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Non standard uniserial module over a uniserial domain exists

QOur aim is to prove:

Theorem: (ZFC) There exist a non standard uniserial modules over

some uniserial domain (see 12).

The paper is self contained. Tt uses forcing - this can be eliminated
easily but for me this has no point. QOur example is in 8; - we can
replace it by any regular x > 8, The problem appears in the version of a
book of Fuchs and Salce on modules over uniserial domains in existence in
April 1984.. An answer in the other direction would have simplified the sub-

ject, and I think, make unnecessary several proofs and distinctions.

I thank Silvana Bazzoni, Elizabetta Martinez and Claudia Mettel for going
our of their way to tell me the problem during a dinner at the conference in
Udine, to Fuch’s for mentioning it and to Salce for impressing upon me the

importance of solving it.

Subsequently Fuchs continues this work, investigating for which uniserial

R there are such modules.

0. Definition and Notation: 1) Let R denote a uniserial domain, i.e., no zero
divisors and [d(F) = {I: I an ideal of R} is linearly ordered by inclusion.
Let @ = @ be the field quotient. Let a,b,c.r,s denote member of K, z,y,2
denote members of an KE-module, M,N denote F-modules. Let @ | b mean a
divides b.

2) An R-module is called standard if it is a homomorphic image of an R-

submodule of @ (which is trivially an R-module) and M # 0.
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3) An R-module is uniserial if its family of submodules is linearly

ordered. {So we are assuming ¥ itself is uniserial.)

OA Remark: Any standard A-module is uniserial,

This is well known.

1. Fact: Let M be a uniserial R-module; if x € ¥, ax # 0 then for every
beR{(b#0):bxr=0if(b/a){az) # Cand a divides b in k.

Proof: if in R alb let b =ca s0
br =0 <= caxr =0<>(b/a){az) =0. So it suffices to prove a | b assum-
ing bx =0, but if @ does not divide b, & divides ¢ so a =db, so

azr = dbx = d = 0 contradicting, an assumption.

2. Definjtion : 1) We call <aﬁw-:i <j < 6> an [-representation of M

(for # a uniserial module over a uniserial domain &) if:
(i) ] is an ideal of B, # .
(11) (7,1“']' € R, G,.,',,j # 0.
(iii) for a < B <y <8, 84, Qaplpgy € Aoyl

(iv) there are z; € #{i <) such that # is generated by {z;:1 <8}, and:
I = i'f' < R,”l"ﬂ&'o = O;, a*'ijxj =z

2) We call (aw;:i <j< 6> an /- representation for R) if (i),{ii),(ii)
above holds.

3. Claim:: Every uniserial F-module # has an [-representation ( for

some ideal [ of F).

Proof : Easy. Choose by induction on i, z; € #{# 0) z; not in the sub-
module generated by {xj J <1i}. Say & is the first for which x5 is not defined.
Clearly & exists and is <||M||*. For i <j, as z; ¢ Fr;, by uniseriality
z; € Bz; so for some @a;; €R, =z;,=0;;2;. Now for a<f<7y<§$,
Qayly =Tq = 0ugTg = Qqg(Cg,Ty). So (@qyCapglgo), =0 As
2g,T, = Zg # 0, we finish by Fact 1.



Sh:232

137

Remark: Clearly 6 > 0 for M # 0, and if § is a successor ordinal then
M is standard.

4. Claim: 1) If <a,;’j:i <jJ <6> is an /- representation for A then
some XK-module ¥ is /-represented by <a,w-:i <j< 6>.

2) Moreover M is unique up to isomorphism and is uniserial

Proof: Let M be an R-module generated freely by {z;:1 < 8] except the

relations:
(@) rzg=0(forr € 1)
(b) z;~—a,; jx; =0fori < j< 4.

2) The uniqueness is trivial, so we shall prove that # constructed in (

1) is uniserial. It is easy to see that {(by the relations (b)).
(*) for everyy € M for somei < 6,7 €R:y =7rx;.

