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Abstract For an infinite cardinal κ, let ded κ denote the supremum of the number of Dedekind cuts
in linear orders of size κ. It is known that κ < ded κ 6 2κ for all κ and that ded κ < 2κ is consistent for

any κ of uncountable cofinality. We prove however that 2κ 6 ded(ded(ded(ded κ))) always holds. Using this

result we calculate the Hanf numbers for the existence of two-cardinal models with arbitrarily large gaps
and for the existence of arbitrarily large models omitting a type in the class of countable dependent

first-order theories. Specifically, we show that these bounds are as large as in the class of all countable

theories.

Keywords: Dedekind cuts; linear orders; trees; cardinal arithmetic; PCF; two-cardinal models; omitting
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1. Introduction

For an infinite cardinal κ, let

ded κ = sup{|I | : I is a linear order with a dense subset of size 6 κ}.

In general, the supremum need not be attained. Let I be a linear order, and let c = (I1, I2)

be a cut of I (i.e., I = I1 ∪ I2, I1 ∩ I2 = ∅ and i1 < i2 for all i1 ∈ I1, i2 ∈ I2). By cofinality

of c from the left (respectively, from the right) we mean the cofinality of the linear order

induced on I1 (respectively, the cofinality of I ∗2 , that is I2 with the order reversed).

Fact 1.1. The following cardinalities are the same; see, e.g., [4, Proposition 6.5].

(1) ded κ.

(2) sup{λ : exists a linear order I of size 6 κ with λ cuts}.

(3) sup{λ : exists a regular µ and a linear order of size 6 κ with λ cuts of cofinality µ

both from the left and from the right}.

(4) sup{λ : exists a regular µ and a tree T of size 6 κ with λ branches of length µ}.
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It is well known that κ < ded κ 6 (ded κ)ℵ0 6 2κ (for the first inequality, let µ be

minimal such that 2µ > κ, and consider the tree 2<µ) and that dedℵ0 = 2ℵ0 (as Q ⊆ R
is dense). Thus ded κ = (ded κ)ℵ0 = 2κ for all κ in a model satisfying the Generalized

Continuum Hypothesis, or GCH. Moreover, Baumgartner [1] has shown that, if 2κ = κ+n

(i.e., the nth successor of κ) for some n ∈ ω, then ded κ = 2κ . On the other hand, for any κ

of uncountable cofinality, Mitchell [18] has proven that consistently ded(κ) < 2κ . Besides,

in [4, § 6], it is demonstrated that for some κ it is consistent that ded κ < (ded κ)ℵ0 (but

it is still open if both inequalities ded κ 6 (ded κℵ0) 6 2κ can be strict simultaneously).

The importance of the function ded κ from the model-theoretic point of view is largely

due to the following fact.

Fact 1.2 [13, 19]. Let T be a complete first-order theory in a countable language L. For a

model M of T , S1(M) denotes the space of 1-types over M (i.e., the space of ultrafilters

on the Boolean algebra of definable subsets of M). Define fT (κ) = sup{|ST (M)| : M |H T,
|M | = κ}. Then, for any countable T , fT is one of the following functions: κ, κ + 2ℵ0 ,

κℵ0 , ded κ, (ded κ)ℵ0 , or 2κ (and each of these functions occurs for some T ).

In the first part of the paper, we prove that 2κ 6 ded(ded(ded(ded κ))) holds for any

κ. Our proof uses results from the PCF theory of the second author (PCF stands for

possible cofinalities). Optimality of this bound remains open. Moreover, with two extra

iterations we can ensure that the supremums are attained. That is, for any cardinal κ,

there are linear orders I0, . . . , I6 such that |I0| 6 κ, 2κ 6 |I6|, and for every i < 6, the

number of Dedekind cuts in Ii is at least |Ii+1|.

In the second part of the paper, we apply these results to questions about cardinal

transfer. Fix a complete first-order theory T in a countable language L, with a

distinguished predicate P(x) from L. Given two cardinals κ > λ > ℵ0, we say that M |H T
is a (κ, λ)-model if |M | = κ and |P(M)| = λ. A classical question in model theory is to

determine implications between existence of two-cardinal models for different pairs of

cardinals. It was studied by Vaught, Chang, Morley, Shelah and others.

Fact 1.3 (Vaught). Assume that, for some κ, T admits a (in(κ), κ)-model for all n ∈ ω.

Then T admits a (κ ′, λ′)-model for any κ ′ > λ′.

Vaught’s theorem is optimal.

