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S u m m a r y .  For g < f in c~ ~ we define c ( f ,  9) be the least number of uniform trees 
with 9-splitting needed to cover a uniform tree with f-spli t t ing.  We show that we can 
simultaneously force ~l many different values for different functions (f ,  9). In the 
language of  [B1]: There may be N1 many distinct uniform H ~ characteristics. 

0 Introduct ion 

Blass [B1] defined a classification of certain cardinal invariants of  the continuum, based 
on the Borel hierarchy. For example, to every H ~ formula 9)(x, y) = Vnt~(x F n, y r n) 
(R recursive) the cardinal 

t ~  :=  min{..~ c_ ~w:Vx  E ~cv3y E 2 : 9 ) ( x , y ) }  

is the "uniform H ~ characteristic" associated to 9)- 
Blass proved structure theorems on simple cardinal invariants, e.g., that there 

is a smallest H ~ characteristic (namely, Cov(J~) ,  the smallest number of  first 
category sets needed to cover the reals), and also that the H~ can 
behave quite chaotically. He asked whether the known uniform H ~ characteristics 
(c, d, r,  Coy(f /d))  are the only ones or (since that is very unlikely) whether there 
could be a reasonable classification of  the uniform H ~ characteristics - say, a small 
list that contains all these invariants. 

In this paper we give a strong negative answer to this question: For two H ~ for- 
mulas 9)1, 9)2 we say that 9)1 and 9)2 define "potentially nonequal characterictics" if 
t ~ l  ~: t~2 is consistent. We say that 9)1 and 9)2 define "actually different characteris- 

tics", if n~l = t%~2" 
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204 M. Goldstern and S. Shelah 

We will find a family o f / /~  indexed by a real parameter (f, g)i and we 
will show not only that there is a perfect set of parameters which defines pairwise 
potentially nonequal //~ but we produce a single universe in which 
(at least) R1 many cardinals appear as //~ (In fact it is also possible 
to produce a universe where there is a perfect set of parameters defining pairwise 
actually different//~ See [Sh470]). 

If we want more than countably many cardinals, we obviously have to use 
the boldface pointclass. But the proof also produces many lightface uniform H ~ 
characteristics. 

For more information on cardinal invariants, see [B1, vDo, Va]. 
From another point of view, this paper is part of the program of finding consistency 

techniques for a large continuum, i.e., we want 2 ~0 > ~2 and have many values for 
cardinal invariants. We use a countable support product of forcing notions with an 
axiom A structure. 

We will use invariants that were implicitly introduced in [Sh326, Sect. 2], where 
it was proved that c(f, 9) and c( f  t, J )  (see below) may be distinct. 

0.1 Definition. If  f E ~ ,  we say that /~ = (/3 k : k E co) is an f-s lalom if for all k, 
IB I = f(k). we write h c / 3  for h C I~ B~, i.e., Vnh(n)  E B~ (see Fig. 1). This is 

n 

a H~ in the variables h and/3.  
Some authors call the set {h:h c / ~ )  a "belt", or "uniform tree". 

For example, [ I  f(n) is an f-slalom, because we identify the number f(n) with the 
T~ 

set of predecessors, (0, . . . ,  f(n) - 1}. 
r 

B o 

! 

// Be 

Fig. 1. A slalom 

0.2 Definition. Assume f ,  g C %o. Assume that . 2  is a family of g-slaloms, and 
= (A k :k E co) is an f-slalom. 

We say that . ~  covers A iff: 

( .)  for a l l s c A t h e r e i s D E 3 s u c h t h a t  s E / )  

0.3 Definition. Assume f ,  9 E ~cJ. Then we define the cardinal invariant c(f, 9) to 
be the minimal number of g-slaloms needed to cover an f-slalom. 

(Clearly this makes sense only if Vkf(k),  g(k) > 0, so we will assume that from 
n o w  o n . )  

Sh:448



Many simple cardinal invariants 205 

This is a uniform F/~ [Strictly speaking, we are not working in ~c~, 
but rather in ~([w]<~), but a trivial coding translates c( f ,9)  into a "uniform 17 o 
characteristic" as defined above.] 

Some relations between these cardinal invariants are provable in ZFC: For example, 
if 9 < 9' < f '  < f ,  then c(f ' ,  9 I) <= c ( f  , 9 ). Also, c(f2,92) < c ( f  , 9). 

We will show that if (f, 9) is sufficiently different from ( f ' ,  91), then the values 
of  c(f ,  g) and c( f  I, 9 r) are quite independent, and moreover: if ((f~, 9i):i < a31) are 
pairwise sufficiently different, then almost any assignment of  the form c(fi,  9~) = t~i 
will be consistent. 

Similar results are possible for the "dual" version of c(f ,  9): cd(f ,g)  :=  the 
smallest family of 9-slaloms/~ such that for every h bounded by f there are infinitely 
many k with h(k) E B~, and for the "tree" version (a 9-tree is a tree where every 
node in level k has 9(1;) many successors) (see [Sh470]. 

We thank Tomek Bartoszynski for pointing out the following known results about 
the cardinal characteristics c(f ,  g): 

For example, Lemma 1.11 follows from Theorem 3.17 in [CN]: Taking t~ = c~ = c~, 
,3 = n, and letting 27 ~ C n ~ be a family of cJ-large oscillation, then no family of 
n -  1-slaloms of  size < 2 r can cover Y .  Indeed, whenever F is a function on S such 
that for each s E 5 p, F(s) is a n -  1-slalom covering s, then F has to be finite-to-one 
and in fact at most n - 1-to-one. 

