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Abstract 

Baldwin, J.T. and S. Shelah, The primal framework II: Smoothness, Annals of Pure and 

Applied Logic 55 (1991) l-34. 

Let (K, <, cpr) be a class of models with a notion of ‘strong’ submodel and of canonically 

prime model (cpr) over an increasing chain. We show under appropriate set-theoretic 

hypotheses that if K is not smooth (there are incompatible models over some chains), then K 

has many models in certain cardinalities. On the other hand, if K is smooth, we show that in 

reasonable cardinalities K has a unique homogeneous-universal model. In this situation we 

introduce the notion of type and prove the equivalence of saturated with homogeneous- 

universal. 

This is the second in a series of articles developing abstract classification theory 

for classes that have a notion of prime models over independent pairs and over 

chains. It deals with the problem of smoothness and establishing the existence 

and uniqueness of a ‘monster model’. We work here with a predicate for a 

canonically prime model. In a forthcoming paper, entitled “Abstract classes with 

few models have ‘homogeneous-universal’ models”, we show how to drop this 

predicate from the set of basic notions and still obtain results analogous to those 

here. 

Experience with both first-order logic and more general cases has shown the 

advantages of working within a ‘monster’ model that is both ‘homogeneous- 

+ Both authors thank Rutgers University and the U.S.-Israel Binational Science foundation for 

their support of this project. 

* Partially supported by N.S.F. grant 8602558. 

** This is item 360 in Shelah’s bibliography. 

0168~0072/91/$03.50 0 1991- Elsevier Science Publishers B.V. All rights reserved 

Sh:360



2 J. T. Baldwin, S. Shelah 

universal’ and ‘saturated’. FraissC [6] for the countable case and Jonsson [9] for 
arbitrary cardinalities gave algebraic conditions on a class K of models that 
guaranteed the existence of a model that is homogeneous and universal for K. 

Morley and Vaught [lo] showed that if K is the class of models of a first-order 
theory, then the algebraic conditions of homogeneity and universality are 
equivalent to model-theoretic conditions of saturation. First-order stability theory 
works within the fiction of a monster model AX Such a fiction can be justified as 
‘a saturated model in an inaccessible cardinal’, by speaking of ‘class’ models, or 
by asserting the existence of a function f from cardinals to cardinals such that any 
set of data (collection of models sets, types etc.) of cardinality p can be taken to 
exist in a sufficiently saturated model of cardinality f(p). This paper culminates 
by establishing the existence and uniqueness of such a monster mode for classes K 

of the sort discussed in [3] that do not have the maximal number of models. We 
avoid some of the cardinality complications of [lo] by specifying closure 
properties on the class of models. 

One obstacle to the construction that motivates an important closure condition 
is the failure of ‘smoothness’. Is there a unique compatibility class of models 
embedding a given increasing chain? It is easy for a model to be compatibility 
prime (i.e., prime among all models in a joint embeddability class over a chain) 
without being absolutely prime over the chain. This ‘failure of smoothness’ is a 
major obstacle to the uniqueness of a monster model. Our principal result here 
shows that this situation implies the existence of many models in certain 
cardinalities. We can improve the ‘certain’ by the addition of appropriate 
set-theoretic hypotheses. 

The smoothness problem also arose in [17]. Even when the union of a chain is 
in K, it does not follow that it can be K-embedded in every member of K which 
contains the chain. The argument showing this situation implies many models is 
generalized here. However, we have further difficulties. In the context of [17] 
once full smoothness (unions of chains are in the class and are absolutely prime) 
is established in each cardinality, one can prove a representation theorem as in 
[16] to recover a syntactic (omitting types in an infinitary language) definition for 
the abstractly given class. From this one obtains full information about the 
Lowenheim-Skolem number of K and in particular that there are models in all 
sufficiently large powers. The examples exhibited in Section 2 show this is too 
much to hope for in our current situation. Even the simplest case we have in 
mind, X,-saturated models of strictly stable theories, gives trouble in A. if A.” > A. 
This illustrates one of the added complexities of the more general situation. Many 
properties that in the first order case hold on a final segment of the cardinals hold 
only intermittently in the general case. This greatly complicates arguments by 
induction and presents the problem of analyzing the spectrum where a given 
property holds. 

This paper depends heavily on the notations established in [3, Sections 1 and 
21; we do not use the results of [3, Section 31. Reference to [17] is helpful since 

Sh:360



The primal framework II 3 

we are generalizing the context of that paper but we do not expressly rely on any 
of the results there. Some arguments are referred to analogous proofs in [17,20]. 

Section 1 of this paper recapitulates the properties of canonical prime models 
over chains and contains some examples illustrating the efficacy of the notion. 
Sections 2 and 4 fix some basic notations and assumptions. Section 2 deals with 
downward Liiwenheim-Skolem phenomena; the upwards Lowenheim-Skolem 
theorem is considered in Section 3. In Section 5 we describe the combinatorial 
principles used in the paper. Section 7 introduces a useful game and some axioms 
on double chains that are used to show Player I has a winning strategy if K is not 
smooth. 

In Section 6 we consider two important ideas. First we discuss the notion ‘K 

codes stationary sets’ - a particularly strong form of a nonstructure result for K. 

Then we consider two different ways that a model might code a stationary set. 
Dealing with canonically prime models over chains rather than just unions of 
chains introduces subtleties into the decomposition of models that make the 
process of ‘taking points of continuity’ more complicated than in earlier studies. 

Section 8 contains the main technical results of this paper, showing that with 
appropriate set theory, if K is not smooth, then it codes stationary sets. 

In Section 9 we assume that K is smooth. We are then able to (i) construct and 
prove the categoricity of a monster model, (ii) introduce the notion of a type, and 
(iii) recover the Morley-Vaught equivalence of saturation with homogeneous- 
universality. We conclude in Section 10 with a discussion of further problems. 

1. Prime models over chains 

We begin by reviewing the discussion in [3] of prime models over chains. 
Let Y%k! = (M,, & : CY < /3 < S) be an increasing chain of members of K. An 

embedding f of m into a structure M is a family of maps J : Ali+ M that commute 
with the f;,j. As for any diagram, there is an equivalence relation of ‘compatibility 
over YJ?. Two triples (mZ,f, M) and (mZ, g, N), where f (g) is a K-embedding of 
m into M (N), are compatible if there exists an M’ and fi (g,) mapping M (N) 
into M’ such that fief and g,og agree on ZR (i.e., on each Mi). This relation is 
transitive since K has the amalgamation property. 

Now M is compatibility prime over (m,f) if it can be embedded over f into 
every model compatible with it. In [3, Section 2.31 we introduced the relation cpr 
for canonically prime, characterized it by an axiom Chl, and then asserted the 
existence of canonically prime models by axiom Ch2. Before stating the basic 
characterization and existence axioms used in this paper we need some further 
notation. 

1.1. Definition. (i) The chain ( Mi, J,j : i <j < p) is essentially K-continuous at 
6 < /3 if there is a model Mb that is canonically prime over ??.%!a and compatible 
with Mb over (Mi,&,j:i<j<6). 
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4 J. T. Baldwin, S. Shelah 

(ii) The chain m is essentially K-continuous if for each limit ordinal 6 < 6, ZR is 
essentially K-continuous at 6. 

We will use the following slight variants on the existence and characterization 
axiom in [3, Section 2.31. Note that by Axiom Chl’, the Mh in Definition 1.1 can 
be +-embedded in M6 over %?I 6. 

1.2. Axioms for canonically prime models 

Axiom Chl’. cpr(& M, f) implies (i) 9.R is an essentially K-continuous chain; 
(ii) M is compatibility prime over %R via J? 

Axiom Ch2’. If %? is essentially K-continuous, there is a canonically prime model 

over mol. 

Clearly, if K satisfies Chl’ and Ch2’, each essentially K-continuous chain can 
be refined to a K-continuous chain. Examples 1.3 and 1.5 show the necessity of 
introducing the predicate cpr rather than just working with models that satisfy the 
definition of compatibility prime. 

1.3. Example. Fix a language with o1 unary predicates Li (for level) and a binary 
relation <. Let K be the collection of structures isomorphic to structures of the 
form (A, Li, <) where A is a subset of <,,A closed under initial segment and 
containing no uncountable branch, < is interpreted as initial segment, and Li(f) 

holds if f E A has length i. Now for M, N E K, let M c N if M s N and every 
o-chain in M that is unbounded in M remains unbounded in N. 

Let j= denote the sequence (k: k < a) and let M, be the member of K whose 
universe is {j=. * a < i}. Then Y.R = (Mi: i < o1 and i is not a limit ordinal) is a 
K-increasing chain of members of K. (We do not include the Mi for limit i, since 
if i is a limit ordinal, Mi is not a K-submodel of Mi+,.) Now in the natural sense 
for ‘compatibility prime models’ this chain is continuous. For each limit i, Mi+l is 
compatibility prime in its compatibility class over Y.k’ 1 (i + 1) the compatibility 
class of models with a top on the chain. But the union of this chain is not a 
member of K and has no extension in K. 

So for this example if we tried to introduce ‘prime’-models over chains by 
definition, Axiom Ch2’ would fail. If in this context we define cpr to mean union, 
then the chain is not even essentially K-continuous and so Axiom Ch2’ does not 
require the existence of a cpr-model over m. 

Here is an example where the definition of cpr is somewhat more complicated. 

1.4. Example. Let K be the class of triples (T, <, Q) where T is a tree partially 
ordered by < that has o1 levels and such that each increasing w-sequence has a 
unique least upper bound. Q is a unary relation on T such that if {t(i): i < o,} is 
an enumeration in the tree order of a branch, then {i: t(i) E Q} is not stationary. 
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The primal framework II 5 

For M, N E K, write M G N if A4 is a substructure of N in the usual sense and each 

element of M has the same level (height) in N. 

If %V is an increasing chain of K-models of length ,u, the canonically prime 

model over ?PJ will be the union of the chain if cf(p) is uncountable. If cf(p) = X0, 

the canonically prime model will be the union plus the addition of limit points for 

increasing o-sequences but with no new elements added to Q. 