Now suppose K is a submodule of M,K # M, and we shall prove that for
some ¢ <8, K C Rzy. This suffices [ if K, K; are submodules of #, if Ky =M
or K, = M they are comparable so we finish; if KK, # M there are £,,§, < §
such that X, C Rr, K, C Rz, let & = Max {£,.£21, so K. K, are K- submodules
of Rzg, which is uniserial by OA, hence K, € K, or Kp C K]

As K# M for some § x;e’ K. Assume K & Rxs, so for some y € X,
y & Rrg By (*) above for some ¢{ <8 and 7 € R, y =7z, Now £ < ¢ [other-
wise Yy =7rzs € Rx, C Bz contradiction to the choice of y]; Asy #0r #£0,
andage # 0, in R 7 divides ag¢or ag, divides 7 (or both).

If ag, divides r, then
Yy = TI{ = (7‘/ aflf)(at‘xt) = (7'/ aé,t)a:f € th
contradiction to the choice of y.

If r divides a g ¢ then
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Te=0geTe=(Qge/T)TZ, € R(rzy) = Ry C K
contradiction to the choice of £

So K ¢ Rxg. We previously show that this (i.e. for every R-submodule K of
M. K C Rz for some §) suffice.

5. Lemma : A uniserial FK-module with [-representation
<a,z-,j:?l <j< 6> is standard iff for some ¢; € B{i < §) foreveryi < j < &:
—1 C ~1

C,
(i) =— — 4 el
Qi Qg /0

(ii) ¢t € R, i.e., each c; is a unit.
5A. Remark: We can replace is (i),(iii), ¢;~! by ¢;,¢;7! by c;.

Proof : Tirst suppose that there are such ¢;(i <48). Let
J; =(1/a,;)R € @ and define a function from J; into # by

Fi{((1/agy)r) =re;zy for r € R
Clearly f; is a homomorphism from one F-module to ancther.
it is onto A, as ¢; is invertible in #.
We shall prove that
(*)fori<j<d f,Cf;
This suflice as then | f; is a homomorphism from yJ; onto M. For

i< ]
proving (*) it suflfices to prove:

(**) f:(1/agq) = f;(1/ag,)

First 1/ a4, € Dom (f;). [this is equivalent to 1/aq; € R(1/ay;) which
is equivalent to ag; € Hag;, if this fails then by the uniseriality of #, for

some s € K which isnot aunit, ag; =5 ag; so

ag; (1-s@; ;) = ag;—Qg,0;; € ag;/
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as K has no zero divisors, l-sa, ; € /; ass is not aunit sk is a proper

3
ideal, but 1 =sa; ; + (1-se; ;) € sk +/, but sk ¢ [ or I ¢ sR, so necessarily
I CsR,1 €7 but then z,5=0 contradiction]. Second, we can coenfirm (*¥)

remember we have shown aboveay; € Rag; henceag;/ag; € R):

FillZags) = Fi{{ag;/ 2g:)(17aq;)) = (ag;/ 2g4) ¢;Z;

Till/ ag;) =z = cy0, 52;

So it is enough to show that,

Qg ;
J
(—~c;—a,; ;c;)xz; =0
@ J IO
equivalently {see Fact 1):
Qg4
)
-Gy =0, ;€ € Qg i)
ag; ? J Y
equivalently
c c;

i _ > e/
Qo;  @oj/ Q

Multiplying by c;c;”! we get (i) of the hypothesis , i.e., the demand holds
{Note that for a unit c,c/ = I).

We have proved the "if" part of Lemma 5.

