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Abstract 

Eklof, P.C. and S. Shelah, Explicitly non-standard uniserial modules, Journal of Pure and 

Applied Algebra 86 (1993) 35-50. 

A new construction of non-standard uniserial modules over certain valuation domains is given; 

the construction resembles that of a special Aronszajn tree in set theory. A consequence is the 

proof of a sufficient condition for the existence of non-standard uniserial modules; this is a 

theorem of ZFC which complements an earlier independence result. 

Introduction 

This paper is a sequel to [6]. Both papers deal with the existence of non- 

standard uniserial modules over valuation domains; we refer to [6] for history and 

motivation. While the main result of the previous paper was an independence 

result, the main results of this one are theorems of ZFC, which complement and 

extend the results of [6]. 

We are interested in necessary and sufficient conditions for a valuation domain 

R to have the property that there is a non-standard uniserial R-module of a given 

type J/R. (Precise definitions are given below.) The question is interesting only 
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36 P. C. Eklof, S. Shelah 

when R is uncountable, and since additional complications arise for higher 

cardinals, we confine ourselves to rings of cardinality N,. Associated to any type 

J/R is an invariant, denoted T(JIR), which is a member of a Boolean algebra 

D(w,) (equal to P(w,) modulo the filter of closed unbounded sets). For example, 

if R is an almost maximal valuation domain, then T(JIR) = 0 for all types J/R; 
but there are natural and easily defined examples where T(JIR) = 1. 

It is a fact that 

if T(JIR) = 0, then there is no non-standard uniserial R-module of 
type JIR 

(cf. [6, Lemma 51). In [6] we showed that the converse is independent of 

ZFC + GCH; the consistency proof that the converse fails involved the construc- 

tion of a valuation domain R associated with a stationary and co-stationary subset 

of w,-that is, 0 < QJIR) < 1. The existence of such sets requires a use of the 

Axiom of Choice; no such set can be explicitly given. Thus-without attempting 

to give a mathematical definition of ‘natural’-we could say that for natural 
valuation domains, R, it is the case that for every type J/R, T(JIR) is either 0 or 

1. For natural valuation domains, it turns out that the converse is true: if there is 

no non-standard uniserial R-module of type J/R, then T(J/R) = 0. This is a 

consequence of the following result which is proved below (for all valuation 

domains of cardinality X,): 

if T(J/R) = 1, then there is a non-standard uniserial R-module of 
type JIR 

(Theorem 12). This vindicates a conjecture made by Osofsky in [12, (9), p. 1641. 

(See also the Remark following Theorem 12.) 

The proof of Theorem 12 divides into several cases; the key new result which is 

used is a construction of a non-standard uniserial module in the essentially 
countable case; this construction is done in ZFC and is motivated by the 

construction of a special Aronszajn tree (see Theorem 7). Moreover, the uniserial 

constructed is ‘explicitly non-standard’ in that there is an associated ‘special 

function’ which demonstrates that it is non-standard. This special function con- 

tinues to serve the same purpose in any extension of the universe, V, of set 

theory, so the module is ‘absolutely’ non-standard. In contrast, this may not be 

the case with non-standard uniserials constructed using a prediction (diamond) 

principle (see the last section). 

Preliminaries 

For any ring R, we will use R* to denote the group of units of R. If r E R we 
will write x = y (mod r) to mean x - y E rR. 

A module is called uniserial if its submodules are linearly ordered by inclusion. 
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Explicitly non-standard uniserial modules 31 

An integral domain R is called a valuation domain if it is a uniserial R-module. If 

R is a valuation domain, let Q denote its quotient field; we assume Q # R. The 

residue field of R is R/P, where P is the maximal ideal of R. [S] is a general 

reference for modules over valuation domains. 

If J and A are R-submodules of Q with A C J, then J/A is a uniserial 

R-module, which is said to be standard. A uniserial R-module U is said to be 

non-standard if it is not isomorphic to a standard uniserial. 