These examples may seem sterile. Note however, one of the achievements of 

first-order stability theory is to reduce the structure of quite complicated models 

to trees A’“. It is natural to expect that trees of greater height will arise in 

investigating infinitary logics. Moreover, it is essential to understand these 

‘barebones’ examples before one can expect to deal with more complicated 

matters. In particular, in this framework we expect to discuss the class of 

&-saturated models of a strictly stable theory. We cannot expect to reduce the 

structure of models of such theories to anything simpler than a tree with 

w,-levels. The following example provides another reason for introducing the 

predicate cpr. 

1.5. Example. Let T be the theory REI, of countably many refining equivalence 

relations with infinite splitting [2, p. 811. Let K be the class of &-saturated 

models of T and define M c N if no &,-class of M is extended in N. (E, denotes 

the intersection of the Ei for finite i.) Now there are many choices for the 

interpretation of the predicate cpr; one choice is induced from the K-saturated 

prime model for each uncountable K. Suppose Y.k? is K-increasing chain and M is 

prime among the K-saturated models over UYR. Let M’ be the restriction of M to 

the set of x E m such that for each n there is a y E Um with x&y. (Note that if 

?lX = ( Mi: i < o), the models prime among the K- and p-saturated models 

respectively containing lJYJZ are incompatible over m if p # K.) 

Thus, the canonically prime model becomes canonical only with the addition of 

the predicate cpr. There are a number of reasonable candidates in the basic 

language and we have to add a predicate to distinguish one of them. The last 

example shows that we should demand that cpr models are compatible. This 

property was not needed in [3] but we need it here to prove smoothness. Its 

significance is explained in Definition 4.4. 

1.6. Axiom Ch4. Let 1231 be a K-continuous chain and suppose both cpr(llll, M) 

and cpr(ZZR, N) hold. Then M and N are compatible over m. 

2. Adequate classes 

This paper can be considered as a reflection on the construction of a 

homogeneous universal model as in [6,9, lo]. These constructions begin with a 
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6 J. T. Baldwin, S. Shelah 

class K that satisfies the amalgamation and joint embedding properties. They 

have assumptions of two further sorts: Lowenheim-Skolem properties and 

closure under unions of chains. 

We deal with these assumptions in two ways. Some are properties of the kinds 

of classes we intend to study; we just posit them. For others we are able to 

establish within our context a dichotomy between the property holding and a 

nonstructure result for the class. Most of this paper is dedicated to the second half 

of the dichotomy; in this section we sum up the basic properties we are willing to 

assume. 

We begin by fixing the language. 

2.1. Vocabulary. Recall that each class K is a collection of structures of fixed 

vocabulary (i.e., similarity type) rK. We define a number of invariants below. We 

will require that the cardinality of tK is less than or equal to any of our invariants. 

If we did not make this simplifying assumption, we would have to modify each 

invariant to the maximum of the current definition and IrKI. This would 

complicate the notation but not affect the arguments in any essential way. 

As usual we denote by KA (K,,) the collection of members of K with 

cardinality ?, (<A). In the next axiom we introduce a cardinal x1(K). 

2.2. x1(K) introduced 

Axiom SO. xl(K) is a regular cardinal greater than or equal to ltKl 

Now let us consider Lowenheim-Skolem phenomena. In the first-order case, 

the upwards Lowenheim-Skolem property is deduced from the compactness 

theorm; the downwards Lowenheim-Skolem property holds by the ability to 

form elementary submodels by addingfinitary Skolem functions. In Section 3 we 

show that an upwards Lowenheim-Skolem property can be derived from the 

basic assumptions of [3]. 

The finitary nature of the Skolem functions in the first-order case guarantees 

that the hull of a set of power Iz > x1(K) has power A. Since we now deal with 

essentially infinitary functions, we cannot make this demand for all A. If there are 

K-ary functions it is likely to fail in cardinals of cofinality K. We assume a 

downwards Lowenheim-Skolem property in many but not all cardinals. We 

justify this assumption in two ways. First the condition holds for the classes (most 

importantly, X,-saturated models of strictly stable theories) that we intend to 

consider. Secondly, the assumption holds for any class where the models can be 

generated by K-ary Skolem functions for some K that depends only on K and the 

similarity type. 

2.3. Definition. K has the A-Liiwenheim-Skolem property if for each ME K 
andArMwithlA]~~thereexistsanNwithA~NGMandINI<il. 
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The primal framework II 7 

Replacing the two occurrences of GA in the definition of the il-lowenheim- 

Skolem property by <I., we obtain the (<A)-Liiwenheim-Skolem property. If 
p = A+, then the )L-Lowenheim-Skolem property and the (<p)-Lowenheim- 
Skolem property are equivalent. 

Note that K may have the A-Lowenheim-Skolem property and fail to have the 
A’-Lowenheim-Skolem property for some A’ > A. 

LS(K) denotes the least A such that K has the A-Lowenheim-Skolem property. 

2.4. Downward LGwenheim-Skolem property 

Axiom Sl. There exists a x such that for every A, if AX = A, then K has the 
A-Lowenheim-Skolem property. 

Notation. (i) x1(K) denotes the least such x that is ?=JrKI. 
(ii) xK = sup(~r(K), 2LS(K))+. 

2.5. Example. Examination of Example 1.5 shows that as stated it does not 
satisfy the il-Lowenheim-Skolem property for any A. An appropriate modifica- 
tion is to consider the class K“ of models of T that are X,-saturated but each E, 
class has less than p elements. Then K@ satisfies the h-Lowenheim-Skolem 
property for any A 3 p and we are able to apply our main results. 

We easily deduce from the <A-Lowenheim-Skolem property the following 
decomposition of members of Kh. Note that no continuity requirement is imposed 
on the chain. 

2.6. Proposition. If K satisfies the <A-Liiwenheim-Skolem property, A is 
regular, and M E K has cardinal@ A, then M can be written as Uiil Mi where 
each Mi has power less than A and Mi s Mi c M for i <j < A. 

We describe chains by a pair of cardinals (size, cofinality) bounding the size 
of the models in the chain and the cofinality of the chain. 

2.7. Notation. A (A, rc)-chain is a K-increasing chain (i <j implies Mi < Mi) of 
cofinality K of K-structures which each have cardinality A. 

We define in the obvious way variants on notations of this sort such as a 
(<A, K) chain. Unfortunately, different decisions about < versus G are required 
at different points and the complications of notation are needed. 

2.8. Definition. (i) A h c ain rXn is bounded if for some ME K there is a 
K-embedding of ZJI into M. 

(ii) K is (GA, )- K bounded if every (GA, rc)-chain is bounded. 

To assert K is (<I., rc)-bounded imposes a nontrivial condition even in the 
presence of Axiom Ch2’ because there is no continuity assumption on the chain. 
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8 J.T. Baldwin, S. Shelah 

Moreover, a demand of boundedness is not comparable to a demand for the 
LGwenheim-Skolem property; it is a demand that a certain abstract diagram have 
a concrete realization. It is easy to construct examples of abstract classes where 
boundedness fails if there is a bound on the size of the models in the class. We 
describe several more interesting examples in paragraph 4.3. 

2.9. Alternatives. Here is a natural further notion. K is K-weakly bounded 
(with appropriate parameters) if every K-continuous chain is bounded. We will 
not actually have to consider this notion because the existence of canonically 
prime models implies that K is K-weakly bounded. 

2.10. Definition. A is K-inaccessible if for any K-diagram rol with the sum of the 
cardinalities of the A4 E ZR less than A, if there is a K-embedding f of A into 
NE K, then there is an N’ E K with IN’1 < A and an embedding f’ of Ju into N’ 
such that rngf’ satisfies all the independence relations that rngf does and such 
that N and N’ are compatible over .A via f, f’. 

This definition is slightly stronger than the one in [17] and we report this fact in 
the following proposition. It is strictly weaker than assuming the A-L6wenheim- 
Skolem property. 

2.11. Proposition. Zf A is K-inaccessible then 
(i) any free amalgam (MO, M,, M,) with IMII, lM21 <A can be extended to 

(MO, W, Mz, N) with INI <A; 
(ii) any (<A, <A) h c ain which is bounded is bounded by a model with 

cardinal&y less than A.. 

Since A+ is K-inaccessible if K satisfies the A-L6wenheim-Skolem property, we 
deduce from Axiom Sl the following proposition. The first clause shows there 
are an abundance of K-inaccessible cardinals. For many of the results of this 
paper it suffices for A to be K-inaccessible rather than requiring the <A- 
Lawenheim-Skolem property. 

2.12. Lemma. Suppose A is greater than xK and K satisfies Axiom Sl. 
(i) Zf kXlcK) = A, then A+ is K-inaccessible. 

(ii) Zf A is a strongly inaccessible cardinal, then A is K-inaccessible. 

2.13. Lemma. Zf YJi! is a (<A, 4.) chain, A is K-inaccessible and M is canonically 

prime over 92, then IMI < A. 

The following examples show that some of the classes we want to investigate 
have models only in intermittent cardinalities. 
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The primal framework II 9 

2.14. Examples. Let K be the class of Xi-saturated models of a countable 
strictly stable theory T. 

(i) If A” > A, then there are sets with power 3, which are contained in no 
member of K with power A. 

(ii) If T is the model completion of the theory of countably many unary 
functions, there is no member of K with power A. if Iz” > A. 

We modify our notion of adequate class from [3, Section 31 to incorporate 
these ideas. 

2.15. Adequate Class. We assume in this paper Axiom Groups A and C, 
Axioms Dl and D2 from group D (all from [3]), Axioms Chl’, Ch2’ and Ch4 
from Section 1, and Axioms SO and Sl from this section. A class K satisfying 
these conditions is called adequate. 

One of our major uses of the Lowenheim-Skolem property is to guarantee the 
existence of K-inaccessible cardinals as in Lemma 2.12. We now note that this 
conclusion can be deduced from very weak model theory and a not terribly 
strong ‘large cardinal’ hypothesis. We begin by describing the set-theoretic 
hypothesis. 

2.16. Definition. We say 00 is Mahlo if for any class C of cardinals that is closed 
and unbounded in the class of all cardinals, there is a regular cardinal p such that 
C n ~1 is an unbounded subset of CL. 

