J. Inst. Math. Jussieu (2016) 15(4), 771-784 doi:10.1017/S1474748015000018 © Cambridge University Press 2015

#### 771

# ON THE NUMBER OF DEDEKIND CUTS AND TWO-CARDINAL MODELS OF DEPENDENT THEORIES

# ARTEM CHERNIKOV<sup>1</sup> AND SAHARON SHELAH<sup>2</sup>

<sup>1</sup>Institut de Mathématiques de Jussieu - Paris Rive Gauche <sup>2</sup> Hebrew University of Jerusalem

(Received 21 September 2014; revised 30 December 2014; accepted 31 December 2014; first published online 23 January 2015)

Abstract For an infinite cardinal  $\kappa$ , let  $\operatorname{ded} \kappa$  denote the supremum of the number of Dedekind cuts in linear orders of size  $\kappa$ . It is known that  $\kappa < \det \kappa \le 2^{\kappa}$  for all  $\kappa$  and that  $\det \kappa < 2^{\kappa}$  is consistent for any  $\kappa$  of uncountable cofinality. We prove however that  $2^{\kappa} \leq \operatorname{ded}(\operatorname{ded}(\operatorname{ded}(\operatorname{ded}\kappa)))$  always holds. Using this result we calculate the Hanf numbers for the existence of two-cardinal models with arbitrarily large gaps and for the existence of arbitrarily large models omitting a type in the class of countable dependent first-order theories. Specifically, we show that these bounds are as large as in the class of all countable theories.

Keywords: Dedekind cuts; linear orders; trees; cardinal arithmetic; PCF; two-cardinal models; omitting types; dependent theories; NIP

#### 1. Introduction

For an infinite cardinal  $\kappa$ , let

 $\operatorname{ded} \kappa = \sup\{|I| : I \text{ is a linear order with a dense subset of size } \leqslant \kappa\}.$ 

In general, the supremum need not be attained. Let I be a linear order, and let  $\mathfrak{c} = (I_1, I_2)$ be a cut of I (i.e.,  $I = I_1 \cup I_2$ ,  $I_1 \cap I_2 = \emptyset$  and  $i_1 < i_2$  for all  $i_1 \in I_1$ ,  $i_2 \in I_2$ ). By cofinality of c from the left (respectively, from the right) we mean the cofinality of the linear order induced on  $I_1$  (respectively, the cofinality of  $I_2^*$ , that is  $I_2$  with the order reversed).

Fact 1.1. The following cardinalities are the same; see, e.g., [4, Proposition 6.5].

- (1)  $\operatorname{ded} \kappa$ .
- (2)  $\sup\{\lambda : exists \ a \ linear \ order \ I \ of \ size \leqslant \kappa \ with \ \lambda \ cuts\}.$
- (3)  $\sup\{\lambda : exists \ a \ regular \ \mu \ and \ a \ linear \ order \ of \ size \leqslant \kappa \ with \ \lambda \ cuts \ of \ cofinality \ \mu$ both from the left and from the right.
- (4)  $\sup\{\lambda : exists \ a \ regular \ \mu \ and \ a \ tree \ T \ of \ size \leqslant \kappa \ with \ \lambda \ branches \ of \ length \ \mu\}.$

The first author has received funding from the European Research Council under the European Union's Seventh Framework Programme [FP7/2007-2013] under grant agreement No. 238381 and from the ERC grant agreement No. 291111. The second author would like to thank the Israel Science Foundation for partial support of this research (grant No. 1053/11). Publication 1035 on his list.

due to the following fact.

It is well known that  $\kappa < \operatorname{ded} \kappa \leqslant (\operatorname{ded} \kappa)^{\aleph_0} \leqslant 2^{\kappa}$  (for the first inequality, let  $\mu$  be minimal such that  $2^{\mu} > \kappa$ , and consider the tree  $2^{<\mu}$ ) and that  $\operatorname{ded} \aleph_0 = 2^{\aleph_0}$  (as  $\mathbb{Q} \subseteq \mathbb{R}$  is dense). Thus  $\operatorname{ded} \kappa = (\operatorname{ded} \kappa)^{\aleph_0} = 2^{\kappa}$  for all  $\kappa$  in a model satisfying the Generalized Continuum Hypothesis, or GCH. Moreover, Baumgartner [1] has shown that, if  $2^{\kappa} = \kappa^{+n}$  (i.e., the nth successor of  $\kappa$ ) for some  $n \in \omega$ , then  $\operatorname{ded} \kappa = 2^{\kappa}$ . On the other hand, for any  $\kappa$  of uncountable cofinality, Mitchell [18] has proven that consistently  $\operatorname{ded}(\kappa) < 2^{\kappa}$ . Besides, in [4, § 6], it is demonstrated that for some  $\kappa$  it is consistent that  $\operatorname{ded} \kappa < (\operatorname{ded} \kappa)^{\aleph_0}$  (but it is still open if both inequalities  $\operatorname{ded} \kappa \leqslant (\operatorname{ded} \kappa^{\aleph_0}) \leqslant 2^{\kappa}$  can be strict simultaneously).

The importance of the function  $\operatorname{ded} \kappa$  from the model-theoretic point of view is largely

Fact 1.2 [13, 19]. Let T be a complete first-order theory in a countable language L. For a model M of T,  $S_1(M)$  denotes the space of 1-types over M (i.e., the space of ultrafilters on the Boolean algebra of definable subsets of M). Define  $f_T(\kappa) = \sup\{|S_T(M)| : M \models T, |M| = \kappa\}$ . Then, for any countable T,  $f_T$  is one of the following functions:  $\kappa$ ,  $\kappa + 2^{\aleph_0}$ ,  $\kappa^{\aleph_0}$ , ded  $\kappa$ , (ded  $\kappa$ ), or  $2^{\kappa}$  (and each of these functions occurs for some T).

In the first part of the paper, we prove that  $2^{\kappa} \leq \operatorname{ded}(\operatorname{ded}(\operatorname{ded}(\operatorname{ded}\kappa)))$  holds for any  $\kappa$ . Our proof uses results from the PCF theory of the second author (PCF stands for possible cofinalities). Optimality of this bound remains open. Moreover, with two extra iterations we can ensure that the supremums are attained. That is, for any cardinal  $\kappa$ , there are linear orders  $I_0, \ldots, I_6$  such that  $|I_0| \leq \kappa, 2^{\kappa} \leq |I_6|$ , and for every i < 6, the number of Dedekind cuts in  $I_i$  is at least  $|I_{i+1}|$ .

In the second part of the paper, we apply these results to questions about cardinal transfer. Fix a complete first-order theory T in a countable language L, with a distinguished predicate P(x) from L. Given two cardinals  $\kappa \geq \lambda \geq \aleph_0$ , we say that  $M \models T$  is a  $(\kappa, \lambda)$ -model if  $|M| = \kappa$  and  $|P(M)| = \lambda$ . A classical question in model theory is to determine implications between existence of two-cardinal models for different pairs of cardinals. It was studied by Vaught, Chang, Morley, Shelah and others.

**Fact 1.3** (Vaught). Assume that, for some  $\kappa$ , T admits a  $(\beth_n(\kappa), \kappa)$ -model for all  $n \in \omega$ . Then T admits a  $(\kappa', \lambda')$ -model for any  $\kappa' \geqslant \lambda'$ .

Vaught's theorem is optimal.

**Example 1.4.** Fix  $n \in \omega$ , and consider a structure M in the language  $L = \{P_0(x), \ldots, P_n(x), \in_0, \ldots, \in_{n-1}\}$  in which  $P_0(M) = \omega$ ,  $P_{i+1}(M)$  is the set of subsets of  $P_i(M)$ , and  $\in_i \subseteq P_i \times P_{i+1}$  is the membership relation. Let T = Th(M). Then M is a  $(\beth_n, \aleph_0)$ -model of T, but it is easy to see by 'extensionality' that for any  $M' \models T$  we have  $|M'| \leqslant \beth_n(|P_0(M')|)$ .