Given a t&serial module U, and a non-zero element, a, of U, let Ann(a) = 

{Y E R: ra = 0} and let D(a) = U {r-‘R: r divides a in U}. We say U is of type 

J/A if J/A z D(a)lAnn(a). This is well-defined in that if b is another non-zero 

element of U, then D(a)lAnn(a) G D(b)lAnn(b). For example, U has type Q/R 
if and only if U is divisible torsion and the annihilator ideal of every non-zero 

element of U is principal. (But notice that there is no a E U with Ann(a) = R.) It 

is not hard to see that if U has type J/A, then U is standard if and only if it is 

isomorphic to J/A. We will only consider types of the form J/R; it is a 

consequence of results of [l] that the question of the existence of a non-standard 

uniserial R-module of type J,IA can always be reduced to the question of the 

existence of a non-standard uniserial of type J/R for an appropriate J. 
From now on we will assume that R has cardinality k‘,. We always have 

J= i_! r,‘R 

for some sequence of elements {r,: cr<w,} such that for all r<cr, r,Ir,. IfJis 

countably generated, then U is standard, so generally we will be assuming that J is 

not countably generated; then it has a set of generators as in (l), where, 

furthermore, rm does not divide rr if r < CT. 

If 6 Elim(w,), let 

J6 2’ IJ r,‘R 

By results in [2] every uniserial module U, of type J/R, is described up to 

isomorphism by a family of units, {ez: (T < T < o,} such that 

ezez = ei (mod r,) (3) 

for all CT < r < 6 < w, . Indeed, U is a direct limit of submodules a,R where 

Ann(a<,) = r-R; then a,R z r,’ R/R and U is isomorphic to a direct limit of the 

r:‘RIR, where the morphism from r,‘RIR to r,‘RIR takes r,’ to eT,ri’ if 

arr = e~r~‘rTaT. 
If U is given by (3), then U is standard if and only if there exists a family {c,: 

u < CO,} of units of R such that 

ci = eic, (mod r<,) (4) 
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38 P. C. Eklof, S. Shelah 

for all (T < r < w,. Indeed, if the family {c,: (T < w,} satisfying (4) exists, then 

multiplication by the c, gives rise to isomorphisms from Y:’ R/R to a<,R, which 

induce an isomorphism of JIR with I/. 

Essentially countable types 

Definition. Suppose J = U,,,, r,’ R as in (1). Call the type J/R essentially 

uncountable if for every u < w, there exists r > w such that r,RlrTR is uncount- 

able. Otherwise, JIR is essentially countable; this is equivalent to saying that there 

is a y < w, such that for all y < (T < w,, ryRirC,R is countable. Say that JIR is 

strongly countable if for all u < w,, R/r,,R is countable; clearly, a strongly 

countable type is essentially countable. 

It is easily seen that the notions of being essentially or strongly countable are 

well-defined, that is, independent of the choice of the representation (1). If the 

residue field of R is uncountable, then, except in trivial cases, the types J/R have 

to be essentially uncountable; but if the residue field is countable, the question is 

more delicate. 

Proposition 1. Zf the residue field of R is uncountable, then every type JIR such 

that J is not countably generated is essentially uncountable. 

Proof. Let J = U,,,, r,’ R as in (1). It suffices to prove that if u < 7, then 

rURlrTR is uncountable. But r,,Rlr,R s RItR where t = r,r,’ E P. So we have 

tR C PC R, and hence (RItR)I(PltR) G RIP, the residue field of R. Since RIP is 

uncountable, so is RItR. q 

Theorem 2. For any countable field K there are valuation domains R, and R,, 

both of cardinality 8, with the same residue field K and the same value group, 

whose quotient fields, Q, and Q2, respectively, are generated by N, but not 

countably many elements, and such that Q ,lR, is essentially uncountable and 

QZIRZ is strongly countable. 

Proof. Let G be the ordered abelian group which is the direct sum @,,,, Za 

ordered anti-lexicographically; that is, c a n, a > 0 if and only if n, > 0, where p 

is maximal such that np #O. In particular, the basis elements have their natural 

order and if LY <fi, then ka <fl in G for any kEZ. Let G+ = {go G: g?O}. 

Let k = K[[G]], that is, k = {c,,, k,XK: k, E K, A a well-ordered subset of 

G+}, with the obvious addition and multiplication (cf. [12, p. 1.561). Given an 

element Y = c,,, k,X” of fi, let supp(y)={g~A: k,#O}; let p- 

supp(y) = {CZ E w,: 3g E supp( y) whose projection on Za is non-zero}. Define 

u(y) = the least element of supp( y), If Xc G, then y r X is defined to be 

c gEXnL\kgX’. Letyrv=yr{gEG’:g<u}. 
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Explicitly non-standard uniserial modules 39 

Let R, = { y E k: p-supp( y) is finite}. Then R, is a valuation domain since 

p-supp(xyP’) c p-supp(x) U p-supp(y). Let R2 be the valuation subring of R, 
generated by {X’: g E G}. We have Q, = U,,,,, X-*Ri for j = 1,2. Now Q,lR, 
is essentially uncountable since for all /3 > (Y, X”R, IX’R, contains the 2”” 

elements of the form 

(with p-supp = {cz}) w h ere 5 is any function w-2. R, has cardinality 2”“; if 

2”” > h’, , to get an example of cardinality k‘, , choose a valuation subring of R, 
which contains all the monomials X” (g E G) and K, of the elements 

xnEw c(n)X(“+‘)” for each CY. 

