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Abstract

We introduce the oak property of first order this, which is a syntactical condition that we
show to be sufficient for a theory not to have universal models in cardinalityen certain cardinal
arithmetic assumptions aboutmplying the failure ofGCH (and cbse to the failure oSCH) hold.

We give two examples of theories that have the oak property and show that none of these examples
satisfySOR,, not evenSOR;. This is relted to the question of the connection of the prop8®R,

to non-universality, as was raised by the earlier work of Shelah. One of our examples is the theory
Tf’gq for which non-universality results similar the ones we obtain are already known; hence we
may view our results as an abstraction of the known results from a concrete theory to a class of
theores.

We show that naheory with the oak property is simple.
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0. Introduction

Since he very early days of the mathematics of the infinite, the existence of a universal
object in a category has been the object oftoured interest to specialists in various
disciplines of mathematics—even Cantor’s work on the uniqueness of the rational numbers
as the countable dense linear order with no endpoints is a result of this type. For some more
recent examples see for instand¢b]. We approach this problem from the point of view
of model theory, more specifically, classifica theory, and we concentrate on first order
theories. In 10] the idea was to consider properties that can serve as good dividing lines
between first order theories (i1(]; more general theories in other work). This is to be
taken h the sase that useful information can be obtained both from the assumption that
a theory satisfies the property, and the asstiopthat itdoes not, and in general we may
expect several equivalent definitions for such properties. Preferably, there is an “outside
property” and a “syntactical property” which end up being equivalent. The special outside
property which was central irLp] was the number of pairwise non-isomorphic models, and
it led to considering the notions of stability and superstability. It is natural to ask whether
other divisions can be obtained using problems of similar nature. This is a matter of much
investigation and some other propestigave leen looked at; see for examplg 18] and
more generallyl7]. One such property is universality, which is the main topic of this paper.

In a series of papers, e.g. Kojman—Sheljh($ee there alo forearlier references)9],
Kojman [7], Shelah [L4,16], DZamonja—Shelah3], the thesis @iming the connection
between the complexity of a theory and its amenability to the existence of universal models
has been pursued. Further research andlbject is in prepaf#on in Shelah’s 20]. It
follows from the classical results in model theory (s2p fhat if GCH holds then every
countable first order theory admits a universal model in every uncountable cardinal, so the
question we need to ask is what happens wB&H fails. We may define the universality
number of a theoryl at a given cardinal as the smallest size of the family of models of
T of sizei having the property that every modelBfof sizeA embeds into an element of
the family. Hence, ifGCH holds this number for uncountableand countabld is always
at most 1. It is usually “easy” to force a situation in which such a universality number is
as large as possible, namely (by adding Cohen subsets, s&)]however assuming that
GCHfails and allowing ourselves ague use of the words “many” and “often” for the mo-
ment, we can distinguish between those theories which for many cardinals have the largest
possible universality number in that cardinghene&er GCHfails, and hose for which it is
possible to construct a model of set theory in wh@BH fails, yet our theory has a small
universality number at the cardinality under ciolesation. This division would suggest
that the latter theories—Iet us call them for the sake of this introduction amenable—are of
lower complexity than the former ones. The definition of amenability can be given in more
precise terms. In the view of the preceding discussion involving the universality behaviour
in models of GCH, it is notsurprising that this definition is expressed in terms of forcing.

Definition 0.1. We say that a theoryl is amenableiff whenevera is an uncountable
cardinal larger than the size @f and satisfying.<* = A and 2 = 1™, while ¢ satisfies
cf(9) > AT, there is axt-cc (< 1)-closed forcing notion that forces 20 bed and the
universality number uniyT, AT) (seeDefinition 0.7 to be sméer than6.
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Localising this definition at a particularwe define vhat is meant by theories that are
amenable at..

Kojmanand Sh&h in [8] proved that he theory of a dense linear order exhibits high
non-universality behaviour, making it a potypical example of a non-amenable theory.
That is, they proved (Section 3, proof of Theorem 3.10) that the theory of a dense linear
order satisfies the property describedDefinition 0.3 which we shall call high non-
amenability. We shall indicate below that this name is well chosen, in the sense that high
non-amenability implies the negation of ambiligy as introduced abovén order to define
high non-amenability we shall need a somewhat technical definition of aiglt, 1)
club guessing sequence, but as this definition will be needed anyvésction 2 we shall
give the exact definition now tiaer than glancing over it for the sake of the introduction.

Definition 0.2. (1) Suppose that < A are regular cardinals and that< © < A while S
is a stationey subset ofs consisting of points of cofinality. A sequence(Cs : § € S)
will be calledatight [truly tight] («, i, A) club guessing sequenife

(i) for every$ € Sthe sefC; is a subset ofs with otp(Cs) = u,
(ii) for every clubE of A there is§ € SsuchthatCs € E, and
(iii) foreverya € A

HCsNa: 8 e S& a e (Cs\lim(Cs))}| <.

[In addition to (i)—(iii) above,
(iv) sup(Cs) = 6.]

(2) Suppose that is a regular cardinalu < 2 and(C;s : § € S) satisfies (i)—(iii) from (1)
with the possible exception &notnecessarily being a set of points of cofinaktyor any
fixedx. Thenwe say tha{C; : § € S) is atight («, 1) club guessing sequence

Definition 0.3. A theory T is said to behighly non-amenabléf for every large enough
regular cardinal andx < A such that there is a truly tiglit, «, ) club guessing sequence
(Cs : 6 € S), thenumber univT, ) is at least 2.

Suppose that a theory is both amenable and highly non-amenable, andi.lbe a
large enough regular cardinal whil¥ = L or simplyA<* = 1 and<>(Sj+) holds. Let
P be the forcing exemplifying thak is amenable. Clearly there is a truly tight, A, A™)
club guessing sequen€ein V, and sice the forcingP is A*-cc, every club ot in VP
contains a club of* in V; herceC continues to be a truly tight., A, A*) club guessing
segquence inV P. Then a theone hand we have that MP, univ(T, A1) > 2* by the high
non-amenability, while uni¢fT, A*) < 2* by the choice ofP, a mntradiction.

In fact [8] proves that any theory with the strict order property is highly non-amenable.
On the other hand Shelah proved 6] that all simple theories are amenable at all succes-
sors ofregulark satisfyinge <% = k. In that same @per Shelah introduced a hierarchy of
complexity for first order thories, and showed that higlon-amenability ppears as soon
as a certain level on that hierarchy is passed. The details of this hierarchy are described
in the following Definition 0.8 but for the moment let us just mé&aon the fact that the
hierarchy describes a sequer®®R, (3 < n < ) of properties of increasing strength
such that the theory of a dense linear order possesses all the properties, while on the other



Sh:710

M. DZamonja, S. Shelah / Annals of Pure and Applied Logic 139 (2006) 280302 283

hand no simple theory can have the weakest among tB&R;. Shelah poved in [L6]

that the propertysOR; of a theoryT implies thatT exhibits the same non-universality
results as the theory of a dense linear order; in other words it is highly non-amenable. In
the light of these results it might then be asked whe8@R, is a characterisation of high
non-amenability, that is whether alldtily non-amenable theories also h&@R;.

The results available in the literature do not provide a counter-example, and the ques-
tion in fact remains open after this investigation. However we provide a partial solution
by continuing a result of Shelah about the thedg, of infinitely many indexed inde-
pendent equivalence relationdd]. It is proved there that this particular theory exhibits
anon-amenability beaviour provided that some cardlraithmetic assumptions close to
the failure of the singular cardinal hypotheSi€Hare satisfied (seBection Ifor details).