For the only "if" part suppose J is an E-submodule of @, f;J/ » M an onto
homomorphism. Wlog f(l)=zpso R CDom f,1¢& Ker f =1 For every i,
let z; = f(y;) ys €J. If y; € R(17ay;) let for some r € R, y; =7/ ay;, then
@g:Y; =7  hence  f(r)=[f(agy;) =agif (¥:) = g% =25=f(1), so
f{(1—r)=0hence 1—r € I, hence r~! € R [otherwise Fr ¢ R, so Br \y R(1—r)
is a proper ideal contradiction]. So [y; € R(1/ay;) => L/ ay; € Ry;]. As
Y;.1/80; € @, § a uniserial R-module this implies 1/ ¢, € Ry,;, so for some

c; €R, 1/ay; =c;y;. Asy; € Jclearly 1/a,; € J. Now
o= (1) =f(eo:i(1/agy)) =aoif(1/ag;) = agiciT; = c2g
=agif (cys) = agqc f (Yy)
so {1—c;)zy = 0 hence 1-¢; € I, so as in an argument above ¢; is a unit except

when /=R which is excluded.
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So 1/ @g; =¢;Y;, ¢; € £ a unit. By (iii} of Definition 2 with G,i,j here

standing for a,f,7 there, 1 — 0% e[ so {(when I # R) a iff—-’-l—ai,j is a
@o; %o
g4 ,
unit of X, as a;; € R this implies ;—9-’]— =a;;/a € FE. Now
0%

0=f(0)=f(/ag;—1/ag;) = f(1/ag;)—f{(ag;/a0:) 1/ ag;) =

flegy)—(ag; 7 a0)f (c;y;) =

Cixi_(ae,j/ agli)ijj ZCia,;,jxj ——(GIQ’J'/ ac,i)ijj =

(ciay;—{(ag;/ agq)c;)z;
hence [c;a; j~[(agj/ agi)cj]/ ag; € I and we can finish.
For a while we make

8. Assumption: ¥ is a non-standard model of Th(Z) of power ¥; not N~

like, M = y M,, M; <M M, increasing continuous, each #; countable, p € ¥
i(@l

aprime B = Rfis{a/bia,b € M, ¥ "p does not divide b"}./

Let @ 2 R be the field of quotients of K.

Fasily K is a uniserial domain. Let b be a member of M. let
<d(a):a < w1> be a sequence of members of M increasing, d{(a)<b,
bp € My d{a) € Mgyq. Let §; be the field of quotientsof #;,, B, = E N &.

Clearly we can find M as above, and then b ,d{a).
7. Definition : Let 7 = {c € R: p®|c}, it is an ideal.

We define a set P; its members have the form:
<a,i,j:i <jiecu,je u>
such that

(i) v afinite subset of 0,0 € u.

(ii) fora < § <y all in u,
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a — aQ
( _a,-z_a_;a_»_._fﬂ_) e
¥4

(iii) @4 is divisible by p¢#)=¢(® but not by p¢#~¢D*+! in R (exponen-
tiation in M).

(iv) a5 ; € Fj4q
{we write ay; =aj;, w =u” wherer= <ai’j: 1 <j, 1€, j € u>]
We stipulate a; ; = 1. The order of P is natural.

8. Fact: If r:<a,§:’i.<j€u">€P, § <wy; then there Iis
qr <g € PEcul.

Proof : If Eecu” let q =p, otherwise suppose
19< - <ig<E<igy < Ly, wT =g, L, im}, (remember i5=10) and let
a,-”j = a{’J

We now define q:

ud =u" g
a; ; ifi <jieu”, jeu”
af; = a1 OO it i e iy, dg) =
o, NI
¥ Y

We shall now check that g € P.
Properties (i), (iii) and (iv) of Definition 7 are easy, so let us check ( ii)).
Soleta < B<ybeinu’.

Case A:a = &,

aly —als 2py _

a 8'7

(by the third case in the definition of ad;).
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~d{a)-d(ie)) _, —{d{a)—d (?iz))ap .

a"f"zu »70'7;23"241}) igs 1,50”:&’59“}9

QO.?

Ligigay Cigry Yig 8287
d{ay—-d{i
P (a)~d (ig) Qg

€l

Because the left term is in F (by (iil) of Definition 7 for p) and the right
term is in / (by (ii) of Definition 7 for p).