We claim that Q2/R, is essentially countable. Let K[G] be the subring of k 

generated by {X”: g E G’}; thus K[G] consists of the elements of k with finite 

support; we shall refer to them as polynomials. R, consists of all elements of the 

form xy-’ where x and y are polynomials and u(x) 2 u(y). We claim that 

R,IX”R, is countable for any p < w,. There are uncountably many polynomials, 

but we have to show that there are only countably many truncations xy-’ I/?. 

Given polynomials x and y with U(X) 2 u(y), there is a finitely generated 

subgroup elSiSd Za, of G (with (T, < CT, <. . . < a,) such that x and y are linear 

combinations of monomials XK with g E @,4i5r, Zia,. More precisely, there exist 

k,rE w and a (k + r)-tuple (a,, . . . , akir ) of elements of K and k + r linear 

terms ti of the form 

d 

tj = C niju, 
i=l 

(n,, E Z, ui variables) such that if we let t,(a) denote cf=, ni,cii, then 

and y = i ~,X’J(~) . 

/=k+l 
(5) 

Finally, there is q 5 d such that ay is maximal with a4 < p. 

Now, consideration of the algorithm for computing xy-’ shows that, for fixed 

(a,, . . . > uk+r ) and t,, there are linear terms 

d 

St = C m,,u, 
i=l 

(m,, E Z, I E CO) and elements c, E K such that for any strictly increasing sequence 
u= ((T,, . . ) ad), if x and y are as in (5), then 
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40 P.C. Eklof, S. Shelah 

For any q 5 d, only certain of the sI involve only variables ui with i 5 q (i.e. 

m,,=Oifi>q);saythesearethes,with1ET(T~w).If(Tissuchthat~~<<iff 

i I q, then xy-’ r p = c,,, c~X’~(~). 

There are only countably many choices for q, d, k and I in w, (a,, . . . , u~+~) E 

Kk+r, and for ui <. . . < vq < /?. Therefore, there are only countably many 

possibilities for the truncations xy-’ 1 p. 0 

By the first part of the following, the type Q,lR, of the previous theorem must 

be strongly countable; on the other hand, there are types which are essentially 

countable but not strongly countable. 

Proposition 3. (i) If QlR is essentially countable, then it is strongly countable. 
(ii) For any countable field K, there is a valuation domain R with residuefield K 

which has a type JIR which is essentially countable but not strongly countable. 

Proof. (i) Since Q/R is essentially countable, we can write Q = UT_, r,‘R such 

that for all c < r, r,,Rlr,R is countable. We claim that RIr,,R is countable, which 

clearly is equivalent to RIr,R countable for all T < w,. Suppose not. There is a 

u < w1 such that ru = r$ for some t E R (since ri* E Q). But then r,Rlr,R G 
Rltr,R, which is uncountable since RIr,R is uncountable, and this contradicts 

the choice of the r,. 

(ii) Let G = e,,,,,, Za, ordered anti-lexicographically. Let k = K[[ G]] (cf. 

proof of Theorem 2), and let R be the smallest valuation subring of i? containing 

all the monomials X” (g E G). Let J = U,,,, r;‘R where ra = Xa+“‘l. Then the 

proof that r,RlrpR g RIX Pm*R is countable for all LY < p is the same as in 

Theorem 2. But RIr,,R = RIX”lR is clearly uncountable. q 

Remark. More generally, referring to a dichotomy in [12, Proposition 7, p. 155], 

if the type J/R is essentially countable and falls into Case (A), then J/R is strongly 

countable; if it falls into case (B), then it is not strongly countable. 