In fact, the ~1 of the definition could be taken as strongly inaccessible since the 
strong limit cardinals form a closed unbounded class. The assertion that CCI is 
Mahlo is not provable in ZFC. Using Proposition 2.11 we have the next theorem. 

2.17. Theorem. Suppose UJ is Mahlo and that K is a class of z-structures that is 
closed under isomorphism, satisfies axiom Cl (existence of free amalgamations of 
pairs) and is (< w,<m)-bounded. Then the class of K-inaccessible cardinals is 
unbounded. In fact, it has nonempty intersection with any closed unbounded class 
of cardinals. 

Proof. For any cardinal A, let J(n) be the least cardinal such that for any 
diagram m such that the sum of the cardinalities of structures in ?lR is less than il 
and for any N that bounds ?lR there is an N’ with IN’1 <J(A) and an embedding of 
?lR into N’ preserving all the independence relations among structures from m 
that hold in N. Now the set C = {A: p <A implies J(u) <J.} is closed and 
unbounded. Since 00 is Mahlo, there is an inaccessible cardinal x with C fl x 
unbounded in x. But then x is K-inaccessible. 0 

It is easy to vary this argument to show there are actually a proper class of 
K-inaccessibles and indeed that that class is ‘stationary’. 
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10 J. T. Baldwin, S. Shelah 

3. Upwards Liiwenheim-Skolem phenomena 

As the examples in paragraph 2.14 show, it is impossible to get the full 
Lowenheim-Skolem-Tarski phenomenon - models in all sufficiently large 
cardinals-in the most general situation we are studying. Nevertheless we can 
establish an upwards Lowenheim-Skolem theorem. We show that xK is a Hanf 
number for models of K. 

These results generalize (with little change in the proof) and imply [18, Fact 
v.1.21. 

3.1. Remark. The real significance of the following theorem is that it does not 
rely on axiom C7 (disjointness). With the axiom the second part of the following 
theorem is trivial. We asserted in [3] that the use of C7 was primarily to ease 
notation; this argument keeps us true to that assertion. 

Recall that we have assumed for simplicity that (Q( < xK. 

3.2. Theorem. Suppose K has the x-Liiwenheim-Skolem property and there is a 
member M of K with cardinal&y greater than 2x. Then 

(i) there exist (MO, M,, M2, M3) such that NF(M,, M,, M2, M,) and there is a 
nontrivial (i.e., not the identity on MI) isomorphism of M, onto M2 over MO; 

(ii) there exist arbitrarily large members of K. 

Proof. The proof of conclusion (i) is exactly as in [18]. That is, since IMI > 2%, 
by the x-Lowenheim-Skolem property, we can fix M,, G M with jMOl s x and 
choose for each c E M - MO an N, with MO s NC s M, c E NC, and [NC1 G x. Expand 
the language L of K to L’ by adding names for {d: d E MO} and let L” contain one 
more constant symbol. There are at most 2% isomorphism types of LR-structures 
(N,, c) satisfying the diagram of MO so there are c, # c2 E M with (N,,, cl) = 
(N,,, cz). Thus there is an isomorphism f from N,, onto N,, over MO with 

f (4 = c2- Applying axiom C2 (existence of free amalgams), we can choose M3 

and g : N,, = MI over MO with NF(M,,, MI, M, M3). Now by monotonicity we have 
both NF(M,,, MI, NC,, M,) and NF(M,, MI, NC,, M3). Let c denote g(cJ. Now not 
both g-‘(c) = c1 and f og;l(c) = c2 equal c. So one of N,, and N,, can serve as the 
required M2. 

Our proof of the existence of arbitrarily large models actually only relies on 
conclusion (i). Let c E MI be such that the isomorphism f of MI and M2 moves c. 
For any A, we define by induction on (Y G A. a K-continuous sequence of models 
M (y such that JM”J 3 A as required. As an auxiliary in the construction we define 
f oI and N” such that f W is a nontrivial isomorphism between M3 and NS We 
demand NF(M,, Nff, Ma, Ma+‘). 

For (Y = 0, let MO = M3. At stage (Y + 1 we define f a, N” and MU+’ by invoking 
the existence axiom to obtain NF(M,, NW, M &, Ma+‘) and f a : M3+ NY For limit 
(Y, choose Ma canonically prime over its predecessors. 
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The primal framework II 11 

To obtain the cardinality requirement is suffices to show that if LY < A, then 
f”(c) $ MS Fix (Y and let AI denote f”(M,) and A2 denote fa(M2). We have 
NF(M,,, AI, Ma, Ma+l) and NF(M,, A*, Ma, Ma+‘) by the construction. Again 
from the construction g” =f” ( i&of 0 (f” ( Ml)-’ is an isomorphism between AI 

and A2 over M,,. By the weak uniqueness axiom C5 (see [3, Proposition 1.1.7]), 
g” extends to an isomorphism g, between AI and A, which fixes M” pointwise. 

Now, if f”(c) EM‘? gYY(c)) =&(f‘Yc)) = (f”(c)). But gYY(c)) =f”(f(c)) 
(by the definition of g”) so f fixes c. This contradiction yields conclusion (ii). Cl 

Noticing that the existence of a nontrivial map implies the existence of a 
nontrivial amalgamation and that only conclusion (i) was used in the proof of 
conclusion (ii), we can reformulate the theorem as follows. 

3.3. Corollary. Suppose K does not have arbitrarily large models. Then all 
members M of K have cardinal@ less than xK. Moreover, if N GM E K, there is 
no nontrivial automorphism of M Jixing N. 

Proof. Note the definition of xK (paragraph 2.4) and apply Theorem 3.2 with x 
as LS(K). Thus the models of a class with a bound on the size of its models are all 
‘almost rigid’. These arguments give some more local information. 0 

3.4. Definition. The structure M is a maximal model in K if there is no proper 

K-extension of M. 

3.5. Corollary. (i) Zf [MI > 2% and K has the x-Liiwenheim-Skolem property, 
then M is not a maximal model in K. 

(ii) Thus if [MI 3 xK, M is not a maximal model. 
(iii) Zf particular if p is K-inaccessible and xK c IM1 < ,u, then M has a proper 

extension of cardinal&y less than p. 

Proof. The first two propositions just restate the previous results in this 
language. For the third observe that for each (Y < A 5 p in the construction for the 
second part of Theorem 3.2, jM,j < ,u by the definition of K-inaccessibility and 
Lemma 2.13. 0 

4. Tops for chains 

We discuss in this section several requirements on a model that bounds a chain. 
Shelah has emphasized (e.g., [16, 171) that the Tarski union theorem has two 
aspects. One is the assertion that the union of an elementary chain is an 
elementary extension of each member of the chain and thus a member of any 
elementary class containing the chain; the second is the assertion that the union is 
an elementary submodel of any elementary extension of each member of the 
chain. First we consider the second aspect. 
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4.1. Definition. (i) The class K is (<A, K)-smooth if there is a unique 
compatibility class over every (<A, K)-chain. 

(ii) K is smooth if it is (cm, <co)-smooth. 

Note that if the class K is (<A, K)-smooth, then the canonically prime model 
over any essentially K-continuous (<A, K) chain is absolutely prime. Moreover, if 
K is smooth, every K-increasing chain is essentially K-continuous. 

The next two notions represent the first aspect of Traski’s theorem; the third 
unites both aspects. 

4.2. Closure under unions of chains. (i) K is (<A, K)-closed if for any 
(<A., K)-chain 9.R inside a structure N (not necessarily in K), the union of !D! is in 
K and for each i, Mi s lJ2R. 

(ii) K is (<A, K)-weakly closed if for any (<A, K) K-continuous chain ?lR inside 
a structure N (not necessarily in K), the union of 2X is in K and for each 
i, Mi S uxx. 

(iii) K is fully (<A, )- K smooth if the union of every K-continuous (<A, K)- 
chain inside a structure N (not necessarily in K) is in K and is absolutely prime 

over the chain. 

The “inside N” in these definitions is perhaps misleading. We have not asserted 
NE K, so this is not an a priori assumption of boundedness. In fact N must exist 
as the union of Y.X If K is (A, K)-closed it is (A, K)-bounded as the union serves as 
the bound. 

If K is (<A, K)-smooth and (<A, K)-weakly closed, then for any (<A, K) 

K-continuous chain m inside N the union of rul is the canonically prime model 
over m and K is fully (<A, K)-smooth. 

If K is the class of X,-saturated models of a strictly stable countable theory, K is 
not closed under unions of countable cofinality but is closed under unions of 
larger cofinality. This property of a class being closed under unions of chains with 
sufficiently long cofinality is rather common. For example, any class definable by 
Skolem functions with infinite but bounded arity will have this property. We can 
rephrase several properties of some of the examples in Section 1 in these terms. 

4.3. Examples. (i) The class K of Example 1.3 is (00, >&)-bounded, (~00, 
s&)-closed, and even fully (< m, %$)-smooth. But K is not (<Hi, &)-bounded 
and not (<K,, Kc,)- or (<Hi, &)-smooth. 

(ii) Example 1.5 shows that for K the class of X,-saturated models of REI, 
and a particular choice of C, the class K is not smooth. For, e.g., the prime 
X,-saturated model over a chain and the prime &-saturated model over the same 
chain may be incompatible. 

Note that for any strictly stable countable theory and any uncountable K, if K is 
the class of K-saturated models of a countable strictly stable theory, 6 denotes 
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elementary submodel, and cpr means prime among the K-saturated models, then 
K is smooth. In this case x1 is X0. 

(iii) Consider again the class KP discussed in Example 2.5. The union of a 
countable K-chain may determine an E, class that is not realized. So KP is not 
(<p, w)-closed. But it is (<p,[K,,<p])-closed and (<m, w)-bounded. 

Our basic argument will establish a dichotomy between the following weaken- 
ing of smoothness and a nonstructure theorem. 

4.4. Definition. The class K is (<A, K)-semismooth if for each (<il, K) K- 

continuous chain 1131, each compatibility class over YX contains a canonically 
prime model over n. 

The distinction between smooth and semi-smooth quickly disappears in the 
presence of Axiom Ch4. 

