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ABSTRACT

A homogeneous family of subsets over a given set is one with a very 'rich' automorphism group. We
prove the existence of bi-universal element in the class of homogeneous families over a given infinite set
and give an explicit construction of 22 ° isomorphism types of homogeneous families over a countable set.

0. Introduction

Homogeneous objects are often defined in terms of their automorphism groups.
Rado's graph F, also known as the countable random graph, has the property that
for any isomorphism / between two finite induced subgraphs of F there is an
automorphism of F extending/. This property is the homogeneity of Rado's graph;
and any graph whose automorphism group satisfies this condition is called
homogeneous.

The automorphism group of Rado's graph was studied by Truss in [9], and shown
to be simple. Truss studied also the group AAut (F) of almost automorphisms of
Rado's graph (see [11] and also [6]). This is a highly transitive group extending
Aut(F) (where 'highly transitive' stands for 'n-transitive for all «'; the group
Aut(F) is not highly transitive).

In this paper we shall study homogeneous families of sets over infinite sets. Our
definition of homogeneity of a family of sets implies that its automorphism group
satisfies, among other conditions, that it is highly transitive. However, while all
homogeneous graphs over a countable set are classified (see [5]), this is not the case
with homogeneous families over a countable set.

We shall show that there are 22 ° isomorphism types of homogeneous families over
a countable set. This is done in Section 4. From the proof we shall get 22*0

permutation groups, each acting homogeneously on some family over co, and each
being isomorphic to the free group on 2X° generators, but such that no two are
conjugate in Sym(<w).

In Section 3 we prove the existence of a bi-universal homogeneous family over any
given infinite set. The definitions of bi-embedding and bi-universality are gener-
alizations of definitions made by Truss in his study of universal permutation groups
[10]. A short survey of results concerning the existence of universal objects can be
found in the introduction to [2]. Results concerning abelian groups are in [3], and
results on stable unsuperstable first order theories are in [4].
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304 MENACHEM KOJMAN AND SAHARON SHELAH

Homogeneous families were studied in [1] (where they were treated as bipartite
graphs). There it was shown that the number of isomorphism types of homogeneous
families over co of size Kx is independent of ZFC and may be 1 as well as 2X> in
different models of set theory.

Model theorists will recognize that uncountable homogeneous families over a
countable set are examples of two-cardinal models which are w-homogeneous as well.
Set theorists may be interested in the following.

0.1 PROBLEM. IS it consistent that 2N° is large and that in some uncountable
X < 2X° there is a maximal homogeneous family (with respect to inclusion)?

Note added in proof. The authors have recently proved the existence of maximal
homogeneous families over co from CH; see M. Kojman and S. Shelah, 'There is a
maximal homogeneous family over co\ Proc. Amer. Math. Soc, to appear.

We wish to remark finally that the existence of 22N° isomorphism types of
homogeneous families over co follows from a general theorem about non-standard
logics [7, VIII, § 1] (for more details see also [8]). The virtue of the proof here (besides
being elementary) is its explicitness and the information it gives about the
embeddability of an arbitrary family in a homogeneous one.

NOTATION. We denote disjoint unions by 0 and (J. A natural number n is the
set {0,1,...,«— 1} of all smaller natural numbers.

1. Getting started

Let 3F c= 0>(A) be a family of subsets of a given infinite set A. An auto-
morphism of 2F is a permutation aeSym(A) which satisfies the condition that
Xe^oa[X]E^ for every X c A. (By a[X] we denote {a(x): xeX} for X c A.) The
group Aut(i^) ^ Sym(A) is the group of all automorphisms of !F.

One way of defining when a family i5" £ &{A) is homogeneous is to demand that
the bipartite graph (A,JF,e} is homogeneous, namely that every finite partial
automorphism of this graph which respects the sides extends to a total automorphism.
We shall write a more complicated (though equivalent) definition. This will be needed
in what follows.

1.1 DEFINITION. Suppose that 2F c &>(A) is a given family of subsets of a set A.
A demand on 2F is a pair d = (hd,fd) such that hd is a finite one-to-one function from
A to A,fd is a finite 1 - 1 function from & to & and xeXohd(x)efd(X) for every
xedomhd, Xedomf*. We denote by D = D(A, &) the set of all demands on &. Let
FG(D) be the free group over the set D{A,&). We say that an automorphism
geAut(^) satisfies a demand d if g(x) = hd(x) for xedomh* and g[X] =fd(X) for
Xedomfd. We call a partial homomorphism 0: FG (D) -> Aut (J5") a satisfying
homomorphism if <p(d) satisfies d for dedom<f>. (By 'partial' we mean that 0 need
not be defined on all generators of FG (D).)

1.2 DEFINITION. A family 3F is homogeneous if and only if every deD is satis-
fiable if and only if there is a (total) satisfying homomorphism </>: FD(D) -* Aut(«^).
A group G c Aut $F acts homogeneously on J5" if and only if G contains the image
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of a total satisfying homomorphism, or, equivalently if and only if every demand
is satisfied by some element in G.