Gamma invariants 

A subset C of o, is called a cub-short for closed unbounded set-if sup C = w, 

and for all Y c C, sup Y E wi implies sup YE C. Call two subsets, S, and S,, of 

wi equivalent iff there is a cub C such that S, n C = S, n C. Let S denote the 

equivalence class of S. The inclusion relation induces a partial order on the set, 

D(w,), of equivalence classes, i.e., s”, 5 S2 if and only if there is a cub C such that 

S, n C C S, f’ C. In fact, this induces a Boolean algebra structure on D(w,), with 

least element, 0, the equivalence class of sets disjoint from a cub; and greatest 

element, 1, the equivalence class of sets containing a cub. We say S is stationary if 

s” #O, i.e., for every cub C, C n S # 0. We say S is co-stationary if w,\S is 

stationary. 
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Explicitly non-standard uniserial modules 41 

Given R and a type J/R, where J is as in (l), define I( J/R) to be s”, where 

R 
I 

n Y, R is not complete 
LT<F 

where the topology on RI n,,, r,R is the metrizable linear topology with a basis 

of neighborhoods of 0 given by the submodules r,R (C < 6 ). This definition is 

independent of the choice of the representation of J as in (1)-see [6]. 

For any limit ordinal 6 < o,, let 

that is YIs J,R consists of sequences of units which are Cauchy in the metrizable 

topology on RI nrrisrmR. Let .P” J,R consist of those members of ST,, which have 

limits in R, i.e. 

ZR = {(u,:a<6)EY:,,:3u,ER*suchthat 

VW < s (Ll* - u, E r,R)} 

Note that QJIR) = s”, where S = (6 E lim(w,): ST,, # Z:,,} . 

If J is not countably generated, then 1CH implies that T(JIR) = 1, since the 

completion of RI nvC6 r,R has cardinality 2’O > Xi. An q-filtration of R by 
subrings is an increasing chain {N,: (Y E o,} of countable subrings of R such that 

R= U?E” N,, and for limit (Y, 

Define b’(JIR) = if where 

N, = U,,, NP. 

E’= (6 Elim(w,): 3(u,: (~<a) E .YyiR such that 

Vf E R* 3a < 6 such that u,f $Ns (mod r,)} . 

Again, it can be shown that the definition does not depend on the choice of { rU : 
v<o,} or of {N,: (Y < o,}. Notice that T’(J/R) % I’(J/R) since if Y;,R = .$,,, 

then we can let f be a limit of (u,‘: a<s). 

In [6, Theorem 71 it is proved that if T’(JIR) # 0, then there is a non-standard 

uniserial R-module. 

Theorem 4. Suppose JIR is essentially countable. Then 
(i) T’(JIR) = 0, 

(ii) QJIR) = 1. 

Proof. Without loss of generality we can assume that J = U,,,, r,‘R where 

r,Rlr,R is countable for all c < w,. 

(i) We can also assume that the w,-filtration of R by subrings, R = U,,,, N,, 

has the property that for all a, N, contains a complete set of representatives of 
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42 P.C. Eklof, S. Shelah 

r,,R/r<,R for each u < (Y. For any 6 E lim(w,), and any (IL<,: u < S) in Yt,,, let 

f = u,;‘. To show that 6 jE’E’, it suffices to show that u, f E N, (mod Ye,) for all 

(T < 6. Now uV f = u,,u,y ’ = 1 (mod ro), since Us, = u(, (mod Y”), by definition of 
0-6 J JIR’ Say u,,u;’ - 1 = y E r,,R. By the assumption on N6, there exists a E N8 such 

that y = a (mod r,). Then u, f = u,,ui’ = l+y=l+a(modr~,),andl+aEN, 

since N, is a subring of R. 
(ii) To show that T(J/R) = 1, it suffices to show that for all limit ordinals 

6 < WI3 R/f-L r,,R is not complete. Assuming that it is complete, we shall 

obtain a contradiction by showing that r,,Rlr,R is uncountable. Fix a ladder on 6, 

i.e., a strictly increasing sequence ( v,, : n E w ) whose sup is 6. For each function 

<:w-+2, define LL’=(u~: u<~)E.Y~!,~ as follows: if v~~<(T~v,,,+,, then 

u, = CiCm lo,. Clearly u, E r,,R, and if r > 0, where vk < r I J++, , then m 5 k 
and 

UT - u,, = ,=z+, JO-v, E rv,,, + ,R C r<,R 

Since R/n,<a r,,R is assumed to be complete, for each [ there is an element 

u9 E R which represents the limit of (ui: a< S) in R/nv,, rYR. To obtain a 

contradiction, we need only show that if 7 # <, then ui - uz $5’rsR. Without loss 

of generality there exists m such that [ f m = 77 1 m and c(m) = 0, q(m) = 1, then 

‘I 1) u* - u%?+, Er “,,,+,R and u% put,,,+, Er, ,,,., R; 

but u’ “,v + I -ui ,,),, =r”,?,$r “,,, +,R, so ui-ul~‘r “,,, ],R>r,R. 0 

Special Aronszajn trees 

This section contains standard material from set theory. (See, for example, [lo, 

Section 221 or [4, Chapter 7, Section 31.) It is included simply to provide 

motivation for the notation and proof in the next section. 