4.5. Lemma. If K is semismooth and satisfies Axiom Ch4, then K is smooth. 

Proof. Axiom Ch4 asserts that all M satisfying cpr(9J& M) are compatible. Since 
each compatibility class contains such an M, there is only one compatibility 

class. 0 

4.6. Remark. By an argument similar to the main results of this paper (but 
much simpler) we can show for a proper class of A. that a class K that has prime 
models over independent pairs and is closed under unions of chains (of any 
length) is fully (<A, <xi(K))- smooth unless K codes stationary subsets of k (see 
Section 6). To establish this result we need the axioms about independence of 
pairs enumerated in [3] and that there is a proper class of K-inaccessible 
cardinals. The last condition can be guaranteed by assuming a Lowenheim- 
Skolem property like Axiom Sl or by assuming 03 is Mahlo as in Theorem 2.17. 

This situation is ‘half way’ between the situation in [17] and that considered 
here. We replace ‘closed under substructure’ by the existence of ‘prime models 
over independent pairs’ but retain taking limits by unions. 

5. Some variants on 0 

We discuss in this section some variants on Jensen’s combinatorial principle Cl 
which will be useful in model-theoretic applications. We begin by establishing 
some notation. 

5.1. Notation. (i) For any set of ordinals C, acc[C] denotes the set of 
accumulation points of C-the 6 E C with 6 = sup C fl 6. The nonaccumulation 
points of C, C - acc[C], are denoted nacc[C]. 
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(ii) For any set of ordinals S, CK(S) denotes the elements of S with cofinality 
K. 

(iii) For any cardinal A, sing(A), the set of singular ordinals less than il is the 
collection of limit ordinals less than A that are not regular cardinals. 

(iv) In the following 6 always denote a limit ordinal. 

The following definition is a version to allow singular cardinals of the 0 
principle for K+ in [5]. We refer to it as ‘full 0’. This principle has been deduced 
only from strong extensions of ZFC such as V = L [5]. We will also use here 
weaker versions, obtained by relativizing to a stationary set, that are provable in 
ZFC. 

When A = p+, Jensen called the condition here a 0 on ~1. The version here also 
applies to limit ordinals and, since we will deal with inaccessibles, seems 

preferable. 

5.2. Definition. The sequence (C,: 6 E sing(A)) witnesses that A satisfies 0 if it 

satisfies the following conditions. 
l Each C, is a closed unbounded subset of 6. 
l otp(Cs) < 6. 
l If LY E acc[C,], then C, = C, tl (Y. 

Now we proceed to the relativized versions of Cl. The relativization is with 
respect to two subsets, S and S+. It is in allowing the C, to be indexed by S+ 
rather than all of 3, that this principal weakens those of Jensen and can be 
established in ZFC. 

We will consider two relativizations. In Section 8 we will see that the two 
set-theoretic principles will allow us two different model-theoretic hypotheses for 
the main result. They, in fact correspond to two different ways of assigning 
invariants to models. 

5.3. Definition. We say that S+ E A and (C,: e! E S+) witness that the subset S 
of CL(A) satisfies O:,,(S) if S c S+ and the following conditions hold. 

(i) S is stationary in A. 
(ii) For each (Y ES+, C, E S+ -S. 

(iii) If (Y E S+ is not a limit ordinal, C, is a closed subset of a. 
(iv) If 6 E S+ is a limit ordinal, then 

(a) C, is a club in 6; 

(b) otP(C6) c K; 
(c) otp(C,) = K if and only if 6 E S; 
(d) all nonaccumulation points of C, are successor ordinals. 

(v) For all /3 E S+, if cu~C$, thenC,=Cgna. 

5.4. Definition. Cl!,, holds if for some subset S E A, O”,.,(S) holds. 
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5.5. Fact. Suppose A. > K are regular cardinals. If A is a successor of a regular 
cardinal greater than K or ), = p+ and p“ = p, then for any stationary S c C”(A) 

there is a stationary S’ E S such that q ;,K(S’) holds. 

The proof with pK= y is on [15, p. 2761 ( see also the appendix to [20]); for 

regular p see [ 11, Theorem 4.11. 
Fact 5.5 is proved in ZFC; if we want to make stronger demands on the 

stationary set S, we must extend the set theory. 

5.6. Definition. The subset S of a cardinal A is said to reflect in 6 E S if S n 6 is 
stationary in 6. We say S reflects if S reflects in some 6 E S. 

Thus a stationary set that does not reflect is extremely sparse in that its various 
initial segments are not stationary. 

5.7. Fact. If A > K are regular, A is not weakly compact, and V = L, then for 
any stationary S, G CK(n) there is a stationary S E S, that does not reflect such 
that C&(S) holds. 

This is a technical variant onihe result of [4]. Although this result follows from 
V = L, it is also consistent with various large cardinal hypotheses. 

We now consider the other relativization of Cl. For it we need a new filter on 
the subsets of A. 

5.8. Definition. Let the stationary subset S of the regular cardinal A index the 
family of sets C* = {C,: 6 E S} where each C, E 6 = sup C,. Then ID(C*) 
denotes the collection of subsets B of A such that there is a cub C of il satisfying: 
for every 6 E B fl S, C, is not contained in C. We denote the dual filter to ID(C*) 
by FIL( C*). 

It is easy to verify that ID(C*) . IS an ideal. Note that B $ ID(C*) if and only if 
for every club C, there is a 6 E B with C6 G C. 

5.9. Definition [Clb A,K,B,R(S, S1, S,)]. Suppose 8 # K, A and R are four regular 
cardinals with 8 <A, K+ <A, R GA. and S is a subset of h containing all limit 
ordinals of cofinality <R. We say q lb l,K,B,R(S, S,, S,) holds if the following 
conditions are satisfied for some C* = ( C, : 6 E S) . 

(i) C*=(C6:6ES). IS a sequence of subsets of )c satisfying 
(a) C, is a closed subset of 6; 

(b) C, c S; 
(c) if 6 is a limit ordinal, then C, is unbounded in 6; 
(d) if 6’ is an accumulation point of C,, then Cg, = C, tl 6’; 
(e) if (Y < 6i, Sz and LY E C,, tl C,,, then C,, rl LY = C,, n a. 
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(ii) S, and S, are disjoint subsets of CK(S) with union S,, s S. 
(a) If 6 ES,, otp(C,) = K. 

(b) If /3 E nacc[C,] and 6 E SO, then cf(p) = 8. 
(iii) The ideal ID(C*) is nontrivial; S, and S, are not in ID(C*). 

5.10. Remark. Note that if 6 E SO and B E C,, then cf(p) < K or cf@) = 8 so 
c, r-l&)=0. 

5.11. Definition [Cl:,,,,,]. We say q $,,,e,R holds if there exist subsets S c A and 
C, E S for /3 E S that satisfy the following conditions. 

(i) S contains each of a family (T: i < A) of sets; each 7;: G CK(n) and the T 
are pairwise disjoint and not in ID(C*). 

(ii) For each A c Iz there exist S,, S, E S such that 
(a) S, = lJicA z and S, = lJieA z and 

(b) a:,,, 0,~ (S, S,, S,) holds with C* = (C,: /? E S). 

Now the set-theoretic strength required for these combinatorial principles can 
be summarized as follows. 

5.12. Theorem. (i) Zf A is a successor of a regular cardinal, e and K are regular 

cardinals with 8+ < A and K+ < A, then Ok,,,,,, is provable in ZFC. 
(ii) Zf A is a successor cardinal, 8 <A, and K < A, then •~,,,B,R is provable in 

ZFC+V=Lforany RsA. 

Proof. Case (i) is proved in [18, 111.6.4, 111.7.8 F(3)] and in [ll]. For Case (ii) 
consult [18, 111.7.8Gl. q 

5.13. Alternative set-theoretic hypotheses. There are a number of refinements 
on conditions sufficient to establish •~,,,e,R. 

(i) If 1 is a successor of a regular cardinal or even just ‘not Mahlo’, Theorem 
512(ii) can be strengthened by replacing “V = L”, by “there is a square on A”. 
See [18, 111.7.8Hl. 

(ii) In fact the conclusion of Theorem 5.12(ii) holds for any il that is not 
weakly compact (similar to [4]). 

(iii) The existence of a function F such that •l~,,,B,R holds for any regular 
k > F(A. + K + R) and 8 < 3, is consistent with ZFC + there is a class of 
supercompact cardinals. 

6. Invariants 

As a first approximation we say a class K has a nonstructure theorem if for 
many ;I, K has 2’ models of power 1. But this notion can be refined. For some 
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classes K it is possible to code stationary subsets of regular ), by models of K in a 
uniform and absolute way while other classes have many models for less uniform 
reasons. The distinction between these cases is discussed in [14,19]. In the 
stronger situation we say, informally, that K codes stationary sets. We do not give 
a formal general definition of this notion, but the two coding functions we 
describe below sm, sm, epitomize the idea. 

The basic intention is to assign to each model a stationary set so that at least 
modulo some filter on subsets of /J nonisomorphic models yield distinct sets. 
Historically (e.g., [17]) to assign such an invariant one writes the model M as an 
ascending chain of submodels and asks for which limit ordinals is the chain 
continuous. The replacement of continuity by K-continuity in this paper makes 
this procedure more difficult. We can succeed in two ways. Either we add an 
additional axiom about canonically prime models and proceed roughly as before 
or we work modulo a different filter. Both of these solutions are expounded here. 

Naturally we are mainly interested in classes K that are reasonably absolute. 

That is, the property that a structure M is in K should be preserved between V 
and L and between V and reasonable forcing extensions of V. Of course a 
first-order class or a class in a L,,* meets this condition (a reasonable forcing in 
this context would preserve the family of sequences of length <A. or ordinals GA). 
But somewhat less syntactic criteria are also included. For example, if K is the 
class of &-saturated models of a strictly stable theory, membership in K is 
preserved if we do not add countable sets or ordinals. 

Clearly, K codes stationary sets implies K has 2h models of power A. But it is 
a stronger evidence of nonstructure in several respects. First, the existence of 
many models is preserved under any forcing extension that does not add bounded 
subsets of il and does not destroy the stationarity of subsets of A. Secondly, the 
existence of many models on a proper class of cardinals is not such a strong 
requirement; for example, a multidimensional (unbounded in the nomenclature 
of [2]) theory has 2” ~1 models of power X, whenever X, = (Y. However, the class 
of models of a first-order theory codes stationary sets only if T is not superstable 
or has the dimensional order property or has the omitting types order property. 