When 0 is a homomorphism as above, we say that 0 testifies the homogeneity

When the set A is clear from the context, we write D(^) instead of D{A,!F).

1.3 EXAMPLES. (1) The family J5" = {{x}: XEA) of all singletons is homo-
geneous. The group A u t ^ ) is the group Sym(^) of all symmetries of A.

(2) The family Fin (,4) of all finite subsets of A is not homogeneous, although Aut
(Fin (A)) = Sym (A), because a demand d = ( 0 , {{X, Y)}) cannot be satisfied when X
and Y are finite sets of different cardinalities.

(3) A countable family of random subsets of co is homogeneous in probability 1.
The membership of a point in a random set is determined by flipping a coin.

In [1] the following was proved.

1.4 THEOREM. Every homogeneous family of subsets of an infinite set A satisfies
exactly one of the conditions below:

(1) ^ = {0} ;
(2) * = {A);
(3) SF is the family of all singletons of A;
(4) 8F is the family of all co-singletons of A;
(5) $F is an independent family:, namely for every finite function x : 2F ->{ + , — } , the

set

Xet \+) Yex V)

is infinite, and 8F is dually independent, namely for every function x: A -+{ + ,—} there
are infinitely many members of fF containing T - 1 ( + ) and avoiding T - 1 ( —). Equivalently,
the first order theory of <stf, $F> e> is the first order theory of the random countable
bipartite graph.

2. Direct limits and homogeneity

In this section we exhibit a method of constructing homogeneous families as direct
limits. This method will be used in the following sections.

Homogeneity is not, in general, preserved under the usual direct limits of families.
For example, an increasing union of homogeneous families need not be homogeneous
itself. We therefore consider here a stronger relation of embeddability, called here
'multi-embeddability', which, roughly speaking, preserves the satisfaction of
previously satisfied demands. Direct limits of this relation can be made homogeneous,
as we shall presently see.

2.1 DEFINITION. Let Tt = (Av^D^G^fa), (for 1 = 0,1), be respectively, a
set At, a family of subsets ^ £ ^04«), the collection of demands Dt = D(^),
an automorphism group Gt £ Aut (J2^ and a partial satisfying homomorphism
<pt: FG(£>() -»• G(. Let Tt = At U J^ U Dt U G(. We call a function <D: To -> fx a multi-
embedding of To into Tt (and write d>: 7̂  —• 7̂ ) if:
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(1) Ofy40 is a one-to-one function into Ax,
(2) Opj^ is a one-to-one function into i^,
(3) <X>fZ>0 is a one-to-one function into Dx,
(4) OfG0 is a group monomorphism into Gx, and the following rules hold for

xeA0, Xe^0, deD0 and geG0:
(a) xeXo®(x)e®(X),
(b) <&[domhd] = domh<s>(d), O[dom/ d ] = domf*ld), <t>((hd(x)) = h*idX<t>(x)) and

(c) ®(g(x)) = Ofe) (*(*)) and
(d) OOOedom^ and <D(^0(J)) = 0X(O(J)) for every </edom0o.
We say that a multi-embedding $ is successful if in addition to the conditions

above the following also holds:
(e) 0(^0 e d o m ^ for every deD0.

2.2 DEFINITION. Suppose that / is a directed set and T( = (At, J
2;, Dt, Gt, <f>t} is as

in Definition 2.1 above for iel. Suppose that ty: T{ -* T} is a multi-embedding for
/ ^ j , and

(i) O{ = id,
(ii) 0*0{ = Of fo r /^y^A: .

Then we call T = <7 :̂ (/e/);O{> a <//rec/ system of multi-embeddings. We call
T successful if in addition to (i) and (ii) the following condition holds:

(iii) for every iel there is7 ^ / such that <I>̂  is successful.

2.3 THEOREM. Suppose that <7J:(/e/); $>{} is a successful direct system of
embeddings. Let T* = (A*,^r*,D*,G*,^*}:=\im^1Ti. Then ^* is homogeneous,
with 0* testifying homogeneity, and the canonical mapping O,: T{-> T* is a successful
multi-embedding.

Proof We first recall the definition of a direct limit.
An equivalence relation ~ is defined over \JieI Tt as follows:

a - bo(li ^j)(®t(a) = bv<Vt(b) = a).

Conditions (i) to (ii) above imply that ~ is indeed an equivalence relation. We define
the canonical map <bi(a) = [a]ni. Next we set A* = {JieIAi/~ and observe the
following.

2.4 FACT. For every infinite cardinal K, if I and every A{ are of cardinality at most
K, then \A*\ ̂  K.

We let F* = i L , ^ / ~ , G* = (}telGJ~ and D* = {j^DJ-.
For x*,y*eA*, X*e3?*, d*eD* and g*eG* we note that
(1) x*eX* if and only if there is some /e/and xeAt, A'G^such that jceA'and

®i(x) = x*,®i(X) = X*;
(2) g*(x*) = y* if and only if g(x) = y for some iel such that xeAt, geG{ and

<t>t(x) = x*, <l>t(y) = y* and d>t(g) = g*;
(3) <fi*(d*) = g* if and only if there is iel such that </>t(d) = g and O^d) = d*,

< % ) = £*•
We leave verification of this to the reader and that the following hold:
(a) P* c 0>(A*),
(b) G*
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(C) D* =
(d) 0*: D* -> G* is a (total) satisfying homomorphism,
(e) Ô  <I>̂  = <D< for i ^ j in /.
We conclude that O(: 7J ->• T* is a successful embedding for every / e / .
Homogeneity of !F* follows readily from (c) and (d) above.