Case B: g = ¢£.
G’Z,'r — aZ,Ba%,"/ _
a.g'v
d{f)—d (i) —(2{B)—d (ie))
Coy ~ (g Nigy1,yPig,i00sP )
a
0,7
Lary Caig®ipienPigay _
Q5,9
a'a,'Y aiz.i2+xa‘iz+1,7
PP
Oy 0,7
Qg @iy Qipy Qigigs1Viges7
— = Qg F Qg — )
o,y g
Qoy @y 2o,y 29,
Cay % a, g%y Ligr Ligigs Ligary €]
- T a,lg ~
G,O’.’ a‘O,'y

as the first term is in 7 {(by (ii) of Definition 7 for p) and the second term is in

I as a members of ] times a4 ;, € K so as / is an ideal it belongs to 1.

Case C:y = £

L L R AL
- G M 26
_ Yaig " 2aplpi, e

29,ig

CaseD: a8,y # £.
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Trivial.

So we have proved q € P. Easily p =< q,§ € 49, so we finish.
9. Main Fact: Suppose ug < uy < uy (all finite subsets of w;, not empty
for simplicity, * < v meansVa € u VB € v a < §) non empty, and
rfeP for £ =012,
uT =ug, uT = ug YUy, uT = U U U
0=yl 70> !

Let g = Min ugforf =1,2, andc,,c, € K are units of K.

Then we can findr € P ,rl<+r r2=r, such that

Cy Ca

a’&& G‘G,Ez/ azl.fz

e/

Let ¢p = Mazx ugy.

10. Subfact: We can find an element a of & such that

(@) pt%9&Y) Gividesa but pt&—2&I*H goes not divides e (in ).

r2 — ~T1
8) A eots L6, T

" e/
ahe,
€1 Ca
() " " " g1
ajg ade/ (2} ¢,2)

(0) a € Mg,y
Proof: We shall choose some t € [ ( Mg, and let

2 2
—_— a’{'.o’éa “‘QE’Eat
g = ok P&
7y
Lot
Now t € I guarantees (B) (just substitute and compute, and you shall
get t) and t € Mg, guarantee (6) (as ¢,{g=< € and use (iv) from 7). Also

(a) is immediate: aaz‘a is divisible by p®®#) hence agf&t is divisible by
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pd(&)_d(mﬂ, but a’g’& is not; so a’és,& —a}f&t is divisible by pd(éa)"d({”) but not

by p2€=3&* (5ing (iii) of Definition 7 on ag;{l we finish.

We are left with (), it means now

TZ 7-2
cy o L, %% T 204t
SL - T2 gp (Moo
20, 20,¢, Q&0

this is equivalent to:

rl r2 i re
Cy _ C22f,8,% ¢80 + Cza'fl.('na’o.fzt

(") g I

r 1 7-2 7-1 .,-E r 1
Qo 20.6%¢0.8, 20.8% 808,

If for £ = 0 (*) holds, we finish, so we can assume

1 T
c C1a% ¢ Q8
s 1 bidi Loks ¢ I, so {*) is then equivalent to

LAV £
20,62 80,81

c20%,6,05 C20f,¢
(*) —=——2t ¢ [ e, —"-t¢g]

r2 gl rl
Q0,62 ¢0.8 T

By applying (iii) of Definition 7 to all a;;'s appearing in (*)’ and
remembering that for a unit ¢ of X ¢/ =7 and ¢ € R is a unit iff p does not
divide ¢ for R, (¥}’ is equivalent to

'LZ:G)—d(&)pd(éa)t 77
P &)pd(fx)-d(fo)

("""t € Ibut

which means ¢ € I but t/pd“‘)_d(t") & I, which is easily accomplished by
choosing t =p? € M,

Now we define r:

1 2
w =uT o yul =g Yug U U
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7l 1
2i.5 if i1, €u”t (a)
2
al; = lal; if 4,5 cu’ (b)

@i, @ Qyy s if 1=u, je€uy {c)
(remember ag, ., = 1)
Again condition (i) + (iii) + (iv) are easy. Let us try {(ii}.

Soa < < 7.

Case A a € ug B €Uy, 7€ us.