This does not necessarily imply higlon-amenability, as it was proved also @] that this
theory is in fact amenable at any cardi which is the successor of a cardiradatisfying

k=¥ = k. Here we gearalise the first of these two results by defining a property which im-
plies such non-amenabilitysdts and is possessed b’y;q. This pioperty is called the oak
property, as its prototype is the model completion ofNh . tg), a theay connected to
that of the treé= (for details se&xample 1.3 The oak property cannot be made a part of
the SOR, hierarchy, as we exhibit a theory which has oak, andS©R, while the model
completion of the theory of triangle-free graphs is an examples®B; theory which does
not satisfy the oak property. On the other hand we prove at the eBelation lthat nooak
theory is simple. We also exhibit a close connection betvﬂ'%rand THMj ., 1,g). These
results indicate that in order to make thenaection between theigh non-amenability,
amenability and th&OR, hierarchy more exact one needs to consider the failugbias

a eparate case. In addition the oak property not being compatible wig hierarchy
gives new evidence that this hierarchy does not exhaust the class of unstable theories that
do not have the strict order property. Note thatig|[ 2.3(2) there is an example of a first
order theory that satisfies the strong ordesggerty but not the strict order property (and
the strongorder property implies albOR, though it is not implied by their conjunction).

To finish this introduction, let us summarise the connection between the cardinal arith-
metic and the universality number that is shown in this paper (a more detailed discussion of
this can be found at the end 8fkection 3. Firstly, by classical model theory, @CH holds
then the universality number of any first order theory of size, at anycardinal> 2, is
1—hence the situation is trizlised. Similarly, the results that we have here on sufficient
conditions for non-amenability trivialise if the Strong Hypothe3itisl of Shelah holds13]
because the conditions are never satisfgtlsays that pp(u) = ut for every singulag;
hence cf[1]<%, ©) < ut for everyx < u, soStHimplies the Singular Cardinal Hypoth-
esisSCH (it is itself implied by—0%). However, ifStH fails, say«, A regulars stisfy that
for some singulay. we have cfu) = « andu™ < A while pp(r) > A, for all we know
the results here hold and are not trivial, ir thense tht not only do all known consistency
proofs of the failure ofStH show this, but it is not known wdther it is consistent to have
the failure ofStHand at the same relevant cardinals a failure of our assumptions.

Let us now commence the mathematical part of the paper by giving some background
notions which will be usd in the main sections of the paper, starting with some classical
definitions of model theory.
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Convention 0.4. A theory in this paper means a first order complete theory, unless
otherwise stated. Such an object is usually denoted.by

Notation 0.5. (1) Given a theoryl', we let¢ = ¢t stand for‘the monster model”, i.e. a
saurated enough model df. As is usual, we assume without loss of generality that all our
discussion takes place inside some such model, so all expressions to the extent “there is”,
“exists” and “&=" are to berelativised to this model, all models axe¢, and all sibsets of
¢ that we mention have size less than the saturation numige\we letkc = i (&1) be the
size of€, so thiscardinal is larger than any other cardinal mentioned in connectionfwith

(2) For a formulap(X; a) we leto(¢; &) be the set of all tupleis suchthaty[b; a] holds
inc.
Definition 0.6. (1) The tupleb is defined by (X; &) if ¢(¢; a) = {b}. It is defned by the
type p if b is the ungue tuple which realiseg. It is definale over A if tp(b, A) defires it.

(2) The formulap(X; &) is algebraicif ¢(&; &) is finite. The typep is algéraic if it is
realised by finitely many tuples only. The tufiiés algebraicover A if tp(b, A) is.

(3) Thedefinable closuref A is

del(A) £ (b : bis definable oveA).

(4) Thealgebraic closureof Ais

acl(A) def {b: bis algdoraicover A}.

(5) If A = acl(A), we saythat A is algebraically closedWhen dc{A) and aclA)
coincide, c{A) denotes their common value.

Definition 0.7. (1) For a theoryl and a cardinak, models{M; : i < i*} of T, each of
sizea, arejointly universaliff for every N a model of T of sizeA thereisan < i* and an
isomorphic embedding oN into M;.

(2) ForT anda as above,

univ(T, 1) d=Efmin{|/\/l| : M is a family of jointly
universal models of of sizeA}.

To makeDefinition 0.7more readable, note that uiiv, A) = 1 iff there is auniversal
model of T of sizeA. Thefollowing is the main definition of Shelah’4.f).

Definition 0.8 (Shelah, L6]). Letn > 3 be a natudanumber.

(1) Aformulag(X, y) is said to exemplify th@-strong order propertySOR, if 1g(X) =
Ig(y), and there arék for k < w, each of lengthg(X) suchthat

(@) = ¢lak, am] fork < m < o,
(b) E —(3Xo, ..., Xn—DI[A{pXe, Xk) : £,k <nandk =¢+1 modn}].

T hasSOR, if there is a formulap (X, ¥) exempifying this.
(2) Atheory that does not posseSOR, is said to havéNSOR,.
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Note 0.9. Using a compactness argument and tlzenRey theorem, one can prove that if
T is a theory withSOR, and¢(X, ¥), and(a, : n < ) exemplify it, without loss of
genedlity (&, : n < w) is an indigernible sequence. Set(] or [6] for examples of such
arguments.

Example 0.10. The model completion of the theory of triangle-free graphs is a
prototypical example of &OR; theory, with the formulap(x, y) just stating thak and
y are connected. It can be shown that this theoly3©R; see [L6].

The following fact indicates th&8OR,(3 < n < w) form a hierarchy, and the thesis is
that this hierarchy is reflectdd the complexity of the behawur of the relevant theories
under natural constructions in model theory.

Fact 0.11 (Shelah, L6], Section 2. For 3 < n < o the poperty SOR,;1 of a theory
implies thepropertySOR,.

1. The oak property

In this section we dfine a theoryT* that will serve as a protype of a theory that
possesses the oak property. Then we introduce the oak property and prove that the theory
T* has this property. We are interested in the connection between the oak property and
the SOPhierarchy (se®efinition 0.8. To this end we shall show that* satisfiedNSOR
(so byFact 0.11it clearly does not satisf$OR;). As another example we shall show that
the model completion of the theory of infinigemany indexe independent equivalence
reldions, T, also sésfies oak andNSOR,. This theory is known not to be simplé ],
but we shalin fact show that no theory with the oak property is simple.

We commence with some auxiliary theories which will allow us to deflife(as the
model completion off;").

Definition 1.1. (1) Let To be the following theory in the language
{Qo, Q1, Q2, Fo, F1, F2, Fa} :

(i) Qo, Q1, Q2 are unary predicates which form a partition of the universe,
(i) Fois a partial function fronQQ1 to Qo,
(i) Fq is a partial two-place function fror®g x Q2 to Q1,
(iv) F2is a partial function fronQg to Qo,
(v) F3is a partial function fromQ> to Qo,
(vi) the range of~ is included in he domain of~g and for all(x, z) € Dom(F1) we have
Fo(F1(x, 2)) = x, and
(vii) the range of > is included in he domain ofF3 and F3(F2(x)) = x for all
x € Dom(Fy).

(2) Let TOJr be defined likeTp, but with the requirement thafg, F1, F>, and F3 are total
functions.

Remark 1.2. It is to be noted that the above definition Tf uses partial rather than the
more usual full function symbols. Using partial functions we have to be careful when we
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speak about submodels, where we have a choice of deciding whether statements of the
form “F (x) is undefined” are preserved in the larger model. We choose to request that
the fact thatF is undefined at a certain entry is not necessarily preserved in the larger
model. Function$, andF3 are “dummies” whose sole purpose is to ensure that models of
-|-0+ are non-trivial, while keeping'0+ auniversal theory (which is useful when discussing
the nodel completion). Also note that neith&g nor TJ is complete, but every model

M of Tp in which Qg", QZM #  and Fp and F3 are onto can be extended to a model

of TO+ with the same universeC{aim 1.42)), and every model ofp is a sitbmodel of

a model of T;" (Claim 1.44)). T;" has a complete model completio@l&im 1.5. This
model completion is the main theory we shall work with and, as we shall show, it has the
oak property Claim 1.13 and isNSOR, (Claim 1.7.