6.1. Definition. (i) A representation of a model M with power A (with ;I 
regular) is an increasing chain %R = (M;: i -=c A) of K-substructures of M such that 
each Mi has cardinality less than A and U Zk? = M. 

(ii) the representation is proper if lJ m 1 6 =S M implies M6 = lJ 9&! 1 6. 

We showed in Proposition 2.6 that if A. is a regular cardinal greater than xl(K) 

and K satisfies the A-Lowenheim-Skolem property, then each model of power A 
has a representation. We will not however have to invoke the Lowenheim- 
Skolem property in our main argument because we analyze models that are 
constructed with a representation. Using axiom A3, it is easy to perturb any given 
representation into a proper representation. 
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We now show how to define invariant functions in our context. For the first 
version we need an additional axiom. 

6.2. Mom Ch5. For every K-continuous chain m = (Mi, &,j : i, i < 6) and 
every unbounded X G 6, a K-structure M is canonically prime over (m, f) if and 

only if M is canonically prime over (2lJ2 1 X, f ( X). 

We refer to this axiom by saying that canonically prime models behave on 

subsequences. 

6.3. Deli&ion. Let YJt? be a representation of M. Let sm@J& M) denote the set 
of limit ordinals 6 < A such that for some X unbounded in 6 a canonically prime 
model N over m 1 X is a K-submodel of M. 

6.4. Lemma. Zf YJl and % are representations of M and Axiom Ch5 holds, then 
sm(%JZ, M) = sm(%, M) modulo the closed unbounded filter on 3L. 

Proof. Since JMI is regular, there is a cub C on A such that every 6 E C is a limit 

ordinal and lJ2?J2~I=lJU~~ f or 6 E C. Now we claim that for 6 E C, 
6 E sm(Y& M) if and only if 6 E sm(%, M). To see this choose an increasing 
sequence Li alternately from 2J2 and Y2. Since cpr behaves on subsequences, the 
canonically prime model over the common subsequence of 2 and ‘$2 is a 
K-submodel of M if and only if the canonically prime model over 2 is, and 
similarly for the common subsequence of 2 and 8. Thus, 6 E sm(Y?, M) if and 
only if 6 E sm(%, M). Cl 

This lemma justifies the following definition. 

6.5. Definition. Denote the equivalence class modulo cub(A) of sm(\Xn, M) for 
some (any) representation YJ2 of M by sm(M). We call sm(M) the smoothness set 

of M. 

We now will describe a second way to assign invariants to models. This 
approach avoids the reliance on Axiom Ch5 at the cost of complicating (but not 
increasing the strength of) the set theory. Recall from Section 5 the ideal ID(C*) 
assigned to a family of sets C* =‘{ C,: /3 E S} . Fix for the following definition and 
arguments subsets S, S,, S, satisfying q b A,w,B,R(S, S,, S,). We define a second 
invariant function with C* as a parameter. It distinguishes models modulo 
ID(C*). 

6.6. Definition. Fix a subset S of A and C* = {C,: p ES}. Let % be a 
representation of M. Let sm,(%, C*, M) denote the set of 6 E S such that 

(i) for every y E nacc[Cb], NY = l-l,,,&; 
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(ii) % 1 C, is K-continuous; 
(iii) there is an Nh canonically prime over % 1 nacc[&] that can be K- 

embedded into M over %! 1 nacc[&]. 

We are entitled to choose an Nh canonically prime over % 1 nacc[C,] in 
condition (iii) because condition (i) guarantees that 8 I nacc[&] is K-continuous. 

6.7. Lemma. Zf !V$ and % are proper representations of M, then 

sm,(‘%, C*, M) = sm,(!lJ& C*, M) module FIL(C*). 

Proof. Let Xi denote sm,(‘%, C*, M) and X2 denote sm,(?lR, C*, M). Without 
loss of generality we can assume the universe of M is A. There is a cub C 
containing only limit ordinals such that for 6 E C, S = lJnc6 M, = Uacd N,. 

To show X1 =X2 mod FIL(C*), it suffices to show there is a YE FIL(C*) such 
thatX,nY=X,nY. Let Y={~:C,GC}. 

Suppose 6 E Y n Xi. If LY E nacc[&], then 6 E Y implies a E C which in turn 
implies (Y = lJicn Ni = lJicrr Mi. NOW 6 E X1 implies N, = Ui<n Ni and N, s M SO 

Ui_j$ s M and thus Ui<= Mi =S M. But then by properness M, = Ui<a Mj. 
Thus, M, = N,. That is, % I nacc[&] = 92 I nacc[C:,]. So 6 E Xi if and only if 

6EXZ. 0 

In view of the previous lemma we make the following definition. 

6.8. Definition. For any M in the adequate class K and some (any) proper 

representation Znz of M, sm,(C*, M) = (sm,(!lR, C*, M)IFIL(C*)). 

7. Games, strategies and double chains 

We will formulate one of the main model-theoretic hypotheses for the major 
theorem deriving nonstructure from nonsmoothness in terms of the existence of 
winning strategies for a certain game. In this section we describe this game and 
show how to derive a winning strategy for it from the assumption that K is not 
smooth. 

7.1. Definition. A play of Game 1 (A, K) lasts K moves. Player I chooses models 
Li and Player II chooses models e subject to the following conditions. At move 
6, (i) Player I chooses a model L, in K of power less than A that is a proper 
K-extension of all the structures P,, for A < p. If B is a limit ordinal less than K, L, 
must be chosen canonically prime over (P,,: y < /I) ; 

(ii) Player II chooses a model PO in K of power less than 3L that is a K-extension 
of L,. 
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Any player who is unable to make a legal move loses. Player I wins the game if 
there is a model P, E K that extends each Pp for j3 < K but the sequence (fi: i G K) 
is not essentially K-continuous. 

In order to establish that nonsmoothness implies a winning strategy for Player I 
we need to consider certain properties of double chains. We introduce here some 
notation and axioms concerning this kind of diagram. 

7.2. Definition. (i) ZR = (no, fm’) = {(My, Mf ) : i < S} is a double chain if each 
My s Mf and %X0, 9J? are K-increasing chains. We say Zm is (separately) 
(K)-continuous if each of ?lJZ” and YJ? is (K)-continuous. 

(ii) ZlR is a free double chain if for each i <j < 6, My 4 ,+,?M,f inside M,f+,. 

(iii) 9X = (m”, ?uz’) = {(My, M,f ) : i c S + 1, j < S} is a K-continuous aug- 
mented double chain inside N if i < 6 implies MY s Mf , and m”, ??J? are 
increasing K-continuous chains inside N. 

(iv) An augmented double chain is free inside N if for each i < 6, 

We extend the existence axiom Ch2’ for a prime model over a chain to assert 
the compatibility of the prime models guaranteed for each sequence in a double 
chain. 

7.3. Axioms concerning double chains 
DCl. If 93 is an essentially K-continuous free double chain and Ml is canonically 
prime over 9.X1, then there is an MO that is canonically prime over ZR” such that 
MO and Ml are compatible over ZlR’. 
DC2. If ?IR is an essentially K-continuous free augmented double chain of length 
6 in M, then there is an N with m s N and an Mk c N such that 

MiiO Mz+l inside N 
6 

and the chain Y.k? U {Mk} is essentially K-continuous. 

We will refer to versions of these axioms for chains of restricted length; we may 
denote the variant of the axiom for chains of length less than K as DCi(<K). 

Note that it would be strictly stronger in DC2 to assert that Mi is canonically 
prime over YJ? since under DC2 as stated the canonically prime model over m1 
inside M’, need not contain M:. 

Since we are going to use these axioms to establish smoothness we indicate 
some relationships between the properties. K is (<m,~)-smooth means that every 
K-continuous chain of cofinality K has a single compatibility class over it - 
necessarily there will be a canonically prime model in that class. DC1 would hold 
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if there were many compatibility classes over a chain but each had a canonically 
prime model (i.e., K is semismooth). In particular it holds at K if K is 
(<m,rc)-smooth (sometimes read smooth at K). Thus, the following lemma is 
easy. 

7.4. Lemma. If K is an adequate class that is (<m,rc)-smooth, then K satisfies 

DC1 for chains of cofinality K. 

Now we come to the main result of this section. 

7.5. Lemma. Let K be an adequate class that is (<A, K)-bounded and suppose K 

is (<A, <K)-smooth but not (<A, K)-smooth. Suppose further that K satisfies DC1 
and DC2 and A 2 xK is K-inaccessible. Then Player I has a winning strategy for 

Game 1 (A, K). 

Proof. Since K is (<A, <K)-smooth, we can choose a counterexample % = 
(Iv;: i<K) to (4, )- K smoothness that is essentially K-continuous. Then ‘8 is 
bounded by two models N, and N: with cardinality <A. that are incompatible over 
%. If there exist M, and M: canonically prime over 92 and embeddable in N, and 
N:, respectively, axiom Ch4 requires that M, and ML are compatible. But then 
so are N, and N:. From this contradiction we conclude without loss of generality 
that each Ni 6 N, but that no canonically prime model over $32 can be 
K-embedded into N,. That is, K is not semismooth (Definition 4.4). Now Players 
I and II will choose models ( Lj: i < K) and (E: i < K) for a play of Game 1. 

We describe a winning strategy for Player I. The construction requires 
auxiliary models PI, N*, and L] and isomorphisms cui : L,! + Li. They will satisfy 
the following conditions. 

(i) !J3’ and 52’ are essentially K-continuous sequences and the ai are an 
increasing sequence of maps. 

(ii) PI 4 ,,,, N, inside NT+,. 
(iii) Lj,, is prime over P] U Ni+l inside N,*,,. 
(vi) a; is an isomorphism between L,! and Lj mapping P,’ onto Pj for j < i. 
(v) The N,? form an essentially K-continuous sequence with N, s NT. 

