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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 69, Number 2, June 2004 

LADDER GAPS OVER STATIONARY SETS 

URI ABRAHAM AND SAHARON SHELAHf 

Abstract. For a stationary set 5 C co, and a ladder system C over S, a new type of gaps called 

C-Hausdorff is introduced and investigated. We describe a forcing model of ZFC in which, for some 

stationary set S, for every ladder C over S, every gap contains a subgap that is C-Hausdorff. But for every 

ladder E over a>i \ S there exists a gap with no subgap that is £-HausdorfT. 

A new type of chain condition, called polarized chain condition, is introduced. We prove that the 

iteration with finite support of polarized c.c.c. posets is again a polarized c.c.c. poset. 

§1. Introduction. We first review some notations and definitions related to Haus­
dorff gaps. In fact we follow here the terminology given by M. Scheepers in his 
monograph [3] on Hausdorff gaps, but since we restrict ourselves to (w\,co*) gaps 
our nomenclature is somewhat simpler. The collection of all infinite subsets of w is 
denoted [cy]"\ and for a, b £ [co]0}, a c* b means that a \ b is finite. In this case 
X{a,b) (the "excess" number) is defined to be the least k such that a\b C k. Thus 
a\X(a,b) Qb, bat if X (a, b) > 0 then X(a,b) - 1 ea\b. 

A pre-gap is a pair of sequences g = {(a, | i e / ) , (bj | j £ J)} where I, J C(0\ 
are uncountable and at, bj £ [co]w are such that 

aio C* ah C* bh C* bJo 

whenever k < i\ are in / and 70 < j \ in / . In most cases I = J = w\. Given 
a pre-gap as above, and uncountable subsets / ' C / and / ' C J, the restriction 
g \ ( / ' , / ' ) ofg is the pre-gap {(a, | i £ / ' ) , {bf \ j £ / ' ) } • We write g \ I for 

An interpolation for a pre-gap g is a set x £ [a>]w such that 

at C* x C* bj 

for every i and j . A pre-gap with no interpolation is called a gap. A famous 
construction of Hausdorff produces gaps in ZFC (which are now called Hausdorff 
gaps). Specifically, a Hausdorff gap is a pre-gap g = {(a,- | i e eui), (6/ | 7 ecoi)} 
such that for every a e coi and n e co the set 

{P £ a I afs\n C /3a} 

is finite. 
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LADDER GAPS OVER STATIONARY SETS 519 

A special (or Kunen) gap is a pre-gap g = {(a,- | / G <x>i), (Z?; | /' G coi)} such 
that for some « o € w : 

1. aa\no C ba for every a £ co\, and 

2. for all a < fi < a>\, 

(aaUafj) \n0<Zbanbp 

(equivalently, aa\n0 % bp or ap \ «0 %ba). 
The interest in these definitions arises from the fact (not too difficult to prove) 

that Hausdorff and Kunen pre-gaps are gaps and remain gaps as long as a>\ is 
not collapsed: they have no interpolation in any extension in which a>\ remains 
uncountable. 

In this paper we define two additional types of "special" gaps: S-Hausdorff gaps 
where 5 C co\ is a stationary set, and C-Hausdorff gaps, where C is a ladder system 
over 5. 

The motivation for this work is the desire to find an example with gaps of the 
phenomenon in which a>\ is "split" in a certain behavior on a stationary set S c co\ 
and an opposite behavior on its complement a>\ \ S. 

DEFINITION 1.1. Let 5* C w\ be a stationary set. A pre-gap g = {(fly | i G coi), 
(bj | j G a>i)} is 5-Hausdorff iff for some closed unbounded (club) set D C coi, for 
every 3 G S n D and for every sequence of ordinals (i„ G 3 | n G co) increasing and 
cofinal in 3 

(1) lim X{ain,bs) = oo. 
n—>oc 

That is, for every k, there is only a finite number of n e co for which a,B \k C bs. 
Since, for<S <3', b$> c* bs, it follows that eventually ^ ( a ^ , ^ ) < X(ciir,bs>), and 
hence (1) holds for every 3' > 3 inajj. If thepre-gapg = {(a, | / G / ) , (67- | j G / ) } 
is defined only on uncountable sets /, J C co\, we can still define it to be S-Hausdorff 
if for some closed unbounded set D C coi, for every c? G 5 n Z>, for every j G / \ 3, 
and for every increasing sequence of ordinals (i„ G 3 n / | n G co) cofinal in c5, 

(2) lim X{ain,bj) = oo 
n—*oo 

Clearly, every Hausdorff gap is an coi-Hausdorff gap, and the closed unbounded 
set D can be taken to be co\. The converse of this also holds, in the sense that every 
cwi-Hausdorff gap contains a Hausdorff gap. For suppose that g = {(a,- | / G / ) , 
{bj \ j G / ) } is some co\ -Hausdorff gap, and let D C coj be the closed unbounded 
set given by the definition of g as an a>\ -Hausdorff gap. Define I' C I such 
that every two members of / ' contain a point from D in between. We claim that 
g' = {(«,• | ( G I'),(bj | y G 7)}, is a Hausdorff gap. Indeed, if a G / then for 
every « G co the set E = {/? G a D / ' | a^ \ « C Z?a} is necessarily finite. For if not, 
then let 3 be an accumulation point of E, and let /?, G E, for i G co, be increasing 
and converging to 3. Necessarily 3 G D, and a (̂ \n Qba shows that (2) does not 
hold. 

PROPOSITION 1.2. If S C coi is stationary, then any S-Hausdorff pre-gap is a gap. 
{So that any pre-gap containing an S-Hausdorff pre-gap is a gap.) 
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520 URI ABRAHAM AND SAHARON SHELAH 

PROOF. Assume that this not so and let x be an interpolation of an S-Hausdorff 
pre-gap g — {(at | i G I), (bj \ j € / ) } . Then there is a fixed «o G co such that for 
unbounded sets of indices / ' C / J' C / , for every a £ I', ft G J' 

aa\n0 C x\n0 C bp. 