A tree is a partially ordered set (T, <) such that the predecessors of any 

element are well ordered. An element x of T is said to have height (Y, denoted 

ht(x) = (Y, if the order-type of {y E T: y < x} is (Y. The height of T is defined to be 

sup{ht(x) + 1: x E T}. If T is a tree, a brunch of T is a maximal linearly ordered 

initial subset of T; the length of a branch is its order type. If T is a tree, let 

T, = {y E T: ht(y) = a}. We say that a tree T is a K-Aronszajn tree if T is of 

height K, 1 T, 1 < K for every ILY < K, and T has no branch of length K. 

A tree T of height o, is a special Aronszujn tree if T<, is countable for all cy < o1 

and for each cy < o, there is a function f, : T, ---f Q such that 

whenever x E T, and y E To and x < y, then f,(x) < fP ( y) (6) 
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Explicitly non-standard uniserial modules 43 

Notice that a special Aronszajn tree is an w,-Aronszajn tree, since an uncountable 

branch would give rise to an uncountable increasing sequence of rationals. 

Konig’s Lemma implies that there is no w-Aronszajn tree. However, there is an 

w, -Aronszajn tree. 

Theorem 5. There is a special Aronszajn tree. 

Proof. Let <a~ denote the set of all functions from {p E w,: p < cr} to w. We 

shall construct T, and f, by induction on (Y < wl such that T, is a countable subset 

of <a~ and the partial ordering is inclusion, i.e., if x E T, and y E TP then x < y if 

and only if (Y < p and y r a = x. Finally, T will be defined to be U,,,, T,. 
Let T, = {li)}, f,(O) = 0, T, = ‘“‘w, and f, : T, -+ Q be onto (0, x). Suppose now 

that TC, and f, have been defined for all LY < 6 such that for all v < p < 6: 

for any E > 0, and x E T,, there is y E T, such that 

X<Y andf,(y)<.fB)+&. (7) 

There are two cases. In the first case, if 6 is a successor ordinal, 6 = r + 1, let 

Define f, so that for every x E T7, 

{f6(XU{(7, n)}): nEw} ={rEQ: Y>fT(X)}. 

Clearly (7) continues to hold. 

In the second case, 6 is a limit ordinal. Choose a ladder ( v,,: II E w ) on 6. For 

each v < 6, x E T, and k > 0, by inductive hypothesis (7) there exists a sequence 

( y,: n E w such that v,:, > a) such that y,, E T,7, x < y, < y,,, for n < m and 

fJy,) <f’(x) + (l/k - l/n). Let y[a, X, k] = UnEw y,, E ‘“w. Let T8 consist of 

one such y[a, xrk] for each U, x, k. Define f,( y[a, X, k]) = f,,(x) + 1 ik. Then it is 

clear that (7) still holds. 0 

Special uniserial modules 

Definition. Suppose U is a uniserial module of type JIR where J = U (,<wI r, ‘R as 

in (1). For each (T > w,, fix an element a, of U such that Ann(a(,) = r,,R (so that 

the submodule a,R of U is isomorphic to Rlr,R z r:‘RIR). Let IcT be the set of 

all R-module isomorphisms cp : a,R+ r,‘RIR. We say that {f,,: (r E w,} is a 

special family of functions for I/ if for each u < w, , f, : I, + 62 such that whenever 

a<p and cp~1,, extends $EZ,, thenf,(+)cf,(cp). 
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44 P. C. Eklof, S. Shelah 

Lemma 6. Zf U has a special family of functions, then U is non-standard. 

Proof. Suppose there is an isomorphism 8 : U- J/R. Then for every (T < w,, 0 

restricts to an isomorphism ‘p, of a,R onto r,‘R/R. But then ( f,(cp,): v < w,) is 

an uncountable strictly increasing sequence of rationals, a contradiction. 0 

With this lemma as justification, we will say that U is explicitly non-standard if 

U has a special family of functions. 