Let L,, = NO. Each successor stage is easy. Player II has chosen fi E K,* to 
extend Li. For Player I’s move, apply axiom Dl (existence of free amalgama- 
tions) to first choose Ni*,, to extend NT and Pi with Pi = Pi by an isomorphism kj 
extending ai and with P] 4 N, N, inside N,*,, to satisfy condition (ii). Then choose 
L],, to satisfy (iii) by the existence of free amalgamations (axiom Dl). Finally 
choose L,+, and oi+l extending pi to satisfy condition (iv). As )L is K- 

inaccessible, N,F+, and Li+I can be chosen in K,*. At a limit ordinal 6 < K, let &a 
be canonically prime over (NT: i < 8). Then ((Ni: i < 6) U {N,}, (LI: i < 6)) is 
a free augmented double chain inside N6. (Strictly speaking, this is proved by 
induction on /3 < 6. Use the base extension axiom to pass from P,! J N, N, to 
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LI+, i N,+, N,.) By DC2 there is an Ng K-extending fi& and an L&C Ng with 
Lk J N6 N, such that li! 1 6 U {Lh} is essentially K-continuous. Extend ( ai: i < S) 
to map Lh to La. 

Now we show that this strategy wins for Player I. Since ‘@ and ‘$’ are 
isomorphic, it suffices to show that there is no P: with ‘Q’ U {P:} essentially 
K-continuous. Suppose for contradiction that such a P: exists. Since (‘% U 
{N,}, !@‘) is a free double chain inside Nz, by DC1 the canonically prime model 
N’ over Y? can be embedded in Pi inside some extension of N:. But then N, and 
N’ are compatible over % contrary to assumption. Cl 

7.6. Remarks. (i) Instead of assuming Axiom Ch4 (part of the definition of 
adequate) we could have assumed that K was not (C&K)-semismooth. 

(ii) It is tempting to think that by choosing the minimal length of a sequence 
witnessing nonsmoothness, we could apply Lemma 7.4 and avoid assuming DCl. 
However, DC1 is applied for chains of length K so this ploy is effective. 

(iii) Why is L,+l a proper extension of Pi? Since L,+l was chosen as an 
amalgam of P[ and N,, this is immediate if we assume the disjointness axiom 
(C7). To avoid this hypothesis we can demand that each model in the 
construction have cardinality >xK and so not be maximal (by Corollary 3.5). That 
is why we assumed A 2 XK. 

(iv) Note that DC1 is used to derive the contradiction at the end of the proof; 
DC2 is used to pass through limit stages of the construction. Thus in the 
important case when K = o we have the following lemma. 

7.7. Lemma. Let K be an adequate class that is not (4, o)-smooth. Suppose 
that K satisfies DCl. Then Player I has a winning strategy for Game 1 (A, w). 

The choice of Li according to the winning strategy of Player I depends only on 
the sequence (Lj, 4)) for j < i (not, for example, on some guess about the future 
of the game). 

In the remainder of this section we consider a third axiom DC3 on double 
chains. The following axiom bears the same relation to DC2 that C5 bears to C2. 

7.8. Weak uniqueness for prime models over double chains 

DC3. Suppose that 9.JZ and Zn are essentially K-continuous augmented double 
chains that are free in M and N, respectively, and f is an isomorphism from m 
onto 8. Suppose also that Mk & MgM:+l inside M and Nk 4 ~8 No,+, inside N. 
Then there is an A E K and K-embeddings ho of M and h, of N into R with 
h,of =h,,IZD2. 

Just as [3, Lemma 1.1.81 rephrased the weak uniqueness axiom for amalgama- 
tion over vees we can reformulate DC3 as follows. 
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7.9. Lemma. Assume DC2 and DC3. Suppose that DJt and ‘Jl are essentially 
K-continuous augmented double chains that are free in M and N, respectively, and 
f is an isomorphism from ??J2 onto %. Suppose also that for some Mk G N 
Mk JMo, M:+l inside M. 

Then there exist a model & and an isomorphism h : M H fi such that h I> f and 
h(Mh) JN”, np6+, inside A. 

Question 1. If DC2 and DC3 hold and K is not smooth, does Player I have a 

winning strategy for Game l? 

8. Nonsmoothness implies many models 

We show in this section that if the class K is not smooth, then K codes 

stationary sets. These results involve several tradeoffs between set theory and 

model theory. The main result is proved in ZFC. Here there are two versions; 

one uses Cl” and requires the hypothesis that cpr behaves on subsequences. The 

second uses q lb and replaces “cpr behaves on subsequences” with stronger 

hypotheses concerning the closure of K under unions of chains. By working in L 

we can reduce our assumptions on which chains are bounded in both cases. 

8.1. Invariants mod&o the cubfilter 

In this subsection we show if K is not smooth, then for many A we can code 

stationary subsets of il by assigning invariants in the cub filter by the function sm. 

Our general strategy for constructing many models is this. We build a model MW 
for each of a family of 2* stationary subsets W of S that are pairwise distinct 

modulo the cub filter. The key point of the construction is that, modulo cub(h), 

we can recover W from MW as A - sm(MW). 

We need one more piece of notation. 

8.1. Notation. Fix a square sequence (C,: (Y E S). Suppose Player I has a 

winning strategy for Game 1 (A, K). In the proof of Theorem 8.2 and some 

similar later results we define a K-increasing sequence !E. We describe here what 

is meant by saying a certain M, is chosen by playing Player I’s strategy on 9.X ( C,. 

Let (Q: P</%) enumerate C,. We regard 9X 1 C, as two sequences (2, ‘$) by 

setting for any ordinal 6 + n with 6 a limit ordinal and n < o: 

La+,, is MC,+ti, P s+,, is MC,+,+,. 

We say M, for p = a or p E C, is chosen by Player I’s winning strategy on M 1 C, 

if the sequence (2, ‘$} associated with C, tl/3 U {p} is 

(i) an initial segment of a play of Game 1 (A, K) and 

(ii) Player I’s moves in this game follow his winning strategy. 
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Here is the technical version of the main result with the parameters and 
reliance on the axioms enunciated in Sections 2 and 4 stated explicitly. 

Although the assumption that 2 is K-inaccessible is weaker than the assumption 
that K satisfies the A-Lowenheim-Skolem property, it plays the role of the 
Lijwenheim-Skolem property in the following construction. We assume A. > xK 
and apply Corollary 3.5 to avoid the appearance of maximal models in the 
construction. We do not have to assume that K is (<A, <rc)-smooth for this 
argument. We are able to substitute the existence of Player I’s winning strategy. 
This is not much of a saving as we assumed that K is (<A, <K)-smooth in proving 
the existence of the winning strategy but it does clarify the roles of the various 
hypotheses. 

8.2. Theorem. Fix regular cardinals K < A.. Suppose the following conditions 
hold. 

(i) K is an adequate class. 

(ii) Player I has a winning strategy for Game 1 (A, K). 

(iii) A is a K-inaccessible cardinal, for some stationary S E il, U”,,,(S) holds and 
Lz=XK. 

(iv) K rS (<A, <I)-bounded. 
(v) cpr behaves on subsequences (Axiom Ch5). 

(vi) K ti (<A, A)-closed. 
Then for any stationary W c S there is a model MW and a representation mw with 
W c il - sm(MW, ZJ?“) and S+ - W E sm(MW, YXw). 

Proof. Fix S+ and C* = (C,: i E S+) to witness O”,,,(S). Without loss of 
generality, 0 E Co. Fix also a stationary subset W of S. For each (Y < A. we define a 
model Mz. The model MW = Uorcl ME constructed in this way is in K by 
condition (vi) and will satisfy the conclusion. 

Each of these conditions depends indirectly on W, but since we are 
constructing each MW separately, we suppress the dependence on W to avoid 
notational confusion in the construction. 

For each (Y <: 3, we define M, to satisfy the following requirements. 
(i) IM,I >xK (to avoid maximal models). 

(ii) !B (=nw) is an increasing sequence of members of KcA which is 
essentially K-continuous at 6 if 6 E (S+ - W). 

(iii) If a: E W, then Y.R is not essentially K-continuous at CX. 
(iv) M (=MW) = Ua<l M,. 
The construction proceeds by induction. There are a number of cases 

depending on whether (Y E W, S, etc. 

Case I. cuE(WUUGtW C,). If (Y E W, let /3 = (Y; otherwise fix p > LY with 
LYE C,. (The choice of /3 does not matter because of the coherence condition in 
the definition of q i,K.) Let (c,: y < /3,,) enumerate C,. M, E KcA is chosen by 
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Player I’s winning strategy for m 1 C, if o E acc(C,) or a: = c~+~,,. If (Y E C, and 
a = ~~+~,,+i, then M, can be chosen as any extension of M,+,” with cardinality 
4. 

Case II. cr E S+ - (W U U6Ew C,). Then C, G S+ -S so %R 1 C, is K-con- 
tinuous. Choose M, to be canonically prime over m 1 C, (which is the same as 
canonically prime over n 1 LY since cpr behaves on subsequences). M, can be 
chosen in KcA by invoking Lemma 2.13 since il is K-inaccessible. (The 
K-continuity can be verified by induction on a. Let y be a putative least 
counterexample. Then y satisfies Case I or Case II. In Case I, MY is chosen 
canonically prime over 9J? 1 y (by the definition of a winning strategy) and so is 
canonically prime over m 1 C, since canonically prime models behave on 
subsequences. In Case II, M,, is chosen canonically prime over YJ I y as required.) 

Case III. ff 4s’. Choose M, to bound m I (Y by (4, <A)-boundedness and 
with lMnl < A since A. is K-inaccessible (apply Lemma 2.13). 

Case IV. Any successor ordinal not already done. Say, 0 = y + 1. Choose 
MS E K,* as a proper K-extension of M, by Corollary 3.5. 

The cases in the construction are easily seen to be disjoint (using (ii) of the 
definition of Eli,,) and inclusive. If 6 E W is a limit ordinal, the canonically prime 
model over Y.R I nacc[C,] is not compatible with M6 since Player I played a 
winning strategy on M 1 C,. So, since cpr behaves on subsequences, neither is the 
canonically prime model on %R I A for any A unbounded in 6. Thus 6 $ 
sm(%R, MW). All other limits 6 E S+ are in sm(YJ& MW) and we finish. 0 

The next theorem rephrases Theorem 8.2 to avoid technicalities. It shows that 
reasonable K that are not smooth have many models in all sufficiently large 
successor cardinals. In fact we have the stronger result that K codes stationary 
subsets of such cardinals. 