And as a consequence 

(3) aa \ n0 C fy 

holds. Since g is assumed to be S-Hausdorff there exists a closed unbounded set 
D C c«i as in the definition. We may assume that every (5 € D is an accumulation 
point of/'. Take now a limit 6 e S n £> and any sequence /„ € / ' n <5 increasing to 
5. Take any y G / ' \8. Then equation (3) implies that X(ain,bs) < no, which is a 
contradiction. H 

A seemingly stronger notion than that of being S-Hausdorff can be defined if the 
rate at which the sequences in (1) tend to infinity is uniform. For this we must recall 
the definition of a scale or ladder system on a stationary set. 

If £ C ©I is a stationary set, then a ladder (system) over S is a sequence 
C = (ca \ a £ S is a limit ordinal) such that every ca = (ca(n) \ n G co) is an 
increasing, cofinal in a, co-sequence. 

DEFINITION 1.3. For a ladder system C over S, we say that a pre-gap g = {{a,• \ 
i 6 / ) , (bj | j 6 / ) } is C-Hausdorff iff for some closed-unbounded set D Cco\ for 
all5 G S n D and j £ J \S there is A: e co such that for every n > k in co, if / 6 / , 
cs(n) < i <5, then X(at,bj) > n. 

Every C-Hausdorff gap (where C is a ladder system over a stationary set S) 
is S-Hausdorff. Every S-Hausdorff gap is actually C-Hausdorff for some ladder 
over S (we shall not use this). Our aim in this paper is to prove the following 
consistency result concerning the possibility that a stationary subset S C co\ exhibits 
combinatorial properties that are opposed to its complement coi \ S. 

THEOREM 1.4. Assume G.C.Hfor simplicity. Suppose that K is a cardinal such that 
cf(«) > Hi. Let S be a stationary co-stationary subset ofco\. Then there is a c.c.c. 
poset of size K such that in every generic extension made via P 2H° = K and the 
following hold. 

1. For every ladder system C over S, every gap contains a subgap that is C-
Hausdorff. 

2. For every ladder system E over co\\S there is a gap with no subgap that is 
E-Hausdorff. 

We can say that a ladder C over S has the gap property if every gap contains a 
subgap that is C-Hausdorff. So our consistency result is that every ladder over S 
has the gap property, but no ladder over co\\S has that property. 

§2. Gaps introduced by forcing. Gaps can be created by forcing with finite con­
ditions (a method due to Hechler [1]). These gaps are not S-Hausdorff for any 
stationary set, as we are going to see. 

I f / G 2n (f is a function defined on n with range included in {0,1}) then / 
is a characteristic function and we let [/] = {k \ f(k) = 1} be the subset of n 
represented by / . 
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LADDER GAPS OVER STATIONARY SETS 521 

Let (/, </) be any ordering isomorphic to a>\ + co\. For example take / = (coi x 
{0})u(coi x {l})with(a,0) <7 (0,0) </ (/U> <i (a, 1} whenever a < 0 < coi. 

Define the poset P by p G P iff /? is a finite function denned on / and such that: 

1. For some n (called the "height" of p) p(i) G 2" for every / G dom(p). (The 
height of the empty function is defined to be 0.) 

2. For every a G co\, (a,0) G dom(/?) iff (a, 1) G dom(p), and in this case 

[p((a,0))]C[p((a,\))l 

The intuition behind this definition is that for a € a>\, p((a,0)) will "grow" to 
become aa, and p((a,l)) will finally become ba, as p runs over the generic filter. 
So that ((aa \ a € <x>\), (ba \ a G a>\)) will be the generic gap with the additional 
property that aa C ba for every a. The ordering of P reflects this intuition as 
follows. 

For p\, pi G P define p\ < pi {pi extends p\) iff 

\. d\ = dom(/?i) C di = dom(/?2), and for every i G d\, p\{i) C ^ ( O (so 
height(pi) < height(/>2)). 

2. For every ;', y G dom(p\), if / </ j then 

[p2(0] \Lpi( / ) ]c[p 2 0 ' ) ] . 

The reader should check that < is transitive. 
It is easy to see that any condition in P has extensions with arbitrarily large height 

and with domains that extend arbitrarily over / . In fact, given i G dom(^) and 
k G co above height p, we can require that the extension p' puts k in [p'(i)). 

If a G co\, we can write a G dom(/>) instead of (a,0) G dom(p) (which is 
equivalent to (a, I) G dom(p)). So dom(p) has two meanings, and the context 
decides if it means a set of ordinals or a set of pairs. 

Suppose that A C / is such that (a, 0} G ̂  iff (a, 1) G ^4. Let PA be the subposet 
of P consisting of all conditions p such that dom(p) C A. If/? G Pthen/> f A G i5^ 
and /? \ A < p. We prove some additional properties of this restriction map taking 
p to p \ A. 

In the definition of p < q what really counts is the restriction of q to the domain 
of p. That is, p < q iff p < q \ dom(p). It follows that p < q implies that 
p \ A < q \ A. It also follows that if p and q are conditions such that for 
C = dom(p) n dom(^), p \ C = q \ C, then p and q are compatible. In fact, in 
this case, if height(/?) = height^) then p U q is the minimal extension of p and q. 
(Observe that if C ^ 0 then p \ C = q \ C implies that height(^) = height^), 
yet if C = 0 then r = /? U ̂  is not a condition if height(/>) ^ height(^), since in 
defining p we required that each condition has a uniform height.) 