Also, since c(f ,  f - 1) is the size of the smallest family of functions below f 
which does not admit an "infinitely equal" function, i.e., 

c ( f ' f  - 1 ) =  min I 'GI :G  c- I I  f ( n ) & V h  E I I  f (n )39  ~ GV~ f(n)  =~ n 

by [Mi] we have that the minimal value of c(f,  f - 1) is the smallest size of a set of 
reals which does not have strong measure zero. 

(30 

Also, note that if r is a random real over V in f I  f(n), and if ~ 1/ f (n)  = ec, 
n n = l  

then [ I  (1 - 1/f(n))  = 0, so r cannot be covered by any f 1-slalom from V. 
n 

o o  

Conversely, if ~ 1/ f (n)  < 2 ,  then for any function h E [I f (n)  N V there is a 
n = l  n 

condition forcing that h is covered by the f 1-slalom ({0, . . . ,  f ( k ) -  l} - {r(k)} : 
k E cJ). 

Thus, if we add ~ many random reals with the measure algebra, a easy density 
argument shows that in the resulting model we have 

~ = 2  ~0 if ~ 1 / f ( n ) = o c  
e ( f  ~ f 1) I 

r ~ = l  

~1 otherwise (use any R 1 many of the random deals). 

That already shows that we can have at least two distinct values of e (f, 9) and c (S ,  9/) �9 

Contents of the paper. In Sect. 1 we prove results in ZFC of the form 

/ / 
"If (f, 9) is in re la t ion . . ,  to ( f  ,9 ), then c( f ,g)  <= c(H,gl) ''. 

In Sect. 2 we define a forcing notion Qf,g that increases c(f,  g). (I.e., in VQs,g, the 
g-slaloms from V to not cover f I  f(n).) Informally speaking, elements of Qf,g are 

7~ 
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206 M. Goldstern and S. Shelah 

perfect trees in which the size of the splitting is bounded by f ,  sometimes = l, but 
often (i.e., on every branch), much bigger than 9. 

In Sect. 3 we show that, assuming {(f~, g~) : ~ < col} are  sufficiently "independent", 

a countable support product [ I  Q~ of such forcing notions will force V~c(f~, 9~) = 
n~. ~<~1 

We use the symbol �9 to denote the end of a proof, and we write �9 when we leave 
a proof to the reader. 

1 Results in ZFC 

1.1 Notation. Operations and relations on functions are understood to be pointwise, 
e.g., f / g ,  9 ~, 9 < f ,  etc. txj is the greatest integer __< x. lira f is lira f (k ) .  k---+~ 

We write f __<* g for ~nV/~ > n f ( k )  < 9(k). 
First we state some obvious facts: 

1.2 Fact. 
(1) f <=9 i f f c ( f ,  9 ) =  1. 
(2) f <=* 9 iff c( f ,  9) finite. 
(3) If A := {k :g(k  ) < f (k )}  is infinite then c ( f  I A , 9  I A)  = c( f ,  9). 
(4) If 7r is a permutation of co, then e ( f  o ~r, 9 o 7r) = c( f ,  9). Q1.2 

(Strictly speaking, we define c( f ,  9) only for functions f ,  9 defined on all of co, so 
(3) should be formally rephrased as c ( f  o h, 9 o h) = c( f ,  9), where h is a 1 - 1 
enumeration of A). 

1.3 Convention. We will concentrate on the case where c( f ,  9) is infinite, so we will 
wlog assume that 9 < f .  By (4), we may also wlog assume that 9 is nondecreasing. 

In these cases we will have that r (f ,  9) is infinite, and moreover an easy diagonal 
argument shows the following fact: 

1.4 Fact. 
c ( f ,  9) is uncountable. �9 

Furthermore, we have the following properties: 

1.5 Fact. 
(1) (Monotonicity) If  f <* f ' ,  9 >=* 9 ~, then c( f ,  g) <= c ( f ' ,  9'). 
(2) (Multiplicativity) c ( f  . f~, 9" 9') <= c ( f  , 9)" c ( f ' ,  9'). 
(3) (Transitivity) c( f ,  h) <= c( f ,  9)" c(9, h). 
(4) (Invariance) c ( f , 9 )  = c ( f - , 9 - )  (where f is the function defined by 

f (n) = f ( n  § 1). 
(5) (Monotonicity II) If  A c_ co is infinite, then c ( f  I A, 9 I A) <= c( f ,  9). �9 

1.6 Remark. (2) implies in particular c ( f  ~, 9 ~) <= c( f ,  9). See 3.4 for an example of  
c(f 2, 9 2) < e( f ,  g). 

The following inequalities need a little more work. 

1.7 L e m m a .  (1) c ( f  . t f / 9J ,  f )  = c( f ,  9). 
(2) c ( f  . t f / g J , g )  = c( f ,  9). 
(3) c ( f  . [ f / g J ~ , g )  = c ( f , g ) f o r  all m C co. 
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Many simple cardinal invariants 207 

Pro@ (2) follows from (1) using transitivity, and (3) follows from (2) by induction, 
so we only have to prove (1). 