However, the theory in the example is wild from the model-theoretic point of view, and stronger transfer principles hold for tame classes of theories.

Downloaded from https://www.cambridge.org/core. Probook, on 29 Aug 2018 at 12:33:03, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/51474748015000018

**Fact 1.5.** (1) [16] If T is stable and admits  $a(\kappa, \lambda)$ -model for some  $\kappa > \lambda$ , then it admits  $a(\kappa', \lambda')$ -model for any  $\kappa' \geq \lambda'$ .

(2) [2] If T is o-minimal and admits a  $(\kappa, \lambda)$ -model for some  $\kappa > \lambda$ , then it admits a  $(\kappa', \lambda')$ -model for any  $\kappa' \geqslant \lambda'$ .

For further two-cardinal results for stable theories, see [19, Chapter V, § 6] and also [3].

An important class of theories containing both the stable and the o-minimal theories is the class of dependent theories (also called NIP theories in the literature, where NIP stands for No Independence Property) introduced by the second author [19]. In the countable case, dependent theories can be defined as those theories for which  $f_T(\kappa) \leq (\operatorname{ded} \kappa)^{\aleph_0}$  (see Fact 1.2, and see § 3 for a combinatorial definition). Recently, dependent theories have attracted a lot of attention both in purely model-theoretic work on generalizing the machinery of stable theories (see, e.g., [5, 6, 24-26]), and due to the analysis of some important algebraic examples [8, 10].

It is easy to see that the theory in Example 1.4 is not dependent, but also that a complete analogue of Fact 1.5 cannot hold for dependent theories; consider the theory of  $(\mathbb{R}, <)$  expanded by a predicate naming  $\mathbb{Q}$ . In § 3, we show that in fact the situation for dependent theories is not better than for arbitrary theories, in contrast to the stable and o-minimal cases. Namely, for every  $n < \omega$ , we construct a dependent theory  $T_n$  which has a  $(\beth_m, \aleph_0)$ -model for all m < n, but does not have a  $(\beth_\omega, \aleph_0)$ -model. In § 4, we elaborate on this example and show that the Hanf number for omitting a type is again the same for countable dependent theories as for arbitrary theories—unlike in the stable [11] and in the o-minimal [17] cases. Examples which we construct add to the list of dependent theories [14, 15] demonstrating that the principle 'dependent = stable + linear order' has only limited applicability.

#### 2. On the number of Dedekind cuts

#### 2.1. On $pp_{\nu}(\lambda)$

We summarize some facts from the PCF theory of the second author (see also [12, Chapter 9 for an exposition).

**Definition 2.1.** Given a set of cardinals A and a cardinal  $\lambda$ , we will write  $\sup^+(A) =$  $\min\{\mu : \forall \nu \in A, \nu < \mu\} \text{ and } \lambda \leq^+ \sup(A) \text{ if either } \lambda < \sup(A), \text{ or } \lambda = \sup(A) \text{ and } \lambda \in A.$ 

**Definition 2.2** [21, II.§ 1]. For cf  $\lambda \leq \kappa < \lambda$ , let

$$A = \left\{ \operatorname{cf}\left(\prod a/\mathcal{F}\right) : a \subset \operatorname{Reg} \wedge \sup(a) \right.$$
$$= \lambda \wedge |a| \leqslant \kappa \wedge \mathcal{F} \text{ is an ultrafilter on } a \wedge \mathcal{F} \cap I_b(a) = \emptyset \right\},$$

where Reg is the class of regular cardinals, and for a set B of ordinals with  $\sup(B) \notin B$ ,  $I_b(B) = \{X \subseteq B : \exists \beta \in B \ X \subseteq \beta\}$  denotes the ideal of bounded subsets of B. Then we define  $\operatorname{pp}_{\kappa}(\lambda) = \sup(A)$  and  $\operatorname{pp}_{\kappa}^+(\lambda) = \sup^+(A)$  (where 'pp' stands for 'pseudo-power').

Equivalently (see, e.g., [12, Lemma 9.1.1]), for cf  $\lambda \leq \kappa < \lambda$ , one has

$$\begin{aligned} \mathrm{pp}_{\kappa}(\lambda) &= \sup \bigg\{ \mathrm{tcf} \bigg( \prod_{i < \kappa} \lambda_i / I, <_I \bigg) : \lambda_i = \mathrm{cf} \, \lambda_i < \lambda \\ &= \sup_{i < \kappa} \lambda_i \wedge I \text{ is an ideal on } \kappa \wedge I_b(\kappa) \subseteq I \bigg\}, \end{aligned}$$

where  $<_I$  is the lexicographic ordering modulo I, and for a partial order P,  $\operatorname{tcf}(P) = \kappa$  when there are  $\langle p_i : i < \kappa \rangle$  in P such that  $\kappa = \operatorname{cf} \kappa$  and  $\bigwedge_{i < j} (p_i < p_j)$  and  $\forall p \in P(\bigvee_{i < \kappa} p \leq p_i)$  (true cofinality may not exist). We recall that  $\Gamma(\theta, \sigma) = \{I : \text{for some cardinal } \theta_I < \theta, I \text{ is a } \sigma\text{-complete ideal on } \theta_I \}$  and  $\Gamma(\theta) = \Gamma(\theta^+, \theta)$ . Then  $\operatorname{pp}_{\Gamma(\theta,\sigma)}(\lambda)$  is defined in the same way as  $\operatorname{pp}_{\kappa}(\lambda)$ , but the supremum is taken only over ideals from  $\Gamma(\theta,\sigma)$ .

## Fact 2.3. See, e.g., [12, Chapter 9].

- (1)  $\lambda < pp_{\kappa}(\lambda) \leq \lambda^{\kappa}$ , and if  $cf \lambda = \kappa > \aleph_0$  and  $\lambda$  is  $\kappa$ -strong (i.e.,  $\rho^{\kappa} < \lambda$  for all  $\rho < \lambda$ ), then  $pp_{\kappa}(\lambda) = \lambda^{\kappa}$ . In particular,  $pp_{\kappa}(\lambda) = \lambda^{\kappa}$  holds for any strong limit  $\lambda$  with uncountable cofinality  $\kappa$ .
- (2) For any  $\theta$ , we have  $\operatorname{pp}_{\Gamma(\theta)}(\lambda) \leqslant \operatorname{pp}_{\theta}(\lambda)$  and  $\operatorname{pp}_{\Gamma(\theta^{+}2)}(\lambda) = \operatorname{pp}_{\theta}(\lambda)$ .

#### Fact 2.4. (1) [20, 4.3] Assume that the following hold.

- $\lambda$  is regular and uncountable.
- $\kappa < \lambda$  implies that  $2^{\kappa} < 2^{\lambda}$ .
- For some regular  $\chi \leqslant 2^{\lambda}$ , there is no tree of cardinality  $\lambda$  with  $\geqslant \chi$ -many branches of length  $\lambda$ .

Then  $2^{<\lambda} < 2^{\leq \lambda}$  and, for some  $\mu \in (\lambda, 2^{<\lambda}]$  with cf  $\mu = \lambda$ , the following hold.