As we are only interested ithe nodel completionT * of -|-0+ we might have omitted the
mertion of Tp altogether, but in the interest of possible future examples and also in order
to make the poof of the existence of * easier, througlaim 1.4we defired bothTy and
-|-0+ and then showed how to pass from models of one to models of the other.

Example 1.3. Suppose that anda are infinite cardinals and is any surjective function
from “ 1 to «, while g is a function fromx to “A satisfyingg(f (v)) = v forall v € “A.
Then we can construct a moddl = M, ;. 1,g as follows: IetQ(';" bex, QQ" be*> ), and
QY = “i. Furtrer let F)" (1) be the length of; for n € Q1, and letFM (e, v) = v | .
Let F) be f and letF) beg.

We oonsider such examples to be prototypical for model‘s‘obf

Claim 1.4. (1) If M is a model of T, then @', QM and Q! are all non-empty, and }
and B are onto.

(2) Every model M of g'in which Q' # ¢ and Q' # ¢, while F)* and FM are onto,
can be extended to a model qf'ﬁvith the same univergand every model ofOT isa
model of ).

(3) There are mdels M of §with Q) # ¥ and Q' # ¢ and E onto which cannot be
extended to a model ofOT with the same universe.

(4) Every model of g'is a submodel of a model ofoT

(5) T0+ has the amalgamation property and the joint embedding property JEP.

(6) If M |= Toand AC M isfinite, then the closure B of A undeps FM, FM and B
is finite (in fact|B| < | A2 + 2| A]); moreover:

@BNnQ¥ =AnQHu{FM@ : ac AnQY},

) BNQY =(AnQMHUFM® : be AnQM U{FM(c): ce AnQY} and
© BN =AnQMHU{FM@ c:aeBNQY & ce BN QM.

In this case, B= To and if M |= T, then Bl= Tj".

To declutter the notation we shall from now on whenever possible in disc:u§§jﬁ'g+
(and its model completiom™* which will be introduced later) omit the superscrigtfrom
the functi syrbols.

Proof. (1) As M is a nodel we have thaM = ¢, so at bast one amon@}!, Q), QM is
not empty.
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If QY # 9, thenF, guarantees tha@) = ¢, so Q) # ¢ because of;. If
QM = ¢, thenQ) # ¢ because ofy. Findly, if Q) # ¢, thenQ}! # ¢ because of
F3, and wecan again argue as above.

If a € QY, letb € QM be arbitrary. TherFi(a, b) € QM andFo(F1(a, b)) = a.
Hence,Fg is onto. Also,F3(F2(a)) = a, so F3'VI is onto.

(2) LetM | ToandQY, QM # 9. Forx € Q¥ andz € QM suchthat (x,2) ¢
Dom(FM), let Fi(x, z) = y foranyy € QM suchthatFo(y) = x, which exsts asF}/
is already onto. Fox e QO'V' for which F2(x) is not already defined, ¢t (x) = z for
anyz suchthat F3(z) = x, which exsts asF3'V' is onto. Finally, extend~ andF3 to be
total. The model described is a model'lgf with the same universe 8.

() Letky < k2 < A and letQ)! = k2, QM = =), while Q) = “i. For
a < k2 let Fo(a) be the function inta which is constantlyy, and forv € 13 let
F3(v) = min(Rangyv)) if this value is< «2, and 0 otherwge. Also, letFq(n) = 1g(n)
andFi(a, v) = v | « be defined fow € 1A anda < «1.

This is a model ofTp, butnot of -|-0+ becausd- is not total. If this model were to
be extended to a model 0’5* with the same universe, wieould have that for every
v e

Fo(Fi(x1,v)) = k1 & Fi(k1,v) =1

for somen € “171. As Fo(n) is already definedFo(n) = Ig(n) < «1, which is a
contradiction.

(4) Given a modeM of To. First ersure thaQ)!, QM, QM # ¢ by adding new elements
if necessary. The make sure thap and F3 are total and onto, which might require
adding new elements ol (and hence redefinin@)!, QM, QM if needed). Now for
eachx e Qg" choosey(x) € Ql'V' suchthat Fo(y(x)) = X, which ispossible sincéd
is onto, and then define for evety, z) € Qg" X QZ'V' the valie of F1(X, z) to bey(x),
unlessF1(x, z) has already been defined to start withwhichcase we leave it at that
value. Fnally declare forx e Qg" for which F2(x) has not already been defined that
F2(x) = zfor anyz suchthat F3(z) = x, which can be done sindgs is onto.

(5) We first prove the amalgamation property. Suppose Mw@tM; and M, are models
of -|—0+ with [M1] N [M2]| = |Mg|, andMg € M1, M2. We defineM3 as follows. Let
IM3| = [M1]JIM2|, and form € {0, 2, 3} let Flsx) = FM(x) if x € M, for
somel. This is well defined, becaudd; and My agree onMg. Also, the identity
F3(F2(x)) = x is satisfied inM3. Now we let Fl'v|3 = Fl'vIl U Fle. This does not
necessarily give us a total function, but we still have a modeTfvith universe
IM1] U |M2| and so to obtain the desired amalgam (which has the same universe) we
apply part (2) of this claim. From this definition it follows that bdity and M2 are
submodels o3 and equal to its restriction to their respective universes.

To see that JEP holds, suppose that we are given two madde|dM. of T0+. Define
M by letting its universe be the disjoint union bf; and M2, anddefine the functions
Fmforme {0, 1, 2, 3} by F,{\{' = Fn'\f'l U Fn'\,"z. ThenM is a nodel of T, butlike in the
proof of amalgamation, the functidfy might happen to be only partial, in which case
we extendM to a nodel ofTO+ by applying part (2) of this claim. Then it can easily be
checked thaM embeds botiM; and M.
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(6) Suppose thaf andM are as in the assumptions. Then items (a)—(c) of the statement

unigquely define a subset &, which we shall call B. Theproof will be canplete if we
can prove thaB is of the required size and is the closurefof

Clearly B is contained in the closure oA and the size oB is as claimed. That is,
letting forl € {0, 1, 2} the size ofAN QIM ben andn = X _3n;, we have first that
IBN QM| < na+ng, then|BN QM| < ng+n1+nz < n,andsdB N QM| < ny+n.
It can be checked directly th&is closed, usinghe equatins forTp, and it akoeasily
follows thatB is a nodel of T, or ofT0+ if Mis. O

Claim 1.5. -|-0+ has a complete model completion* Twhich admits elimination of
quantifiers, and iskg-categorical. In this theory the closure and the algebraic closure
coincide.

Proof. We can construcfl* diredly. T* admits elimiration of quantifiers becaus‘Eb+

has the amalgamation property and is univers2], (8.5.19). It can be seen from the
construction ofT* that it is complete, or alternatively, it can be seen thathas JEP

and ® by [2], 3.5.11, it is canplete. To see that the theory #-categorical, observe that
Claim 1.46) implies that for every there are only finitely manyp-types inn-variables.
Then by the Characterisation of Compl&tgcategorical TheoriesZ], 2.3.13),T* is Ro-
categorical. Using the elimination of quantifiers and the fact that all relational symbols
of the language off * have infinite domains in every model @f*, we can see that the
algebraic closure and the definable closure coincide‘in O

Observation 1.6. If A, B C &1+ are closed and € cl(AU B) \ A\ B, thenc e QlcT*.