Proof of  (1): By monotonicity we only have to show _<_. So let (N, ~) be a 
reasonably closed model of a large fragment of  ZFC (say, (N, C) < (H(x+), E), 
where X = 2e) of size e(f ,  9) such I ]  f (n )  is covered by the set of all g-slaloms from 

Tb 

N.  
Define h by h(k) := f (k) .  Lf(k)/9(k)~. We can find a family {B~ :i < f (k) ,  k E w} 

in N such that for all k, {0, . . . ,  h(k) - 1} = U B~, where IB~I _-< f (k) /g(k) .  
i < f ( k )  

We have to show that the set of f -s la loms from N covers I~ h(k). 
k 

So let x be a function satisfying Vk z(k)  E U B~. We can define a function 
~</(k) 

y E ~ f (n )  such that for alI k, z(k)  �9 B~ (k). So there is some g-slalom C E N such 
T~ 

that for all k, y(k) E C k. 
Define A = (Ak:k  c w} by A~ := U B; .  Then IAkl < IC~I.  IB~I __< 

iECk 

g(k) .  f (k ) /g (k )  = f(k) ,  s o / ]  is an f -s la lom in N,  and for all k, x(k) E A k. @1.7 

1.8 L e m m a .  Assume that f > 9 > O. Assume that (wi.'i �9 w} is apart#ion pf w 
into finite sets, and for each i there are R ~ = {H[.'l c w~} satisfying (a)-(c). Then 
c( f ' ,  90 < c ( f  , g). 

(a) d o m H [  = i f(i)  = {0, . . . ,  f ' ( i ) -  1} 
(b) r n g H  i C f ( l ) =  { 0 , . . . ,  f ( l ) -  1} 
(c) Whenever (u z .'1 C wi} satisfies 

c_ f (z) ,  I zt g(l) 

then {n < f~(i):V1 �9 w7 H~(n) ~ ul} has cardinality ~= g~(i). 

Proof. To any g-slalom 7) = (B z : 1 �9 w) we can associate a g ' -s lalom B* = (B* : i 
w} by letting 

B* := < f ' ( i ) : w  �9 �9 

Conversely, to any function x E [ I  f~(i) we can define a function x* in [ I  f (n )  by 
i n 

if l �9 wi ,  then x*(1) = H~(x(i)). 

It is easy to check that if x* is in D then x is i n / ) * .  The result follows. �9 

1,9 Corol lary.  Assume 0 = n o < n 1 < ....  and let 

if(i) :=  f ( n  0 . f(n~ + 1) . . ,  f(ni+ 1 - 1) 

g~(i) := g(n.i), g(n~ + 1) . . .  g(n,;+ I - 1) 

Then / t = e ( f  ,g ) < c(f ,  9). 

Pro@ Identify the set of numbers less than f (n i ) ,  f (n i  + 1) . . .  f( f i+l - 1) with the 
cartesian product H f (k) ,  and let 

ni<=k<ni+l 

HI: H f ( k ) - *  f(1) 
ni<_k<ni+ 1 

Sh:448



208 M. Goldstern and S. Shelah 

be the projection onto the /-coordinate. We leave the verification of 1.8(c) to the 
reader. �9 9 

1.10 L e m m a .  I f  9 is constant, f ( k )  > 2 ~, then c ( f , 9 )  = c. 

Proof Let Vkg(k) = n, f ( k )  = 2 ~. Assume that [ I  z2 can be covered by < c many 
g-slaloms, t 

For any r/C ~2, the sequence ( / : =  (71 F l:l  E w} is in [ I  12. But any g-slalom can 
/ 

contain only n many such (], i.e. for any g-s la lom/~  = (B~ : l E co) we have 

I{r/C ~ I 1 ~ Bz} [ =< m 

Since there are continuum many r/ we need continuum many 9-slaloms to cover 
f (I)  (or  equivalently, ~ t2) .  QI.10 

1.11 L e m m a .  I f  f and g are constant with f > 9, then c ( f  , 9) = c. 

Pro@ Using monotonicity wlog we assume that f ( k )  = n + 1, g(k) = n for all k. 

We will use 1.8. Let co = U wi be a partition of co where ]wil = n a~. 
ZEco 

Let f~(i) = U, 9~(i) = n, and let (H~ :l c w i )  enumerate all functions from 2 i 
to n. 

We plan to show c( f ,  9) >= c ( f ' , 9 ' )  (so c ( f , g )  = e by 1.10). We want to apply 
1.8, so fix a sequence (ul:l  E wi),  where u l C_ f(1) and [uz] =< g(l). 