- (a) For every regular  $\chi$  in  $(2^{<\lambda}, 2^{\lambda}]$  there is a linear order of cardinality  $\chi$  with a dense subset of cardinality  $\mu$  (the linear order is  $(T_{\chi}, <_{lx})$ , where  $T_{\chi} \subseteq 2^{<\mu}$  has  $\leqslant \mu$  nodes and  $\geqslant \chi$ -many branches of length  $\lambda$ ).
- (b)  $pp_{\Gamma(\lambda)}(\mu) = 2^{\lambda}$ .
- (c)  $\mu$  is  $(\lambda, \lambda^+, 2)$ -inaccessible, i.e., (see [20, 3.2]) for any  $\mu'$  such that  $\lambda < \mu' < \mu \wedge \operatorname{cf}\mu' \leq \lambda$  we have  $\operatorname{pp}_{\Gamma(\lambda^+,2)}(\mu') < \mu$ , which in view of Fact 2.3 implies that  $\operatorname{pp}_{\lambda}(\mu') < \mu$ .
- (2) [22, Claim 3.4] Assume that  $\theta_{n+1} = \min\{\theta : 2^{\theta} > 2^{\theta_n}\}$  for  $n < \omega$  and  $\sum_{n < \omega} \theta_n < 2^{\theta_0}$  (so  $\theta_{n+1}$  is regular,  $\theta_{n+1} > \theta_n$ ). Then, for infinitely many  $n < \omega$ , for some  $\mu_n \in [\theta_n, \theta_{n+1})$  (so  $2^{\mu_n} = 2^{\theta_n}$ ) we have that for every regular  $\chi \leq 2^{\theta_n}$  there is a tree of cardinality  $\mu_n$  with  $\geq \chi$ -many branches of length  $\theta_n$ .
- (3) [21, II.2.3(2)] If  $\lambda < \mu$  are singulars of cofinality  $\leq \kappa$  (and  $\kappa < \lambda$ ) and  $pp_{\kappa}(\lambda) \geq \mu$ , then  $pp_{\kappa}(\mu) \leq^+ pp_{\kappa}(\lambda)$ .

**Remark 2.5.** See [7] concerning optimality of these results.

### 2.2. Bounding exponent by iterated ded

**Definition 2.6.** By induction on the ordinal  $\alpha$ , we define a strictly increasing sequence of ordinals  $\mathfrak{I}_{\alpha}$  such that the following hold.

- If  $\alpha = 0$ , then  $\mathfrak{I}_{\alpha} = \aleph_0$ .
- If  $\alpha = \beta + 1$ , then  $\mathfrak{I}_{\alpha} = \min{\{\mathfrak{I} : 2^{\mathfrak{I}} > 2^{\mathfrak{I}_{\beta}}\}}$ .
- If  $\alpha$  is a limit ordinal, then  $\mathbb{I}_{\alpha} = \sum \{\mathbb{I}_{\beta} : \beta < \alpha\}.$

**Lemma 2.7.** For any ordinal  $\alpha$ ,  $2^{\mathbb{I}_{\alpha+1}} \leqslant^+ \operatorname{ded}(2^{\mathbb{I}_{\alpha}})$ .

**Proof.**  $2^{<\mathbb{J}_{\alpha+1}}$  is a tree with  $2^{\mathbb{J}_{\alpha+1}}$  branches and  $\leq \sum \{2^{|\beta|} : \beta < \mathbb{J}_{\alpha+1}\}$  nodes. But, if  $\beta < \mathbb{J}_{\alpha+1}$ , then  $2^{\beta} \leq 2^{\mathbb{J}_{\alpha}}$  and  $\mathbb{J}_{\alpha+1} \leq 2^{\mathbb{J}_{\alpha}}$  by the definition of the  $\mathbb{J}$ , so the number of nodes is bounded by  $2^{\mathbb{J}_{\alpha}}$ .

**Proposition 2.8.** Assume that  $\exists_{\alpha+k} \leq 2^{\exists_{\alpha}}$  for some  $k \in \omega$ . Then, for some  $m \leq k$ , the following hold.

- $\operatorname{ded}(2^{\mathfrak{I}_{\alpha}}) \geqslant 2^{\mathfrak{I}_{\alpha+m}}$ .
- $\operatorname{ded}(2^{\mathfrak{I}_{\alpha+m}}) \geqslant 2^{\mathfrak{I}_{\alpha+k}}$ .

**Proof.** We follow the proof of [22, Claim 3.4]. Let  $\theta_n = \mathbb{I}_{\alpha+n}$  for  $n \leq k$ . Note that  $\theta_{n+1}$  is regular and that  $\theta_{n+1} > \theta_n$ . We define the following.

(\*) $_{\theta_n}$  For every regular  $\chi \leq 2^{\theta_n}$ , there is a tree of cardinality  $\theta_n$  with  $\geq \chi$ -many branches of length  $\theta_n$ .

Let  $S_0 = \{0 < n \le k : (*)_{\theta_n} \text{ fails} \}.$ 

By Fact 2.4(1) with  $\lambda = \theta_n$  and the definitions of  $S_0$  and of the  $\mathbb{I}$ , it follows that for each  $n \in S_0$  there is  $\mu_n$  such that the following hold.

- $(\alpha)_n \quad \theta_n = \operatorname{cf} \mu_n < \mu_n \leqslant 2^{<\theta_n} = 2^{\theta_{n-1}} (\text{as } 2^{<\theta_n} \leqslant \theta_n \times 2^{\theta_{n-1}} \leqslant 2^{\theta_0} \times 2^{\theta_{n-1}} \leqslant 2^{\theta_{n-1}}).$
- $(\beta)_n \quad \operatorname{pp}_{\theta_n}(\mu_n) = \operatorname{pp}_{\Gamma(\theta_n)}(\mu_n) = 2^{\theta_n} \quad \text{(as } \operatorname{pp}_{\Gamma(\theta_n)}(\mu_n) = 2^{\theta_n} \quad \text{by Fact } 2.4(1)(\text{b}), \quad \text{and} \quad \operatorname{pp}_{\Gamma(\theta_n)}(\mu_n) \leqslant \operatorname{pp}_{\theta_n}(\mu_n) \leqslant \mu_n^{\theta_n} \leqslant (2^{\theta_{n-1}})^{\theta_n} \leqslant 2^{\theta_n} \text{ by Fact } 2.3).$
- $(\gamma)_n$  For any  $\mu'$  we have that  $\theta_n < \mu' < \mu_n \wedge \mathrm{cf}\mu' \leqslant \theta_n$  implies that  $\mathrm{pp}_{\Gamma(\lambda^+,2)}(\mu') < \mu_n$  (by Fact 2.4(1)(c)).
- $(\delta)_n$   $\operatorname{ded}(\mu_n) \geqslant 2^{\theta_n}$  (as for any regular  $\chi \leqslant 2^{\theta_n}$  there is linear order of cardinality  $\geqslant \chi$  with a dense subset of size  $\mu_n$  by Fact 2.4(1)(a)).

Let  $S_1 = \{n \in S_0 : \mu_n \geq 2^{\gimel_\alpha}\}$ . Then we have the following claims.

 $(*)_1$  If  $n \leq k$  and  $n \notin S_0$ , then  $ded(2^{\mathfrak{I}_{\alpha}}) \geq 2^{\mathfrak{I}_{\alpha+n}}$ .

**Proof.** By the definitions of  $S_0$  and of  $\theta_n$  it follows that  $ded(\theta_n) \ge 2^{\beth_{\alpha+n}}$  (taking the supremum over trees corresponding to regular  $\chi$  less than or equal to  $2^{\theta_n}$ ), and  $\theta_n \le 2^{\beth_{\alpha}}$  by assumption. Thus  $ded(2^{\beth_{\alpha}}) \ge 2^{\beth_{\alpha+n}}$ , as wanted.

 $(*)_2$  If  $n \leq k$  and  $n \in S_0 \setminus S_1$ , then  $ded(2^{\mathfrak{I}_{\alpha}}) \geq 2^{\mathfrak{I}_{\alpha+n}}$ .

**Proof.** By the definition of  $S_1$ , we have  $\mu_n < 2^{\beth_{\alpha}}$ . On the other hand, as  $n \in S_0$ , we have  $ded(\mu_n) \geqslant 2^{\theta_n}$  by  $(\delta)_n$ . Combining, we get  $ded(2^{\beth_{\alpha}}) \geqslant 2^{\beth_{\alpha+n}}$ .

(\*)<sub>3</sub> If n and n+1 are from  $S_1$ , then  $\mu_n > \mu_{n+1}$ .

**Proof.** By the assumption,  $\mu_n \geqslant 2^{\beth_{\alpha}} \geqslant \theta_{n+1} = \operatorname{cf} \theta_{n+1}$ , and in fact  $\mu_n > \theta_{n+1}$ , as they are of different cofinality.