Example 1.4. Fix n ∈ ω, and consider a structure M in the language L =
{P0(x), . . . , Pn(x),∈0, . . . ,∈n−1} in which P0(M) = ω, Pi+1(M) is the set of subsets of

Pi (M), and ∈i⊆ Pi × Pi+1 is the membership relation. Let T = Th(M). Then M is a

(in,ℵ0)-model of T , but it is easy to see by ‘extensionality’ that for any M ′ |H T we have

|M ′| 6 in(|P0(M ′)|).

However, the theory in the example is wild from the model-theoretic point of view, and

stronger transfer principles hold for tame classes of theories.
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Fact 1.5. (1) [16] If T is stable and admits a (κ, λ)-model for some κ > λ, then it admits

a (κ ′, λ′)-model for any κ ′ > λ′.

(2) [2] If T is o-minimal and admits a (κ, λ)-model for some κ > λ, then it admits a

(κ ′, λ′)-model for any κ ′ > λ′.

For further two-cardinal results for stable theories, see [19, Chapter V, § 6] and

also [3].

An important class of theories containing both the stable and the o-minimal theories

is the class of dependent theories (also called NIP theories in the literature, where

NIP stands for No Independence Property) introduced by the second author [19]. In

the countable case, dependent theories can be defined as those theories for which

fT (κ) 6 (ded κ)ℵ0 (see Fact 1.2, and see § 3 for a combinatorial definition). Recently,

dependent theories have attracted a lot of attention both in purely model-theoretic work

on generalizing the machinery of stable theories (see, e.g., [5, 6, 24–26]), and due to the

analysis of some important algebraic examples [8, 10].

It is easy to see that the theory in Example 1.4 is not dependent, but also that a

complete analogue of Fact 1.5 cannot hold for dependent theories: consider the theory of

(R, <) expanded by a predicate naming Q. In § 3, we show that in fact the situation for

dependent theories is not better than for arbitrary theories, in contrast to the stable and

o-minimal cases. Namely, for every n < ω, we construct a dependent theory Tn which has

a (im,ℵ0)-model for all m < n, but does not have a (iω,ℵ0)-model. In § 4, we elaborate

on this example and show that the Hanf number for omitting a type is again the same

for countable dependent theories as for arbitrary theories—unlike in the stable [11] and

in the o-minimal [17] cases. Examples which we construct add to the list of dependent

theories [14, 15] demonstrating that the principle ‘dependent = stable+ linear order’ has

only limited applicability.

2. On the number of Dedekind cuts

2.1. On ppκ(λ)

We summarize some facts from the PCF theory of the second author (see also [12, Chapter

9] for an exposition).

Definition 2.1. Given a set of cardinals A and a cardinal λ, we will write sup+(A) =
min{µ : ∀ν ∈ A, ν < µ} and λ 6+ sup(A) if either λ < sup(A), or λ = sup(A) and λ ∈ A.

Definition 2.2 [21, II.§ 1]. For cf λ 6 κ < λ, let

A =
{

cf
(∏

a/F
)
: a ⊂ Reg∧ sup(a)

= λ∧ |a| 6 κ ∧F is an ultrafilter on a ∧F ∩ Ib(a) = ∅
}
,

where Reg is the class of regular cardinals, and for a set B of ordinals with sup(B) /∈ B,

Ib(B) = {X ⊆ B : ∃β ∈ B X ⊆ β} denotes the ideal of bounded subsets of B. Then we

define ppκ(λ) = sup(A) and pp+κ (λ) = sup+(A) (where ‘pp’ stands for ‘pseudo-power’).
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Equivalently (see, e.g., [12, Lemma 9.1.1]), for cf λ 6 κ < λ, one has

ppκ(λ) = sup
{

tcf
(∏

i<κ

λi/I, <I

)
: λi = cf λi < λ

= sup
i<κ

λi ∧ I is an ideal on κ ∧ Ib(κ) ⊆ I
}
,

where <I is the lexicographic ordering modulo I , and for a partial order P,

tcf(P) = κ when there are 〈pi : i < κ〉 in P such that κ = cf κ and
∧

i< j (pi < p j )

and ∀p ∈ P(
∨

i<κ p 6 pi ) (true cofinality may not exist). We recall that 0(θ, σ ) =

{I : for some cardinal θI < θ, I is a σ -complete ideal on θI } and 0(θ) = 0(θ+, θ). Then

pp0(θ,σ )(λ) is defined in the same way as ppκ(λ), but the supremum is taken only over

ideals from 0(θ, σ ).

Fact 2.3. See, e.g., [12, Chapter 9].

(1) λ < ppκ(λ) 6 λκ , and if cf λ = κ > ℵ0 and λ is κ-strong (i.e., ρκ < λ for all ρ < λ),

then ppκ(λ) = λ
κ . In particular, ppκ(λ) = λ

κ holds for any strong limit λ with

uncountable cofinality κ.