To show that the hypotheses of 1.8 are satisfied, fix i 0 and let 

A := {x < f ' ( io):Vl  E wio H2~ E ul} 

and assume A has cardinality > 9'(io) = n. So let Xo, . . . ,  x n be distinct elements 
of A. Let H : f '( io) --~ n + 1 be a function satisfying 

Vj <= n H ( x j )  = j 

H is one of the functions {H~ ~ :l ~ wio }, say H = H~0~ Let J0 ~ uz 0, then also 

Xjo ~ {x  < ff( io):H~~ E uz0 } D A,  

contradicting xjo c A. �9 

1.12 Corol lary.  I f  f > g, and l iminf  g(k) < oc, then c ( f , g )  = c. 

Proof  This follows from 1.11, using monotonicity and monotonicity II, �9 

We can now extend 1.7 as follows: 

1.13 Theorem.  I f for  some c > 0, gl+~ <= f ,  then for all n, c ( f  ~, g) = c( f ,  g). 

Pmofi First we consider a special case: Assume that 92 < f .  Then we get 

e ( f , g )  < c(f2,  g) <= c(f2; f ) .  e ( f , g )  <= c( f2 ,g2)  . e ( f , g )  = c ( f , g )  

Now we use this result on (f ,  9), then on (fa ,  9), etc., to get 

c ( f , g )  = c ( f 2 , g )  = c ( f 4 , g )  = c ( f 8 , g )  . . . .  

and use monotonicity to get the general result under the assumption 9 2 <= f .  
Now we consider the general case gI+~ < f :  
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Many simple cardinal invariants 209 

if  g does not diverge to infinity, we have already (by 1.12) c( f ,  g) = e. Otherwise 
we can find some (5 > 0 such that for almost all k, 

f ( k )  > g ( k ) ~ + l  
g(k) = 

SO 

f(k) > g(k)e 
= 

Now choose m such that m .  ~ > 1. Then [f(k) /g(h)J ~ > g. By 1.7, c ( f  �9 
[ f  /gJ m, 9) = c ( f  , 9) and so by monotonicity also e ( f  .9, 9) = e ( f  , 9). Since 92 < f "9, 
we can apply the result from the special case above to get c( f ,  g) = c ( f  ~ �9 g~, 9) so 
in particular, c ( f  n, g) = c ( f  , g). �9 

If f is not much bigger than 9, the assumption in 1.7 and 1.13 may be false. For 
these cases, we can prove the following: 

1.14 Lemma.  (1) c (2 f  - g, f )  = c( f ,  g). 
(2) e (2 f  - 9, g) = c (f, g)- 
(3) c ( f  + m ( f  - g),9) = c ( f , g )  for all m E a~. 

Proof. The proof is similar to the proof of  1.7. Again we only have to show 
(1). Let (N, E) be a reasonably closed model of a large fragment of  ZFC (say, 
(N, C) -< (H(x+),  C), where X = 2c) of  size c( f ,  9) such l-[ f (n )  is covered by 

n 

the set of all g-slaloms from N.  
Define h by h(k) :=  f ( k ) + f ( k ) - g ( k ) .  We can find a family (B k .~ �9 ~" < f (k ) ,  k ~ w} 

in N such that for all k, { 0 , . . . , h ( h ) -  1} = U B~, where I/~l = 2 for 
i<f(k) 

I < f ( k )  - 9(k), and ]B~I = 1 otherwise. We have to show that the set of f-slaloms 
from N covers I~ h(k). 

k 

So let x be a function satisfying Vkx(k)  E U B~. We can define a function 
i<f(k) 

y E I ]  f (n )  such that for all k, x(k)  E B~ (k). So there is some g-slalom C' c N such 
T~ 

that for all k, y(k) ~ C k. 
Define A = ( A k : k  ~ cJ} by A k :=  U B~. Thus A k is the union of 9(h) 

~eck 
many sets, of which at most f ( k )  - g(k) are pairs, and the others singletons. 
Thus IAml < g ( ~ ) +  (f(k) - g ( k ) )  = f(k), so A is an f-slalom in N,  and for 
all k, x(k) E A k. �9 

Similar to the proof of  1.13 we now get: 

1.15 Lemma.  (1) I f  2g <= f ,  then for all n , c ( n f ,  g) = c( f ,  9 ). 
(2) I f for  some c > O, (1 + c)9 <= f ,  then for all n , c ( n f ,  9) = c ( f ,g ) .  01.15 
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210 M. Goldstern and S. Sbelah 

2 The  forcing notion Qf,g 

2.1 Definition. We fix sequences (n~ :k E co) and (n k .+" k ~ w) that increase very 
quickly and satisfy n o << n~- << n~- << n + << . . . .  In particular, we demand 

(1) For all k II n i  < n~- 
j < k  

(2) lim l ~  
k-~oo log n~- 

+ 
(3) Tl,~ " T~ k < ~'k+l" 

= + This is We will only consider functions f ,  9 satisfying n~ ~: 9(k) < f (k )  < n k . 
partly justified by 1.9, and it also helps to keep the formulation of the main theorem 
relatively simple. 

2.2 Definition. Let X ~: 0 be finite, c, d C w. A (c, d)-complet e norm on P ( X )  is a 
map 

II [I : P ( X )  - {~)} --~ w 

mapping any nonempty a C X to a number I]all such that 

whenever a = a 1 U . . .  U a c C_ X,  then for some 

q , . . . , i d E { 1 , . . . , c } ,  Ilaq U. . .Ua~dJl>=llal l -1 .  

(]a] is the cardinality of the set a) 

A natural (c,d)-complete norm is given by Ilall := logc/d lal. c-complete means 
(c, D-complete. 

2.3 Definition. We call (f ,  9, h) progressive, if f ,  9, h are functions in ~w, satisfying 
z = + (1) For all k ,n~  < g(k) < f (k )  < n k 

(2) For all k, n~ < h(k) 

f (k )  / log h(k) = oo. (3) li~ log ~ /  

We call (f ,  g) progressive, if there is a function h such that (f ,  g, h) is progressive 
(or equivalently, if ( f ,  g, n - )  is progressive, where n -  is the function defined by 
n-(k)  = n~-). 