Proof. Notice that
cl(AUB)=AUBU{Fi(a,c): ae (AUB)NQp & ce (AUB)N Q2
& {a,c} £ A& {a,c} ¢ B}
by Claim 1.46). O
Claim 1.7. T* is NSOR, consequently NSQP

Proof. Suppose thafl* is SOR; and letp(X, ), and(a, : n < o) exempgify this in a
modelM (seeDefinition 0.81)). Without loss of generality, by redefiningif necessary,
eacha, is without repetition and is closed (recéllaim 1.46)). By the Ramsey theorem
and compactness, we can assume that the given sequence is a part of an indiscernible
sguenceak : k € Z); herceay’s form a A-system. Let fok € Z

Xg L M el@mao.  Xg £ cl@ma).  Xe=clXg UXp).

m<k m>k

Hence Ranfk) € Xk, andX is closed. ByClaim 1.46), there is an a priori finite bound
on the &ze of Xx; hence by indiscernibility, we have thgXy| = n* for some fixedn*
not depending ok. Letalj list Xk with no repetition. ByObservation 1.6Claim 1.46),
indiscernibility and the fact that eaéh is closed, we ave thafor| € {0, 2}

cl(@m'a) N QF = (Rangam) U Ranga)) N Q
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and
Xk N QY € Rangay) N QF andXx N Q¥ < Rangay) N Q5.
Applying the Ramsey theorem agawithout loss of generality we have th(z;ﬂ;r kel
are indiscernible. Let
wg B - &) (1) = & (1) for some (equialertly all) k; # k).
If aZ(h) = é,jz(lz) for somek; # kp, without loss of generalitky < kp, by

indiscernibility and symmetry. By transitivity and the fact that ea?;h is without
def

repetition, usingky < k2 < k3 we getly = I € wj. Letw] = n*\ wg, and
leta = &' | w)anda, = &' | wi. Herce, (@4, : k € Z) is an indigernible

seguence, and Rarg) N Ranga,) = ¢ for all k. In addtion, for k; # k2 we have
Ranga, ) N Rangg ) = ¥ and Ran@@'a,) = Xk.

FN = U[Fj1 : | < 3}, whereFj; = FM | clw(@&7g,,), or Fjy = FM |
(clm (éAé{Aé{H))Z, as gpropriate. Note thaN is well defined, and that it is a model of
To. N is not necessarily a model dT0+, as the finction F; may be only patral. Notice
thatX; € N for| e [0, 3]. We wish b defineN’ like N, but idenifying &5 andaj
coordinatewise. We shall now check that this will give a well defined moda&poNote
that by the proof of Observation 1.8ve have

N'=|J xu [ (F'ecd:cdeX uUXi
0<l<3 0<I<3

& (c.d} ¢ X & {c.d) & Xis1 & F(c.d) ¢ X1 U Xiga).

The possible problem is thﬁN/ might not be well defined, i.e. there could perhaps
be a case defined in two distinct ways. We verify that this does not happen, by discussing
variouspaossibilities.

Case 1 For someb € Rangad), sayb = a(t), b’ = aj (t) andj € {0,2, 3}, we
haveF;(b) # Fj(b) after the identification o with &;. As &}’s are closd, we have
Fi(b) = éar(s) andFj(b) = égf(s’) for somes, s'. By indiscernibility, we haves = ¢/,
hence the identiiation will makeF; (b) = F; (b").

Case 2 For somes, t we have thatF1(a; (s), &; (t)) and F1(a5 (s), a3 (t)) are well
defined, but not the same after the identificatiorﬁgifandé;. This case cannot happen,
as can be seen similarly to in Case 1.

Case 3 For somer(x, y) € {Fi(x,y), Fi(y,x)} andd; = aJ (s),d> = a3 (s) and
somee € N we have thatN(e, di), N (e, dp) are well defined but do not get identified
whenN’ is defined.

By Case 2, we have that¢ a ands ¢ w(. Asz (e, d1) is well defined andl; € Xo \ &,
necessaril\e € cly (Xo U X1). Similarly, ast (e, do) is well defined andl; € X3\ &, we
havee € cly (X2 U X3). But, asFi(e, d)) is well defined, we have € Q2 U Qp. Herce
e e cly(XpU X1) \ Q1 € Xp U X1 and similarlye € X2 U X3. This impliese € §, a
contradiction.
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As M is a nodel of T, FO'V' is onto (Claim 1.41)). Supposey ¢ QS‘; then for
somel € [0,3) we have thaty € cly(X] U X|1+1), so by Observation 1.6we have
y € X U X|+1. AseachX; is closed inM, by Claim 1.46) eachX is a nodel ofTO*, o)
y € RangF}" | X)); hercey € RangF}') andy € RangFY'). We can similarly prove
thatF)' is onto, and as eacki is a model of T, we have by Claim 1.41) thatQ}’, Q)

andQ’z“’ are all non-empty. Bflaim 1.42), N’ can be extended to a modelfg.
By the dhoice ofy and the fact thal * is complete we have that

T* = (VXo, X1, X2)=[@ (X0, X1) A ¢(X1, X2) A @ (X2, X0)].

As T* is the modeécompletion of T0+, in paticular T* andT0+ are cotheories, so we have
that

To' = (Y%o, 1, %2)=[@ (o, %) A ¢ (X1, %2) A (%2, %0)],
yetin N’ we have

N’ = ¢(80, 81) A ¢(81, 82) A ¢(82, 80),
by the idetification of 39 andag. This is acontradiction. O

Definition 1.8. (1) AtheoryT is said tosatisfytheoak property as exhibited by a formula
@(X, Yy, 2) iff for any infinite A, « there aré, (n € “~A) andcC, (v € “A) and& (i < «)
suchthat .

(a) [77 Qv &vefl] = 90[3!9(;7)» bns Cvl,
(b) If n e “"randn™(a) < v1 € “Aandn™(B) < vz € “A, while o # g andi > Ig(n),
m‘lﬁay [Qo(él ’ y’ CVl) /\ (p(él ) ya Cl)z)]l
and in additionp satisfies
©) (X, 1,2 A (X, ¥2,2) = Y1 = Yo
We allow for the replacement aft by Qﬁq (i.e. dlow y to be a definale equivalence
class).
(2) We say that oak holds far if this is true for somep.

Observation 1.9. If someinfinite A, k exempify that oak(¢) holds, then so do all infinite
A, k. (Thisholds by the compactness theorem.)

Remark 1.10. We shallnot need to use this, but let us remark that witnessds ¢ to

oak(p) can be chosen to be indiscernible along an appropriate index set (a tree). This
can be proved using the technique ©6]; Chapter VII, which emjpys the conpactness
argument and an appropriate partition theorem.

Claim 1.11. T* has oak.
Proof. Let
0(x.y.2) ' Qo(X) A Qu(y) A Q2(2) A Fo(y) = X A Fi(X.2) = .

Clearly, (c) ofDefinition 1.§1) is sdisfied. Given, «, we shalldefine a modeN = N;_,

of T,". This will be a sibmodel of¢ = &t such that its universe consists Qf) def
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. . o def . .
{a : i < «} with no repetltlons,Q'l‘l = {b, : n € “ZA} with no repetitions and

QZN def {c, : v € “A} with no repetitions, whileQp, Q1, Q2 are pairwise disjoint. We
also require that the following are satisfiedtin= Ct+:

Fo(by) = agy. F1(a@i, ) = byji

and thatN is closed undeF; andF3. Tha such achoice is possible can be seen by writing
the mrresponding type and using the saturativityof

We can check thalN = T.", and thatN is a sibmodel of¢ when understood as a
model ofT0+. Clearly, (a) fromDefinition 1.§1) is sdisfied for¢ anda;, b,, c, in place
of &, 5,], ¢, respectively. To see (b), suppose that, 8, v1, v2 andi are as there, but is
suchthate(a;, d, c,,) A ¢(&, d, c,,). Herce Fi(a;, ¢,,) = F1(aj, Cy,), SOvy [i = v2 [,
a aontradiction. This shows thatis a witness foil * having oak. O

A similar argument can be used to show tfi&tis not simple, but in fact we shall prove
that no theory with the oak property is simple (this in particular answers a question of
A. Dolich raised n a privaeé comnunication).

Claim 1.12. No theory with the oakroperty is simple.