3. Bi-universal homogeneous families

The result proved in this section is the existence of a bi-universal member in the
class of homogeneous families over a given infinite set.

Let us make the following definition.

3.1 DEFINITION. We call an embedding of structures <&: M -* N a bi-embedding
if there is a group monomorphism 0 : Aut M -*• Aut TV such that OgO"1 0 (g) [ ran <£>
for all geAutM.

3.2 DEFINITION. A structure M* in a class of structures K is bi-universal if for
every structure MeK there is a bi-embedding <J>: M-> M*.

3.3 REMARKS. (1) The definition of embedding of permutation groups (see [10])
is obtained from 3.2 by adding the condition that O is onto.

(2) Example 1.3(1) above indicates that if a bi-universal family J5"* over a set A*
exists, then for some A c A* of cardinality \A*\ the restrictions of automorphisms of
SF* to A include the full symmetric group Sym (,4).

(3) If, for simplicity, M is bi-embedded in N via the identity map on M, then the
restriction map gt->g I" M is a group homomorphism from the set-wise stabilizer of M
in Aut(A0 onto Aut(M) that splits, namely has a left inverse.

3.4 LEMMA. For every infinite T= (A,&,D,G,<f>y there is a set B such that
\A\ = \B\ and a successful multi-embedding

<D: T > (A 0 B, 0>{A 0 B), D(A U B, 0>(A 0 B)), Sym (A 0 B), f > .

Proof. We specify the points of B. A point in B is a finite function from the
power set of a finite subset of A to {0,1}, namely feBof. ^(Df) -*{0,1} and
Df £ A is finite. We let <X> [A = id. For Xe3F we define <S>(X) as follows:

d>(J) = XO{feB:f{Xf]Df) = 1}.
We let <D(CT) M = <r and let <J>(<x)(/) = g ^ a ^ ] = Dg Af{X) = g(<r[Jn) for all X c
Z)/. It is straightforward to verify that O f Sym (̂ 4) is a group monomorphism. We
verify condition (c) in the definition of successful embedding (Definition 2.1 above).
Suppose that X ^ A and a e Sym (A) are given. Then

«>(<7)[<*>(*)] = o[X] 0®{o)[{geB:g{X[\Dg) = 1}]

= G[X] 0 {<t>(<j)(g): geBAg(X0Dg) = 1}

= o[X] 0 {feB:MX] n /),) = 1} = OCafJT]).
The definition of<&\D{<P{A) is determined uniquely by condition (b) in 2.1 above.

We need to specify $' and prove that (d) holds. For this we notice the following.

3.5 CLAIM. The family & = {®{X): X^A) satisfies the condition that for every
finite function T : ^ ^ { + , - } the set Bx = f U r - w ^ W n

 V\Y^~\-M U B)\®(Y)

has the same cardinality as A[) B.
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Proof. The proof of this is well known.

3.6 COROLLARY. For every demand d on SF there is a permutation a eSym (A (J B)
such that <J(X) = hd{x) and <D((r[I]) = <b[fd(X)] for every xedomhd and Xsdomfd.

Proof For every T: dom/d -• {+, - } we have that \BX\ = \Ai)B\ = \B'r\, where

B'T= n ^(/dw)n n
Xer \+) Xet~l(-)

(This means, informally, that every 'cell' in the Venn diagram of domf®^ and every
'cell' of the Venn diagram of ran/<1><<*) is of cardinality \A 0 B\.) Therefore it is trivial
to extend hd to a permutation that carries Bx onto B'x for every x.

Now let us define (j)'(Q>{d)) = O(0(d)) for every dedom 0, and for all deD\dom <f>
let us pick, using 3.5 and 3.6 above, a permutation <f)'(Q>{d)) that extends Q>(d). This
completes the proof of Lemma 3.4.

3.7 THEOREM. Suppose that Ao is a given infinite set. There is a successful direct
system of embeddings T = (Tn: (neco); (O^,$J,)> such that:

(1) A n is of cardinality \A0\,
(2) *n =
(3) Gn =

Proof. Let To = (Ao, &(A0), D(^o), Sym (^0), 0O: {e} -> (id^J). Now use Lemma
3.4 inductively.

3.8 THEOREM. For every infinite set A* there is a homogeneous family #"* c
0>(A*), an infinite subset A ^ A* of cardinality \A*\ and a group G c Aut(&)* such
that 0>(A) = {X{)A:Xe&r*} and Sym(A) = {g[A: geG}. Therefore any injection
/ : A* -> A is a bi-embedding of every family $F £ &>(A*) (not necessarily homogeneous)
into $F*. In particular; $F* is bi-universal in the class of all homogeneous families over
A*.