2.4 Remark. For example, if f and 9 satisfy (1), then (f ,  g, g) is progressive iff 
log f / log g ~ oo. �9 

In 2.6 we will define a forcing notion Qf,g,h for any progressive (f ,  9, h). First 
we recall the following notation: 

2.5 Notation. <~w = U ~w is the set of finite sequences of natural numbers. For 
n 

s E <~w, Isl is the length of s. 

A tree p is a nonempty subset of  <~w with the properties 
V~I c p V k  < [fll:~/ I k ~ p  
V~/c p:sUCCp(r/) d= ~), where 

snc%(~) := {.  ~ p:~  c - ,  I~[ + 1 = I ' [} .  

A branch b of  p is a maximal linearly C-ordered subset of p. Every branch b defines 
a function b:w ---+ w by b = U b. We usually identify b and b, so we write b I k 
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Many simple cardinal invariants 211 

(instead of (U b) r k) for the Mth element of b. The set of all branches of p is written 
as [p]. 

For r] E p, we let 
p[~] := {u C p:u  C_ rl or fl C u} 

We let 

split(p) := {fl ~ p '  IsUCCp(r])l > 1} (the splitting nodes of p) 

splits(p) := {rl E split(p): ]{u C r/:u ~ split(p)} I = r~} (the r>th splitting level) 

and we define the stem of p to be the unique element of split0(p). 

2.6 Definition. Assume f ,  9, h are as in 2.3. Then we define for all k, and for all 
sets x 

II<l~ := log(lxl/g(k)) 
L log h@) ] 

and we define the forcing notion Qf,g (or more accurately, Qf,g,h ) to be the set of 
all p satisfying 

(1) p is a perfect tree. 
(2) gr] C pgi E dom(r/)r/(/) < f ( i) .  
(3) Vr] E splitn(p)Ilsuccp(rT)ll[q > r~. 

We let p __< q ("q extends p") iff q C_ p. 

2.7 Remark. If we define 

p r -  k q  iff p < q  and splitk(p) C_q 

then Qf,g,h satisfies axiom A, and is in fact strongly %u-bounding, i.e., for any name 
of an ordinal, ~, for any p and for any n there is a finite set A and a condition q _ 3  p, 

q I? ~ E A. However,  it will be more convenient to use the relation __<~ that is based 

on levels rather than splitting levels. 

2.8  Definition. For p, q c Q,  r~ c a~ we define 

P <n q iff p <= q and p N  <-~c~ C_ q 

2.9 Notation. We will usually write Ibllp instead of Ilsuccp(~)lll<. 

2.10 Remark. This forcing is similar to the forcing in [Shelah 326], but note the 
following important difference: Whereas in [Shelah 326] all nodes above the stem 
have to be splitting points, we allow many nodes to have only one successor, as long 
as there "many"  nodes with high norm. 

2.11 Remark. 
(1) The norm I1 Ilk is h(k)-complete (hence also r~--complete). 
(2) If c/d <= h(tc), then the norm is (c, d)-complete. 
(3) If I[dl~ > 0, then I~l > 9(k). 
(4) Ilf(k)l[~ --+ oc (so Qf,g,h is nonempty). @2.11 

We will see in the next section that this forcing (and any countable support product 
of such forcings) is proper and ~c~-bounding. For the moment,  we only show why 
this forcing is useful in connection with c( f ,  g): 
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2.12 Fact. Any generic filter G c_ Qf,g defines a "generic branch" 

r :=  U stem(p) 
pEG 

that avoids all 9-slaloms from V. 

Proof. Let ]~ = INk : k C w} be a g-slalom in V, and let p E Qf,g be a condition. 
Let r/ C p be a node satisfying 1l~7[[p > 0. Let k :=  [~[. Then [sUCCp(r])l > 9(k) by 

2.11(3), so there is i ~ Bk, r /~i  E p. So pin-i]  I~- r(k) = i ~ B k. �9 

3 The construction 

In this section we will prove the following theorem: 

3.1 Theorem (CH). Assume that (f~,9~ :~ < a;1) is a sequence of progressive 
functions, witnessed by functions h~ (see 2.3). 

Let ( ~ : ~  < c~1) be a sequence of  cardinals satisfying t~  = ~ such that whenever 
~ < ~ ,  then 

lira min [fr  f~ (k ) /h~(k ) )  = 0 

(or informally: either fr << g~, or f~/9~ << he, or a combination of these two 
condition holds). 

Then there is a proper forcing notion P not collapsing cardinals nor changing 
cofinalities such that 

For the proof we use a countable support product of the forcing notions Qf~:g~,h~ 
described in the previous section. 

3.2 Remark. The theorem is of course also true (with the same proof) if we have 
countably or finitely many functions to deal with. 