Proof. Let T be a theory with the oak property and et be cardinals such that> |T|,
2¢ < A andi = A=F < A¥ (such cardinals always exist). Bybservation 1.ve may

assume that the oak property Bfis exemplified by a formula (X, y, 2) and sequences

@ i <), (By: e rand@ : ve i) Forve iletp, = p@ &

{o(&, Bv“ ,2) : i < k}. Hence eaclp, is a type of cardinality and the sefp, : v € “A}
consists of pairwise incompatible types. The set of parameters us¢fhin: v € “A} has
size< k - A= = A. By [10], lll, 7.7, p. 141 this implies that is not simple. O

We now pass toreother example of a theory with oak that satisf&¥0R;, whichis the
theornyZq of infinitely many indexed independengu@valence relations. This example
also shows why it is that this research continue§.[The readers uninterestedTrrzq can
skip to the next section without loss of continuity. We use the notation ngrq which was
used in f], while the fact that this is equivalent to the notation1d][was eplained in H].
The existence of the required model completion is explained]in [

Definition 1.13. (1) T;erq is the following theory iQ, P, E, R, F}:
(a) Predicate® andQ are unary and disjoint, an®@x) [P(x) v Q(X)].
(b) E is an equivalence relation d.
(c) Ris a binary relation oi x P suchthat
[XRz& YRz& XEYy] = Xx =Y.
(Explanation: saR picks for eactz € Q (at most)one representative of ar-equivalence class.)
(d) F is a (total) binary function fron@Q x P to Q, which saisfies
Fx,22e Q& (FX,22R2 & (XE F(x,2).
(Explanation: so foix € Q andz € P, the functionF picks the representative of tlieequivalence class of which
is in the relationR with z.)
(2) Tgsq is the modecompletion of T,
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Remark 1.14. After renaming,@%‘i is a reduct of &72; formally Te% is interpretable in
eq

T*. Givena modelM of T*, we defineN = Ni[M] by letting its universe b&@}! | J Q)
andPN = QM, while QN = QM. We let

y Eziff F)M(y) = FM(2) andFN(x, 2) = F1(Fo(x), 2).
We also lex Rz «— FN(x,2) = x. Itis easily seen thal = Tf;rq, and maeover,
N & Tf’gq.
Using the above Remark and the fact that oak &N®OR are preserved up to
isomorphism of¢®9, we obtain:

Corollary 1.15. (1) Tf;q has oak.
(2) Treq has NSOR!

Proof. (1) Use tte formulap(x, y, z) = F(X,2) = .
(2) Fdlows by Remark1.14 0O

Part(2) of Corollary 1.15was gated without proof in [L6]. The results here suggest the
following questions.

Question 1.16. (1) DoesT * satisfySOR or SOR?
(2) Are there any nontrivial examples of oak theories that [BO&?

PropertiesSOR or SOR were introduced in4] where it wa shown thaBOR —
SOR =— SOR = notsimple, but it was left open to decide whether any of these
implications is reversible. Theggoperties are studied further i2] where itis proved
thatTfj;q hasNSOR. This males it reasonable to conjecture that the answer to both parts
of 1.16is positive.

We finish the ection by quoting a result of Shelah frorh], which can be compared
with our non-universality results froBection 2 Thenotation is explained i®ection 2

Theorem 1.17 (Shelah). Suppose that, 1 and are cardinals satisfying

(1) « = cf(u) < p, » = cf(r),
(2) n* < A,
(3) there is a family
{@,b): i <i* g e[A]™, b €[A]}
suchthat|{b; : i <i*}] < A and satifying that for every f: A — A there isi such
that f(bj) < a;; and
(4) PPr oy () > A+ [i].

Thenuniv(TfJerq, A) Z PPp ) (1)

Lithas subsequently been proved by Shelah and Usvyats@tjithiat Tf:;q has a stronger propertySOR .
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2. Non-universality results

In this section we present two general theorems showing that under certain cardinal
arithmetic assumptions oak theories do not admit universal models. Let us start by
introducing some common abbreviations that we shall use in the statements and the proofs
in this section.

Notation 2.1. (1) Letx < A be cardinals. We let
W< LA Ch: (A=«

If « is regular we let
Si‘ dzef{a < A: cf(a) = «}.

(2) For a setA of ordinals we let the set afccumulation pointef A be ac¢A) def {a €
A: o =sup/ANa)} and the set ofion-accumulation pointse nac¢A) def A\ acdA).

Before proceeding to the non-universality tlhems recall from the Introduction the def-
inition of a tight club guessing sequendzefinition 0.9. Note that the definition does not
require set<; to be either closed or unboundeddnlit can be deduced from the existing
literature on club guessing sequences that tight and truly tight club guessing sequences
exist for many triples («, ©, A). We shdl indicate inClaim 2.10how this deduction can be
made, but let us leave this for the discussion on the consistency of the assumptions of the
non-universality theorems, which will be given after their proofs. We shall now give two
non-universality theorems. These theorems Isatréheoretic and moddheoretic assump-
tions. The model-theoretic assumption is the same in both cases: that we are dealing with
an oak theory of size: A, with the desired conclusion being that the universality number
univ(T, 1) is larger thari. The settheoretic assumptions, which are different for the two
theorems, will be phrased in the form of certain combinatorial statements that are needed
for the proofs of the theorem. As with tight club guessing sequences, it might not be imme-
diately clear to the reader that these asstioms are consistent. However, after we prove
the th@rems we shall give some sufficient conditions for these assumptions to be satisfied
and as a corollary get some non-universalityuts whose set-theoretic assumptions are
phrased in the form of cardinal arithmetic and known to be consistent.

Theorems 2.2nd 2.4 have similar proofs, as we explain below, so we shall first state
both theorems and then give the proofs simultaneously.

Theorem 2.2. Assume thak, u, o and are cardinals satisfying

(1) cf(x) =k < u < A =cf(r) and there is a tightu, A) club guessing sequence,
(2) A < u,
@) k=<0 =<2,
(4) there are familiesP; C [A]“ and P2 C [o]¢ suchthat
(i) for everyinjective g o — A there is Xe P with {g(i) : i € X} € P1,
(i) 1P1l < u*, |P2| < A,
(5) T is atheoy of size< A which has thevak property.
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Then
univ(T, &) > u“.

Definition 2.3. Forcardinalsc < u we define

Upa() E min{|P| : P € [ & (¥b & [u])@a e P)(lanb = ).
More onl/ jpa(4) can be found in19].
Theorem 2.4. Assume thak, 1, o and are cardinals satisfying

(1) cf(x) =k < n < A = cf(r) and there is a tightu, A) club guessing sequence,
(2) & < Uzpa(p),
@) k<o =<,
(4) there are familiesP; C [A]F andP» C [o]¢ suchthat
(i) for everyinjective g o — A there is Xe P such hat for some Ye P,
{g():ieXinY|=c«,
(il) 1P1] < Ugpa(u), [P2] < 4,
(5) T has the oak property.

Then
univ(T, 1) > Z/{kad(u).

Before we start the proof let us give an introduction to the methods that appear within
it. When proving that the universality number of a certain category with given morphisms
(so not just in the context of first order model theory) is high it is often the case that
one can associate with each object in the category a certain construct, an invariant, which
is to some extent preserved momhisms. For example such an invariant might be an
ordinal number and then one can prove that such an invariant may only increase after
an embedding. The proof then proceeds by @dittion by showing that any candidate
for the universal would have to satisfy too many invariants. A trivial example would be
to show that there is no countable well-ordering that is universal under order preserving
embeddings: the order type of the ordering is an invariant that satisfies thatff — Q
is an oder preserving embedding, then the order typ®a$ at least as large as that Bf
Any Q that would be universal would have to have a countable well-order type that is larger
than that of all countable ordinals, a contradiction. As trivial as it is, this example points out
two stages of a non-universality proabnstructiorwhich associates an object with every
invariant prescribed by a certain set (e.g. the uncountable set of all countable ordinals) and
preservationthat shows that some essential features of the invariant are preserved (e.qg.
the arder type does not decrease) under embeddings. In our proofs we shall use the same
method, except that the invariants will be defined as ceiaaquences of subsets jof
unique modulo the club filter ok, andthat the preservation and the resulting contradiction
will be dependent on a certain club guessing sequence. Using such invariants is a technique
that was first used by Kojman and Shelah & dgndhas appeared in a number of papers
since. The main point tends to be the right definition of an invariant and the use of a right
kind of club guessing.
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Proof. We shall se the sam proof for bothTheorems 2.2nd2.4. The two main Lemmas
are the same for the two theorems, and we shditate the differences which occur toward
the end of the proof. Suppose thatx, y, Z) shows thafl has the oak property and let
a (i <«),b,(n e 1) andc,(v € “1) exempify the oak property ofp(X, y, z) for A
andk. Fornotational sinplicity, let us assume thag(x) = 1g(y) =19(2) = 1.