(2) For any θ , we have pp0(θ)(λ) 6 ppθ (λ) and pp0(θ+,2)(λ) = ppθ (λ).

Fact 2.4. (1) [20, 4.3] Assume that the following hold.

• λ is regular and uncountable.

• κ < λ implies that 2κ < 2λ.

• For some regular χ 6 2λ, there is no tree of cardinality λ with > χ-many branches

of length λ.

Then 2<λ < 26λ and, for some µ ∈ (λ, 2<λ] with cfµ = λ, the following hold.

(a) For every regular χ in (2<λ, 2λ] there is a linear order of cardinality χ with a

dense subset of cardinality µ (the linear order is (Tχ , <lx), where Tχ ⊆ 2<µ has

6µ nodes and >χ-many branches of length λ).

(b) pp0(λ)(µ) = 2λ.

(c) µ is (λ, λ+, 2)-inaccessible, i.e., (see [20, 3.2]) for any µ′ such that λ < µ′ <

µ ∧ cfµ′ 6 λ we have pp0(λ+,2)(µ
′) < µ, which in view of Fact 2.3 implies that

ppλ(µ
′) < µ.

(2) [22, Claim 3.4] Assume that θn+1 = min{θ : 2θ > 2θn } for n < ω and
∑

n<ω θn < 2θ0

(so θn+1 is regular, θn+1 > θn). Then, for infinitely many n < ω, for some µn ∈

[θn, θn+1) (so 2µn = 2θn ) we have that for every regular χ 6 2θn there is a tree of

cardinality µn with > χ-many branches of length θn.

(3) [21, II.2.3(2)] If λ < µ are singulars of cofinality 6 κ (and κ < λ) and ppκ(λ) > µ,

then ppκ(µ) 6
+ ppκ(λ).

Remark 2.5. See [7] concerning optimality of these results.
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2.2. Bounding exponent by iterated ded

Definition 2.6. By induction on the ordinal α, we define a strictly increasing sequence of

ordinals αג such that the following hold.

• If α = 0, then αג = ℵ0.

• If α = β + 1, then αג = min{ג : ג2 > βג2 }.

• If α is a limit ordinal, then αג =
∑
βג} : β < α}.

Lemma 2.7. For any ordinal α, α+1ג2 6+ ded(2גα ).

Proof. α+1ג>2 is a tree with α+1ג2 branches and 6
∑
{2|β| : β < {α+1ג nodes. But, if

β < ,α+1ג then 2β 6 αג2 and α+1ג 6 αג2 by the definition of the ,ג so the number of

nodes is bounded by αג2 .

Proposition 2.8. Assume that α+kג 6 αג2 for some k ∈ ω. Then, for some m 6 k, the

following hold.

• ded(2גα ) > α+mג2 .

• ded(2גα+m ) > α+kג2 .

Proof. We follow the proof of [22, Claim 3.4]. Let θn = α+nג for n 6 k. Note that θn+1 is

regular and that θn+1 > θn . We define the following.

(∗)θn For every regular χ 6 2θn , there is a tree of cardinality θn with > χ -many branches

of length θn .

Let S0 = {0 < n 6 k : (∗)θn fails}.

By Fact 2.4(1) with λ = θn and the definitions of S0 and of the ,ג it follows that for

each n ∈ S0 there is µn such that the following hold.

(α)n θn = cfµn < µn 6 2<θn = 2θn−1(as 2<θn 6 θn × 2θn−1 6 2θ0 × 2θn−1 6 2θn−1).

(β)n ppθn
(µn) = pp0(θn)

(µn) = 2θn (as pp0(θn)
(µn) = 2θn by Fact 2.4(1)(b), and

pp0(θn)
(µn) 6 ppθn

(µn) 6 µ
θn
n 6 (2θn−1)θn 6 2θn by Fact 2.3).

(γ )n For any µ′ we have that θn < µ′ < µn ∧ cfµ′ 6 θn implies that pp0(λ+,2)(µ
′) < µn

(by Fact 2.4(1)(c)).

(δ)n ded(µn) > 2θn (as for any regular χ 6 2θn there is linear order of cardinality > χ

with a dense subset of size µn by Fact 2.4(1)(a)).

Let S1 = {n ∈ S0 : µn > αג2 }. Then we have the following claims.

(∗)1 If n 6 k and n /∈ S0, then ded(2גα ) > α+nג2 .

Proof. By the definitions of S0 and of θn it follows that ded(θn) > α+nג2 (taking the

supremum over trees corresponding to regular χ less than or equal to 2θn ), and θn 6 αג2
by assumption. Thus ded(2גα ) > α+nג2 , as wanted.