Assume that  $\mu_n < \mu_{n+1}$ . Then, by Fact 2.4(3) with  $\lambda = \mu_n$ ,  $\mu = \mu_{n+1}$  and  $\kappa = \theta_{n+1}$  (as  $\max\{\text{cf }\mu_n, \text{cf }\mu_{n+1}\} = \max\{\theta_n, \theta_{n+1}\} < \min\{\mu_n, \mu_{n+1}\}$  by  $(\alpha)_n$  and  $(\alpha)_{n+1}$ , and  $\operatorname{pp}_{\theta_{n+1}}(\mu_n) \geqslant \operatorname{pp}_{\Gamma(\theta_n)}(\mu_n) = 2^{\theta_n} \geqslant \mu_{n+1}$ ), we would get  $\operatorname{pp}_{\theta_{n+1}}(\mu_{n+1}) \leqslant^+ \operatorname{pp}_{\theta_{n+1}}(\mu_n)$ .

On the other hand, by  $(\gamma)_{n+1}$  we would get that  $\theta_{n+1} < \mu_n < \mu_{n+1} \wedge \operatorname{cf} \mu_n \leqslant \theta_{n+1}$  implies that  $\operatorname{pp}_{\theta_{n+1}}(\mu_n) < \mu_{n+1} \leqslant 2^{\theta_{n+1}} = \operatorname{pp}_{\theta_{n+1}}(\mu_{n+1})$ , which is a contradiction. Thus we conclude that  $\mu_n \geqslant \mu_{n+1}$ , and in fact  $\mu_n > \mu_{n+1}$ , as they are of different cofinalities.  $\square$ 

We try to define  $m = \max\{0 < n \le k : n \notin S_1\}$ .

- Case 1. m is not defined. So  $S_1 = \{1, ..., k\}$  (and we may assume that  $k \ge 2$ ). Hence  $\mu_1 > \cdots > \mu_k$  by  $(*)_3$ , and hence  $\mu_k < \mu_1 \le 2^{\theta_0}$ . But by the definition of  $S_1$ , actually  $\mu_k \ge 2^{\theta_0}$ , which is a contradiction.
- Case 2. m is well defined. So  $\{m+1,\ldots,k\}\subseteq S_1$ . Hence as in Case 1 we have  $\mu_k<\mu_{m+1}\leqslant 2^{\theta_m}$ , and hence  $\operatorname{ded}(2^{\gimel_{\alpha+m}})\geqslant \operatorname{ded}(\mu_k)\geqslant 2^{\gimel_{\alpha+k}}$  by  $(\delta)_k$ . Besides,  $\operatorname{ded}(2^{\gimel_{\alpha}})\geqslant 2^{\gimel_{\alpha+m}}$  (by  $(*)_1$  if  $m\notin S_0$  and by  $(*)_2$  if  $m\in S_1\setminus S_0$ ), so we are done.

**Proposition 2.9.** Assume that  $\exists_{\alpha+k} \leq 2^{\exists_{\alpha}}$  for some  $k \in \omega$ . Then, for some  $m \leq k$ , the following hold.

- $2^{\mathfrak{I}_{\alpha+k}} \leqslant^+ \operatorname{ded}(2^{\mathfrak{I}_{\alpha+k-1}}).$
- $2^{\operatorname{J}_{\alpha+k-1}} \leqslant^+ \operatorname{ded}(2^{\operatorname{J}_{\alpha+m}}).$
- $2^{\gimel_{\alpha+m}} \leqslant^+ \operatorname{ded}(2^{\gimel_{\alpha+m-1}}).$
- $2^{\mathfrak{I}_{\alpha+m-1}} \leqslant^+ \operatorname{ded}(2^{\mathfrak{I}_{\alpha}}).$

**Proof.** We modify the proof of Proposition 2.8. We have the following.

$$(*)_1^+$$
 If  $n+1 \leq k$  and  $n+1 \notin S_0$ , then  $ded(2^{\mathfrak{I}_{\alpha}})^+ \geqslant 2^{\mathfrak{I}_{\alpha+n}}$ .

**Proof.** As  $(2^{\beth_{\alpha+n}})^+$  is regular,  $(2^{\beth_{\alpha+n}})^+ \leqslant 2^{\beth_{\alpha+n+1}}$ , and  $(*)_{\theta_{n+1}}$  holds by the definition of  $S_0$ , it follows that  $ded(\theta_{n+1})^+ \geqslant 2^{\beth_{\alpha+n}}$ , and  $\theta_{n+1} \leqslant 2^{\beth_{\alpha}}$  by assumption. Thus  $ded(2^{\beth_{\alpha}})^+ \geqslant 2^{\beth_{\alpha+n}}$ , as wanted.

 $(*)_2^+$  If  $n+1 \leq k$  and  $n+1 \in S_0 \setminus S_1$ , then  $ded(2^{\mathfrak{I}_{\alpha}}) \geq 2^{\mathfrak{I}_{\alpha+n}}$ .

**Proof.** If 
$$n+1 \in S_0 \setminus S_1$$
, then  $\mu_{n+1} < 2^{\beth_{\alpha}}$  and  $ded(\mu_{n+1})^+ \geqslant 2^{\theta_n}$  by  $(\delta)_{n+1}$ .

Now, in Case 1 we get a contradiction in the same way as before, so we may assume that m is well defined, i.e.,  $\{m+1,\ldots,k\}\subseteq S_1$ . As before, we get  $\mu_k<\mu_{m+1}\leqslant 2^{\theta_m}$ ; hence

On the number of Dedekind cuts and two-cardinal models of dependent theories

777

 $\operatorname{ded}(2^{\beth_{\alpha+m}}) \geqslant \operatorname{ded}(\mu_k)^+ \geqslant 2^{\beth_{\alpha+k-1}}$  by  $(\delta)_k$ . Besides,  $\operatorname{ded}(2^{\beth_{\alpha}})^+ \geqslant 2^{\beth_{\alpha+m-1}}$  (by  $(*)_1^+$  if  $m \notin S_0$  and by  $(*)_2^+$  if  $m \in S_1 \setminus S_0$ ). We can conclude by Lemma 2.7.

Although, as was already mentioned, it is consistent for  $\kappa$  of uncountable cofinality that  $\operatorname{ded} \kappa < 2^{\kappa}$ , we prove (in ZFC) that these values are not so far apart, and that four iterations of  $\operatorname{ded}$  are sufficient to get the exponent.

**Theorem 2.10.** Let  $\mu$  be an arbitrary cardinal. Then there are  $\lambda_0, \ldots, \lambda_4$  such that the following hold.

- (1)  $\lambda_0 \leqslant \mu$ .
- (2)  $\lambda_{i+1} \leq \operatorname{ded}(\lambda_i)$  for i < 4.
- (3)  $2^{\mu} \leq \lambda_4$ .

**Proof.** As the sequence of the  $\mathbb{J}$  is increasing, for some  $\alpha$  we have  $\mathbb{J}_{\alpha} \leqslant \mu < \mathbb{J}_{\alpha+1}$ , so also  $\alpha \leqslant \mu$ .

First of all, for any ordinal  $\beta$  with  $\beta + \omega \leq \alpha$  and  $2^{\mathbb{J}_{\beta}} > \mathbb{J}_{\beta+\omega}$ , we have (by Fact 2.4(2) taking  $\theta_0 = \mathbb{J}_{\beta}$  and  $\theta_n = \mathbb{J}_{\beta+n}$ ) that the following holds.

⊙<sub>1</sub> For infinitely many  $\gamma \in [\beta, \beta + \omega)$  and arbitrary regular  $\exists \leq 2^{\exists_{\gamma}}$ , there is a tree T with  $|T| \in [\exists_{\gamma}, \exists_{\gamma+1})$  and at least  $\exists$ -many branches of length  $\exists_{\gamma}$ .

Let  $\delta_*$  be the largest non-successor ordinal  $\leq \alpha$ , so  $\alpha = \delta_* + n_*$  for some  $n_* < \omega$ . We have the following.