Proof. By Theorem 3.7 there is a successful direct system of embeddings T =
(Tn:(neco); (<&n

m,K)> such that
(1) \An\ = \A*\,

(3) Gn =
By Theorem 2.3 and the side remark 2.4 it follows that the family ^* obtained

by the direct limit is a homogeneous family of subsets of a set A** of size \A*\, and
we may assume that A** = A*. The canonical map <I>0 is a successful multi-
embedding, and therefore in particular a bi-embedding. Let A be the image of Ao

under O0 and let G be O0[Sym(y40)]. The theorem is now obvious.

3.9 REMARK. It is not hard to verify that both the family ^* and the
automorphism group G* given by the proof of Theorem 3.8 are Borel, in fact Fo, in
the usual (product) topology on ̂ (A). We thank Alain Louveau for pointing this out
to us. A homogeneous family is always dense by 1.4(5), and therefore is never closed.
We pose the following problem.
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3.10 PROBLEM. Suppose that J5" £ ^(co) is Borel, and is homogeneous. Is there
always a Borel group of automorphisms that acts homogeneously on

4. The number of isomorphism types of homogeneous families over co

In this section we make a second use of the method of direct limits, as introduced
in Section 2, to determine the number of isomorphism types of homogeneous families
over a countable set. It was conjectured in [1] that this number is the maximum
possible, namely 22*0. An isomorphism between two families J2^ ^ ^040) an<^

is, of course, a one-to-one onto function / : Ao -> A1 which satisfies

To obtain 22 ° non isomorphic homogeneous families over a countable set, it is
enough to obtain 22*0 different such families; for then dividing by isomorphism, the
size of each class is 2N°, and therefore there are 2X° classes (see below).

The technique used to achieve this is by embedding a family 3F c &>(A) in a
homogeneous family 8F' c 0>(A*) for A* 2 A in such a way that {Xft A: Xe^'} =
3F. In other words, we will 'homogenize' a family J5" 'without adding sets' to J5".
Thus, starting with distint families £F we obtain distinct homogeneous families
SF'.

4.1 LEMMA. There is a pair of countable sets Ao S A* (in fact, for every pair
Ao <= A* of countable sets satisfying A*\A0 infinite) such that for every family
2F ^ ^(Ao) satisfying Fin(A0) c F there is a homogeneous family
satisfying {X(]A0:

This lemma determines the number of isomorphism types of homogeneous
families over a countable set.

4.2 COROLLARY. There are 22*0 isomorphism types of homogeneous families over
a countable set.

Proof There are 22*0 different families {3?: a < 22*0}, such that Fin(^0) £ ^ c
For each «^ there is, by 4.1, a homogeneous family SF'^ c 0>(A*) that satisfies

0:Xe&'a} = &r
a. Therefore, a # / ? implies that ^ # &'p. Let us define an

equivalence relation over 22*0 by a ~ /? if and only if there is an isomorphism between
SF'i and SF'p. There are at most 2X° members in an equivalence class [a]^, as there are
2N° permutations of A*, and therefore at most 2N° different isomorphic images of 2F'a.
As 2X° x 2N° = 2X°, while 22N° > 2X°, there must be if" equivalence classes over ~ , and
therefore 22t<0 isomorphism types of homogeneous families over A*.

We prepare for the proof Lemma 4.1. Before plunging into the formalism, let us
state the idea behind the proof. We use the set of demands over a family and the free
group associated with this set to construct a successful extension in which the
automorphisms act freely. Thus, we can control sets in the orbit of a n ' old' set so that
their intersections with the 'old' set are either finite or 'old'.

We need some notation. Let FG (D) be the free group over the set D = D(^) for
some family &. If 3F is countable, this group is also countable. We view FG(D) as
the collection of all reduced words in the alphabet C = D U {d~l: deD) (a word is
reduced if there is no occurrence of dd'1 or d~xd in it) and the group operation, denoted
by o, is juxtaposition and cancellation (so w1 o vv2 is a reduced word, and its length
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may be strictly smaller than lg w1 + lg vv2). We let c range over the alphabet C, and let
c~l denote d'1 if c = dor dif c = d~x. We denote by e the unit of the free group, which
is the empty sequence < >. For convenient discussion we also adopt the notation hc

and fc, by which we mean hd and fd if c = d and the respective inverses (/i*)"1 and
if*)'1 otherwise. Now we can make the following definitions.

4.3 DEFINITION. Suppose that T = <Tx: (ie I); <1>̂> is a successful direct system of
multi-embeddings. For every y e / w e have the following.

(1) A homomorphism £,: FG(Z>4) -• G} is defined by ^(d) := 0/<I>(^)).
(2) We call a word w = co...ck€FG(D}) new if cl is not in the range of

<&{ for all / ^ k and all i <j. A word weFG(Z>,) is old if it is in the range of O^ for
some / < j .

(3) For a word weFG(D,) and XeS^ we define what /"(JIT) is. Let w =
wow1...wl where for each k ^ / the word wk is either new or old. For a new word
wk = c\...cl

k
{k) we denote by fWk the composition/Cfc< *.../c*. If this composition is

empty, we say that/1"* is not defined. If wfc is old, then ^ (w)eAut (^ ) and induces
a one-to-one function /•"*: J^ -> J^. Let/1" be the composition fw'.. ./w». If this
composition is empty, we say that/1" is not defined.