Suppose that dom(^) = dom(^r). Then p and q are compatible in P iff p < q or 
1 <P-

For compatible conditions p and <?, we define below a canonical extension pVq 
of both /> and q. However, P is not a lattice and /> V q is not the minimum of 
all extensions of p and q. To define it, we first make an observation. Consider 
C = dom(p) n dom(^r). Then p \ C and q f C are comparable in Pc (since they 
are compatible and have the same domain), and hence we can assume without loss 
of generality that q > p \ C andn = height(^r) > m = height(^) (the restriction on 
the heights is needed only in case C = 0 since it follows from q > p \ C otherwise). 
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522 URI ABRAHAM AND SAHARON SHELAH 

Then r = p\J q\s defined as follows on dom(p) U dom(</), and it will be evident 
that p V q is an extension of/? and q. 

For i £ dom(^) define /-(/) = q(i). For ;' € dom{p) \ C define r(i) £ 2" by the 
following two conditions: 

(4) p(i) C r(i). 

(5) [»•(/)] \ [/>(/)] - [j{[q(k)] \ m \k <, i and k £ C}. 

This definition makes sense since C C dom(#). 
It is clear that r £ P, dom(r) = dom(p) U dom(^r) and r \ C — q. We prove 

that r > p. Clause 1 in the definition of extension is obvious, and we have to check 
clause 2. Suppose that i, j e dom(p) and i </ / . We have to show that 

(6) Hi)] \ [p(i)] C [/•(./)]. 

So consider any a G [KO] \ [p(i)]. 
CASE 1: ;' G C. Then r(/) = q{i). If j € C as well, then (6) follows from our 
assumption that <? > p \ C, and since r(i) = q(i), r(j) = q(j) in this case. If, on 
the other hand, j g" C, then 

[Ki)] \ [p(j)} = U { [ « ^ ) ] \ "i 1 A: </ / and A: € C} 

by the definition of r. Since i € C, i <j j , and a e q{i)\m, it follows that 
« G D"l/)] \ [/>(;)] as required. 
CASE 2: i £ C. Then / e dom(/7) \ C and (5) implies that for some k e C such 
that fc </ /, a € [<?(&)] \ w. Then & </ _/, both indices are in dom(/?), and A: G C, 
which brings us back to Case 1. H 

This argument is summed up in the following lemma. 
LEMMA 2.1. Suppose that p\, pi € P and C = dom{p\) n dom(/?2) ore such that 

P\ \ C > p2 \ C an d height (p\) > height {pi). Then p\ V p2 can be formed {an 
extension of p\ and pj)-

LEMMA 2.2. P satisfies the c.c.c. In fact if {pa | a G S} C P where S C co\ 
is stationary, then for some stationary set S' C 51, every finite set of conditions in 
{pa I CK G S'} is compatible. (This is Talayaco's condition [4].) 

PROOF. If p, q G P have the same height and for C = dom(/>) n dom(g) it 
happens that p \ C = q \ C, then p U q is an extension of p and q. Hence a 
A-system argument works here. H 

If G c Pis some generic filter over/1, define for every a G w\ aa — IJ{[/'((Q:'0))] I 
p £ G}, and 6a = \J{[p({a, 1))] | /? G G}. A standard density argument shows 
that g is a pre-gap, and we denote it as g. 

LEMMA 2.3. The generic pre-gap g is a gap. 

PROOF. Suppose that x G Vp is a name, forced to be an interpolation for the 
generic pre-gap g. For every a G a>\ find a condition pa e P with a in its domain 
and a number na G a> such that 

(7) /?a Ihp aa \na C x \ n a C 6Q. 

Then for some stationary set S C a>i, and some fixed n £ to, n = na for every 
ft£S, and the sets dom(/>a) form a A-system with finite core C. We also assume 
that pa f C is fixed for a G 5". For a < fi, both in 5 and above the ordinals involved 

Sh:598



LADDER GAPS OVER STATIONARY SETS 523 

in C, consider pa and pp. Pick any k > n such that k > height(/»Q) as well. Let 
i = (a, 0), and j = (/}, 1). We shall find an extension r of pa and pp such that 
r{i){k) = 1 and r(j){k) = 0. Then r\\- k £ aa Ak £ bp. But this contradicts (7). 

To define r, define first an extension p'a > pa by requiring that p'a{i){k) = 1 and 
[/^((y-O))] = [pa((y,0))] for every (y,0) £ C. This is possible since z is never </ 
below (y, 0) e C. Now /?„ extends /?£ [" C and hence r = p'a\/ pp can be formed. 
Since the only members of C below j (in </) are of the form (7,0), it follows that 
[r(j)] = [pp(j)].Thusr(j)(k) = 0. ' H 

The following lemma implies that if G is a (V, P)-generic filter, g the generic gap, 
and U £ V[G] is any stationary subset of co\ in the extension, then no uncountable 
restriction of g is CZ-Hausdorff. 

LEMMA 2.4. The following holds in Vp for the generic gap g = {(a, | i £ co\), 
{bj \ j £ co\)}. IfJ,KQ a>\ are unbounded, then there is a club set DQ C <X>\ such 
that for every 5 £ DQ and k £ K \S there are m £ co and a sequence j{n) £ 8 n / 
increasing and cofinal in S such that a,^ \ m C b^for all n £ co. 

PROOF. Let J,K£ Vp be names forced by every condition in P to be unbounded 
subsets of a>\. Define in Vp the following set D0 C co\\ S £ Do if and only if<5 € w\ 
is a limit ordinal such that: 

for all k £ K \S there is some m £ co and an increasing, cofinal in 5 
sequence j{n) £ 5 D J with a:(n) \ m C bu for all n £ co. 