If we are only interested in 2 cardinal invariants e(ff, g~), c(f,  9), then we can 
phrase the theorem without the auxiliary functions h as follows: If  (f,  g) and (if ,  9 I) 
are progressive, and satisfy 

( ~  log(f/g) 
min ' l ~ ) J  --+ 0 

then c(f,  g) < c(ff  , 9 I) is consistent. 
In particular, this shows that our result is quite sharp: For example, if for some 

function d we have lim d = ec, f f  = fd, 9 ~ = g d (and (f,  g), ( if ,  g ~) are progressive 
with the same n~,  + nk), then e(f,  9) < c( f f ,9  ~) is consistent. On the other hand, 
c( f  ~, g~) < c(f, g) for every fixed n. 

f '  log(f ~g) Proof. Choose h / such that log h'  ~ 2 log(f/g) whenever - -  > (f/ ,  g ,  h/) 
g = log(ff/g')" 

is progressive, and the assumptions of the theorem are satisfied. (Recall that (f,  g) is 
progressive, hence log f /g  >> logn  , so h ~ will satisfy h~(k) >_ n~). �9 
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A similar simplified formulation of 3.1 is possible when we deal with only 
countably many functions. 

3.3 Example. There is a family (f~,9~,9~:~ < c) of continuum many progressive 

 uch  at 0 

we may choose any family (~c~ :~ < % )  of cardinals satisfying ~c~ = t~ and get an 
extension where c(f~, g~) = rc~.] 

[ 1 ~ /  l ~  "log" Proof. Let g~ := ~ log log n~ J '  (Here, can be the logarithm to any (fixed) 

base, say 2.) Then lim gk = ~ ,  and by invariance (1.5(4)) we may assume gk > 1 
for all k. k-~oc 

Let T C 2 <~ be a perfect tree such that for all k we have IT A 2kl = g~, say, 
T ~ 2  k = {Sl(k), . . . ,  sek(/c) }. For any x ~ [T] (i.e., x E 2% Vkx I/~ ~ T)  we now 
define functions f~, 9~, hx by: 

If  x I/~ = si(/~), then 

f~(~)  = (n;-)e~ ~ 

hx(k)  = y a k )  = (n ; ) e~  ~-~ 

We leave the verification that (fz, 9x, hx) is indeed progressive to the reader. IRecall 
l_ 

2.4, and also note that loglog f~(k) < 2g k logg k + l o g l o g n ~  < loglogn~-. Finally, 
note that if x = y, then for almost all ]~ we have 

min \ 9 ~ '  hx(k) << n ~ "  �9 

3.4 Example. It is consistent to have c(f  2, 

Pro@ Let gk := log nk . Assume g~ 

9 2) < c(f,g) (for certain f, 9). 

> 0 for all k. Then, letting 

f (k )  := (n~)  3gk 

g(]~) :---- (n/c) 2gk 

h(k) :=  % ,  

f we have that (f ,  9, h) and ( f 2  92, h) are progressive, and lim g5 = 0, so we can apply 
the theorem. �9 

3.5 Definition. Let ~ be a disjoint union a = U A~, where IA~] = t~. 
5<Wl 

For c~ < ~, let Q~ be the forcing Q&,9~,h~, if ct E A~, and let P = [ I  Qc~ 

be the countable support product of the forcing notions Q~, i.e., elements of P are 
countable functions p with dora(p) C_ t~, and Vc~ E dora(p) p(c~) ~ Q~. 

For A c ~, we write P r A := {p F A:p E P}. Clearly P [ A < P for any A. In 
particular, Q~ < P.  
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We write r ~  for the Q~-name (or P-name)  for the generic branch introduced by 

a generic filter on Q~. 
We say that q strictly extends p, if q > p and dom(q) = dora(p). 

3.6 Facts. Assume CH. Then 
(1) each Q~ is proper and ~cJ-bounding. 
(2) P is proper and ~c~-bounding. 
(3) P satisfies the R2-cc. 
(4) Neither cardinals nor cofinalities are changed by forcing with P.  
Proof of (1), (2): See below (3.23, 3.24). 
Proof of (3): A straightforward A-system argument, using CH. 
(4) follows from (2) and (3). @36 

We plan to show that IF-p c(f~,g~) = ~ for all ~ < co 1. 

3.7 Definition. If  p C P ,  k c w, we let the level k of p be 

Levelk(p) := {~/: dom(~/) = dom(p), Vc~ E dom(~) : If/(c~) I = k, ~](c~) ~ p(c0} 

We define the set of active ordinals at level k as 

activ%(p) := {c~ E dom(p): ]stem(p(c0)l =< k} 

3.8 Remark. Sometimes we identify the set Levelk(p) with the set 

{~: dom(~/) = activ%(p), Vc~ E dom(~/): ]~/(c~)[ = k} 

= {r/ F ac t iv%(p) : f /E  Levelk(p) } 

3.9 Definition. We say that the k-th level is a splitting level of p (or "k is a splitting 
level of p") iff 

~c~ E dom(p)Br/C split(p(c~)): ]r]] = k 

3.10 Definition. If ~ ~ Levelk(p), ~/1 E Levelk,(p), k < U, then we say that f /  
extends f / i f f  for all c~ C dom(~/), T/(c0 extends (i.e., _D) ~(c0. 

3.11 Definition. For p, q C P ,  k E cJ, we let 

P =<k P iff p =< q and Vc~ C dora(p):p(c~) <~ q(c0 and activ%(p) = activ%(q) 

That is, we allow dora(q) to be bigger than dora(p), but for all new c~ C dom(q) 
dora(p) we require that Istem(q(c0)[ > k. 

