S and B ∈ Bδ, then for all i < κ, it follows that |B∩ [0, fγδi )| < µ.

Proof. If not so, let i0 < κ be the largest value so that |B ∩ [0, fγδi0 )| < µ; i0 exists

because Dδ is closed. Now |B ∩ F δi0 | = µ, a contradiction. �

Let B =
⋃
δ∈S Bδ. Then |B| = aµ · λ = λ, and therefore |A ∪ B| = λ. We will

show now that A ∪ B is µ-mad.
Suppose that A = Aξ ∈ A and B ∈ Bδ for some δ ∈ S. If ξ > δ, then clearly

|A ∩ B| < µ, and if ξ < δ, there is some i < κ so that Aξ ⊆∗ F δi and |A ∩ B| < µ
follows from Claim 2.8.

If B1 ∈ Bδ1 and B2 ∈ Bδ2 with δ1 < δ2 in S, then there is some i < κ so that
fδ1 <

∗ f
γ
δ2
i

and Claim 2.8 gives |B1 ∩B2| < µ.
This establishes that A ∪ B is µ-mad. To verify maximality, let Z ⊆ [0, fλ) be

arbitrary of size µ. By Claim 2.7 the first ξ 6 λ for which |Z ∩ [0, fξ)| = µ is either
a successor or of cofinality 6 κ. Cofinality < κ is ruled out by condition (1) on
f . The case ξ successor implies that |Z ∩ Aξ| = µ. Finally, in the remaining case
ξ = δ ∈ S, there is some B ∈ Bδ so that |Z ∩B| = µ. �

Now the proof of Theorem 2.3 will be completed by the following lemma, whose
proof is actually found implicitly in [15]. We shall sketch a proof here too.

Lemma 2.9. Suppose µ is singular and µ < λ < bµ, λ regular. Then there is a
smooth (µ, λ)-scale. If bµ is a successor of a regular cardinal, there is also a smooth
(µ, bµ)-scale.

Proof. Since λ < bµ, there exists a product
∏
i<κ µi, where κ = cf µ, so that

b(
∏
i<κ µi, <

∗) > λ.
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By Claim 1.3 in [15] there exists a λ-scale f = 〈fα : α < λ〉 in some
∏
i<κ µ

′
i

such that for all regular θ ∈ (κ, µ), every α < λ with cf α = θ satisfies that f � α
is flat, that is, is equivalent modulo the bounded ideal on κ to a strictly increasing
sequence of ordinal functions on κ.

By Lemma 15 in [10], every α < λ with cf α > κ satisfies that f � α has an exact
upper bound. Now it is clear how to replace f by a smooth λ-scale.

Suppose now that bµ = λ+, λ = cf λ. By [14], 4.1, the set Sλ
+

<λ := {α : α <
λ+ ∧ cf α < λ} is a union of λ sets, each of which carries a square sequence.
Therefore, Sλ

+

<λ ∈ I[λ]. By 2.5 in chapter 1 of [15], there exists a (µ, bµ)-scale in
which all points of cofinality < µ are flat and therefore a smooth (µ, bµ)-scale. �

In contrast to the case of singular µ, let us mention the following result of A.
Blass [4], which generalizes Hechler’s result [8]: it is consistent that MAD(ℵ0) =
C, for any prescribed closed set of uncountable cardinals C that satisfies that
[ℵ1,ℵ1 + |C|] ⊆ C and λ+ ∈ C whenever λ ∈ C has countable cofinality. For
example, by Blass’ or by Hechler’s results there are universes of set theory in which
MAD(ℵ0) = {ℵ1,ℵω+1}. By Corollary 2.5, in any universe that satisfies this, it
follows that [ℵ1,ℵω+1] ⊆ MAD(ℵω).

Recently Brendle [5], using techniques from [16], proved the consistency of a =
ℵω.

Problem 2.10. Is it consistent that aℵω = ℵω?

3. Consistency results on MAD(ℵω) from large cardinal axioms

The inequality (1) can be used to control MAD(ℵω) by first increasing bℵω and
then increasing b. PCF theory implies that whenever the SCH fails at a singular
cardinal µ, it follows that bµ > µ+. On the other hand, bµ cannot be changed by
a ccc forcing.

Before we state the result, let us recall some pcf terminology:

pcf{ℵn : n < ω} =
{
b
(∏
n

ℵn,6I
)

: I ⊆ P(ω) is a proper ideal
}
.

The relation <I is defined by f <I g ⇔ {n : f(n) > g(n)} ∈ I.
pcf{ℵn : n < ω} is an interval of regular cardinals and has a maximum. For every

λ ∈ pcf{ℵn : n < ω} there exists a pcf generator Bλ ⊆ ω so that the following holds:
denote by J<λ the ideal that is generated by {Bθ : θ ∈ pcf{ℵn : n < ω} ∧ θ < λ};
then

λ = b
(∏
n

ℵn,6J<λ
)
.

Finally, (ℵω)ℵ0 = max pcf{ℵn : n < ω} × 2ℵ0 . Therefore, if ℵω is a strong limit,
2ℵω = max pcf{ℵn : n < ω}.

Fact 3.1. For every β < ω1 it is consistent (from large cardinal axioms) that 2ℵω =
bµ = ℵω+β+1.

Proof. Let V be any universe of set theory in which ℵω is a strong limit cardinal
and 2ℵω = max pcf{ℵn : n ∈ ω} = ℵω+β+1 [13], [9].

In V , the ideal J<max pcf{ℵn:n<ω} is proper and is generated by countably many
sets. Therefore, by simple diagonalization there exists an infinite B ⊆ ω so that
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J<max pcf{ℵn:n<ω} � B is contained in the ideal of finite subsets of B. Since
b(
∏
n ℵn,6J<max pcf{ℵn:n<ω} ) = ℵω+β+1, it follows that b(

∏
n∈B ℵn,6∗) = ℵω+β+1;

hence bℵω = ℵω+β+1. �

Theorem 3.2. For every β < ω1 and α 6 ω + β + 2, it is consistent (from large
cardinals) that 2ℵω = ℵω+β+2 and MAD(ℵω) = [ℵα,ℵω+β+2].

Proof. Start from a model V in which 2ℵ0 = ℵ1, ℵω is strong limit and 2ℵω =
ℵω+β+2. Such a model exists by the previous Fact.

For every regular ℵω < λ 6 ℵω+β+2, there is a smooth λ-scale by Lemma 2.9.
Consequently, there is also a smooth ℵω+β+2-scale.

Now apply Theorem 2.3 to finish the proof. �

By Theorem 5.4(b) in [3], after adding many Cohen subsets to ω1, max MAD(ℵω)
does not increase by much. Therefore, it is consistent to have MAD(ℵω) = [ℵ1,
ℵω+β+2] as above, and to have 2ℵω arbitrarily large.
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