We want to prove that Do contains a closed unbounded subset of coi, and assume 
that it does not. So R = co\ \ D0 is (forced by some condition to be) stationary 
in Vp, and hence the set, defined in V, of ordinals that are potentially in R is 
stationary in V. Namely, the set RQ C co\ of ordinals forced by some condition to 
be in R is stationary. For every 3 £ RQ pick a condition pg that forces S 0 Do. By 
extending pg we can find some kg > S such that 

pg lh/> kg £ K shows that 8 (£ Do. 

So, for every m £ co, pg forces that the set of j £dC\J with aj\m C bk, is bounded 
in S. 

By extending pg again, we can find some jg £ co\\8 forced by pg to be in / 
(which is possible since J is supposed to be unbounded in cui). If necessary, a 
further extension ensures that both jg and kg are in the domain of pg. Now there 
exists some m = mg £ co such that 

pg Ih ah \m£bks 

(the height of pg will do). We can extend pg once again and find f(S) <8 such that 

(8) pg \\-p there is no j £ J, f{5) < j <S, for which aj\m C b^-

We may assume that, for a stationary set T C R0, the domains of pa, for a £ T, 
form a A system, that they all have the same height, say n, and the same restriction to 
the core. We also assume that the functions pa({ja,0}) : n —> {0,1} do not depend 
on a, and that / ( a ) and m = ma are fixed on T (m <n). Now by Talayaco's chain 
condition for P, there is a stationary T' C T such that for every a, /? £ 7", pa V pp 
is a common extension. Pick some a £ T' that is an accumulation point of T' (and 
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such that for every /? < a, jp < a). Then find fi < a, /? £ T' such that / ( a ) < /?. 
Then (as we shall see) 

Pp V pa Ih o^ C a7t>, /£ G /, and" a > jp > f(a). 

Yet 

Pa "~ aja \ m Q °kn, 

and hence 

pp y pa\\-ajlt\m C 6AoJ 

and this is a contradiction to (8). Why does pp V pa force a; c a/o? Because the 
functions pa((ja, 0)) and pp{{jp,0}) are the same, they describe ain nn and a;/( n« , 
so pp V /7a forces ajf c a/a. H 

§3. Specializing pre-gaps on a ladder system. 
THEOREM 3.1. For every ladder system C over a stationary set S C a>\, and gap 

g, there is a c.c.c. forcing notion Q = Qgc such that in V@ a restriction of g to 
some uncountable set is C-Hausdorff [and hence S-Hausdorff). In fact Q satisfies a 
stronger property than c.c.c. the polarized chain condition, which we shall define later. 

PROOF. Fix for the proof a ladder system C — {eg \ S e S) over a station­
ary set S C w\ consisting of limit ordinals, and a pre-gap g = {(a, | i € co\), 
(bj | j G a>i)}. The forcing poset Q = Qg,c defined below is designed to make an 
uncountable restriction of g into a C-Hausdorff gap. We will prove that if g is a 
gap, then Q is a c.c.c. poset. 

Define p £ Q iff p = (w, s) where 
1. w G [coi]<H° (i.e., a finite subset of a>\), and 
2. s G [S]<H». 

If p G Q then we write /? = (wp. sp) for the two components of p. 
The ordering p < q (q extends p) is defined by 

a. wp C w?, j p C ^?, and 
b. If 6 G 5P and y e u;^ are such that<5 < 7", then for every ;' G {w9 \ wp) D<5, 

o/\ I can/1 <Zbj. 
Or, equivalently, X(ai.bj) > \cg f~\ i\. It is easy to check that this is indeed an 
ordering defined on Q. 

Clearly, if p = (w,s) is a condition, then for any a G S, (w, s U {a}) extends 
p, and if j G coi and j > max(w), then (w U {./},.?) extends p. (If, however, 
j < max(w), then (w U {7}, s) may be incompatible with (w, s).) If G is generic 
over Q, define If = U{u; | 3s(w,s) G G}. By the c.c.c. (proved below), u>\ is 
preserved. It follows that W is unbounded in a>i and S = \J{s \ 3w (w.s) G G}. 
It follows that {{at \ i G W), {bj \ j G W)} is C-Hausdorff. 

So the generic filter over Q selects an unbounded in cu\ restriction of g that is 
C-Hausdorff. 

If 7? = (w,s) is a condition then for every a G co\ the restriction p \ a = 
{w n a, s n a) is defined. Clearly p \ a < p. 

If p = (w,s) andq = (v,r) are conditions in Q then define p U q = (wUv,sLir). 
Up and q are compatible in Q. then p U q G Q is the least upper bound of p and q. 
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LADDER GAPS OVER STATIONARY SETS 525 

For any condition p = (w, s), we write dom(p) = w U s. H 

The following lemma describes a situation in which the compatibility of p\ and 
P2 can be deduced. This is the situation resulting when p\ and pz come from a 
A-system, with core fixed below y, and such that p\ is bounded by some a such that 
the domain of p2 has empty intersection with the ordinal interval [y, a]. The proof 
is straightforward. 

LEMMA 3.2. Suppose that 

1. p\ = (w\. Si), pi — [wi, S2), andp* are in P. 
2. y < a < <x>\ are such that 

(a) dom(^i) C a, and dom(p*) C y. 
(b) W2 Da C y, ands2 n (a 4- 1) C y. So p2 \ a = P2 \ y. 
(c) p* > p\ \y,p2 \l-
(d) p* is compatible with p\ and is also compatible with p2-

3. Define 

A = f]{ai \iewi\y} 

B = \J{bj \j£wi\y} 

and suppose that there is n G A\B such that, for every S G ̂  \ a, « > \cgtla\. 
Then p\ and P2 are compatible. In fact, p\ U P2 U p* is an extension of all three 
conditions. 