8.3. Theorem (ZFC). Let K be an adequate class and suppose that K satisfies 
DCl, DC2 and cpr behaves on subsequences (Axiom Ch5). Suppose there exist K, 
A1 with K < A, such that K is not (AI, K)-smooth. Then for every K-inaccessible 

3, > sup(x,, &) such that 
(i) A is a successor of a regular cardinal, 

(ii) K i.s (4, <A)-bounded, 

(iii) K is (4, A)-closed, 
K has 2’ models in power A. 

Proof. K is not (<A,, K)-smooth trivially implies K is not (<A, K)-smooth. Fix 
the minimal such K. We assumed DC1 and DC2, so by Lemma 7.5 Player I has a 
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winning strategy in Game 1 (A, K). By Fact 5.5, there is a stationary S E P(n) 
such that Cl”,,, holds. The result now follows from the previous theorem, choosing 
2” stationary sets W E S that are distinct modulo the cub ideal. (In more detail, 
let V and W be two of these stationary sets. Then sm(MW, mm”) n sm(M”, %?‘) 2 
W U V. Thus by Lemma 6.4, (MW) C (MV).) q 

8.4. Remark. If we add the requirement ), X1(K) = A, we can deduce that 3L is 
K-inaccessible from Lemma 2.12. Applying Lemma 7.7 we could omit DC2 from 
the hypothesis list if K = co. 

The assumption in Theorem 8.2 that K is (<A, <A)-bounded is used only for 
the construction of the M, for (Y $ S+. We can weaken this model-theoretic 
hypothesis at the cost of strengthening the set-theoretic hypothesis. We noted in 
Fact 5.7 that the set-theoretic hypotheses of the next theorem follow from V = L. 

8.5. Theorem. Suppose O:,,(S) holds for an S that does not reflect. Then the 
hypothesis that K is (<A., < A)-bounded can be deleted from Theorem 8.2. 

Proof. The only use of this hypothesis is the construction of M, for a $ S+. In 
this case we make our construction more uniform by demanding for (Y $ S+ that 
M, is canonically prime over (MB: p < a). If S does not reflect in a, then there is 
a club CE cy with C II S = 0. By induction, for each 6 E C, we have & 
canonically prime over (M, : /3 < S ) . Thus the chain (Ma : 6 E C) is K-continuous 
and we can choose M, canonically prime over it. By Axiom Ch5, h4, is 
canonically prime over (MB: j3 < (Y} as required. 0 

Recall that K is (<A, [p,n])-b ounded if every chain with cofinality between ,u 
and A inclusive of models that each have cardinality <A is bounded. In a number 
of the examples we have adduced (paragraph 4.3), K is (<a,(~, <WI)-bounded 
for appropriate p. Thus the model-theoretic hypothesis of the following theorem 
is reasonable. The existence of stationary sets that do not reflect in 6 of small 
cofinality is provable if V = L and is consistent with large cardinal hypotheses. 

8.6. Theorem. Fix K, p < A. Suppose O”,,,(S) holds for some stationary subset S 

of ), that satisfies 

if S rejlects in 6, then cf(6) 2 ,u. 

Then the hypothesis that K is (<A, <A)-bounded can be replaced in Theorem 8.2 
by assuming that K is (<A, [p,A])-bounded. 

Proof. Again we must construct M, for LY $ S+. If S reflects in (Y, cf(&) > p so 
X&! ( LY is bounded. Since A is K-inaccessible (Definition 2.10), we can choose M, 
to bound ZX 1 a and with [MaI < A. If S does not reflect in a, write (Y as a limit of 
ordinals pi of cofinality <p. By induction, M,, is canonically prime over mZ 1 pi 

and taking M, canonically prime over the MPi (using Axiom Ch5 and Lemma 
2.13) we finish. 0 
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8.2. Invariants mod&o ID(C *) 

In this subsection we shown if K is not smooth, then for many h we can code 
stationary subsets of 3, by assigning invariants modulo the ideal ID(C*) by the 
function smi. We now replace the hypothesis that cpr behaves on subsequences 
by assuming K is weakly (<A, Q-closed for certain 8; we use q lb rather than 0” 
but these have the same set-theoretic strength. 

Again we first give the technical version of the main result with the parameters 
and reliance on the axioms enunciated in Sections 2 and 4 stated explicitly. We 
need to vary the meaning of the phrase, “a winning strategy against mZ ) C,” by 
changing the game played on C,. 

8.7. Notation. Fix a square sequence (C,: (Y E S). Suppose Player I has a 
winning strategy for Game 1 (A, K). We modify our earlier notion of what is 
meant by saying a certain M, is chosen by playing Player I’s strategy on ?IR ) C, to 
a notion that is appropriate for the proof of the next theorem. 

Let ( cs: /3 < PO) enumerate C,. Denote C, U { y + 1: y E nacc[C,]} by C,. We 
attach to YJ 1 C, two sequences ( Li: i < otp(C,)) and (&: i < opt(&)) by setting 

PY = M,,, 

L, =McY+l if y l nacc[C,], 

L, = McY if y E acc[C,], 

We say M, for fi = (Y or p E C, is chosen by Player I’s winning strategy on M ) C, 
if the sequence (2, @) associated with C, fl p U {/3} is 

(i) an initial segment of a play of Game 1 (A, K) and 
(ii) Player I’s moves in this game follow his winning strategy. 

In defining this play of the game we have restrained Player II’s moves 
somewhat (as P,, = L, if y E acc[C,]). But this just makes it even easier for Player 
I to play his winning strategy. Lemma 2.13 and the definition of winning strategy 
for Player I are used as in the proof of Theorem 8.2 to establish the continuity 
and to work below 13. in the following construction. 

8.8. Theorem. Fix regular cardinals K, 0, R, A with K # 0, 8 < A, R 6 A, and 
xK, K+ < A. Suppose the following. 

(i) K is an adequate class. 
(ii) Player I has a winning strategy for Game 1 (A, K). 

(iii) A is a K-inaccessible cardinal and for some S, S,, S, c_ A and C** = 
(Cm: ~‘ES), q ;,,,,,,(S, S1, S,) is witnessed by C**. Let SO= S, US, and C* = 
c** 1 s,. 

(iv) K is (4, [R,A])-bounded. 
(v) K is (<A, @)-closed. 

(vi) K is (<A, A)-closed. 
Then there is a model M with sm,(M, C*) = (SJFIL(C*)). 
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Proof. For each (Y < A we define M, as follows. We will guarantee 

sm,(2X, M, C*) = S, modulo FIL(C*). 

The construction proceeds by induction. There are a number of cases depending 
on whether a E S,, S,, etc. Choose M, by the first of the following conditions that 
applies to a: 

Cue I. a E 6% U US, acclG1 U UGES, { y + 1: y E nacc[Cs]}. Choose any /l E S 
with (Y E C, (if a: is in S, let /3 = mu). Apply Player I’s winning strategy for Game 1 
to m 1 C, to choose M,. Again the coherence conditions in the definition of the 
square sequence guarantee that the particular choice of /l is immaterial. Note that 
for LY not in S,, the definition of Player I winning the game guarantees that M, is 
canonically prime over C, O (Y. 

Case II. For any successor ordinals not yet covered, say p = y + 1, choose M, as 
a K-extension of M,. Thus in the rest of the cases we may assume (Y is a limit 
ordinal. 

Case III. a E USES, nacc[&]. Then cf(a) = 8, so by the fifth hypothesis we may 
choose M,=lJ,,, MS provided that YX ) (Y is bounded. If a E S, Z?J2 ) (Y is bounded 
by the canonically prime model over YJ2 1 C, (which exists by the argument for 
Case V). If a$ S, then Definition 5.9 guarantees cf(a)> R. Choose Mm as a 
K-extension of M, for each /3 < (Y by (<A,>R)-boundedness. 

Case IV. (Y ES,. By Case III, 2lX 1 nacc[C=] is K-continuous; choose M, 
canonically prime over !lJZ ) nacc[C,]. 

Case V. All remaining ordinals u E S. Our construction guarantees that ‘2X ( C, is 
continuous as C, c S - S,. Choose M, canonically prime over !lJ2 ) C,. 

Cuse VI. (Y is a limit ordinal and (Y $ S. Then Definition 5.9 guarantees 
cf(cu) L R. Choose M, as a K-extension of M, for each fi < cy by (4, sR)- 
boundedness. 

Now we show that sm,(%J& C*, M) intersects the stationary set S, in S,. If 

BUS,, the play of Game 1 guarantees that there is no M& such that 
2?X 1 nacc[C,] U {ML} is essentially K-continuous. Thus by condition (iii) of 
Definition 6.6, (Y 4 sm,(ZJ& C*, M) But if (Y E &, (Y is in neither S, nor 

U BESOnacc[Cg] (since all elements of the second set have cofinality 8 and 
cf(cu) = K). Thus, by Case IV of the construction M, is canonically prime over 
B ( nacc[C,] and since K is (4, A)-closed, M, GM. Condition (ii) in the 
definition of sml is guaranteed since klJ2 ( C, is K-continuous (as C, fl S1 = 0 and 
all points of non-K-continuity are in S,). Condition (i), My = Us<,, M, for 
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y E nacc[C,], is guaranteed by Case III of the construction. q 

8.9. Remark. At the cost of assuming that K is (<k, <rc)-smooth and 8 <K, 
hypothesis (v) could be weakened to “K is weakly (<A, @-closed”. 

Again we rephrase the result to emphasize the salient hypotheses. 

8.10. Theorem (ZFC). Let K be an adequate class satisfying DC1 and DC2. Fix 

A > xK and 8 such that 
(i) )3 is K-inaccessible; 

(ii) A is a successor of a regular cardinal and 8+ is less than A; 

(iii) and K is 
(a) (<A, <A)-bounded; 
(b) weakly (<h, 8)-closed; 
(c) (<A, A)-closed. 

If K has fewer than 2A models with cardinality il and K+ > A, then K is 

(<A, <rc)-smooth. 