LS N r2 a7t o7l 7?2
Coay 2apglpy _ Lay ~ 2ap?84% %ty

= mod [
0/0,7 ao’.,
1"2 -r2 . rl rl re
Qa7  2a 20 Ctay
2
ag.y
7-2 _ -’-1 rl
gr? Late Yaplead
£27 2
aT
0,7
1-2 -’-2 2 _ rl rl
_%87%¢t %at:"%ap 28092
re r2
a9,y 20t
al . al’
L2706 | . .
Now — T 1sa unit, so we can forget it
7
QG’,Y
2 _art o7l ro . rz . rt rt
Cat,  2apl882 _ CatPéoke Tap?B.02
re r
20.¢, 2o,
rroart N &, Tt 2
Now (agg@phe¢, ) -~ = (@56, %0¢: ) > mod [ holds
20, a0.£
1 1 1 1
G,Lpa;’{ _aa' a’"' (IO
[as - fo_ ok 0 mod L holds, which hold by using twice

20,6 2ok, 2

(ii) of Definition 7, and computing power of p in the left side].
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So

N Rt e N I ST
Lo, b2 80tz Ta,p2p.6,2 _ T o602 0.6 "L a, &0 (0,642

7 r
g, 2p.¢

2
R

Q0.
the "€" holds by (B8) above. So we finish Case A.

CaseB:a,f€uy, 7€ us

ooy - rt e . rt oyt re
Qay~Qapglpy  Z2ati® Téy "2a 2842 Lty _
aj T2
Oy G,O,.,

N Y X7 ]
ao,.,
by computing power of p this term belongs to [ iff

afy ol

,rl _ -,-1 rl
Lot 2o p?pe, cr

rl
ag.¢,

which holds.

Case C:a€uy B.7€u,

r r rl eyl rz oyl
Qay " Lagdpy Laf@® Qpyy a2 T, 828,y
k
QG‘.,, (ZQ..I
re r2
R i
=ag ol lerl
NS a
('8 4

Case D: {a,B,7} Cug ) uqor fo,B,7) Cugy | us.

Trivial.
11. Conclusion: If & C P is generic over V then in the new universal

V{G] over R there is a non standard uniserial B-module.

Proof : We can deal with [-representation. Let for i <j <w; a;; be

al; whenr € G,{i,5} cu”, this is well defined as:

(A) a; ; has at most one value as G is directed.
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(B) a; ; has at least one value [as by Fact B the sets {r € P11 € u"§,
{r € P: j € u™} are dense subsets of P, hence their intersection is. As G is
generic, G is not disjoint to this intersection.] Now  easily
<a.é,j:i <j< w1> is an I- representation (over R). Why it represents a non

standard uniserial module? Otherwise (letting @  be the name for a; ;

N?:’j
defines above) there are P-name ¢ and r € P such that
~i
c- C.
€) » |lp" 9*1, is a unit of P, and a'% - ?a € ] for every

~04  ~0,f ~ig
1 < ] < ml” .
As R consists of members of V, there are fori < wy, 7, € P, r <7; and ¢;! € P

7; |lp ¢ = ¢;l. Now using Fodor Lemma and Fact 9 we get a contradiction.
~

Originally we have then replaced forcing by Ogl, but it is better to have:

12. Theorem : (ZFC}): There is a uniserial non standard module over

some uniserial domain.

Proof : If we look carefully at the proof of this we can see that we

have proved (and we shall prove):

(a) in V[G], for every limit ordinal 8 < w; and unit ¢ € R, for every

large enough i <4. —%  isnot I-equivalent to any member of Fy.
Qos/ s

13. Observation: If —S—— + /¢ fz+lx € Mg} and 1 <j <6 then
ags/ Ais
c
——————+ [ ¢ {x+]: = € My}
(10’5/ aj,é i 4

Proof : Suppose —C =zt tel,ze Mg. Then
o6/ 255

a, a; 0,
C =c 7,8 =c 1.4 7.8
ags/ ;s a5 o5

= nod |

c — —
ai'j(-a—'()—;/—(’l;) = ai.j(x +t) = a,.w-x + a.,;.jt
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Now a;;x € My (as a;; € Mjy, C Mgz € Bg), and a;;t €l (as

i,
a,; € B, t ).