(4) Analogously to the definition in (3), we define hw.

To prove Lemma 4.1 we need an expansion of the technique of direct limits by
some more structure. This is needed to enable us to handle uncountably many
demands by adding just countably many points. We first define (a particular case of)
inverse systems. Then we form direct limits of inverse systems to obtain a pair of sets
as required by the lemma.

4.4 DEFINITION. A sequence T = <Tm: m < co}, where

Tm = (Am,3?m,Dm,Gm,<pm),

is called an inverse system if:

(1) &m c 0>{Am), D = D(Am,^m), Gm c AutC^"1) and <j)m: FG(Dm) -> Gm is a
partial satisfying homomorphism,

(2) Am and &m are countable,
and for m-^m' the following hold:

(3) Am c Am\
(4) $?m '
(5) Gm

For a demand deDm we define <iP/4m if and only if domhd U ran/2d £ Am and
for every distinct X, Ye domfd U ran/ d the sets ATMm and 7 n ^ m are distinct.
When d\ Am is defined, /idMm = /id a n d / d M m is obtained from/* by replacing every
^ e d o m / d U ran/d by X(]Am. Clearly, when d\ Am is defined, it belongs to Dm, and
every deDm equals d'\Am for some d'eDm' by (3) and (4).

If w = c0... ckeFG(Dm) and ct [ Am is defined for every / ^ k, we define w {Am as
co[>,4"i...cfc|M

m (it is obvious what c[Am is). The restriction p is a partial
homomorphism from FG(Dm) onto FG(Z>m). The last condition is

(6) If dedomfi"1' and d\ Am is defined, then </|Mmedom0m and 0m(^r^m) =
0mV)tv4m (the operation of (j)m\d) on Am depends only on d[Am when d\am is
defined).
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4.5 DEFINITION. Given an inverse system T = (Tm:m<co} we define the
inverse limit limT = T* = (A*,Jr*,.D*,G*,0*> as follows.

(a) A* = \JmAm. For every xeA* let m(x) be the least m such that xeAm.
(b) S?* = {X^A*\ (X0Ame^m) for all but finitely many m). For Xe^* we

let m(X) be the least such that XdAme3?rm for every m ̂  m{X). We call Xe&*
bounded \i X <=k Am for some m.

(c) G* = {geSym^*): (g[AmeGm) for all but finitely many m). Let m(g) be
the least such that g\AmeGm for every m ^ mg. It is easy to verify that G* £

(d) D* = £>(#"*). It is easy to verify that for every d*eD* there is some m(d*)
such that for all m ̂  m(d*) it is true that d*\Am is defined, and d* [AmeDm.

(e) Finally, </>*(d*) = {Jm>m<t.(f>
m(d* t Am) and is defined if and only if d*[Ame

dom0m for all m^mdi,

4.6 DEFINITION. Suppose that To = (J™\ m < co) and T\ = (T™: m < co} are
inverse systems, and let

limTo = ro = <^o,^o,A,,Go,0o> and MmT^ T, = {A,,^D^G,,^}
m

be their respective inverse limits. We call a sequence <<I>: T™ -* T™: m < co} of multi-
embeddings an inverse system of multi-embeddings if for m < m' we have:

m' m
(1) <!>[AZ = <t>tAZ,

m' m

(2) ( D ( I ) t ^ = <&(X(\ A™) for every Xe3?™' for which XoA^e^,
m' m

(3) <D(̂ ) T /4?1 = <D(̂  t A™) for every g e G™ for which g T A™ e Gm.
m

When (Q>: T™ -> 7™: m < co> is an inverse system of multi-embeddings we define
m

a multi-embedding <I> = lim<D: TO->TX as follows:

O for

Call O = lim O a multi-embedding of inverse systems.

4.7 CLAIM. / / "T O = <7^ : m < co} a«rf Tx = <!T™: m < tu} ar

<O: T™ ->T™\m <to) is an inverse system of multi-embeddings such that every O is
m

successful, then O = limm <I> is also successful.

Proof. Suppose that deD0;we shall show that Q>(d)edom<f>1. There is some md
m m

such that for all m ^ md the restriction d[Am is defined. As $ is successful, <i>(d\ Am)
m

belongs to dom^f for m ̂  md. Therefore ^([J^^<b(d{AJ = fatpid)) exists and
belongs to Gv
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We shall construct a two dimensional system T = <T"': n,m < a>) and successful
m

multi-embeddings <D^+1: T™ -> T™+i such that for every n,

(1) Tn = <r™: m < co) is an inverse system,
m

(2) <<X>£+1: m < co} is an inverse system of successful multi-embeddings.

Then a direct system will result: Tn = limTn and <D,",+1 = li

Let r™ = <m+l,^(m+l),Z)(^(m+l)),{id},{(e,id)}>. Clearly, ro = limTo =
<©, ^(©), Z)(^(e»)), {id}, {(<?, id)}>.