Proof. Fix K with K+ <A such that K is not (<A, K)-smooth. By Lemma 7.5 
Player I has a winning strategy in Game 1 (A, K). By Theorem 5.12(i), q ll,lr,s,r;, 
holds. Now a very slight variant of the proof of Theorem 8.8 shows there exist 2’ 
models Mi with the sm,(M,) distinct modulo FIL(C*). (Namely, since K is 
(<A, <A)-bounded, we do not need to worry about the cofinality of (Y in Case 
VI.) 0 

This shows that if K is not smooth at some K, then there will be many models 
in power 3, for many A > K satisfying certain model-theoretic hypotheses. 

If V = L, we can waive the boundedness hypothesis. 

8.11. Theorem (V = L). Let h 2 xK and not weakly compact be K-inaccessible. 
Suppose the adequate class K satisfies DCl, DC2 and is 

(i) weakly (4, u)-closed, for some u < A; 
(ii) (>A, A)-closed. 

If K has fewer than 2A models in power A and K+ -C A, then K is (<A, K)-smooth. 

Proof. Since V = L, Theorem 5.12 implies q t,,.r,n holds. The result now follows 
from Theorem 8.8 taking ~1 as 8 and A as R. We observed after Definition 4.2 that 
(<&A)-closed implies (<A,il)-bounded. Cl 

We have shown in this section that each of the variants of 0 discussed in 
Section 5 suffice to show that a nonsmooth K codes stationary subsets of il for 
many A. 
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9. The monster model 

We begin this section by recapitulating the assumptions that we will make in 
developing the structure theory. Then we show that under these assumptions we 
can prove the existence of a monster model and prove the equivalence between 
‘homogeneous-universal’ and ‘saturated’. 

9.1. Notation. 6S denotes a compatibility class of K. 

9.2. Definition. We say K satisfies the joint embedding property if for any 
A, B E K, there is a C E K and K-embeddings of A and B onto C. 

At this point we extend the axioms from Section 2 by adding the smoothness 
hypothesis we have justified in the last few sections. We have shown that under 
reasonable set-theoretic hypotheses the failure of these smoothness conditions 
allows us to code stationary subsets of A. for a proper class of il. 

9.3. Assumptions. We assume in this section Axiom Groups A and C, Axioms 
Dl, D2 and Ll from group D, (all from [3]), axioms Chl’, Ch2’, Ch4 from 
Section 1 and Axioms SO and Sl from Section 2 and the following smoothness 
conditions. K is (< w, 6X1(K))-smooth and (< ~0, >Xi(K))-fully smooth. Thus, we 
assume K is (< CQ, <m)-smooth. Finally we assume that K satisfies the joint 
embedding property. We call such a class fully adequate. 

The assumption of the joint embedding property is purely a notational 
convenience. We have just restricted from K to a single compatibility class in K. 
Thus, the notions that in [17] are written, e.g., (9, p)-homogeneous here become 
(K, p)-homogeneous with no loss in generality. We could in fact drop the K 

altogether. 
This class is called fully adequate because (modulo V = L, see Conclusion 

9.7(ii)) any fully adequate class either has a unique homogeneous-universal model 
or many models. We did not include Axiom Ch5, ‘cpr behaves on subsequences’, 
since we can rely on Theorem 8.8 to obtain smoothness without that hypothesis. 
We did assume that K is (<A, p)-closed for large ,u, so the other hypotheses of 
that theorem are fulfilled. 

The following observation allows us to perform the required constructions. 

9.4. Lemma. Zf K satisfies the <A-Ltiwenheim-Skolem property, A. 2x1(K), 
(Mi: i <K) is a chain of models inside M with each IMil <A and cf(K) > 3L, then 
there is a canonically prime model M’ over (Mi: i < K) with JM’I < A. 

Proof. If Cf(K) 2 xK, M’ = Ui<r Mi is the required model. If not, note that by 
the <&Lowenheim-Skolem property there is an N 5 M containing the union 
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with INI <A. By (< m, sX,)-smoothness any canonically prime model over 

(Mi: i < K) can be embedded in N. 0 

9.5. Definition. The model M is (K,p)-homogeneous if 
(i) for every N,, <M and every N, with N,c N, E K and IN11 s p there is a 

K-embedding of N1 into M over NO; 
(ii) every N E K with cardinality less than p can be K-embedded in M. 

There is a certain etymological sense in labeling this notion a kind of 
saturation. The argument for homogeneity is that naming K describes the level of 
universality and we need only indicate the homogeneity again. In any case Shelah 
established this convention some twenty years ago in [12]. We identify this 
algebraic notion with a type realization notion in Theorem 9.11. 

9.6. Lemma. Suppose K is (<p, <,u)-bounded and (<p, p)-closed. 

(i) Zf j.4 3 xK is regular, K-inaccessible and satisfies pCP = p, there is a 

(K, ,u)-homogeneous model of power p. 
(ii) Zf, in addition, K is (<cl, Sp)-smooth, this (K, p)-homogeneous model is 

unique up to isomorphbm. 

Proof. We define an increasing chain (Mi: i < p) by induction; the union of the 
M, is the required model. Let MO be any element of K,,. Fix an enumeration 
( NB: p < p) of all isomorphism types in K,,. There are only p such since 

P <P = p. Given M,, with IMiI < p we define M,+, as a bound for a sequence Mj,, 

with j < Ii1 + lMil PC’ = (Y < p. First let G, = (Ai, Bj, fi) for j < cr be a list of all 
triples such that J is an isomorphism of Aj onto a K-submodel of Mi and Aj s Bi 

and Bj = NO for some /3 < i. (Note that the Bj are specified only up to 
isomorphism; a given isomorphism type of A, will occur many times in the list 
depending on various embeddings fi into Mi.) Now, Mi,, = Mi; Mi,j+l is the 
amalgam of Mi,j and Bj over Aj (via fi and the identity map). If 6 is a limit ordinal 
less than (Y, Mi,, is any bound of (MiFj: j < 6) with lMi,*l > ,u. M;,, is a bound for 
the Mi,j. By regularity of p for limit 6 < p, each Mj,6 and M6 have cardinality less 
than p. 

It is easy to see that M is homogeneous since if f : NO* M is a K-embedding 
and N,, c N1 with INIl < CL, f was extended to a map into some Mi,j at some stage 
in the construction and Mi,j s M. 

The uniqueness of the (K, p)-homogeneous model now follows by the usual 
back and forth argument to show any two (K, p)-homogeneous models M and N 
of power p are isomorphic. But smoothness is crucial. At a limit stage 6, one 
takes the canonically prime model M6 over an initial segment of the sequence of 
submodels of M and embeds it as a submodel N6 of N. In order to continue the 
induction we must know Mb is a strong submodel of M and this is guaranteed by 
smoothness. 0 

Sh:360



32 J.T. Baldwin, S. Shelah 

9.7. Conclusion. (i) For any fully adequate K that is (<m,<w)-bounded there is 
(in some cardinal p) a unique (K, p)-homogeneous model. 

(ii) If V = L, we can omit the boundedness hypothesis (by Theorem 8.11). 
(iii) We will call the unique (K, p)-homogeneous model, Jdc, the monster 

model. From now on all sets and models are contained in .M 

9.8. Remark. This formalism encompasses the constructions by Hrushovski [7] 
of &categorical stable psuedoplanes. An underlying (but unexpressed) theme of 
his constructions is to generalize the Fraisse-Jonsson construction by a weaken- 
ing of homogeneity. He does not demand that any isomorphism of finite 
substructures extend to an automorphism but only an isomorphism of submodels 
that are ‘strong substructures’ (where strong varies slightly with the construction). 
This is exactly encapsuled in the formalism here. This viewpoint is pursued in [l]. 
Of course in Hrushovski’s case the real point is the delicate proof of 
amalgamation and w is trivially K-inaccessible. We assume amalgamation and 
worry about inaccessibility and smoothness in larger cardinals. 

9.9. Definition. (i) The type of Z over A (for 5, A c A) is the orbit of 5 under 
the automorphisms of .M that fix A pointwise. We write p = tp(G; A) for this 
orbit. 

(ii) p is a k-type if lg(G) = k. 
(iii) The type of B over A (for B, A E Jt) is the type of some (fixed) 

enumeration of B. 
(iv) Sk(A) denotes the collection of all k-types over A. 

We will often write p, q, etc. for types. This notion is really of interest only 
when lg(E) s ~1; despite the suggestive notation, k-type, we may deal with types 
of infinite length. We will write S(A) to mean Sk(A) for some k < p whose exact 
identity is not important at the moment. 

9.10. Definition. (i) The type p E S(A) . 1s realized by C E N with A E N s JU if E 

is member of the orbit p. 
(ii) N s Jbc is (K, A)-saturated if for every M s N with [MI <A, every l-type 

over M is realized in N. 

9.11. Theorem. Let )L 2 xK be K-inaccessible. Then M is (K, jl)-saturated if and 
only if M iv (K, A)-homogeneous. 

The proof follows that of [20, Proposition 2.41 line for line with one exception. 
If we consider those stages 6 in the construction where cf(6) < x1(K), we cannot 
form Ma just by taking unions. However, any canonically prime model over the 
initial segment of the construction will work by smoothness and Lemma 9.4. 
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10. Problems 

Question 2. Can one give more precise information on the class of cardinals in 
which an adequate class K has a model? 

In Example 1.5 we gave a definition of . < on the class of Hi-saturated models of 

the theory T = REI, under which this class is not (<K,, o)-smooth. Thus, by our 
main result, T has the maximum number of X,-saturated models in power A (if, 
e.g., A = p’). 

Question 3. Define c on the class of X,-saturated models of a strictly stable with 
didop [13] (or perhaps if K is not finitely controlled in the sense of [8]) so the 
class is not smooth. 

There are strictly stable theories with fewer than the maximal number of 

X,-saturated models in most A. See [2, Example 8, p. 81. 

Question 4. Formalize the notion of coding a stationary set to encompass the 
examples we have described and clarify the distinctions described at the beginning 
of Section 6. 

We have developed this paper entirely in the context of cpr models. In a 
forthcoming work we replace this fundamental concept by axioms for winning 
games similar to Game 1 (A, K) and establish smoothness in that context. The 
cost is stronger set theory (but V = L suffices). 
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