If the uniserial module U, of type J/R, is described up to isomorphism by a 

family of units, {ei: (T < p < wi} as in (3), then it is clear that U is explicitly 

non-standard if and only if for every (T < wl, there is a function f, : (RIr,R)* + Q 
such that 

whenever u < p and c,,cP E R* satisfy 

c,, = c,eE (mod yV), then f,(c,) <fP(c,) . (8) 

(Here, and hereafter, we abuse notation and regard f, and f, as functions on R*.) 
Note that we have a tree, T, such that T, = (RIr,R)* and the partial ordering 

is given by 

c, + r<,R < c, + r,R e CT < p and c, = c,eI (mod ru) 

Assume CT < p. Each c, has at least one successor of height p, namely c,ez, and if 

r,Rlr,R is countable, then c, has only countably many successors of height p. For 

each c, E T,, its unique predecessor in T, is c,(ez)-‘. (Here again we abuse 

notation and write, for example, c, for an element of T,, instead of c, + r,R.) 
Without loss of generality we can assume that the r,, are such that for all 

c < ml, rJlr,+, R is infinite. (Just choose a subsequence of the original r,‘s if 

necessary.) Thus for all (T < wr, there is an infinite subset W, of R* such that for 

all u f u E WV, u = 1 (mod r,) and U#U (mod ro+l). 

Theorem 7. Zf JIR is an essentially countable type, then there is an explicitly 
non-standard uniserial R-module of type JIR. 

Proof. We will first give the construction in the case when JIR is strongly 

countable, and afterward indicate the modifications needed for the general case. 

Thus T, is assumed countable for all (T < w,. 

We will define, by induction on 6, e’, for CT < T < 6 as in (3) and, at the same 

time, the maps f, : (RIr,R)*-+ Q for (T < 6. We will do this so that (8) holds and 

the following condition is satisfied for all (T < p < w,: 
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Explicitly non-standard uniserial modules 45 

foranyE>O,mEo,c~ET,,andc~ET,(j=l,...,m) 

such that CL < CL, there exists u E R* such that u = 

1 (mod I,) and f,(uc:) <f,,(cb) + F for all j = 1, . . . , m . P,,, > 

Note that the CL determine the CL [CL = cL(eE))’ (mod I,,)] and UC: is another 

successor of cl of height p. For any given F > 0, v < p < 6, m E w, and CL E R* 
(j=l,..., m), there exist infinitely many u as in (9,,,), since we can decrease E 

as much as we like. 

Suppose we have defined ez and f, for all CT < p < 6 satisfying the inductive 

hypotheses. Let (U n: n E w) enumerate representatives of all the elements of 

(RIr,R)*. Also, let (0,: q E CO) enumerate all instances of (9,,6), for all cr < 8, 

with each instance repeated infinitely often. More precisely, we enumerate (with 

infinite repetition) all tuples of the form 

(E=~/IZ,(T,C~+Y~R: j=l,..., m) 

with y1 E o\(O), a<& andc;ER”. 

We will define f, as the union of a chain of functions f& into Q, each with a 

finite domain. When k is even we will concentrate on insuring that the domain of 

fs will be T, ; and when k is odd, we will work at satisfying the conditions (9,,,). 

Suppose first that 6 = T + 1 and define ef = 1 and e”, = e: for (T < T. Suppose 

that fs,i has been defined for i < k, and assume first that k is even. Let n be 

minimal such that U, $dom( f6,,_,). Let dom( j&) = dom( fS+,) U { un} and let 

f&(un) be any rational greater than f,(u,(ef))‘) (= f,(u,)). 

Now suppose k is odd; say k = 2q + 1. It is easy to see that it is enough to 

construct fs to satisfy (9, s). So if 0q is an instance of (9,,s) for u < 7, let 

f,,, = f6,k_1. Otherwise, suppose 13~ is the instance of (9,,8) given by 

l/n, ci + r,R: j= 1,. . . , m 

Since W, is infinite (see above), there is a unit u such that u = 1 (mod r,) and 

UC; @dom( f6,k_,) for j = 1, . . . , m. Then define fs,k to be the extension offs,,_, 

with domain = dom( fS,+ 1) U {uc~ : j = 1, . . . , m} such that 

f6,k(ucL) = f,(ci(e:)-‘) + 112n . 

Now we consider the case where 6 is a limit ordinal. Fix a ladder ( vn: IZ E w ) 
on 6. We are going to define units etn by induction such that etn = e: ez (mod r”,) 

whenever IZ < m < w. This will easily determine the sequence (ez? (T < 6 ) such 

that for all (T < T < 6, efi, E efei (mod r,); then (3) will be satisfied for (e7,: 

(+<716). 
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For simplicity of notation, let e, denote et*. Suppose we have already defined 

f,,,_, and ek such that for all x E dom(f,,,_,), 

f,,WFfs,k-l(X). 