Suppose now that Tn = lim r™ is defined, where T™ = 04™, &™, D™, G™, 0™>, and
m

that O ^ = lim<D"_1 is also defined (when n > 0).
We assume, for simplicity, that O^_1 \ An_1 = id (if « > 0) and, furthermore,

m

identify FG(Z^_X) with its image under O^_19 and write F G C ^ . J £ FG(Z>") as
well as FG (£)„_!> = FG(Z)n). Thus, the new words of FG(Dn) coincide with
FG(Z),,\/)S.1) and similarly for FG(£>£). Let Q m ^ be the disjoint union of D™.
We view An as a subset of the set /?n+1 = {xw: xeAn,we FG (Q m D™)}. The expression
iw is the formal string xc0...cw where w = co...,ck, and x is identified with xe
(where e is the empty string).

4.8 FACT. The set Bn+1 is countable.

This fact holds because each D™ is countable.

Now define B™+1 = {xw: xeA™, weFG((jm<«„.£»')}• Clearly, ^ c B™+1. Next
we define an operation £B+1(c): 5 n + i ^ ^ n + i for every cGDn (there are, of course,
uncountably many elements c\). We want €n+1(c)[B^+l to depend only c[A*
whenever c \ A™ is defined. If xedom/ic, we let <^n+1(c)(jc) = hc(x). For all other points
in Bn+1, we let £B+1(c) (xw) = xw o (c |" ^^) if m is the least integer such that xw e 5^ and
c r ^^(e CJ1) is defined.

There is a unique extension of c n̂+1 to a homomorphism from FG (Z)J to
Sym(5n+1), which we also call £n+1.

4.9 CLAIM. For every weFG(Dn) there is some m(w) such that
(1) 2?B+1 w invariant under €n+1(w)for all m ^ w^,
(2) ifw^e, then for every xvEBn+^\A™«> we have £n+l(w)(xv) = xvow # xu.

(1) This is clear from the definition. For (2) notice that if c [ A™ is defined
then the finitely many points in dom hc belong to A™. Then £ra+1(c)(xi>) = xvo(w[ A™).

From 4.9 (2) it follows readily that £n+1 is, in fact a monomorphism, as for every
weFG(d0) there is some mw for which w[A™ is defined.

Let fn+1(c \A™) = < B̂+1(c) T ^ + 1 for all c€ / ) n for which c r^^1 is defined. Now we
can define

, weFG(Z)0-).

(We remark that ^ n + 1 # 5n + 1, because when xedom/ic, the point x c ^ n + 1 ) . Clearly,
an+1 is invariant under £n+1(w) for every weFG(Z)n), and also A™& is, if w t ^ ^ is
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m

defined. Having defined An+1 we let <D£+1: Am -> A™+1 be the identity. Therefore also
Q>*+1[An is the identity.

Now let us define <X>"+Ir<̂ ™- For every Xe^™ and xwev4™+1 we determine
m

whether x w e O ^ 1 ^ ) by induction on the length of w. If lgw = 0 then necessarily

xw = x, and we let JCe<D£(Ar)<=> JCGX for every Xe J5"™ and xeAm. Suppose that this
is done for all words of length k and that lg we = k + 1. Distinguish two cases: when
c is old and when c is new.

First case: c is old, namely ceC™^ (this case does not exist when n = 0).
m m

Here we have that £n(c) = 0n(c) is defined, and is an automorphism of J5"™. Let
m mm

xwc e <l>l(X) oxwe ^ ( U c " 1 ) [*])•
m m

Second case: c is new. Let xwce<E>"+1(X)oxwe<I>"+1(/C H^O)- In the right hand

side we mean tha t / c (X) is defined and xw e O*+1(/c (Ar)).

Now we can set O

4.10 FACT. For every old we¥G(Dn) and every XeFn we have that

The proof of 4.10 is straightforward using induction on word length.

4.11 CLAIM. For every weFG(Dn) and every Xe^n there is m~£- mw such that
(1) fw(X) is defined if and only if fw[ A" (X (] Am) is defined,
(2) fw~\X) is defined if and only iffw~lfA-(X0A^) is defined,

(3) for every xeAn with m(x) ^ m we have that

£n+1(w) (x) = x(w r ATX)) e O«+\X) o x er~\X)

{where by xefw~\X) we mean that f°-\X) is defined and xefw~\X)).

Proof. If fw(X) is defined, then fw[An(X()A™) is defined whenever w\Am is
defined and equals / ' "^) n A™. Conversely, iffw(X) is not defined, then there is some
m^mw such that Xo Am # Y 0 A™ for all Yedomfw (if there is one X for which
fw{X) is not defined, then dom/1" is necessarily finite) and therefore/"^"(ATI Am) is
not defined.

From the definition of £n+1 and the fact that m{x) ^ mw it follows that £n+1(x) =
x(w T A™). From the definition of <I>£+1 [ &n it is immediate that x(w [ Am) e O*+1(JQ «>

1

4.12 FACT. The intersection Q>l+1(X) 0 Am
+1 depends only on Xf]Am whenever

Now we can define jFn+1 = {Zn+1(w)[<l>?\X)]: XeS?n,weFG(Dn)}. Let

+1(w) (JT): JTe J*?+1, w e FG (DJ)}.