Let (Cs : 8§ € S) be atight(u, 1) club guessing sequence. For edglet (« (5, ¢) :
¢ < p) be the increasing enumeration@f. Let €* be a (saturated enough) expansion of
¢t by the Skolem functions fof.

Definition 2.5. (1) For N = (N, : y < A) an <-increasing continuous sequence of

models ofT of size< A, and fora, c € Ny, d=EfU N, , andé € S, we let

Y <A

. def
iV, Cs, @) = (£ < 1 (3b € Nys.ev1) \ Naiso)) (N [= ¢la, b, ).

(2) For a setA ands, N as above, let
. def| |,
mvﬁ‘(c, Cs) = U{lnv,\—,(c, Cs,a): ac Al

Note 2.6. Falowing the notation ofDefinition 2.5 notice that iny (c, Cs, a) is always a
singleton or empty, since if therelise N, suchthatg[a, b, c] holds then such is unique
(by part (c) ofDefinition 1.§. Consequently irﬁ(c, Cs) € [n]=IA.

Construction Lemma 2.7. For every A" € [u]“ of order typex, thereis an<-increasing
continuous sequencl”” = (le‘* : ¥y < A) of models of T of sizec A and a set

{4 : i < o} of elements of N def Uy<A N)f‘* such hat for some club Eof A, for every

X € Py, for somexx < A, for every$§ € S sdisfyingmin(Cs) > ax, there is ce Nax
suchthatinvk?‘:'EX}(c, Cs) = A*.
A*
In addition, the universe of N is A.

Proof of theLemma. Let P> = {X, : a < o < A}. Without loss of generality
oc< Ua<a* Xa'

Given A*. Let f = fa« be an increasing function from the successor ordirals
into « such tlat Rang f) = A*. Fors € Sletvs be the function fromx into A suchthat
vs(¢) = a(8, f(¢)) forall ¢ < . Note hatv; is increasing. Hence,, is well defined, as
is b, for n < vs. ForX e P, let px be a bijetion between the ordinals « that have the
form g 4 2 for someg andX. Forn € “> A let us say that is goodiff the domain ofy is
of the formg + 2 for someB < «.

By a conpactness argument, we can see that theréére i < o) and forX € P,
sequencesc) : 5 € S), (b : n < vs & ngood &4 € S) such that forn good ands € S

n<vs = ¢l8oxdgm: by C)]
and the appropriate translation of (b) fradefinition 1.8holds. By taking an isomorphic
copy ofe* if necessary, we can assume that the Skolem huéffirf

{&:i<olU{b: XeP2& @5 eSnav}ufcy: XeP2&5eS)



Sh:710

296 M. DZamonja, S. Shelah / Annals of Pure and Applied Logic 139 (2006) 280-302

is contained in\. Let for y < A the nodel N)f* be the reduction t&(T) of the Kolem
hullin ¢t of

y U {éi e Ua<min{a*,y}xa} U
U |J fcf=:8esny & supRangws)) < y} U

a<minfa*,y}

U |J (b):n<vsforsomes e S& ngood & sugRangn)) < y}.

a<minf{a*,y}
HenceN”A" = (N/¥ : y < 1) is <-increasing continuous, and it also follows that the

universe ofNA" = dEf U, <. NJ¥ is 1. We observe also that for < A we havelN/¥'| < 1

because. is regular, T has size< A and the Skolem hull needed to obtdﬂf is taken
over a set of size: A. That his set has size: A might not be immediate, since in the last
clause of its definition we allow to range over the entire s&, whose sie isA. However,
for everyn appearing in this part of the definition js increasing (as an initial segment of
somev;) and it sdéisfies sugRangn)) < y. Sincethe domain ofy is of the formg + 2
for someg, this meansn(8 + 1) < y. For anys € Ssuchthatn < vs we have that
n(B + 1) € Cs, so athern(B + 1) € naccCs) or for somey’ € nacdCs) we have that
n(B) <y’ < n(B +1).Atany rate, Ran@) is a sibset of size< « of a set of the form
Cs N & U {o} for somet € naccCs) and&, o are both< y. As part of he choice ofC we
obtain that for ang < y

HCsNE&:8e€S & enacdCs)}| < A.

ef

Fors € Sand¢ € naccCs) let ¢*(8,&) = de min{¢ : «(8, f(¢)) > &}, if this is well
defined, and let* (8, &) = « otherwise. Now notice that i£s N & = Cs N & then we have
£*(8,&) = ¢*(8, &) and thabs | ¢*(8,&) = vy | £*(&, &). Our aralysis shows that any
relevant to the third clause of the definition Nﬁ* and having domaip + 2 sdisfies that
F(B+1D) = (vs 1 %5, €)) | (B+ 1) forsomes € Sandé < y and hence that there are
< X choices forbf](“. Let E* be a club ofx such that for everys € E* and good; we have

by’ e NA iff <5 & (35 € SN8)[n < vyl

Givena < a*, X = X, ands € Swith min(Cs) > o + 1 andCs € E*, we shall show
that with

{ai:ieX}

| & mvNA*

(cX,Cs)

Vs

we havel = A*. Not|ce thate < k =— (6, f(g)) > « trivially since minCs) > «.
Leti e X, 8+2= py L) and lety = (a(8, f(e)) : € < B+ 1). We have that) < v
andi = px(Ig(n). Herce o[, b)X, cX] holds. Let; = f(B + 1). We then lave that

TS Noﬁé 041 S Nof{; +1) (as(x(a ) + 1is stictly larger than sufRangn)) = «(8, ¢)

anda < a8, 0)+1), butbX ¢ NA ( 0 bythe choice oE*. Herce¢ = f(B+1) € 1. So
A* C | because every eIementAf‘ Is f (B + 1) for someg as above.

In the other direction, suppose € | and leti € X be such that; is in
inv g ax (cX, Cs, &). Herce for someb € Na(S t+1) \ Na(S ¢ we have= ¢[4, b, c VS]

Vs
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Constructing; as in the previous paragraph we have thap[4;, b,f, c}a] holds. Using the
uniqueness property from (c) &fefinition 1.8we see thab = b,;< so¢ = f(B+ 1) for

someB. SOA*=1. O

Note2.8. With the notation ofLemma2.7 for any i € (Uy-minjar.s; X« We have
NV ax (c§<, Cs, &) # ¢, as fdlows from the forward direction of the proof that = 1.

Preservation Lemma 2.9. Suppose that N and*Nare models of T both with univerge
and f: N — N*is anelementargmbedding, whil¢N, : y < i) and(NJ : y < 1) are
continuous increasing sequences of models of T of cardmallxywnh U N, =N
andJ Ny = N*. Further suppose tha@, : @ < «} C N is given. Let

Y <A
Y <A

gl (N,N*,f)r)/<(N,N*,f)&Sup({aa:a<x})<)/&
B theuniverses of N and N are both the sef

Thenfor every ce N ands with Cs; € E, and for everyr < « wehave
invN (c,Cs, 8y) = inv,\-,*(f(c), Cs, T(ay)).