PROOF. Form p = pi U pi U p* and prove that p\,p2, p* < p. Clearly, p* < p 
and p\ < p because p\ and P2 are compatible with p*. As for P2 < p. observe that 
X(cii,bj) > \cgC\a\ for every i e w\ \ y, j e 102 \ y, and 5 e si \ y. H 

The following simple lemma is used in proving that Q is a c.c.c. poset. 

LEMMA 3.3. Suppose g = {(Aj \ i e I),(Bj I j G J)} is a pre-gap such that for 
every i £ I and j £ J. i < j implies that A, C Bj. Then g is not a gap. 

PROOF. By throwing away a countable set of indices from / we can assume for 
every n e cothatifn 0 Bj for some j , then n 0 Bj for uncountably many y"s. Define 
then x = \Jiei Ai. Then x C Bj for every 7, because otherwise there are some 
i € I, j £ 7, and « e co such that n e Ai \Bj. But then we may find uncountably 
many indices j ' such that n ^ Bj' and in particular there is such j ' > i. Thence 
Aj ^ Bj>, contradicting our assumption. H 

THEOREM 3.4. Suppose that the domain of our ladder system C, namely S, is 
co-stationary. Assume that g is a gap. 

\. Q = Qg.c satisfies the c.c.c. 
2. Suppose that T\, T2 C co\ \ S are stationary sets and~p = (pj \ d G Te),for 

£ = 1,2 , are two sequences of conditions in Q such that some fixed p* G Q 
extends all p\ \ 5 and p2 \ p., for every S G T\ and p G T2, and is such that p* 
is compatible with every p\ and with every p2. Then there are stationary subsets 
T[ C T\ and T2' Q T2 such that, for every a\ G T{ anda.2 G T2

r, ifa\ < a2 then 
p[

ai andp^ are compatible in Q. 

PROOF. We prove 2 since 1 can be derived from it. For any condition p = (w, s) 
define dom(/>) = w U s. Suppose that dom(/?*) C y. Then c\ova{p\) C\8 C y, 
and dom(/>j;) n p C y, for every 5 £ T\ and ,« G T2. We may assume (by 
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shrinking ft and ft) that if i < j are in ft and ft, (for I, m G {1,2}) then 
dom(/>f) c D (dom(^m) \ y) 

Since 8 e ft implies that 8 £ S, it follows for p\ = (w, s) that the ladder sequence 
Cj for any i G s is bounded below <5. So the finite union 

^ n ( J { c / | i ' € J \ < 5 } 

is bounded below8. Using Fodor's lemma, we may even assume that this intersection 
is bounded below y (extend y if necessary) and has a fixed finite cardinality. 

For every 8 G ft define 

As = ("]{>, | / G wp> \y} 

Similarly, for 8 G ft define 

Bs = \J{bi\iew^\y}. 

Clearly, any interpolation for G — {(As | 8 e T\},{Bs \ 8 G ft}) is also an 
interpolation for g, and hence G is a gap. 

Let k e (o be such that for every 8 e Te, if p\ = (w, s) and a £ s \y, then 
| cQ n<5 |< k. 

Now we find a stationary set 71,' c T\ such that for every n e co if n e ^ for some 
^ e 71/ then n e 45 for a stationary set of <S's in T[. Simply throw away countably 
many non-stationary sets from T\. Similarly, find a stationary T'2 C Ti such that if 
n g Bs for some <5 e 7j then n g Bs for a stationary set of <5 € 7j . 

Now Lemma 3.3 gives a\ G J/ and 0:2 G T^'withai < ai such that ^4Q| \k $Z Bai. 
If we pick « G Aa] \ Bai such that n > k then there are stationary sets Tx C r [ and 
r^ C r2'such that« G ̂ 4ai \Bai for every a\ G J1! anda2 G r 2 . Hence if ot\ G T, , 
«2 G r 2 , and a; < 0:2, then /»^ and ^^2 are compatible in Q by Lemma 3.2. -\ 

3.1. Polarized chain condition. Theorem 3.4 shows that the poset Qgc for a gap 
g and ladder C over a stationary co-stationary set S satisfies some kind of a chain 
condition, which refers to two sequences of conditions indexed by stationary subsets 
of a>i \ S. We formulate this property in general and later prove that it is preserved 
under finite support iteration. 

DEFINITION 3.5. Let T C co\ be a stationary set. A c.c.c. poset P satisfies the 
polarized chain condition {p.c.c.) for T if it satisfies the following requirement. 
Suppose that 

1- f = (Ps 1.5 €7<) for* = 1,2 
are two sequences of conditions in P, where ft C T are stationary for I = 1,2. 

2. p* G P is such that for each £ = 1,2 

/?* \\-p {8 G ft I p\ G G} is stationary in eoi, 

where G is the name of the generic filter over P. 

Then there are stationary sets T[ C ft for I = 1,2 such that p{
a{ and /?^2 are 

compatible in P whenever a\ < a2 are in ft' and ft' respectively. 

We want to prove that if g is a gap and C a ladder over a stationary set S such 
that 7" = a>\ \ S is also stationary, then Q = QgC satisfies the p.c.c. for T. The 
problem is that if p* is as in the p.c.c. definition then it is not necessarily of the form 
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to which Theorem 3.4 is applicable, and so we need some argument to deduce that 
Q is p.c.c. 

Recall that every club subset of co\ in a generic extension of V made via a c.c.c. 
poset contains a club subset in V. The following property of c.c.c. posets is also 
needed. 

LEMMA 3.6. Let P be a c.c.c. poset. Suppose that T C a>\ is stationary, and 
{pa | & £ T) is a sequence of conditions in P indexed along T. Then there exists 
some pa such that 

(9) pa lh {P € T I pp £ G} is stationary. 

In fact, the set of these a's is stationary in co\. By reducing T, we may assume that 
pa is compatible with every pp (/? G T). 