Let  $\lambda_0 = \mu$ ,  $\lambda_1 = \sum \{2^{\beth_{\beta}} : \beta < \delta_*\}$ , and  $\lambda_{2+n} = 2^{\beth_{\delta_*+n}}$  for  $n \in \{0, \dots, n_*\}$ . Note that  $\lambda_{2+n_*} = 2^{\beth_{\alpha}} = 2^{\mu}$ .

We have the following.

- $\lambda_1 \leq^+ \operatorname{ded} \lambda_0$  (by  $\mathfrak{O}_2$ ).
- $\lambda_2 \leq^+ \operatorname{ded} \lambda_1$  (as  $2^{<\mathbb{J}_{\delta_*}}$  is a tree with  $\sum \{2^{\kappa} : \kappa < \mathbb{J}_{\delta_*}\} = \sum \{2^{\mathbb{J}_{\beta}} : \beta < \delta_*\} = \lambda_1$  nodes and  $2^{\mathbb{J}_{\delta_*}} = \lambda_2$  branches).
- $\lambda_{2+n+1} \leq^+ \operatorname{ded}(\lambda_{2+n})$  for  $n < n_*$  (by Lemma 2.7).

If  $\delta_* = \alpha$ , then we are done, as  $\lambda_2 = 2^{\mathbb{I}_{\alpha}} = 2^{\mu}$  (as  $\mu < \mathbb{I}_{\alpha+1}$  and  $\mathbb{I}_{\alpha+1}$  is smallest with  $2^{\mathbb{I}_{\alpha}} < 2^{\mathbb{I}_{\alpha+1}}$ ), so assume that  $\delta_* = \alpha_* + n_*$  and  $n_* > 0$ .

If  $\mathbb{J}_{\delta_*+n_*} \leqslant 2^{\mathbb{J}_{\delta_*}}$ , then by Proposition 2.8 there is some  $m \leqslant n_*$  such that  $\lambda_3' = \det(2^{\mathbb{J}_{\delta_*}}) \geqslant 2^{\mathbb{J}_{\delta_*+m}}$  and  $\lambda_4' = \det(2^{\mathbb{J}_{\delta_*+m}}) \geqslant 2^{\mathbb{J}_{\delta_*+n_*}} = 2^{\mathbb{J}_{\alpha}} = 2^{\mu}$ . It then follows that  $\lambda_0, \lambda_1, \lambda_2, \lambda_3', \lambda_4'$  are as wanted.

Otherwise,  $\exists_{\delta_*+n_*} > 2^{\exists_{\delta_*}}$ . Let n be the biggest such that  $\exists_{\delta_*+n_*} > 2^{\exists_{\delta_*+n}}$ . It follows that  $n \leq n_* - 1$ . Then  $\exists_{\delta_*+n_*} \leq 2^{\exists_{\delta_*+n+1}}$ , and again by Proposition 2.8 we get some m such that the following hold.

A. Chernikov and S. Shelah

778

- $\bullet \ \lambda_0'' = 2^{\gimel_{\delta_* + n}} < \gimel_{\delta_* + n_*} \leqslant \mu.$
- $\lambda_1'' = 2^{\gimel_{\delta_* + n + 1}} \leqslant^+ \text{ded}(2^{\gimel_{\delta_* + n}})$  (by Lemma 2.7).
- $\bullet \ \lambda_2'' = 2^{\gimel_{\delta_* + m}} \leqslant \operatorname{ded}(2^{\gimel_{\delta_* + n + 1}}).$
- $2^{\mu} = 2^{\gimel_{\delta_* + n_*}} \leqslant \lambda_3'' = \text{ded}(2^{\gimel_{\delta_* + m}}).$

But then  $\langle \lambda_i'' \rangle_{i \leq 3}$  are as wanted.

Similarly, we have the following.

**Corollary 2.11.** Let  $\mu$  be an arbitrary cardinal. Then there are  $\lambda_0, \ldots, \lambda_6$  such that the following hold.

- (1)  $\lambda_0 \leqslant \mu$ .
- (2)  $\lambda_{i+1} \leqslant^+ \operatorname{ded}(\lambda_i)$  for all i < 6.
- (3)  $2^{\mu} \leq \lambda_6$ .

**Proof.** The proof follows from the proof of Theorem 2.10, using Proposition 2.9 instead of Proposition 2.8.

**Problem 2.12.** What is the smallest  $1 < n \le 4$  for which Theorem 2.10 remains true? Can the bound be improved at least for certain classes of cardinals? Also, how might the required number of iterations vary in different models of ZFC?

**Corollary 2.13.** For every cardinal  $\mu$  and  $k < \omega$  there is some  $n < \omega$  and a sequence  $\langle \lambda_m : m \leq n \rangle$  such that the following hold.

- $\lambda_0 \leqslant \mu$ .
- $\lambda_0 < \cdots < \lambda_n \text{ and } \operatorname{ded}(\lambda_m)^+ \geqslant \lambda_{m+1}$ .
- $\lambda_n \geqslant \beth_k(\mu)$ .

**Proof.** The proof follows by iterating Corollary 2.11.

# 3. On 2-cardinal models for dependent T

We recall that a formula  $\varphi(x, y) \in L$  is said to have the independence property (or IP) with respect to a theory T if in some model of T there are elements  $\langle a_i : i \in \omega \rangle$  and  $\langle b_s : s \subseteq \omega \rangle$  such that  $\varphi(a_i, b_s)$  holds if and only if  $i \in s$ . A complete first-order theory is called dependent (or NIP) if no formula has the independence property. The class of dependent theories contains both the stable and the o-minimal theories, but also for example the theory of algebraically closed valued fields.

Fact 3.1 [19, Theorem II.4.11]. A countable theory T is dependent if and only if  $|S_1(M)| \leq (\text{ded } |M|)^{\aleph_0}$  for all  $M \models T$ .

In this section, we show that, when considering the two-cardinal transfer to arbitrarily large gaps between the cardinals, the situation for dependent theories is not better than for arbitrary theories. Namely, for every  $n < \omega$  we construct a dependent theory T which has a  $(\beth_m, \aleph_0)$ -model for all m < n, but does not have any  $(\beth_\omega, \aleph_0)$ -models.

**Definition 3.2.** For any  $n \in \mathbb{N}$ , let  $L_n$  be the language consisting of the following.

- (1)  $P_m$ ,  $Q_m$  are unary predicates for m < n.
- (2)  $f_m$  is a unary function for m+1 < n.
- (3)  $<_m$  is a binary relation for m < n.

**Definition 3.3.** We define a universal theory  $T_n^{\forall}$  in the language  $L_n$  saying the following.

- (1)  $\langle Q_m : m < n \rangle$  is a partition of the universe.
- (2)  $<_m$  is a linear order on  $Q_m$ .
- (3)  $P_m$  is a subset of  $Q_m$ .
- (4)  $f_m$  is a unary function such that the following hold.
  - (a) It is 1-to-1 from  $P_{m+1}$  into  $Q_m \setminus P_m$ .
  - (b) It is 1-to-1 from  $Q_m \setminus P_m$  into  $P_{m+1}$ .
  - (c) f(f(x)) = x.
  - (d) It is the identity on  $\{x : x \notin P_{m+1} \cup (Q_m \setminus P_m)\}$ .

Claim 3.4. (1)  $T_n^{\forall}$  is a consistent universal theory.

- (2)  $T_n^{\forall}$  has the amalgamation property (AP) and the joint embedding property (JEP).
- (3) If  $M \models T_n^{\forall}$  and  $A \subseteq M$  is finite, then the substructure generated by A is finite, and in fact of size at most  $2 \times |A|$ .
- (4)  $T_n^{\forall}$  has a model completion  $T_n$  which is  $\aleph_0$ -categorical and eliminates quantifiers.