3.12 Definition. Let A C_ p .  A set D C_ p is 
dense in A, i fVp c A~q E D:p  < q 

strictly dense in A, if Vp E A~q E D :p <= q and dom(p) = dom(q) 
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open in A, if Vp c DVq C A : (p <__ q implies q ~ D)  
almost open in A, if Vp c DVq E A �9 (1) < q and domO) = dom(q) implies 

q E D ) .  

These definitions can also be relativized to conditions above a given condition P0. 
If we omit A we mean A = P.  

3.13 Definition. If ~1 E Level~(p), we let q = piP] be the condition defined by 
dom(q) = dom(p), and 

Va C dom(q) q(a) = p(~)[~(~)] 

3.14 Definition. I f p  I? x c V, and ~ ~ Level~(p), we say that ~ decides z (or more 

accurately, pin] decides z) if for some y E V, pin] /~- x = ~. 

First we simplify the form of our conditions such that all levels are finite. 

3.15 Fact. The set of all conditions p satisfying 

~ V/~lactive~ I(p) [ w, moreover: < and 

D ~ F o r  any splitting exactly one pair (% c0 Isuccp(~)(OI level k there is such that 

> 1 .  
is dense in P .  O3.15 

3.16 Fact. If  p is in the dense set given by (I) and (II), then the size of level k is 
--  + % ~ - .  

< T~k_ 1 �9 T~k_ 1 < 

Proof  By induction. O3.16 

From now on we will only work in the dense set o f  conditions satisfying (I) and (II). 

SUCCO]o) rl I'-"" .... . / 

{XO=~ 2 ~ 1  

Fig. 2. A condition satisfying (I) and (II) 

.......................... k 2 

....................................... k l  

............................................ k 0 

dora(p) 

3.17 Notation. For p satisfying (I)-(II),  we let k z = kz(p) be the l-th splitting level. 
Let r/z = rh(P) and c~ z = az(p) be such that Ir/z(P)l = kz(P), r/z(P) c split(p(c@). We 
let ~-z = ~z(P) be such that c~ z E Acz. 
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We write Iplkz for I z[Ip< z>, i.e., for (See Fig. 2). 

3.18 Definition. If  p is a condition, I ~ c~, c~* := c~z(p), r/* := ~h(P), u* E 
sUCCp(~,)(~]*), we can define a stronger condition q by letting q(c0 = p(c~) for all 

c~ ~= c~*, and 
q(c~*) := {7 C p(c~*):If ~/* C r~, then u* C r/} 

In this case, we say that q was obtained from p by "pruning the splitting node r]*." 
To simplify the notation in the fusion arguments below, we will use the following 

game: 

3.19 Definition. For any condition p ~ P, G(P, p) is the following two person game 
with perfect information: 

There are two players, the spendthrift and the accountant. A play in G(P, p) last 
w many moves (starting with move number 1). The accountant moves first. We let 
Po := P, io := O. 

In the n-th move, the accountant plays a pair ( ~ ,  c~ ~) with ~ c p~_ l (c~) ,  
-- i~_ 1, and a number b~. 

Player spendthrift responds by playing a condition p~ and a finite sequence u~ 
(letting i n := ]u~] + 1) satisfying the following (see Fig. 3): 

(1) p~ >i~ ~ P~- I .  
(2) z/~ E p~(c~) .  
(3) > bn. 
(4) u~ 3 ~'~. 
(5) For all o~ C dom(p~) - domQg~_l), Istem(p, ( ))l > 
(6) [Levell~l(p~) [ = ILevell,,~l(p~) [ = ]Level,v.l(p,~_~) I 

(Remember that all conditions p,~ have to be in the dense set given by (I) and (II)) 

y T" 

n 

~.~45.1. ......... i n 

' f f  .......................... i ,t. l 

~ Pn  

Fig.3. Stage n 

Player accountant wins iff after w many moves there is a condition q such that for 
all n, p~ =< q, or equivalently, if the function q with domain U dom(p~), defined by 

n 

q(ct) = U p~(a)  
c~ C d o m ( p n )  
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is a condition. Note that we have rh(q) = u z, c~z(q) = c~ ~, since the only splitting 
points are the ones chosen by spendthrift. 

3.20 Fact. Player accountant has a winning strategy in G(P,p) .  

Proof  We leave the proof to the reader, after pointing out that a finitary bookkeeping 
will ensure that the limit of the conditions p~ is in fact a condition. 

In particular, this shows that spendthrift has no winning strategy. Below we will 
define various strategies for the spendthrift, and use only the fact that there is a play 
in which the accountant wins. �9 

The game gives us the following lemma: 

3.21 L e m m a .  Assume that p is a condition satisfying (I)-(II). For each l let 0 A? 
F~ z C sUCCp(~z)(~/l ) be a set of norm l ie  m ]lkl => Hsuccp(~z)Qlz)]]/2" 

Then there is a condition q >= p, dora(q) = dora(p) such that for all l: 

(*) Ifr/z(p) E q(c~z(p)), then sUCCq(~z(p))(~ll(p)) _C F~z 

Plvof. The condition q can be constructed by playing the game. In the n-th move,  
spendthrift first finds a r/n D u n satisfying r/~(i) ~ F~i whenever this is applicable, 

and []succpn_lOln)[[ > 2b n. Then spendthrift obtains p,~ by pruning (see 3.18) all 

splitting nodes of p~_ ~ whose height is between It/hi and ]u z ] and further thinning out 
the successors of z/n to satisfy sUCCpn (~n) = Fv~" (Note that ffv,~ _C succp~_l (V n) = 

succ;0(~'~).) In the resulting condition q the only splitting nodes will be the nodes 
r]~, so (*) will be satisfied. �9 

(Note that in general zl~(q) == ~Yl(P), and indeed kz(q) + kz(p), since many splitting 
levels of p are not splitting levels in q anymore.) 