4.13 CLAIM. W /̂7/Z f/ie a6oye notation ^™+1 is countable for every m.

Proof. The claim follows from the countability of FG(D™) and 4.12.
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m
We have finished defining Tn+1 and <O"+1: m < co>, and verified that Tn+1 is an

m

inverse system, that <<J>"+1: m < a>> is an inverse system of successful multi-
embedding and that, consequently, <I>"+1: Tn -> Tn+1 is a multi-embedding of inverse
systems.

Let T* = (A*,^*,D*, G*, 0*> = lim Tn. We show that the conclusion of Lemma
4.1 holds for the pair of sets Ao and A*. Clearly, these sets are countable and
Ao c= A*. So all we need is the following.

4.14 CLAIM. For every family 3F ^ 0>{A^ which includes Fin(y40) there is a
homogeneous family &' £ J^* such that 3F'\A{S = SF.

Proof. Suppose that J^ c 0>(AO) is a family which includes Fin (Ao). We work by
induction on n and define 2F'n £ <?(An) for every n:

(1) K = ^
(2) JF;+1 = {^ (^ [Or 1 ^ ) ] : M/eFG(/>(J^;)), J T e ^ } .
Let ^ ' = {<Pn(X): Xe^'J. We claim that
(a) J5"' c J^* and <j>*\D{&') testifies that J27' is homogeneous,
(b) {XnA0:Xe$?'} = 3r.
To prove (a) suppose that deD{!F') is a demand. Then there is some n and a

demand dneD(^'n) such that <&„(</„) = d. As <D£+1 is successful, £n(d) = 0B+1(O*+1(rfB))
= :^ is defined. Now <I>n+1(g) = 0*(^/) satisfies dand is an automorphism of #"*. Why
is it also an automorphism of J*"'? Because of (2) above.

To prove (b) we notice that it is enough to prove by induction that for every n and
Xe&'n+1, we have

(•)„ X n An e F'n or is bounded.

For then it follows by induction that X^A^e^ for every n and Xe^n: if
X(]Ane^r

n we have that ATl^oeJ5" by the induction; if Xf]An is bounded, then
X (\ Ao is finite and again in J5".

So let us prove (*)n. We have to show that for every we¥G(Dn) and every
Xe^n the set £n+1[<D£+1(X)] n An belongs to &'n or is bounded. We show something
stronger.

(••)„ For every Xe3F'n and weFG(D(3?'n)), if fw(X) is defined then
WXand thc re fo re^ IOrW] 0 An = <!>n

n
+1(fw(X)) n ̂ n =

is not defined, then £n+1[O;TW] n /4n is bounded.

Suppose first that fw(X) is defined. Then obviously it belongs to SF'n, because
we¥G{D{P'n)). It is easy to check that £n+1(w)(xv)€<&n

n
+1(fw(X))oxve®l+1(X).

So assume t h a t / " ^ ) is not defined; we want to prove that fB+1(w)[<D^+1(^f)] n An

is bounded. \{fw{X) is not defined, then A^ran/1" \ It is sufficient to see that the set

is bounded, because this set equals €n+1(w)[<S>l+1(X)]C\An. By 4.11 there is a large
enough integer m > m(w) such that for all xeAn with m(x) ^ m we have that

m(x) m(x)
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But /"" ' (*) is not defined, and therefore £n+1(w)(x)$®n
n
+1(X) for all xeAn with

m(x) > m, which is what we wanted. This completes the proof of Lemma 4.1.

We give a corollary of this proof.

4.15 COROLLARY. There is a collection of 22"0 permutation groups <Ga: a < 22*°>
over co, such that:

(1) every Ga is isomorphic to the free group on 2X° generators;
(2) every Ga testifies the homogeneity of some family 2Fa c= gP(co);
(3) if a < P < 2X°, then Ga and Gp are not isomorphic as permutation groups.

Proof. We have shown that there are 22*0 many homogeneous sub-families F'a
of F* for a < 22*0. The restriction of 0* to FG (D(A*, J^)) is a monomorphism of the
free group over a set of cardinality 2H° into G* which testifies homogeneity of J^. This
gives us 22 ° different groups satisfying (1) and (2) in the corollary, since a single group
can act homogeneously on at most 2X° different families, because different families on
which the same group acts 1-transitively are disjoint. To obtain (3), divide by the
relation 'isomorphic via a permutation of co\ and pick a member from every
equivalence class. As in each class there are 2N° many members at the most, we get that
there are 22*0 classes.

We now wish to show that there is no homogeneous family over co such that every
homogeneous family over co is isomorphic to one of its subfamilies. This will follow
from the next lemma about the number of pairwise incompatible homogeneous
families over a countable set. Two families over co are incompatible if for some
X c co the set X belongs to one family while the set co\X belongs to the other. For
every X ^ co let us denote X° := X and X1 := co\X.