PROOF. Assume that this is not the case and, for some club D C co\, for every 
a £ T C\ D there is a club set Ca (necessarily in V) and an extension p'a of pa such 
that 

(10) p'a\\-vp(peCanT^pfi#G). 

Let C = {/? e a>\ | (Va < /?)/? e Ca} be the diagonal intersection of these 
club sets. Then C is closed unbounded in w\. Take a maximal antichain (surely 
countable) from the set of extensions {p'a \ a G 7" n D}, and let ao be an index 
in T n C n D higher than all indexes of this countable antichain. Then p'ao is 
compatible with some p'a with a < ao. But ao € Ca leads to a contradiction since 
p'ao forces that pafj e G, and j?^ forces that /?ao ^ G (by 10). 

The final remark of the lemma is that we may assume in (9) that pa is compatible 
with every pp for /? e 7\ For this, let 7o C T be the set of fi e J such that /?a and 
p^ are compatible, and prove that (9) holds for Jo- H 

Now we prove that Q is p.c.c. for T = co\ \ S. 

LEMMA 3.7. If C is a ladder system over a stationary set S, and T = co\ \ S is 
stationary, then, for any gap g, Qgc is p.c.c. over T. 

PROOF. Suppose that T\, Ti C T are stationary, and ~pl, p~2 are two sequences of 
conditions indexed along T\ and Ti. Let q* e Q be such that for £ = 1,2 

(11) q* \\-Q {S e Te | Ps e G} is stationary in a»i. 

In order to prove the polarized chain condition we are free to reduce T\ and Tj 
to stationary subsets and to increase the conditions p\ (for if the extensions are 
compatible then so are the given conditions). Observe that, whenever (11) holds, 
the set of S e 7> for which p\ and q* are compatible is stationary, and (11) holds 
for this set substituting T>. Hence, if q* extends all pl

g \ 8 (for £ = 1,2) and (11) 
holds then Theorem 3.4 can be applied and its conclusion, the p.c.c, is obtained. 
So assume that (11) holds with all p\ being compatible with p*. 

We claim first that we may assume that q* > p$ \ S for every S £ T\. Apply 
Fodor's theorem to fix p\ \ 8, rename T\ to the resulting stationary set, and redefine 
p\ as p\ L)q*. Apply Lemma 3.6 to obtain SQ such that 

Ps„ "~8 (^ e ^ i I Ps e ^ } is stationary in co\. 
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Redefine q* = p\ . Then q* > p\ \ S for 8 G T\, and since q* extends the original 
q*, it still satisfies (11) with respect to T%- Repeat this procedure for Ti, and obtain 
two sequences and an extended q* so that (11) holds and q* > p\ \ 8 for all 8 as 
required. H 

We note here for a possible future use a stronger form of polarized chain condition 
(strong-p.c.c.) which is not used in this paper. 

DEFINITION 3.8. Let T C a>\ be stationary. A poset P is said to satisfy the 
strong-p.c.c. over T if whenever two sequences are given 

-pl = {pi\8eTe)fozt^\,2 

of conditions in P, where Tt C T are stationary for £ — 1,2, and for some p* G P, 
for every £ = 1,2, 

p* \\-p {8 G Tt | p6 G Gp} is stationary in <x>\. 

then there are stationary subsets T[ C Te for £ = 1,2, and conditions ^ > pj for 
<5 G T2' such that: 

For every 8 G T"2' and ^ e P such that qs < q there exists a < <S such that 
for every ft that satisfies a < /? G T[C[8 

q and /?^ are compatible in P. 

§4. Iteration of p.c.c. posets. Our aim in this section is to prove that the iteration 
with finite support of p.c.c. posets is again p.c.c. It is well known (by Martin and 
Solovay [2]) that since each of the iterands satisfies the countable chain condition 
the iteration is again c.c.c, but we have to prove the preservation of the polarized 
property. 

A poset is separative iff p ^ q implies that some extension of q is incompatible 
with p. Our posets defined above are not necessarily separative, but a well-known 
transformation yields equivalent separative posets. So we iterate separative posets. 

LEMMA 4.1. Suppose that P is a p.c.c. poset, and that Q G Vp is {forced by every 
condition in P to be) ap.c.c. posetfor some fixed stationary set T. Then the iteration 
P * Q satisfies the polarized chain condition too. 

PROOF. Suppose that {p$,q$) G P * Q are given for 8 G Te C T and for £ = 1,2, 
such that for some condition (p,q) G P * Q 

(12) (p, q) It- {8 G Te \ (pe
s, q<) e GP*Q} is stationary 

for £ = 1,2. Since forcing with P * Q can be done in two stages: 

p \\-p {8 G Te | p\ G Gp} is stationary. 

Let G c P be F-generic, with p G G. In V[G] form the interpretations q[G] 
(interpretation of q) and Q[G] (interpretation of Q). Then q[G] G Q[G], Define 
the sets 

T'e = {8eTe\pl
seG},£ = \,2 

(which are stationary) and define the sequences 

{qi\G]\6zT't), for* = 1,2. 
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Then in V[G] 

R[G] Ih Q[c] {8 E T't | qg[G] E H) is stationary 

where H is the name for the V[G] generic filter over Q[G]. (This follows from (12) 
and since forcing with P * Q is equivalent to the iteration of forcing with P and then 
with Q[G].) 

Since Q[G] satisfies the polarized chain condition for T, there are stationary sets 
Tg C Tg such that: 

if ^i e T{ , 82 € T2 , and 8\ < 82, then q\ [G] and f| [G] are compatible 
in G[G]. 

Back in V, let 5] and S2 be Vp names of T[ and T2 respectively, forced to have 
these properties. The following short lemma will be applied to Si and to 52. 