(∗)2 If n 6 k and n ∈ S0 \ S1, then ded(2גα ) > α+nג2 .
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Proof. By the definition of S1, we have µn < αג2 . On the other hand, as n ∈ S0, we have

ded(µn) > 2θn by (δ)n . Combining, we get ded(2גα ) > α+nג2 .

(∗)3 If n and n+ 1 are from S1, then µn > µn+1.

Proof. By the assumption, µn > αג2 > θn+1 = cf θn+1, and in fact µn > θn+1, as they are

of different cofinality.

Assume that µn < µn+1. Then, by Fact 2.4(3) with λ = µn , µ = µn+1 and κ =

θn+1 (as max{cfµn, cfµn+1} = max{θn, θn+1} < min{µn, µn+1} by (α)n and (α)n+1, and

ppθn+1
(µn) > pp0(θn)

(µn) = 2θn > µn+1), we would get ppθn+1
(µn+1) 6+ ppθn+1

(µn).

On the other hand, by (γ )n+1 we would get that θn+1 < µn < µn+1 ∧ cfµn 6 θn+1
implies that ppθn+1

(µn) < µn+1 6 2θn+1 = ppθn+1
(µn+1), which is a contradiction. Thus we

conclude that µn > µn+1, and in fact µn > µn+1, as they are of different cofinalities.

We try to define m = max{0 < n 6 k : n /∈ S1}.

Case 1. m is not defined. So S1 = {1, . . . , k} (and we may assume that k > 2). Hence

µ1 > · · · > µk by (∗)3, and hence µk < µ1 6 2θ0 . But by the definition of S1,

actually µk > 2θ0 , which is a contradiction.

Case 2. m is well defined. So {m+ 1, . . . , k} ⊆ S1. Hence as in Case 1 we have

µk < µm+1 6 2θm , and hence ded(2גα+m ) > ded(µk) > α+kג2 by (δ)k . Besides,

ded(2גα ) > α+mג2 (by (∗)1 if m /∈ S0 and by (∗)2 if m ∈ S1 \ S0), so we are

done.

Proposition 2.9. Assume that α+kג 6 αג2 for some k ∈ ω. Then, for some m 6 k, the

following hold.

• α+kג2 6+ ded(2גα+k−1).

• α+k−1ג2 6+ ded(2גα+m ).

• α+mג2 6+ ded(2גα+m−1).

• α+m−1ג2 6+ ded(2גα ).

Proof. We modify the proof of Proposition 2.8. We have the following.

(∗)+1 If n+ 1 6 k and n+ 1 /∈ S0, then ded(2גα )+ > α+nג2 .

Proof. As α+nג2) )+ is regular, α+nג2) )+ 6 α+n+1ג2 , and (∗)θn+1 holds by the definition of

S0, it follows that ded(θn+1)
+ > α+nג2 , and θn+1 6 αג2 by assumption. Thus ded(2גα )+ >

α+nג2 , as wanted.

(∗)+2 If n+ 1 6 k and n+ 1 ∈ S0 \ S1, then ded(2גα ) > α+nג2 .

Proof. If n+ 1 ∈ S0 \ S1, then µn+1 < αג2 and ded(µn+1)
+ > 2θn by (δ)n+1.

Now, in Case 1 we get a contradiction in the same way as before, so we may assume

that m is well defined, i.e., {m+ 1, . . . , k} ⊆ S1. As before, we get µk < µm+1 6 2θm ; hence
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ded(2גα+m ) > ded(µk)
+ > α+k−1ג2 by (δ)k . Besides, ded(2גα )+ > α+m−1ג2 (by (∗)+1 if m /∈ S0

and by (∗)+2 if m ∈ S1 \ S0). We can conclude by Lemma 2.7.

Although, as was already mentioned, it is consistent for κ of uncountable cofinality

that ded κ < 2κ , we prove (in ZFC) that these values are not so far apart, and that four

iterations of ded are sufficient to get the exponent.

Theorem 2.10. Let µ be an arbitrary cardinal. Then there are λ0, . . . , λ4 such that the

following hold.

(1) λ0 6 µ.

(2) λi+1 6 ded(λi ) for i < 4.

(3) 2µ 6 λ4.

Proof. As the sequence of the ג is increasing, for some α we have αג 6 µ < ,α+1ג so also

α 6 µ.

First of all, for any ordinal β with β +ω 6 α and βג2 > ,β+ωג we have (by Fact 2.4(2)

taking θ0 = βג and θn = (β+nג that the following holds.

�1 For infinitely many γ ∈ [β, β +ω) and arbitrary regular ג 6 γג2 , there is a tree T
with |T | ∈ γג] , (γ+1ג and at least many-ג branches of length γג .

Let δ∗ be the largest non-successor ordinal 6 α, so α = δ∗+ n∗ for some n∗ < ω. We have

the following.