**Proof.** (1)–(3) are easy to see, and (4) follows by, for example, [9, Theorem 7.4.1].  $\Box$ 

**Claim 3.5.** In fact,  $T_n$  is axiomatized by the following.

- $(1) T_n^{\forall}$ .
- (2)  $<_m$  is a dense linear order without end points.
- (3)  $P_m$  is both dense and co-dense in  $Q_m$ .
- (4)  $f_m$  is a 1-to-1 function from  $P_{m+1}$  onto  $Q_m \setminus P_m$ .
- (5) If  $a_1 <_m c_1$  and  $a_2 <_{m+1} c_2$ , then there are  $b_1 \in Q_m \setminus P_m$  and  $b_2 \in P_{m+1}$  such that  $a_1 <_m b_1 <_m c_1$ ,  $a_2 <_{m+1} b_2 <_{m+1} c_2$  and  $f_m(b_2) = b_1$ .

**Proposition 3.6.**  $T_n$  is dependent.

**Proof.** Let  $M \models T_n$ . Let  $p(x) \in S_1(M)$  be a non-algebraic type. By quantifier elimination it is determined by the following.

- $Q_m(x)$  for the corresponding m < n.
- Fixing the corresponding cut of x over M in the order  $<_m$ .
- Saying if  $P_m(x)$  holds or not.

780

- If it does not hold, fixing the cut of  $f_m(x)$  over M in the order  $<_{m+1}$ .
- If it holds, fixing the cut  $f_m(x)$  over M in the order  $<_{m-1}$ .

Then clearly  $|S_1(M)| \leq \operatorname{ded} |M|$ , so  $T_n$  is dependent.

**Remark 3.7.** In fact it is easy to check that  $T_n$  is strongly dependent (see [23]).

**Proposition 3.8.** (1) If  $M \models T_n \text{ and } |P_0^M| = \lambda$ , then  $|M| \leqslant \beth_n(\lambda)$ .

 $(2) \quad \textit{Moreover}, \ |P_{m+1}^M| = |Q_m^M \setminus P_m^M| \leqslant |Q_m^M| \ \textit{and} \ |Q_m^M| \leqslant^+ \ \text{ded} \ |P_m^M|.$ 

Claim 3.9. Assume that  $\lambda_0 < \cdots < \lambda_n$  and  $\lambda_{m+1} \leq^+ \operatorname{ded} \lambda_m$ . Then  $T_n$  has a model M such that  $|P_0^M| = \lambda_0$  and the following hold.

- $(1) \quad |P_m^M| = \lambda_m.$
- $(2) \quad |Q_m^M| = \lambda_{m+1}.$

**Proof.** By assumption, for every m < n we can find a linear order  $J_m$  of cardinality  $\lambda_{m+1}$  with a dense subset  $I_m$  of cardinality  $\lambda_m$ . We may also assume that the following hold.

- (1) For every a < b in  $J_m$ ,  $|(a,b)| = \lambda_{m+1}$  and  $|(a,b) \cap I_m| = \lambda_m$  (so, in particular,  $I_m$  is also co-dense in  $J_m$ ).
- (2)  $I_m$  and  $J_m$  are dense without end points.

Indeed, given an arbitrary infinite linear order I and a dense subset J, let  $I_* = I \times \mathbb{Q}$ ,  $J_* = J \times \mathbb{Q}$ , and let  $I_{**}$  be the lexicographic order on  $I_*^{<\omega}$ ,  $J_{**} = J_*^{<\omega}$ . It is easy to see that  $|I_{**}| = |I|$ ,  $|J_{**}| = |J|$ ,  $J_{**}$  is dense in  $I_{**}$ , both orders are dense without end points, and that, for any a < b in  $J_{**}$ , |(a,b)| = |I| and  $|(a,b) \cap J_{**}| = |J|$ .

We define M by taking  $Q_m^M = J_m$ ,  $P_m^M = I_m$  and  $<_m^M = <_{J_m}$ . We may choose  $f_m$  satisfying 3.5(4) by transfinite induction as all the relevant intervals have 'full cardinality' by the assumption. By Claim 3.5,  $M \models T_n$ .

**Theorem 3.10.** For every  $n < \omega$  there is a dependent countable theory T which has a  $(\beth_m, \aleph_0)$ -model for all m < n, but does not have any  $(\beth_\omega, \aleph_0)$ -models.

**Proof.** The proof follows by combining Propositions 3.6, 3.8, Claim 3.9, and Corollary 2.13.

### 4. Hanf number for omitting types

Now, we elaborate on the previous example, and for every countable ordinal  $\beta < \omega_1$  we find a countable ordinal  $\alpha_* < \omega_1$ , a countable theory  $T_{\alpha_*}$ , and a partial type p(x) such that the following hold.

- There is a model of  $T_{\alpha_*}$  omitting p(x) and of size  $\geq \beth_{\beta}$ .
- Any model of  $T_{\alpha_*}$  omitting p(x) is of size at most  $\beth_{\alpha_*}$ .

**Definition 4.1.** Fix an ordinal  $\alpha_* < \omega_1$ . We describe our theory  $T_{\alpha_*}$ .

- (1)  $\langle Q_{\alpha}(x) : \alpha \leqslant \alpha_* \rangle$  are pairwise disjoint infinite unary predicates.
- (2)  $<_{\alpha}$  is a dense linear order without end points on  $Q_{\alpha}(x)$ .
- (3)  $P_{\alpha}(x)$  is a dense-co-dense subset of  $Q_{\alpha}(x)$ .
- (4) R(x) is a unary predicate disjoint from all  $Q_{\alpha}$ .
- (5)  $\langle c_n : n \in \omega \rangle$  are constants and  $R(c_n)$  for all  $n \in \omega$ .
- (6)  $<_R$  is a linear order on R(x), and  $(R, <_R, \langle c_n : n \in \omega \rangle)$  is a model of Th( $\mathbb{N}, <, \langle n : n \in \mathbb{N} \rangle$ ).
- (7)  $s_R(x), s_R^{-1}(x)$  are the successor and the predecessor functions on R(x).
- (8)  $\langle d_r : r \in \mathbb{Q} \rangle$  are constants and  $P_0(d_r)$  for all  $r \in \mathbb{Q}$ .
- (9) For every successor ordinal  $\delta + 1 \leq \alpha_*$ , the following hold.
  - (a)  $f_{\delta}$  is a bijection from  $P_{\delta+1}$  onto  $Q_{\delta} \setminus P_{\delta}$ , the identity on  $\{x : x \notin P_{\delta+1} \cup (Q_{\delta} \setminus P_{\delta})\}$ , and such that  $f_{\delta}(f_{\delta}(x)) = x$ .
  - (b) If  $a_1 <_{\delta} c_1$  and  $a_2 <_{\delta+1} c_2$  for some  $a_1, c_1 \in Q_{\delta} \setminus P_{\delta}$  and  $a_2, c_2 \in P_{\delta+1}$ , then there are  $b_1 \in Q_{\delta} \setminus P_{\delta}$  and  $b_2 \in P_{\delta+1}$  such that  $a_1 <_{\delta} b_1 <_{\delta} c_1$ ,  $a_2 <_{\delta+1} b_2 <_{\delta+1} c_2$ , and  $f_{\delta}(b_2) = b_1$ .
- (10) For every limit ordinal  $\delta \leq \alpha_*$ , the following hold.
  - (a) We fix some listing  $\langle \alpha_{\delta,n} : n < \omega \rangle$  with  $\sum_{n < \omega} \alpha_{\delta,n} = \delta$ , where for every n we have that  $\alpha_{\delta,n}$  is a *successor* ordinal larger than the successor of  $\alpha_{\delta,n-1}$  and larger than any  $\alpha_{\delta',m}$  from a similar listing for a smaller limit ordinal  $\delta'$ .
  - (b) We have a function  $G_{\delta}(x)$  such that the following hold.
    - (i)  $G_{\delta}$  is the identity on  $\{x : x \notin P_{\delta}\}.$
    - (ii)  $G_{\delta}: P_{\delta}(x) \to R(x)$  is onto.
    - (iii) For every  $y \in R(x)$ ,  $G_{\delta}^{-1}(y)$  is a dense linear order without end points.
    - (iv) If  $y_1 <_R y_2$ , then  $G_{\delta}^{-1}(y_1)$  is co-dense in  $G_{\delta}^{-1}(y_2)$ , and every cut of  $G_{\delta}^{-1}(y_1)$  realized by some  $a \in P_{\delta}$  is realized by some  $a' \in G_{\delta}^{-1}(y_2)$ .
  - (c) We have a relation  $E_{\delta}(x_1, x_2, y)$  which holds if and only if  $x_1$  and  $x_2$  are from  $P_{\delta} \setminus G_{\delta}^{-1}(y)$  and realize the same cut over  $G_{\delta}^{-1}(y)$ .
  - (d) For each  $n \in \omega$  we have a function  $F_{\delta,n}$  such that the following hold.
    - (i) It is a bijection from  $G_{\delta}^{-1}(c_n) \setminus G_{\delta}^{-1}(c_{n-1})$  onto  $P_{\alpha_{\delta,n}}(x)$ , the identity on  $\{x : x \notin P_{\alpha_{\delta,n}} \cup G_{\delta}^{-1}(c_n)\}$ , and such that  $F_{\delta,n}(F_{\delta,n}(x)) = x$ .
    - (ii) For any  $n \in \omega$ , if  $a_1 <_{\alpha_{\delta,n}} b_1$  with  $a_1, b_1 \in P_{\alpha_{\delta,n}}$  and  $a_2 <_{\delta} d <_{\delta} b_2$  with  $a_2, b_2 \in G_{\delta}^{-1}(c_n)$ , then there are  $e_1 \in P_{\alpha_{\delta,n}}$  and  $e_2 \in G_{\delta}^{-1}(c_n) \setminus G_{\delta}^{-1}(c_{n-1})$  such that  $a_1 <_{\delta} e_1 <_{\delta} b_1$ ,  $a_2 <_{\delta} e_2 <_{\delta} b_2$ ,  $F_{\delta,n}(e_2) = e_1$ , and  $E_{\delta}(d, e_2, \alpha)$  for all  $\alpha < c_n$ .