Proof of the Lemma. Note thatE is a club ofi. Fix c € N ands € Sas required, and let
a = a, for somex < «. We shall se that iny (c, Cs, a) = invg. (f(¢), Cs, f(a)).
Suppose; < u is an element of ing(c, Cs, @), so there isb € Ny r41) With
N = ¢[a, b, c], while there is no such € Ny, ;) (We are using the uniqueness property
from (c) of Definition 1.8§. We have thalN* satisfiesy[ f (@), f (b), f(c)]. AsCs C E we
have thatt(8, ¢ + 1) € E, and ad € Nys,.+1), Clearly f(b) € N:(a 1) Similarly, by
the definition ofE again and the fact thaft is injective we havef (b) ¢ N* 5 (5.0)" By the
assumptions op we have

N* = (vWle(f@.y. f(c) = y=fb7I,

so¢ e inv«(f(c), Cs, f(a)).

In the other direction, suppoge< u is an element of inM*(f(c) Cs, f(a)), so there
is b* € N*( 5.t )Wlth N* & ¢[f(a), b*, f(c)], while there is no sucth* € N*
HenceN* |= Ay (p[f@),y, f(©)]),soN = Jy(¢la,y,c]). Letb € N be such that
N = ¢[a, b, c]. Herce N* = ¢[f(a), f(b), f(c)]. Againby (c) of Definition 1.8 we
have f (b) = b*, sob € Nys,c+1) \ Nas,z) becauséa(s, ¢), (8, ¢ + 1)} € E, so by the
choice ofE we have that foy € {« (8, ¢), «(8, ¢ + D)}, (N, N*, f) | y is an elementary
submodel of(N, N*, f). As thisb is unique (by (c) ofDefinition 1.§ we have that
belongs to iny (c, Cs, a). O

Proof of the Theorems continued (Theoren®.2 (Theoren?.4)). To conclude the proof
of the theorems, gived < p* [0 < Ujpa(w)], we shall see that uni, 1) > 6.
Without loss of generality, we can assume that A + |P1]. Given(N¥ : | < 6) a
seguence of models of each of size\, we shall slow thatthese modeIJs are not jointly
universal. So suppose they were. Without loss of generality, the universe 0N¢ash\.

Let NJ?* = (N;j’j : y < A) be an increasing continuous sequence of modeks of size
< A suchthat N = Uy <2 N ;o forj < 6. ForeachA € Py (soA € [A]), 6 € S,
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j < 6 andd € N¥, we conpute invgl* (d, Cs), each time obtaining an element [pf]=.
J
The number of elements ¢fi]=¥ obtained in this way is
<|Pil-1S-60 -1 <6.

By the choice of9 [and the definition OUJPd(M)], we can choos&\* € [u]“ suchthat A*
is not equal to any of these sets [is almost disjoint (i.e. has intersection of siz¢o any

one of these sets]. Lét def Na+ be as guaranteed to exist by the Construction Lemma,
and let(a; : i < o}, NA° & (N/¥ : ¥ < 1) andE* be as in that Lemma. In particular,
theuniverse ofN is A. Suppose thaj < 6 andf : N — NJ?k is an elementary embedding,
and let

§eE*: (N,N, f) 18§ <(N,N¥, f) &
the universe of eachy ;, NA is s

Letg : o — A be given byg(i) = f(&). Note hatg is injective becausd is an
isomorphic embedding. By assumption (4)(i) Oieorem 2.32.4, there isX = X, € P2
suchthat{f (&) : i € X} € P1 [for someY € P; we have

Hf@):ieXinY|=«l

Letax < A be as provided by the Construction Lemma, and let

ELE*\ax)ni(s: {&:ieX)Cs).

Since we hag that he universe oN is A we have{§; : i < o} C A, so asX is a set of
sizex < A we can conlude thatE is a club ofA. We now chooseS € SsuchthatCs C E,
so in particulaiCs; € E* and minCs) > ax. _

The Construction Lemma guarantees that thepedsN such that inv{h-?‘:'EX}(c, Cs) =
A*. By the Presrvation Lemma we have

invig &1 (F 0), Cp) = A"
i

[inv{Nf*(é"):iGX}( f(c), Cs) N A* includes in\k‘f*(é‘)’iEX}mY( f(c), Cs)].

i i

In the case offheorem 2.2ve hawe a contrdiction with the choice ofA* and we are

done. We are almost done also in the casdlo¢orem 2.4but weneed to know that
invg*(a"):'EX}nY(f(c), Cs) has sizex. We know that{f(§) : i € X} NY has sizex,

i
but it is a priori possible that for some € X we have iny;(f(c),Cs, f(&)) = 0.

]
However, byNote 2.8and the choice oE we have that inyg(c, Cs, &) # ¢ for all i,
and then by the Preservation Lemmagnvf (c), Cs, f(&)) # 9. This finishes the proof
J

of Theorem2.4 O O

Let us now pass to the promised discussion of the consistency of our assumptions. The
following is a claim about the existence of tight club guessing sequences. If we were to
concentrate on truly tight club guessing sequences then we could quote further results,
for example a theorem of Shelah frorh3, so in this senseClaim 2.10is not optimal.
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However for what we need in the main theors tight club guessing sequences suffice;
hence the claim is formulated in a form that is not optimal but is sufficient, with a gain of
simplicity in presentation.

Claim 2.10. Suppose that < A are regular.

(1) If k™ < A thenthere is a truly tight(x, «, A) club guessing sequence.
(2) If k =cf(u) < pandu™ < A then there is a tightu, ) guessing sequence.

Proof. (1) This is proved in19], 1.3(a). An alternative proof is to deduce the statement
from Claim 1.6. of L3] (for uncountable) by lettingPs = {Cs} for § € S.

(2) If ™ < A we simply find a truly tight(u™, u™, 1) seguence(Es : § € S), which
exigs by (3), and then leCs be the firstu elements ofEs. If A = ut™T, the staément is
proved in [L9], 1.3(b). Alternatively, this follows from the partial square for successors of
regulars proved in]2], Sedion 4. O

Remark 2.11. A problematic but natural case for (2) i@laim 2.10 would be when
k = cf(n) < wandi = ut. The conclusion still “usually” holds (i.e. it holds in most
natural models of set theory).

Let us now comment on the assumptions (3) and (4) uséth@orems 2.2and 2.4.
An impatient reader might have accused ushig point of unnecessary generalisation
and introduction of too many cardinals into the theorem, only to obscure the real issues.
Why not setc = u = o? The eason is that in this case (2) would prevent us from
fulfilling (4). For example, suppose that* = « and we are considering the requirements

of Theorem 2.2We can letP of size6 % % be a family of almost disjoint elements of
[«]¢. Let(gj : | < @) be some sequence enumerating all increasing enumerations of the
elements ofP. Herce for j # j’ the set{y : gj(y) = 0j/(y)} has size< «. Suppose

that P, and P2 exempify that (3) and (4) hold withc = «, and &sume also that (1)

and (2) hold withu = k. Let P, = {X, : a < a® < A}. For everyj < 0 there is

a(j) < a suchthat{gj(i) : i € Xy(j)} € P1. Since|P1|, 1 < 6, there iSA € Py such

thatBa d=6f{j <6 :{gj(i) : i € Xq(j)} = A} has size at least™. Since|P,| < A, there
is B suchthat

i a()) =B &{gj(): i e Xa} = A}l =217,

This is a contradiction to the fact that the element®afre almost disjoint.

In fact the guation that is natural for us to consider is wheis a grong limit singular,
because of the following Claim, vith follows from the “generalise@CH” theorem of
Shelah proved in]5] (Theoren 0.1).

Claim 2.12. Suppose that is a grong limit singular cardinal (for examplé = 3,,) and
thatx = cf(x) and A satisfyd € («, A]. Thenfor every large enough regulas € (k, 6),
there areP1, P, satisfying partg4) of the assumptions dtheoren?.2and|P1|, |P2| < A.