�2 There is a linear order I of cardinality 6 µ with >
∑
βג2} : β < δ∗} Dedekind cuts.

(Indeed, if ∗δג is a strong limit cardinal, then
∑
βג2} : β < δ∗} 6 µ, and this is trivial.

Otherwise, the requirement that β+ωג 6 βג2 < β+1ג2 holds for every large enough β < δ∗,

so by �1 and Fact 1.1 we can conclude by taking the sum of the corresponding linear

orders and noting that δ∗ 6 µ.)

Let λ0 = µ, λ1 =
∑
βג2} : β < δ∗}, and λ2+n = δ∗+nג2 for n ∈ {0, . . . , n∗}. Note that

λ2+n∗ = αג2 = 2µ.

We have the following.

• λ1 6+ ded λ0 (by �2).

• λ2 6+ ded λ1 (as ∗δג>2 is a tree with
∑
{2κ : κ < {∗δג =

∑
βג2} : β < δ∗} = λ1 nodes

and ∗δג2 = λ2 branches).

• λ2+n+1 6+ ded(λ2+n) for n < n∗ (by Lemma 2.7).

If δ∗ = α, then we are done, as λ2 = αג2 = 2µ (as µ < α+1ג and α+1ג is smallest with

αג2 < ,(α+1ג2 so assume that δ∗ = α∗+ n∗ and n∗ > 0.

If ∗δ∗+nג 6 ∗δג2 , then by Proposition 2.8 there is some m 6 n∗ such that λ′3 =

ded(2גδ∗ ) > δ∗+mג2 and λ′4 = ded(2גδ∗+m ) > ∗δ∗+nג2 = αג2 = 2µ. It then follows that

λ0, λ1, λ2, λ
′

3, λ
′

4 are as wanted.

Otherwise, ∗δ∗+nג > ∗δג2 . Let n be the biggest such that ∗δ∗+nג > δ∗+nג2 . It follows that

n 6 n∗− 1. Then ∗δ∗+nג 6 δ∗+n+1ג2 , and again by Proposition 2.8 we get some m such that

the following hold.
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• λ′′0 = δ∗+nג2 < ∗δ∗+nג 6 µ.

• λ′′1 = δ∗+n+1ג2 6+ ded(2גδ∗+n ) (by Lemma 2.7).

• λ′′2 = δ∗+mג2 6 ded(2גδ∗+n+1).

• 2µ = ∗δ∗+nג2 6 λ′′3 = ded(2גδ∗+m ).

But then 〈λ′′i 〉i63 are as wanted.

Similarly, we have the following.

Corollary 2.11. Let µ be an arbitrary cardinal. Then there are λ0, . . . , λ6 such that the

following hold.

(1) λ0 6 µ.

(2) λi+1 6+ ded(λi ) for all i < 6.

(3) 2µ 6 λ6.

Proof. The proof follows from the proof of Theorem 2.10, using Proposition 2.9 instead

of Proposition 2.8.

Problem 2.12. What is the smallest 1 < n 6 4 for which Theorem 2.10 remains true?

Can the bound be improved at least for certain classes of cardinals? Also, how might the

required number of iterations vary in different models of ZFC?

Corollary 2.13. For every cardinal µ and k < ω there is some n < ω and a sequence

〈λm : m 6 n〉 such that the following hold.

• λ0 6 µ.

• λ0 < · · · < λn and ded(λm)
+ > λm+1.

• λn > ik(µ).

Proof. The proof follows by iterating Corollary 2.11.

3. On 2-cardinal models for dependent T

We recall that a formula ϕ(x, y) ∈ L is said to have the independence property (or IP)

with respect to a theory T if in some model of T there are elements 〈ai : i ∈ ω〉 and

〈bs : s ⊆ ω〉 such that ϕ(ai , bs) holds if and only if i ∈ s. A complete first-order theory

is called dependent (or NIP) if no formula has the independence property. The class

of dependent theories contains both the stable and the o-minimal theories, but also for

example the theory of algebraically closed valued fields.

Fact 3.1 [19, Theorem II.4.11]. A countable theory T is dependent if and only if |S1(M)| 6
(ded |M |)ℵ0 for all M |H T .

In this section, we show that, when considering the two-cardinal transfer to arbitrarily

large gaps between the cardinals, the situation for dependent theories is not better than

for arbitrary theories. Namely, for every n < ω we construct a dependent theory T which

has a (im,ℵ0)-model for all m < n, but does not have any (iω,ℵ0)-models.
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Definition 3.2. For any n ∈ N, let Ln be the language consisting of the following.

(1) Pm , Qm are unary predicates for m < n.

(2) fm is a unary function for m+ 1 < n.

(3) <m is a binary relation for m < n.

Definition 3.3. We define a universal theory T ∀n in the language Ln saying the following.