(]

Proof of (a): Suppose r € P,

r |lp" 8 <w;is alimit ordinal, ¢ a unit of K and § , ¢, contradict {a)".

By Fact 8 w.log. § €u”. Now let ug=u" N4, uy=u"-6 0=

g,
72 =7, and find u,,7; so that the assumptions of 9 holds (uy # ¢ as & € up,
ug# ¢ as 0 € uy). Let ¢; = ¢. We repeat the proof of 9 but in () of 10 replace

c
Cpbycand ¢ /by ¢ I+ Mg, , and drop a—l—— i.e. we use
0.&

(7)) 2 I+ H;
aa-fz/ (GZDQCL)

As we demand a € Mgy, and can assume My,, is quite large compared to Mg,
(though countable) there is no problem. [lLet e; € F (i < w;) be distinct
units, e;—e; not divisible by P then for i #£ g

T T
Cc ag! C a,!
—T&—’(:— (pbe;) — —-:—E—"{—’ (p®e;) ¢ I, as Ms is countable, for some 1
Lz Cee
T
€ %6 b .
————(p°e;) & I + M5 For being able to repeat the argument in Mg, it
ait
$o0.&1
is enough that in Mg,,; there is a "finite” set to which every z € M,
"belongs”, which is easy. Alternatively change the forcing as to allow us
to choose a € M, so that the forcing fail the 8;-c.c. but is still proper see {Sh
2], Ch. 111.] So we find 7.

c
r<rlepP, ———— @ +M;
ri ri
aps/ 25

Contradiction, so (a) holds. Note also

14. Observation: If M, (a < w,), b,d(a)(a < @,) are as in 6, a; ; satisfies

( a) above, then <a,i'j:i <j< ml> is an /- representation of a non standard
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uniserial module,

Proof: Suppose <ci:i <wl> exemplify the contrary. For a closed

unbounded subset C of wy forevery 6 € C

?:<é"——>CiEM5

C; .
So —— € Mg for i <8, hence ———— + [ € {z+I:xz € M4]. Contradicting
2o, 2o/ 0y 5

(a). So 14 holds.

Now the statement: there are #;(i < w,) b,d(a) as in 6 and e, ; satisfying
(a), can be expressed by a countable theory T in L{aa) {(note that we do not

mind to replace w; by a linear order K of power ¥; such that K = y K, K

i<y

increasing continuous each K; countable (Vz € K;)(Vy € K;41—K;) (z <y) and
K; has a least upper bound). L{aa) was introduced in Shelah [Sh 1], and
thoroughly investigated in Barwise Kaufman and Makkai [BKM]. By the com-
pleteness theorem for L{aa) {see [BKM]) the answer to "does T has a model”

is absolute. As it has a model in V[G] it has one in V.

15 Remark: We can replace 8; by any uncountable regular uncountable
x. Let H(¥3) be the family of sets of hereditary power <N, and B be (H®,),€)
expanded by (individual constants for) M R Q.1 <Mi: i< co1>,
<d(i): 1 < ml>, b and <a.m~: 1<j < co1>. Now we can define by induction on
a < k? [B, such that:

1) [8, is a model of power & elementarily equivalent to [5.
2) B, (a <3 is a continuous elementarily chain.
3) For every a there is ¥, € (8, such that:

(a) Bas1 E "y, is a countable set”.

(b) foreveryz € B, Bpari E"z €y

(¢) if a has cofinality & and a < g < k? then @F E 'z € y,", implies
zeld,.



Sh:232

150

Let B = y [B,, 2, € B,,, be such that B_,, E"z,is sup(ye N @1)"-
a<s?
There is no problem to do this (e.g. use saturated models, possible as we
can construct the models say in L), see Mekler and Shelah [M Sh]. Now use
MR I é%’j: B E"i<j< w?) or equivalently <a§: a<lfg< 1c> with

Mg = = Note that we could replace &% by xu if cf u=Rq
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