4.16 LEMMA. There is a collection {Fa: a < 22*0} of pairwise incompatible
homogeneous families over co.

4.17 COROLLARY. There is no homogeneous family over co such that every
homogeneous family over co is isomorphic to one of its subfamilies.

Proof of Corollary. Suppose to the contrary that J5"* is a homogeneous family
over co with this property. By Lemma 4.16 pick a collection {Fa: a < 22*0} of pairwise
incompatible homogeneous families over co. For each a < 22*0 fix a permutation aa

which embeds J^ in J5"*. By the pigeon hole principle there are a < /? < 22*0 and a
permutation a such that aa = Op = a. As ^ and ^ are incompatible, let us find a
set X <= co such that X°eFa and X1^^. Now aa(X°) = a(X°)e &*, and a^X1) =
o{Xx)e3F*. This means that in $F* there is a set and its complement. This
contradicts Theorem 1.4 which states that every homogeneous family over co is
independent.

Proof of Lemma 4.16. We use the direct system of inverse systems from the proof
of Lemma 4.1. The pairwise disjoint families will be over A* rather than over co, but
as this is a countable set this makes no difference.

Let the variable n range over the set of all functions n: 0>{A^) -• 2 which satisfy
rj(X)+rj(A0\X) = 1 for all X c Ao. These are functions that select exactly one element
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from each pair of a set and its complement (for example, characteristic functions of
ultra filters). There are 22 ° such functions.

For every function rj\ ̂ (Ao) ->2 as above let J^J = {X c Ao: r/(X) = 1}. The
collection {^'.n: ^(Ao) -> 2} is a collection of 22N) pairwise incompatible families over
Ao. For every m < co let ^,m be the projection of ^ on A™.

We know that for every 3Fn there is a homogeneous family J5"'^ over A* whose
projection on Ao equals ^ (modulo finite sets). However, it is NOT true that
{^'n: rj: ^(Ao) ->2} is a collection of pairwise incompatible families. In fact,
<&l(X°) n O J ^ 1 ) is not empty for every X c ^0.

What we shall do now is refine the extension operation is such a way that not only
is the projection on Ao preserved, but also the disjointness of X° and X1. This will be
achieved by removing some of the points of A*. We define by induction on n a subset
Dn <= Dn and a subset En c= An. Restricting ourselves to the points of E = (Jn En will
provide the desired conservation property. Let Eo = Ao. Let Do — [JnD(E0, ^rO

n).

4.18 FACT. If deD0, then for no X c Ao is it true that both X°, X1 belong to
ran/d .

We remove, thus, from the collection of demands all demands which mention
simultaneously a set and its complement in their range. Let us now define E1 as
follows:

Ex = {xw: xeE0,w = co...ckeFG((j D%) and x£dom/c°}.
m

The difference from the proof of 4.1 is that only a proper subset of words is being
used. Hence, E1^ Ax

4.19 CLAIM. For every X c Ao we have that OJ(^°) n <&l(Xl) (]El = 0.

Proof. By induction on the length of weFG((JmZ)o") we shall see that xw$

If lgw = 0 then xw = xsE0 = Ao. As OJ(X) n Ao = X for all X, it follows that

Now suppose that lg we = k + 1. By the definition of the e relation over the set
Ax we know that xwce<&l(X°) if and only if there is some Y such that xweQ>l(Y)
a n d / c ( 7 ) = X°. Similarly, xwce^KX1) if and only if there is some Z such that
xwe<I>l(Z) and / c (Z) = x1. But X° and X1 cannot both appear in ran/ c because
ceD™. Therefore xwc is not in the intersection. This completes the proof of 4.19.

Now we notice that Ex is invariant under £x(w) for all we FG(D0). Also, for every
weFG(Z)0) and every X^Eowe havethat ^(w) [®l(X°)] n ̂ (w) [^(X1)] f]Ex = 0.

Let ^ = {£x(w) [Q>l(X)]: XeF0,we Do}. We proceed by induction on n, defining Dn

and En+X for all n > 0.
First, let us view each n: ^ (£ 0 ) -^ 2 as a partial function n: ^ ->• 2 by replacing

every X cr Eo by OJ(X). Next extend each ^ to contain ^ in its domain, demanding
that

ri(£x(w)[<!>l(X)]) = n(X).

We refer to the resulting extended function also as rj to avoid cumbersome
notation. For every n let ^ x = {Xe^x: n(X) = 1}. Now define Dx = ( ^
Define £n + 1 and &n+l as before. We should check the following claim.
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4.20 CLAIM. For all Xe&n we have that $>n
n
+\X°) 0 O^C*1) 0 En+1 = 0.

Proof. By induction on word length. The case which should be added to the
proof of 4.19 is the case when c is old, and is easily verified.

Having done the induction, we set E = \JnEn. For every n: &>(E0) -»• 2 let SF\}

be the homogeneous family obtained from SFn as in the proof of 4.1. The reader will
verify that

(1) for every X c Eo we have that ®0(X°) n OoC*1) n £ = 0 ,
(2) for every n: ̂ (Eo) -> 2 the family ^ [E is homogeneous.
This completes the proof of Lemma 4.16.
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