LEMMA 4.2. Suppose that (ps \ 8 E T) is a sequence in P, S is a name of a subset 
ofco\ and p E P a condition such that 

p Ih p 5 C {a € T I ps € G} andS is stationary in co\. 

Then there is a stationary subset T* C T, and conditions pg extending both ps and p 
for each 8 E T* such that pg\\~8 e S. 

PROOF. Define T* by the condition thatcS E P* iff 8 E 7" and there is a common 
extension of /> and ^ that forces i 5 e S . We must prove that T* is stationary. If 
C C co! is any closed unbounded set, find p' > p and 8 e C such that p' \\-8 E 5. 
Then <S E P and p' Ih /^ e G. Hence #5 < /?' (because P is separative). So 
8 eT*. ' ' * ^ 

Apply the lemma to Si and find a stationary set T* C Pj and conditions ^ l 1 > 
/>],/?, for<S e r,* such that 

pflhSGSi. 

Then (Lemma 3.6) find an extension of p, denoted p*, such that 

p* Ih {8 £ Pf I />;' E G} is stationary. 

Apply the same argument to 52, and find a stationary set P2* C P2 and conditions 
p | 2 > PJ,P* for<5 E P2 such that />|2 Ih 8 E S2. Now p** > />* can be found such 
that 

p** Ih {8 E P2* I P | 2 e G} is stationary. 

Since P satisfies the p.c.c, there are stationary sets P** C T* and P2** C P2* such 
that for every 8\ < 82 in T{* and T2* (respectively) pgl and />|2 are compatible in 
P, say by some condition p' extending both. But then p' \\-S\ E Si and<S2 S S2. 
It follows that {p\, q\ ) and (/>|, qj ) are compatible in P * 2 showing that P * Q 
satisfies the p.c.c. The point is that 

p' \\-P qs\ and qj2 are compatible in Q 

and hence for some q' E Vp, p' \\-p q' >q\ ,qj . 

That is, (/>'.«') >(/>J,.?J,)' (P|,</!2)- ' H 
THEOREM 4.3. Let T be a stationary subset ofto\. An iteration with finite support 

of p.c.c. for T posets is again p.c.c. for T. 
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PROOF. The theorem is proved by induction on the length, S, of the iteration. 
For 8 a successor ordinal, this is essentially Lemma 4.1. So we assume that 8 is a 
limit ordinal, and (Pa | a < 8) is a finite support iteration, where Pa+\ = Pa * Qa 

is obtained with Qa G VPa a p.c.c. poset for T. Thus conditions in Ps are finite 
functions p defined on a finite subset dom(p) c 8, and are such that for every 
a G dom(p), p \ a\\- pa p(a) G Qa- It is well-known that PA satisfies the c.c.c, 
and we must prove the polarized property. 

Suppose that ~pe = {p\ \ i G Tt) for I = 1,2 are two sequences of conditions in 
Pg, where Tt C T are stationary, and suppose also that p* G Ps is such that 

(13) P*Vrpt {i e Tt | p\ G G} is stationary for I = 1.2. 

We may assume that p* is compatible with every p\ (just throw away those con­
ditions that are not). The case cf(<5) > co\ is trivial, because the support of all 
conditions is bounded by some 8' < S to which induction is applied). So there are 
two cases to consider. 
CASE 1: cf(<$) = co. Let (8„ \ n G co) be an increasing co-sequence converging to 8. 
For every pf there is n G co such that dom(/?f) C c5„. It follows from (13) that for 
some specific n G co, for some extension p** > p* 

p** Ih {/ G Te | p\ G P̂ „ n G} is stationary for ^ = 1,2. 

Now we can apply the inductive assumption to Pgn. 
CASE 2: cf(<S) = co\. Let (3a \ a G coi) be an increasing, continuous, and cofinal in 
8 sequence. Intersecting Ti and T2 with a suitable closed unbounded set, we may 
assume that for every a < p a G T\ and fi € T%, dom{px

a) c ji. 
We claim that we may without loss of generality assume that, for some y < <5, 

d o m ( ^ ) n 8a is bounded by y for all a G Te. We get this in two steps. 
In the first step, find a stationary T[ C Tj such that the sets dom(/)^) n <5â  for 

a G ?,', are bounded by some y < 8. For each a G T[ let px* be a common extension 
of p\ and /?*. Then (use Lemma 3.6) find an extension p** > p* such that 

p** Ih {a e T{ \ pi £ G} is stationary. 

Since p** extends p*, p** Ih {;' G 7*2 | pj G 0 } is stationary. We can again as­
sume that each /?? is compatible with /?** and get T̂ ' C Ti stationary such that 
&om{p2

a) n 8a is bounded by some / < 8 (we rename y to be the maximum of y 
and / ) . Rename the stationary sets as T\, T2 and we have our assumption. 

Apply induction to Py and to the conditions pe
a \ y. This yields two stationary 

subsets which are as required. H 

§5. The model. 
THEOREM 5.1. Assuming the consistency ofZFC, the following property is consis­

tent with ZFC. There is a stationary co-stationary set S C a>\ such that 

1. For every ladder system C over S, every gap contains a C-Hausdorff subgap. 
2. For every ladder system H over T = co\\S there is a gap g with no subgap that 

is H-Hausdorff. 

To obtain the required generic extension we assume that K is a cardinal in V (the 
ground model) such that cf(/t) > co\ and even /cKl = K. We shall obtain a generic 
extension V[G] in which 2^° = K and the two required properties of the theorem 
hold. For this we define a finite support iteration of length K, iterating posets P 
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as in section 2, which introduce generic gaps, and posets of the form Qg,c, as in 
Section 3, which are designed to introduce a C-Hausdorff subgap to g. 