Proof. By Theorem 0.1 of15] for every large enough regulare (x, 9) there is a family
P = P(o) of elements of1]” whose size is. and such that any element [of]° can be
covered by the union ok ¢ members ofP (in the notation of 15], Al°! = 1). Let us
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fix such ac and let? = P(o). Let P, = [o]¥, so sinced is a strong limit we have
|P2] < 6 < A. Let P71 be the family of all subsets of size of the dements ofP, so
[Pl < A-0" <A

Suppose now thay : o — A is injective; h@ce the range df is an element ofA]?. By
the dhoice of P and the regularity of there isZ € P such tlat Rangg) N Z has sizer.
LetY be any subset of of sizex, soY € P1. Letting X be suchthafg(i): i € X} =Y
we have thaX e P, sinceg is injective. O

Putting togethe€laims2.10and2.12we can see that our non-universality results apply
in a largenumber of set-theoretic situations that are known to be consistent, and moreover
follow just from the assumptions on the cardinal arithmetic:

Corollary 2.13. Suppose tha# is a grong limit singular cardinal and thak, « and A
satisfy

(1) cf(u) =k <6 < < put < r=cfh),
(2) A < uk.

Thenfor any theory T of size: A satisfying the oakroperty, we haveniv(T, 1) > u”.

Proof. The assumptions in (1) specifically say that- ©*. By Claim 2.1Q assumption
(1) of Theorem 2.3s satisfied. ByClaim 2.12 assumptia (4) of Theorem 2.4s satisfied
for all large enough regular € («, 6). The ®nclusion follows byTheorem 2.2 O

We shall nowshow that a conclusion sitar to theone obtained irCorollary 2.13can
be obtained from an assumption whaegationis not known to be consistent (i.e. for all
we know this assumption is true just iiF C).

Claim 2.14. Suppose that and are regular andi > « @+1, Further suppose that
for some ncov(h, kL L ety =) )

Thenfor any n showing thats, ) holds lettingo = « ™" we have that claus¢4) of the
assumptions ofheorenm?.4 holds with soméP1, P, satisfying|P1|, |P2| < A.

Here we use the familiar pcf notation:

Notation 2.15. For cardinalsr, > © > 6 > o we let covA, u, 6, 0) be the madlest
possible sie of a fanily P of elements ofA]<* such that every element gf]<? is covered
by the union of< o elements ofP.

Proof. By the doice ofn there isPy C [)L]"+n with |Pg] < A and such that for every
A e [)\]"+n there arex < k™ andA; € Pofori < « suchthatA C Ui, Ai. Ask is
regular, cf[x "<, ©) < « "1 Let P, C [0]* exempify this. For A € Pg letha be a
one-to-one function frone onto A, and letP; = (ha“B : A € Po, B € P2}. We have
that|P1], [P2] < A and thatPy C [A]*.

As for the clause (i) of (4), let an injectivg: o — A be given. By the choice dPy,
there arex < o andA; € Po fori < « such that Rangg) € U4 Ai. Herce for some

i <o wehaveRangg) N Ajl =o.LetB={¢ <o : ha(¢) € Randg)}, soB e [¢]°.
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Hence br someB’ € P> we haveglBN B’| = k. LetY = ha “B’, soY € P1. Now choose
X € Ppthatincludede < o : g(e) € Y}, sockarly|{g(i): i e X}nY|=«k. O

Remark 2.16. In the noation of Claim 2.14 the falure of () is not known to be
consistent for anyi, x as above. For example, consider the hypothesis (F)18f, [
Section 6, which states:

for everya the =t of singular cardinalg < A whose cofinality is uncountable and that
satisfy ppr(cicy)) (x) > A is finite,

and the consistency of whose negation is not known. By the “cov versus pp” theorem
of [11], Il 5.4, we have that for eveny > 1,

cov(h, kMt ety = sugppp ey (X) © x € T AL ef () = k1),

so Hypothesis (F) implies:, ,). One can see from the proof &laim 2.14that far our
purposes even weaker statements suffice.

Corollary 2.17. Suppose that

(1) cf(w) =k <p < put <2,
(2) (*..), and
B) 1< Z/{J’Pd(ﬂ).

Thenfor every thery T of size< A satisfying the oalproperty we haveiniv(T, 1) >
Z/{JI(de(,lL).

Proof. The conclusion follows b¥laim 2.10 2.14andTheorem 2.4 O

Let us also comment on the connection between the assumptiditeofems 2.2and
2.4 1f Rg < k = cf(n) < nandforalld < u we haved < u, then

PPypd(p) = p = Ujpa(p)
(by [11], Chapter VII, Section 1).

Acknowledgements

The authors thank the United States—Israel Binational Science Foundation and NSF
for their support during the preparation of this paper, and Mirna DZamonja thanks the
Academic Study Group for their support during the summer of 1999 and Leverhulme Trust
for their grant number F/00204B.

References

[1] S. Argyros, Y. Benyamini, Universal WCG Banach spaces and universal Eberlein compacts, Israel Journal
of Mathematics 58 (1987) 305-320.

[2] C. Chang, J. Keisler, Model Tley, 2nd edition, North-Holland, 1990.

[3] M. DZzamonja, S. Shelah, On the existence ofversals, Archive for Mathematical Logic 43 (2004)
901-936.

[4] M. DZamonja, S. Shelah, Go*-maximality, Annals of Pure and Applied Logic 125 (1-3) (2004) 119-158.

[5] Z. Furedi, P. Komjath, Nonexistence of univefgraphs without some trees, Combinatorica 17 (1997)
163-171.



Sh:710

302 M. DZamonja, S. Shelah / Annals of Pure and Applied Logic 139 (2006) 280-302

[6] R. Grossberg, J. lovino, O. Lessman, A primer of simple theories, Archive for Mathematical Logic 41 (6)
(2002) 541-580.

[7] M. Kojman, Representing embeddability as set is@u, Journal of the London Mathematical Society (2nd
saies) 58 (185) (1998) 257—270. Part 2.

[8] M. Kojman, S. Shelah, Non-existence of universeders in many cardinals, Journal of Symbolic Logic 57
(1992) 875-891.

[9] M. Kojman, S. Shelah, The universality spectrum obktaunsuperstable theories, Annals of Pure and
Applied Logic 58 (1992) 57-72.

[10] S. Shelah, Classification theory and the numifenanisomorphic models, in: Studies in Logic and the
Foundation of Mathematics, vol. 9Rlorth-Holland, Amsterdam, 1990.

[11] S. Shelah, Cardinal Arithmetic, Oxford University Press, 1994.

[12] S. Shelah, Reflecting stationary sets and succes$aiagular cardinals, Archive for Mathematical Logic
31 (1991) 25-53.

[13] S. Shelah, Advances in Cardinal Arithmetic, ino&edings of the Banff Conference in Alberta; 4/91,
NATO Conference on Finite anafinite Combinatorics, 1993.

[14] S. Shelah, The Universality Spectrum: Consistency for more classes, in: Combinatorics, Paul Erdds is
Eighty, in: Bolyai Society Mathematical Studjesol. 1, 1993, pp. 403—-420 (Proceedings of the Meeting
in honor of P. Erdds, Keszthely, Hungary 7. 1993, an improved version available at
http://www.math.rutgers.edu/~shelajch

[15] S. Shelah, The generalizedntinuum hypothesis, Israel Joat of Mathematics 116 (2000) 285—-321.

[16] S. Shelah, Toward classifying unstabledties, Annals of Pure and Applied Logic 80 (1996) 229-255.

[17] S. Shelah, On what | do not understand (and have #ongeto say), model theory, Mathematica Japonica
51 (2000) 329-377.

[18] S. Shelah, Classification theory for theorieishiNIP — a modest beginning, #ntiae Math Japonicae 59
(2) (2004) 265-316 (special issue: €9, 503-544).

[19] S. Shelah, Analytical Guide and Corrections 1@][ http://www.math.rutgers.edu/~shelarch

[20] S. Shelah, Undersal stuctures (preprint).

[21] S. Shelah, A. Usvyatsov, More on S&nd SOB (preprint).


http://www.math.rutgers.edu/~shelarch
http://www.math.rutgers.edu/~shelarch

	On properties of theories which preclude the existence of universal models
	Introduction
	The oak property
	Non-universality results
	Acknowledgements
	References