#### Claim 4.2. $T_{\alpha_*}$ is a complete dependent theory.

**Proof.** It is easy to check by the back-and-forth method that T is a complete theory eliminating quantifiers.

#### A. Chernikov and S. Shelah

Let  $M \models T_{\alpha_*}$ , and let  $p(x) \in S_1(M)$  be a non-algebraic type. We have the following options.

- (1)  $p(x) \vdash Q_{\alpha}(x)$  for some successor  $\alpha < \alpha_*$ . Then p(x) is determined by the following.
  - (a) Fixing the cut of x over M in the order  $<_{\alpha}$ .
  - (b) If  $p(x) \vdash \neg P_{\alpha}(x)$  then by the following.
    - (i) Fixing the cut of  $f_{\alpha}(x)$  over M in the order  $<_{\alpha+1}$ .
    - (ii) If  $\alpha + 1$  occurs as  $\alpha_{\delta,n}$  for some limit  $\delta < \alpha_*$ , then fixing the cut of  $F_{\delta,n}(f_{\alpha}(x))$  over M in the order  $<_{\delta}$ , and fixing the cut of  $G_{\delta}(F_{\delta,n}(f_{\alpha}(x)))$ in  $<_R$  over M.
  - (c) If  $p(x) \vdash P_{\alpha}(x)$ , then by the following.
    - (i) Fixing the cut  $f_{\alpha-1}(x)$  over M in the order  $<_{\alpha-1}$ .
    - (ii) If  $\alpha$  occurs as  $\alpha_{\delta,n}$  for some limit  $\delta < \alpha_*$ , then fixing the cut of  $F_{\delta,n}(x)$  over M in the order  $<_{\delta}$ , and fixing the cut of  $G_{\delta}(F_{\delta,n}(x))$  in  $<_R$  over M.
- (2)  $p(x) \vdash Q_{\delta}(x)$  for some limit  $\delta$ . Then p(x) is determined by the following.
  - (a) Fixing the cut of x over M in the order  $<_{\delta}$ .
  - (b) If  $P_{\delta}(x)$  does not hold, then similarly to 2(b).
  - (c) If  $P_{\delta}(x)$  holds, then by the following.
    - (i) Fixing the cut of  $G_{\delta}(x)$  over M in  $<_R$ .
    - (ii) If  $G_{\delta}(x) = c_n$  for some  $n \in \omega$ , also fixing the cut of  $F_{\delta,n}(x)$  over M in  $<_{\alpha_{\delta,n}}$ .
- (3) If  $p(x) \vdash R(x)$ , then fixing the cut of x in  $<_R$  over M.
- (4)  $p(x) \vdash \{\neg Q_{\alpha}(x) : \alpha < \alpha_*\} \cup \{\neg R(x)\}$ . Then p(x) is a complete type.

Altogether it follows that  $|S_1(M)| \leq (\operatorname{ded} |M|)^{\aleph_0}$ ; thus T is dependent by Fact 3.1. Consider the type  $p_*(x) = \{\neg P_\alpha(x) : 0 < \alpha \le \alpha_*\} \cup \{x \ne c_n : n \in \omega\} \cup \{x \ne d_r : r \in \mathbb{Q}\}.$ 

Claim 4.3. Let M be a model of  $T_{\alpha_*}$  omitting  $p_*(x)$ . Then  $|M| \leqslant \beth_{\alpha_*}$ .

**Proof.** First of all, if M omits  $p_*$ , then  $|P_0^M| = \aleph_0$  and  $|R^M| = \aleph_0$ . We show by induction for  $\delta \leqslant \alpha_*$  that  $|P_{\delta}^M| \leqslant \beth_{\delta}$ . If  $\delta = \alpha + 1$  is a successor, then clearly  $|P_{\delta+1}^M| \leqslant^+ \operatorname{ded} |P_{\delta}^M|$ ; thus  $\leqslant \beth_{\delta+1}$  by induction. If  $\delta$  is a limit, then, by construction,  $|P^M_{\delta}| \leqslant \sum_{n<\omega} (|P^M_{\alpha_{\delta,n}}|) \leqslant$  $\sum_{n<\omega} \beth_{\alpha_{\delta,n}} = \beth_{\delta}$ . The claim follows.

**Claim 4.4.** For every  $\beta < \omega_1$  there is  $\alpha_* < \omega_1$  such that  $T_{\alpha_*}$  has a model omitting  $p_*(x)$ of size  $\geqslant \beth_{\beta}$ .

**Proof.** By Corollary 2.13 and induction, there is  $\alpha_* < \beta + \omega$  such that we can choose a strictly increasing sequence of cardinals  $(\lambda_{\alpha})_{\alpha<\alpha_*}$  satisfying the following.

- $\bullet \lambda_0 = \aleph_0.$
- $\lambda_{\alpha+1} \leq^+ \operatorname{ded} \lambda_{\alpha}$ .
- For a limit  $\alpha$ ,  $\lambda_{\alpha} = \sum_{\alpha' < \alpha} \lambda_{\alpha'}$ .
- $\lambda_{\alpha_*} \geqslant \beth_{\beta}$ .

Downloaded from https://www.cambridge.org/core. Probook, on 29 Aug 2018 at 12:33:03, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1474748015000018

We define a model of  $T_{\alpha_*}$  omitting  $p_*$  and such that  $|P_{\alpha}^M| = \lambda_{\alpha}$  by induction on  $\alpha$ .