We denote this iteration (Pa \ a < K). SO Pa+\ ~ Pa * R(a), where the a-th 
iterand R(a) is either some P or some Qg.c- The rules to determine R(a) are 
specified below. For any limit ordinal^ < K, PS is the finite support iteration of the 
posets (Pa | a < S). We define PK as our final poset, and we shall prove that in Vp" 
the two properties of the theorem hold. 

Recall that P satisfies Talayaco's condition (Lemma 2.2) and is hence a p.c.c. 
poset, and each Qgc is p.c.c. over T = co\\S (by Lemma 3.7). 

Since the iterand posets satisfy the p.c.c. over T, each Pa is a p.c.c. poset over T 
(and in particular a c.c.c. poset). It follows from our assumption that cf(«) > co\ 
that every ladder system and every gap in Vp« are already in some VPa for a < K. 
It is obvious that if g G VPa is forced by p G PK to be a gap in Vp\ then p \ a 
forces it to be a gap already in VPa. 

To determine the iterands, we assume a standard bookkeeping scheme which 
ensures two things: 

1. For every ladder system C over S and gap g in VPK , there exists a stage a < K 
so that C,g G Vp°, and R(a) is QgC. 

2. For some unbounded set of ordinals a G K the iterand R(a) is P, which 
produces a generic gap g, and the subsequent iterand R(a + 1) is Qg,c for 
some ladder sequence C over S. 

The first item ensures that, in VPK, for every ladder system C over S, every 
gap contains a C-Hausdorff subgap. (A C-HausdorfT subgap in Va+\ remains 
C-Hausdorff at every later stage and in the final model). 

The second item ensures that every ladder H over T = co\\S has a gap g with 
no //-Hausdorff subgap. The gap is introduced by a pair of forcings of the form 
P * Qg,c which introduces a generic gap and immediately seals it to ensure that it 
remains a gap in the remaining forcing. 

To prove this, suppose that H is a ladder over T = co\ \ S. Then H appears in 
some Vp° such that R(a) is the poset P, and R(a + 1) is the poset Qgc where g 
is the generic gap introduced by R(a), and C is some ladder sequence over S. We 
want to prove that g is a gap in vPk"ppa that has no i7-Hausdorff subgap there. We 
first prove that g remains a gap in Vp*. It is clearly a gap in VPa+' by Lemma 2.3. 
Since g is C-HausdorfT in VPa*2, it remains a gap in VPK (by Lemma 1.2). 

This generic gap g satisfies the conclusion of Lemma 2.4 in VPa+': 

(14) If /, K C a>\ are unbounded, then there is a club set Do C a>\ such that for 
every 5 G Do and k G K \ 8 there are m G co and a sequence _/(«) G <5 n / 
increasing and cofinal in <5 such that a^„) \ m c 6& for all H G ct>. 

Since /^ ~ .PQ+i * 7?, where the remainder R ~ PK/Pa+\ is interpreted in F/>Q+1 

as a finite support iteration of p.c.c. posets over T, we can view PK as a two-stage 
iteration in which the second stage is a p.c.c. poset over T. Thus, for simplicity of 
expression, we can assume that VPa+l is the ground model. The following lemma 
then ends the proof. 

LEMMA 5.2. Suppose in the ground model V a ladder system H over a stationary 
set T C coi, and a gap g that has the property (14) quoted above. Suppose also a 
poset R that is p.c.c. over T. Then in VR the gap g contains no H-Hausdorff subgap. 
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PROOF. Let g = {{at | i G co\),{bj \ j G a>\)} and assume (for the sake of 
a contradiction) that some condition q in R forces that g' = {(aa | a € A), 
(bp | P G B)} is a 77-Hausdorff subgap, where 4̂ and B are names forced by q 
to be unbounded in co\. Since every club subset of co\ in a c.c.c. generic extension 
contains a club subset in the ground model, we may assume that the club, D, which 
appears in Definition 1.3 (of g' being 77-Hausdorff) is in V. 

For every 8 G TnD define two conditions in R (extending the given condition q): 

1. pg G R is such that for some a(3) & co\\8, pg\\-R a(8) e A. (This is possible 
since A is forced to be unbounded.) 

2. qs G R extending ps is such that, for some (i(8) G co\ \3, qs \\~R P(8) G B. 
Moreover, as g' is forced to be 77-Hausdorff, we can assume that for some 
mg G co, 

qs \^R for every n > mg, ifi G A D (S \ c$(n) + 1), then X(at, b^s)) > n. 

By Lemma 3.6 some condition forces that qg G G (and hence p# G G) for a station­
ary set of indices 8 G TnD. Since i? is p.c.c. for T, there are stationary subsets 
T\, 72 C T such that any />̂ , is compatible with qg2 if <5i G T\, &t G ^ and <5i < <52-

Consider now the two unbounded sets J = {a(S) \ S G T[], and Â  = {yS(<5) | 
5 G 72}. Apply (14) to / and K, and let Do be the club set that appears there. Pick 
any 5 G D n 72 H 7>o. Consider A: = y9(^). Then ^ G Â  \ <5, and so there are m G co 
and a sequence j'(«) G (5 n / cofinal in 8 such that 

(15) ay(„) \m c bk for all n & co. 

Yet every _/ (n) is of the form a(<S„) for some d„ € T\ nS, and the <S„'s tend to 3. So 
(15) can be written as 

(16) X(aa{Sn),bk) < m. 

It follows from the definition of T\ and 72 that, for every n G co, ps„ and qs are 
compatible in 7?. It suffices now to take mo = m'dx{m,mg} and n > mo with 
S„ > cg(mo) to get a contradiction to (16). Because if q' is a common extension 
of psn and qs, then it forces (as mo > mg) for every i e AD (S\ cg(mo) + 1) that 
X{cii,bk) > mo- In particular for i = a{8„), q' lh X(at,bk) > mo. H 
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