(Recall that if x E T,, then xe, -’ is the unique predecessor of x in TV,,.) If k is 

even, we proceed as in the even case above (when 6 is a successor). If k = 2q + 1 

and Oq is 

(l/n, u, c; + r,R: j = 1,. . , m) 

we can assume-since each instance is repeated infinitely often-that cr < vk. 

Thus ez = etkez is defined. Note that c~(e~))’ = clef’)’ (mod rO), so we can 

apply (9,,,) [with c+ ’ = c{ei’] and obtain a unit w = 1 (mod r,) such that for all 

j=l,...,m, 

WC6ek j -‘) < f,(ci(et)-‘) + 1/2n . 

Moreover, since there are infinitely many such w, we can choose one so that the 

elements WC: (j = 1, . . , m) do not belong to dom( f8,k_‘). Let these be the new 

elements of the domain of fs.k and define 

fs,k(wci) = f,(cj(ef,)-‘) + 1/2n 

Now we will define ek+ I (for k odd or even). For each x E dom( fS,k) we have 

committed ourselves to f6(x) (= fS,k(x)) 
(= xe,‘); 

and to the predecessor of x in T, 
we need to choose ek+ 1 so that x and its predecessor, xe,:, , in T,+, 

satisfy (8). 

Let e’ = ek(ez+‘)-‘. The desired element ek+l will have the form ue’ for some 

unit u = 1 (mod Y,,). Choose e’ < fa,k(x) - f,,(xe,‘) for each x E dom( fs,k). Apply 

(9 . yk v,+,) to this E’ and xe,’ E T,, xe’-’ E Tvk+, (xEdom(fs,k)). (Note that 

xe,’ < xe’-’ by choice of e’.) This gives us u = 1 (mod rU,) such that for all x, 

fQ+,(uxe ‘-I) <fvk(xei’) + ” <fs.k(X) 

Then we let ek+, = u -‘e’, and we have completed the inductive step. 

This completes the proof in the strongly countable case. We turn now to the 

general (essentially countable) case. In this case, RIr,R may be uncountable; let 

Z be a complete set of representatives of (R/r,R)“. Fix z. E Z. We first define, by 

induction on (T, f,(c,)--or, more precisely, f,(c, + r_R)-for all c, E R* such 

that c, = z,)eg (mod Y,,). We do the construction exactly as in the previous strongly 

countable case; this will work since there are only countably many cosets c + r,R 
such that c = a,ei (mod r(,) since r,,RlruR is countable. 

Having done this, the e:, are determined. We claim that there is no family {c,: 
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(T < wl} satisfying (4). Indeed, suppose we had such a family. Let z E 2 be such 

that c,) = z (mod r”). Then for all CT < wl, c, = zeg (mod ro). Hence the family 

{ zOz-lc u: u < w,} satisfies (4) and also satisfies z&‘c, = z,eg (mod r,,); but this 

is impossible by construction. 0 

Consequences 

Now we consider some of the general consequences, for the question of the 

existence of non-standard uniserials, of the results of the previous sections. First 

of all, we can construct non-standard uniserial modules associated to any residue 

field of cardinality 5X1. 

Proposition 8. (i) For any countable field K, there exists a valuation domain R of 
cardinality X, with residue field K such that there is an explicitly non-standard 
uniserial module of type QIR. 

(ii) For any field K of cardinality si-4,) there exists a valuation domain R of 
cardinality K, with residue field K such that there is a non-standard uniserial 
module of type QIR. 

Proof. Part (i) is an immediate consequence of Theorem 2 and Theorem 7. Part 

(ii) follows from (i) in the case of a countable K and from the Osofsky 

construction in the case of an uncountable K (cf. [12]; see also [6, Theorem 

111). 0 

The following improves [6, Corollary 151, in that it is a theorem of ZFC 

rather than a consistency result. It shows that the condition T’(JIR) > 0 is not 

necessary for the existence of a non-standard uniserial of type JIR. 

Proposition 9. There is a valuation domain R of cardinality h’, such that I’( Ql 
R) = 0 and there is a non-standard uniserial R-module of type QIR. 

Proof. Let R be such that Q/R is essentially countable (cf. Theorem 2). By 

Theorem 4(i), r’( Q/R) = 0, but there is a non-standard uniserial R-module of 

type Q/R by Theorem 7. 0 

The following sums up some old results which we want to combine with results 

proved here. 