- (1) Let  $R^M = (\omega, <)$  with  $c_n$  naming n. Let  $Q_0^M = (\mathbb{R}, <)$ , and let  $P_0^M = \mathbb{Q}$ , with  $d_r$  naming r.
- (2) For a successor  $\delta = \alpha + 1$  we proceed as follows. Similarly to Claim 3.9, we can find a linear order J of cardinality  $\lambda_{\delta}$  with a dense subset I of cardinality  $\lambda_{\alpha}$ . We may also assume that, for every a < b in J,  $|(a,b)| = \lambda_{\delta}$  and  $|(a,b) \cap I| = \lambda_{\alpha}$ . We let  $Q_{\delta}^{M} = J$ ,  $P_{\delta}^{M} = I$ , and  $<_{\delta}^{M} = <_{J}$ . We may choose  $f_{\delta}$  satisfying Definition 4.1 by transfinite induction as all the relevant intervals have 'full cardinality' by construction and the inductive assumption.
- (3) For a limit  $\delta \leqslant \alpha_*$  we proceed as follows.
  - (a) First, we construct orders  $I_n$ ,  $J_n$  by induction on  $n < \omega$ .
    - (i) Let  $I_0 \subseteq J_0$  be dense linear orders without end points and such that  $I_0$  is dense—co-dense in  $J_0$ ,  $|I_0| = \lambda_{\alpha_{\delta,0}}$ ,  $|J_0| = \lambda_{\alpha_{\delta,0}+1}$ , and such that, for every a < b in  $J_0$ ,  $|(a,b)| = \lambda_{\alpha_{\delta,0}+1}$  and  $|(a,b) \cap I_0| = \lambda_{\alpha_{\delta,0}}$  (can be chosen by assumption on  $\lambda_{\alpha}$  as in the proof of Claim 3.9).
    - (ii) Let  $I'_{n+1}$ ,  $J'_{n+1}$  be dense linear orders without end points and such that  $I'_{n+1}$  is dense-co-dense in  $J'_{n+1}$ ,  $|I'_{n+1}| = \lambda_{\alpha_{\delta,n+1}}$ ,  $|J'_{n+1}| = \lambda_{\alpha_{\delta,n+1}+1}$ , and such that, for every a < b in  $J'_{n+1}$ ,  $|(a,b)| = \lambda_{\alpha_{\delta,n+1}+1}$  and  $|(a,b) \cap I'_{n+1}| = \lambda_{\alpha_{\delta,n+1}}$  (again can be chosen by assumption on  $\lambda_{\alpha}$  as in the proof of Claim 3.9). Let  $I_{n+1}$  extend  $I_n$  with a copy of  $I'_{n+1}$  added in every cut, and similarly let  $J_{n+1}$  extend  $J_n$  with a copy of  $J'_{n+1}$  added in every cut. It follows that  $\lambda_{\delta,n+1} \leq |I_{n+1}| \leq \lambda_{\alpha_{\delta,n}+1} \times \lambda_{\alpha_{\delta,n+1}} \leq \lambda_{\alpha_{\delta,n+1}}$  and  $|J_{n+1}| \leq \lambda_{\alpha_{\delta,n}+2} \times \lambda_{\alpha_{\delta,n+1}+1} \leq \lambda_{\alpha_{\delta,n+1}+1}$ , and that  $I_{n+1}$  is a dense-co-dense subset of  $J_{n+1}$ .
    - (iii) Finally, let  $I=\bigcup_{n<\omega}I_n$  and  $J=\bigcup_{n<\omega}J_n$ . In particular, I is dense–co-dense in J, and both I,J are of size  $\lambda_\delta$ .
  - (b) We let  $P_{\delta}^{M} = I$ ,  $Q_{\delta}^{M} = J$ , and define  $G_{\delta}^{M}$  by sending  $I_{n}$  to  $c_{n}$ . By construction of  $I_{n}$  and  $P_{\alpha_{\delta,n}}^{M}$  and transfinite induction, we can find bijections  $F_{\delta,n}^{M}$  between  $G_{\delta}^{M}(c_{n}) \setminus G_{\delta}^{M}(c_{n-1}) = I_{n} \setminus I_{n-1}$  and  $P_{\alpha_{\delta,n}}^{M}$  satisfying the axioms of  $T_{\alpha_{*}}$ . We let  $E(x, y, c_{n})$  hold for x, y in  $I_{n} \setminus I_{n-1}$  realizing the same cut over  $I_{n-1}$ .

**Theorem 4.5.** For every countable ordinal  $\beta < \omega_1$  there is a complete countable dependent theory T and a partial type p(x) such that the following hold.

- T has a model omitting p of size  $\geq \beth_{\beta}$ .
- Any model of T omitting p is of size  $< \beth_{on}$ .

**Proof.** The proof is obtained by combining Claims 4.2–4.4.

#### References

- 1. J. E. Baumgartner, Almost-disjoint sets, the dense set problem and the partition calculus, *Ann. Math. Logic* **9**(4) (1976), 401–439.
- T. BAYS, Some two-cardinal results for o-minimal theories, J. Symbolic Logic 63(2) (1998), 543–548.

- 3. A. Berenstein and Z. Shami, Invariant version of cardinality quantifiers in superstable theories, *Notre Dame J. Form. Logic* 47(3) (2006), 343–351 (electronic).
- A. CHERNIKOV, I. KAPLAN AND S. SHELAH, On non-forking spectra, Preprint, arXiv:1205.3101v1, 2012.
- 5. A. Chernikov and P. Simon, Externally definable sets and dependent pairs II, *Trans. of AMS.* accepted.
- A. CHERNIKOV AND P. SIMON, Externally definable sets and dependent pairs, Israel J. Math. 194(1) (2013), 409–425.
- M. GITIK AND S. SHELAH, On certain indestructibility of strong cardinals and a question of Hajnal, Arch. Math. Logic 28(1) (1989), 35–42.
- 8. D. HASKELL, E. HRUSHOVSKI AND D. MACPHERSON, Stable Domination and Independence in Algebraically Closed Valued Fields, Lecture Notes in Logic, Volume 30 (Association for Symbolic Logic, Chicago, IL, 2008).
- 9. W. Hodges, *Model Theory*, Encyclopedia of Mathematics and its Applications, Volume 42 (Cambridge University Press, Cambridge, 1993).
- 10. E. HRUSHOVSKI AND A. PILLAY, On NIP and invariant measures, J. Eur. Math. Soc. (JEMS) 13(4) (2011), 1005–1061.
- 11. E. Hrushovski and S. Shelah, Stability and omitting types, *Israel J. Math.* **74**(2-3) (1991), 289–321.
- 12. M. HOLZ, K. STEFFENS AND E. WEITZ, Introduction to Cardinal Arithmetic, Birkhäuser Advanced Texts: Basel Textbooks], (Birkhäuser Verlag, Basel, 1999).
- H. Jerome Keisler, Six classes of theories, J. Aust. Math. Soc. Ser. A 21(3) (1976), 257–266.
- 14. I. KAPLAN AND S. SHELAH, A dependent theory with few indiscernibles, *Israel J. Math.* **202**(1) (2014), 59–103.
- I. KAPLAN AND S. SHELAH, Examples in dependent theories, Preprint, arXiv:1009.5420, 2010.
- 16. A. H. LACHLAN, A property of stable theories, Fund. Math. 77(1) (1972), 9-20.
- 17. D. MARKER, Omitting types in o-minimal theories, J. Symbolic Logic 51(1) (1986), 63–74.
- 18. W. MITCHELL, Aronszajn trees and the independence of the transfer property, Ann. Math. Logic 5 (1972/73), 21–46.
- 19. S. Shelah, Classification Theory and the Number of Nonisomorphic Models, second edition, Studies in Logic and the Foundations of Mathematics, Volume 92 (North-Holland Publishing Co., Amsterdam, 1990).
- 20. S. Shelah, More on cardinal arithmetic, Arch. Math. Logic 32(6) (1993), 399-428.
- 21. S. Shelah, *Cardinal Arithmetic*, Oxford Logic Guides, Volume 29 (The Clarendon Press Oxford University Press, New York, 1994). Oxford Science Publications.
- 22. S. Shelah, Further cardinal arithmetic, *Israel J. Math.* **95** (1996), 61–114. doi:10.1007/BF02761035.
- 23. S. Shelah, Strongly dependent theories, Preprint, arXiv:math/0504197, 2005.
- S. Shelah, Dependent theories and the generic pair conjecture, Preprint, arXiv:math/0702292, 2007.
- 25. S. Shelah, Dependent first order theories, continued, Israel J. Math. 173 (2009), 1–60.
- 26. S. Shelah, Dependent dreams: recounting types, Preprint, arXiv:1202.5795, 2012.