(1) 〈Qm : m < n〉 is a partition of the universe.

(2) <m is a linear order on Qm .

(3) Pm is a subset of Qm .

(4) fm is a unary function such that the following hold.

(a) It is 1-to-1 from Pm+1 into Qm \ Pm .

(b) It is 1-to-1 from Qm \ Pm into Pm+1.

(c) f ( f (x)) = x .

(d) It is the identity on {x : x /∈ Pm+1 ∪ (Qm \ Pm)}.

Claim 3.4. (1) T ∀n is a consistent universal theory.

(2) T ∀n has the amalgamation property (AP) and the joint embedding property (JEP).

(3) If M |H T ∀n and A ⊆ M is finite, then the substructure generated by A is finite, and

in fact of size at most 2× |A|.

(4) T ∀n has a model completion Tn which is ℵ0-categorical and eliminates quantifiers.

Proof. (1)–(3) are easy to see, and (4) follows by, for example, [9, Theorem 7.4.1].

Claim 3.5. In fact, Tn is axiomatized by the following.

(1) T ∀n .

(2) <m is a dense linear order without end points.

(3) Pm is both dense and co-dense in Qm .

(4) fm is a 1-to-1 function from Pm+1 onto Qm \ Pm .

(5) If a1 <m c1 and a2 <m+1 c2, then there are b1 ∈ Qm \ Pm and b2 ∈ Pm+1 such that

a1 <m b1 <m c1, a2 <m+1 b2 <m+1 c2 and fm(b2) = b1.

Proposition 3.6. Tn is dependent.

Proof. Let M |H Tn . Let p(x) ∈ S1(M) be a non-algebraic type. By quantifier elimination

it is determined by the following.

• Qm(x) for the corresponding m < n.

• Fixing the corresponding cut of x over M in the order <m .

• Saying if Pm(x) holds or not.
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• If it does not hold, fixing the cut of fm(x) over M in the order <m+1.

• If it holds, fixing the cut fm(x) over M in the order <m−1.

Then clearly |S1(M)| 6 ded |M |, so Tn is dependent.

Remark 3.7. In fact it is easy to check that Tn is strongly dependent (see [23]).

Proposition 3.8. (1) If M |H Tn and |P M
0 | = λ, then |M | 6 in(λ).

(2) Moreover, |P M
m+1| = |Q

M
m \ P M

m | 6 |Q
M
m | and |QM

m | 6
+ ded |P M

m |.

Claim 3.9. Assume that λ0 < · · · < λn and λm+1 6+ ded λm . Then Tn has a model M such

that |P M
0 | = λ0 and the following hold.

(1) |P M
m | = λm .

(2) |QM
m | = λm+1.

Proof. By assumption, for every m < n we can find a linear order Jm of cardinality λm+1
with a dense subset Im of cardinality λm . We may also assume that the following hold.

(1) For every a < b in Jm , |(a, b)| = λm+1 and |(a, b)∩ Im | = λm (so, in particular, Im
is also co-dense in Jm).

(2) Im and Jm are dense without end points.

Indeed, given an arbitrary infinite linear order I and a dense subset J , let I∗ = I ×Q,

J∗ = J ×Q, and let I∗∗ be the lexicographic order on I<ω∗ , J∗∗ = J<ω∗ . It is easy to see

that |I∗∗| = |I |, |J∗∗| = |J |, J∗∗ is dense in I∗∗, both orders are dense without end points,

and that, for any a < b in J∗∗, |(a, b)| = |I | and |(a, b)∩ J∗∗| = |J |.
We define M by taking QM

m = Jm , P M
m = Im and <M

m =<Jm . We may choose fm
satisfying 3.5(4) by transfinite induction as all the relevant intervals have ‘full cardinality’

by the assumption. By Claim 3.5, M |H Tn .

Theorem 3.10. For every n < ω there is a dependent countable theory T which has a

(im,ℵ0)-model for all m < n, but does not have any (iω,ℵ0)-models.

Proof. The proof follows by combining Propositions 3.6, 3.8, Claim 3.9, and

Corollary 2.13.

4. Hanf number for omitting types

Now, we elaborate on the previous example, and for every countable ordinal β < ω1 we

find a countable ordinal α∗ < ω1, a countable theory Tα∗ , and a partial type p(x) such

that the following hold.

• There is a model of Tα∗ omitting p(x) and of size > iβ .

• Any model of Tα∗ omitting p(x) is of size at most iα∗ .

Definition 4.1. Fix an ordinal α∗ < ω1. We describe our theory Tα∗ .
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(1) 〈Qα(x) : α 6 α∗〉 are pairwise disjoint infinite unary predicates.

(2) <α is a dense linear order without end points on Qα(x).