Theorem 10. Suppose that R is a valuation domain of cardinality Cs, . 
(i) If CH does not hold and JIR is an essentially uncountable type, then there is 

a non-standard uniserial R-module of type JIR. 
(ii) If CH holds and T(JIR) = 1, then there is a non-standard uniserial R- 

module of type JIR. 
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Proof. Part (i) is Theorem 8 of [6]. Part (ii) is because the weak diamond 

principle, @,,(w,), is a consequence of CH (see [3]) and this implies that there 

exists a non-standard uniserial of type J/R when T(JIR) = 1 (see [6, Proposition 

31 or [7]). 0 

Now we can completely handle the cases when either CH fails, or r = 1. 

Theorem 11. If CH does not hold, then for every valuation domain R of 
cardinality X, , and every type JIR such that QJIR) # 0, there is a non-standard 
uniserial R-module of type JIR. 

Proof. Use Theorem 7 for the essentially countable case, and Theorem 10(i) 

otherwise. 0 

Remark. This result shows that CH is needed for the independence result in [6, 

Theorem 141. 

Theorem 12. For every valuation domain R of cardinality X, and every type JIR, if 
T’(JIR) = 1, then there is a non-standard uniserial R-module of type JIR. 

Proof. If CH fails, use the previous theorem. If CH holds, use Theorem 

lO(ii). 0 

Remark. Osofsky’s original conjecture [12, (9), p. 1641, restricted to valuation 

domains of cardinality X,, said-in our notation-that there is a non-standard 

uniserial R-module of type J/R if and only if T(JIR) = 1. This is now seen to be 

true assuming 1CH. On the other hand, it cannot be true in this form assuming 

CH, since CH implies the weak diamond principle for some co-stationary subsets 

of w, (cf. [5, VI.l.lO]). Indeed, as in the proof of [6, Proposition 31 it is possible 

to construct R with a type J/R where T(JIR) = s” and @JS) holds; so there is a 

non-standard uniserial R-module of type J/R (cf. [6, proof of Proposition 31). On 

the other hand, to construct such an R one has to begin with the stationary and 

co-stationary set S, so such rings will not be ‘natural’, i.e. will not be ones 

ordinarily met in algebraic contexts. 

Recall, from [6], that it is in the case when the hypotheses of the previous 

theorems fail-i.e., when CH holds and T(J/R) < 1 (and non-zero)-that the 

independence phenomena occur. 

Absoluteness 

Finally, let us briefly discuss absoluteness. Consider Theorem 11; if CH fails 

and T(J/R) # 0, we always have a non-standard uniserial module of type J/R, but 
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there are two separate constructions involved. In one case, when J/R is essentially 

countable, we construct an explicitly non-standard uniserial U. If the universe of 

set theory is extended to a larger universe (with the same X,) this module remains 

non-standard because the special family of functions remains a special family for 

U in the extension of the universe. In the essentially uncountable case we use the 

fact that T’(JIR) = 1 [6, Theorem 81 and construct our non-standard uniseriai U 

as in [6, Theorem 71. In this case too U remains non-standard in an extension of 

the universe (preserving Xi). The reason here is more subtle; relative to a fixed 

w,-filtration of R by subrings, N, , the eg we construct satisfy the following 

property for every 6 E lim(w,) and every c E R”: 

V(c: (T < S) E ‘IV: [3a < 6 (VIE R (c - cuei # r,t))] . WC,, > 

It is a theorem of ZFC that if (lo,,,) holds for U (defined by the ei) for all c,6, 

then U is non-standard. Now (lo,,,) is, by a coding argument, a II: statement 

(with parameters in the ground model) about w. Hence, by a theorem of 

Mostowski (cf. [3, Theorem 7.13, p. 160]), it remains true in an extension of the 

universe, so U remains non-standard. 

On the other hand, in the proof of Theorem 12, there is one additional case: 

when J/R is essentially uncountable and T’(J/R) = 0 (so CH holds). In this case 

the existence of a non-standard uniserial is proved using the weak diamond 

principle, which is a consequence of CH. Here the U we construct may not 

remain non-standard in an extension of the universe. Consider for example that R 
is constructed as in [6, Theorem 141, but with T(JIR) = 1. If P is the forcing 

defined in the proof there, then P is proper, so it preserves K, and, moreover, in 

the P-generic extension U is standard. (Of course, in the generic extension we can 

construct another non-standard module.) 
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