(3) Pα(x) is a dense–co-dense subset of Qα(x).

(4) R(x) is a unary predicate disjoint from all Qα.

(5) 〈cn : n ∈ ω〉 are constants and R(cn) for all n ∈ ω.

(6) <R is a linear order on R(x), and (R, <R, 〈cn : n ∈ ω〉) is a model of Th(N, < ,
〈n : n ∈ N〉).

(7) sR(x), s−1
R (x) are the successor and the predecessor functions on R(x).

(8) 〈dr : r ∈ Q〉 are constants and P0(dr ) for all r ∈ Q.

(9) For every successor ordinal δ+ 1 6 α∗, the following hold.

(a) fδ is a bijection from Pδ+1 onto Qδ \ Pδ, the identity on {x : x /∈ Pδ+1 ∪ (Qδ \

Pδ)}, and such that fδ( fδ(x)) = x .

(b) If a1 <δ c1 and a2 <δ+1 c2 for some a1, c1 ∈ Qδ \ Pδ and a2, c2 ∈ Pδ+1, then there

are b1 ∈ Qδ \ Pδ and b2 ∈ Pδ+1 such that a1 <δ b1 <δ c1, a2 <δ+1 b2 <δ+1 c2,

and fδ(b2) = b1.

(10) For every limit ordinal δ 6 α∗, the following hold.

(a) We fix some listing 〈αδ,n : n < ω〉 with
∑

n<ω αδ,n = δ, where for every n we

have that αδ,n is a successor ordinal larger than the successor of αδ,n−1 and

larger than any αδ′,m from a similar listing for a smaller limit ordinal δ′.

(b) We have a function Gδ(x) such that the following hold.

(i) Gδ is the identity on {x : x /∈ Pδ}.

(ii) Gδ : Pδ(x)→ R(x) is onto.

(iii) For every y ∈ R(x), G−1
δ (y) is a dense linear order without end points.

(iv) If y1 <R y2, then G−1
δ (y1) is co-dense in G−1

δ (y2), and every cut of G−1
δ (y1)

realized by some a ∈ Pδ is realized by some a′ ∈ G−1
δ (y2).

(c) We have a relation Eδ(x1, x2, y) which holds if and only if x1 and x2 are from

Pδ \G−1
δ (y) and realize the same cut over G−1

δ (y).

(d) For each n ∈ ω we have a function Fδ,n such that the following hold.

(i) It is a bijection from G−1
δ (cn) \G−1

δ (cn−1) onto Pαδ,n (x), the identity on

{x : x /∈ Pαδ,n ∪G−1
δ (cn)}, and such that Fδ,n(Fδ,n(x)) = x .

(ii) For any n ∈ ω, if a1 <αδ,n b1 with a1, b1 ∈ Pαδ,n and a2 <δ d <δ b2 with

a2, b2 ∈ G−1
δ (cn), then there are e1 ∈ Pαδ,n and e2 ∈ G−1

δ (cn) \G−1
δ (cn−1)

such that a1 <δ e1 <δ b1, a2 <δ e2 <δ b2, Fδ,n(e2) = e1, and Eδ(d, e2, α) for

all α < cn .

Claim 4.2. Tα∗ is a complete dependent theory.

Proof. It is easy to check by the back-and-forth method that T is a complete theory

eliminating quantifiers.
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Let M |H Tα∗ , and let p(x) ∈ S1(M) be a non-algebraic type. We have the following

options.

(1) p(x) ` Qα(x) for some successor α < α∗. Then p(x) is determined by the following.

(a) Fixing the cut of x over M in the order <α.

(b) If p(x) ` ¬Pα(x) then by the following.

(i) Fixing the cut of fα(x) over M in the order <α+1.

(ii) If α+ 1 occurs as αδ,n for some limit δ < α∗, then fixing the cut of

Fδ,n( fα(x)) over M in the order <δ, and fixing the cut of Gδ(Fδ,n( fα(x)))
in <R over M .

(c) If p(x) ` Pα(x), then by the following.

(i) Fixing the cut fα−1(x) over M in the order <α−1.

(ii) If α occurs as αδ,n for some limit δ < α∗, then fixing the cut of Fδ,n(x) over

M in the order <δ, and fixing the cut of Gδ(Fδ,n(x)) in <R over M .

(2) p(x) ` Qδ(x) for some limit δ. Then p(x) is determined by the following.

(a) Fixing the cut of x over M in the order <δ.

(b) If Pδ(x) does not hold, then similarly to 2(b).

(c) If Pδ(x) holds, then by the following.

(i) Fixing the cut of Gδ(x) over M in <R .

(ii) If Gδ(x) = cn for some n ∈ ω, also fixing the cut of Fδ,n(x) over M in <αδ,n .

(3) If p(x) ` R(x), then fixing the cut of x in <R over M .

(4) p(x) ` {¬Qα(x) : α < α∗} ∪ {¬R(x)}. Then p(x) is a complete type.

Altogether it follows that |S1(M)| 6 (ded |M |)ℵ0 ; thus T is dependent by Fact 3.1.

Consider the type p∗(x) = {¬Pα(x) : 0 < α 6 α∗} ∪ {x 6= cn : n ∈ ω} ∪ {x 6= dr : r ∈ Q}.

Claim 4.3. Let M be a model of Tα∗ omitting p∗(x). Then |M | 6 iα∗ .

Proof. First of all, if M omits p∗, then |P M
0 | = ℵ0 and |RM

| = ℵ0. We show by induction

for δ 6 α∗ that |P M
δ | 6 iδ. If δ = α+ 1 is a successor, then clearly |P M

δ+1| 6
+ ded |P M

δ |;

thus 6 iδ+1 by induction. If δ is a limit, then, by construction, |P M
δ | 6

∑
n<ω(|P

M
αδ,n
|) 6∑

n<ω iαδ,n = iδ. The claim follows.

Claim 4.4. For every β < ω1 there is α∗ < ω1 such that Tα∗ has a model omitting p∗(x)
of size > iβ .

Proof. By Corollary 2.13 and induction, there is α∗ < β +ω such that we can choose a

strictly increasing sequence of cardinals (λα)α<α∗ satisfying the following.

• λ0 = ℵ0.

• λα+1 6+ ded λα.

• For a limit α, λα =
∑
α′<α λα′ .

• λα∗ > iβ .
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We define a model of Tα∗ omitting p∗ and such that |P M
α | = λα by induction on α.

(1) Let RM
= (ω,<) with cn naming n. Let QM

0 = (R, <), and let P M
0 = Q, with dr

naming r .

(2) For a successor δ = α+ 1 we proceed as follows. Similarly to Claim 3.9, we can find a

linear order J of cardinality λδ with a dense subset I of cardinality λα. We may also

assume that, for every a < b in J , |(a, b)| = λδ and |(a, b)∩ I | = λα. We let QM
δ = J ,

P M
δ = I , and <M

δ =<J . We may choose fδ satisfying Definition 4.1 by transfinite

induction as all the relevant intervals have ‘full cardinality’ by construction and the

inductive assumption.

(3) For a limit δ 6 α∗ we proceed as follows.

(a) First, we construct orders In, Jn by induction on n < ω.

(i) Let I0 ⊆ J0 be dense linear orders without end points and such that I0 is

dense–co-dense in J0, |I0| = λαδ,0 , |J0| = λαδ,0+1, and such that, for every

a < b in J0, |(a, b)| = λαδ,0+1 and |(a, b)∩ I0| = λαδ,0 (can be chosen by

assumption on λα as in the proof of Claim 3.9).

(ii) Let I ′n+1, J ′n+1 be dense linear orders without end points and such that

I ′n+1 is dense–co-dense in J ′n+1, |I ′n+1| = λαδ,n+1 , |J ′n+1| = λαδ,n+1+1, and

such that, for every a < b in J ′n+1, |(a, b)| = λαδ,n+1+1 and |(a, b)∩ I ′n+1| =

λαδ,n+1 (again can be chosen by assumption on λα as in the proof of

Claim 3.9). Let In+1 extend In with a copy of I ′n+1 added in every cut,

and similarly let Jn+1 extend Jn with a copy of J ′n+1 added in every

cut. It follows that λδ,n+1 6 |In+1| 6 λαδ,n+1× λαδ,n+1 6 λαδ,n+1 and |Jn+1| 6
λαδ,n+2× λαδ,n+1+1 6 λαδ,n+1+1, and that In+1 is a dense–co-dense subset of

Jn+1.

(iii) Finally, let I =
⋃

n<ω In and J =
⋃

n<ω Jn . In particular, I is

dense–co-dense in J , and both I, J are of size λδ.

(b) We let P M
δ = I, QM

δ = J , and define G M
δ by sending In to cn . By construction

of In and P M
αδ,n

and transfinite induction, we can find bijections F M
δ,n between

G M
δ (cn) \G M

δ (cn−1) = In \ In−1 and P M
αδ,n

satisfying the axioms of Tα∗ . We let

E(x, y, cn) hold for x, y in In \ In−1 realizing the same cut over In−1.

Theorem 4.5. For every countable ordinal β < ω1 there is a complete countable dependent

theory T and a partial type p(x) such that the following hold.

• T has a model omitting p of size > iβ .

• Any model of T omitting p is of size < iω1 .

Proof. The proof is obtained by combining Claims 4.2–4.4.
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