3.22 L e m m a .  Assume r is a Pp-name of a function from w to w, or even from w into 

ordinals. Then the set of  conditions satisfying (I)-(II) is dense and almost open. 

~ Whenever k is level, then in level k + 1 decides [ k. splitting a every 0 

Proof of (lII): We will use the game from 3.19. We will define a strategy for the 
spendthrift ensuring that the condition q the accountant produces at the end will 
satisfy (III). 

In the n-th move, spendthrift finds a condition r~ ~i~_~ P~- I  such that for every 

r) E Leveli~_~ (r~) the condition (p~)[~] decides r I i~-1 + 10. Then spendthrift finds 

~f" E %(c~ n) satisfying the rules and obtains p~ with ~ E p~(c~ n) from r~ by pruning 
all splitting levels between i n 1 and [V~I- �9 

Since all levels of q are finite, it is thus possible to find a finite sequence 
/3 = (/3 k :k E a;} in the ground model that will cover ~. (I.e. q I~- r (k)  ~ Be). 

The rest of this section will be devoted to finding "small" such sets B k. 

3.23 Corol lary.  19 is %;-bounding and does not collapse w 1. �9 

3.24 Remark. Although it does not literally follow from 3.22, the reader will have 
no difficulty in showing that 19 is actually c~-proper for any a < ~I .  �9 Indeed, 
using the partial orders E n from 2.7, it is possible to carry out straightforward fusion 
arguments, without using the game 3.19 at all. However, the orderings --<n are more 
easy to handle, since in induction steps we only have to take care of a single ~7~, 
instead of a front. 
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3.25 Fact. I~-p V~- E ~~ C_ ~, B countable, B E V, and ~- c V[G I B]. 

Proof. Let p be any condition and let Z be a name for a real. There is a stronger 

condition q satisfying (I), (II), and (III). Let B := dom(q). Clearly q IV ~- E V[G F B]. 

�9 

3.26 Corollary.  If  A = [A[ ~, then L~-pt a 2 ~0 _< A. 

Proof. For each countable subset B C_ A, I~-pF B CH.  Since every real in V[G] is in 
some such V[G I B], the result follows. �9 

3.27 Fact and Notations. If P satisfies (ii), then 
(1) If ~(c~ z) : r h and u ~ succp(a~)(~l), then the requirement 

uniquely defines an extension ~+" of f7 in Levelkz+l(p). 

(2) If ~(c~ z) ~ ~Tz, ~/ has a unique extension f/+ ~ Levelkt+l(p ). To simplify 
the notation in 3.33 below, we also define for this case, for any u E sUCCp(~z)(rh), 
~+v := ~+. 

3.28 Fact. The set of conditions satisfying (IV) is strictly dense (but not almost open) 
in the set of conditions satisfying (I)-(II). 

~ For all l: 

,Levelkl (p) , < rain ( IlP~llk~z, n~-)  

For the proof, note that ILevelkz(p) I = ]Level~z_~+l(p) [ �9 

3.29 Lemma.  Assume T is a P-name of a function E ~ ,  and IF-p Vkz(k) < n~-. 

Then the set of conditions satisfying (V) is strictly dense and almost open in the set 
give by (1),(H), (III), where 

~ Whenever k is level, then in level k decides k. a splitting every E f 

Proof. Fix p satisfying (I), (II), (III), (IV). 

Let k I :=/h(P) ,  etc. Let m z := ICevelkz I. 

Pro@ We will use 3.21. For each l E co, Fvl _C succp(~z)(~t ) will be defined as 

follows: Let m z := ILevelkz(p)l, and let T/~ . . . ,  ~9  -1 enumerate Levelk(p). Find a 
sequence 

succ~(~)(~) = f ~ _~ ~ ~ . . .  _~ f ~ V/IIF~+~II ~ > I1~11~ - 1 

such that for all i there exists x i such that for all p ~ F ~+~ we have p[(~)+'] I~- ~- I 

k = x. It is possible to find such F ~+~ since II" I1~ is n~-complete, and there are only 
T~- �9 n ~ - . . .  T~k_ 1 +  < n~- many possible values of ~-~ I k. 

Finally, let Fnz := F ' L  Applying 3.21 will yield the desired result. �9 

3.30 Remark. Note that (V) in particular implies 

~ Whenever k is not then in level k decides a splitting level, every ~(k). 
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3.31 Proof that I~-p c(f~, g~) > ~ :  (This proof is essentially the same as 2.12). 

Recall that r~  is the generic real added by the forcing Q~. Working in V[G], let 

. ~  be a family of  less than t~ many 9uslaloms.  We will show that they cannot cover 
I~ f~, by finding an c~ such that r ~  is forced not to be covered. 

There exists a set A ~ V of size < ~;~ such that ~ C_ V[G l A]. Since IA] < e;~ 
there is c~ ~ A~ - A. 

Assume that /3 is a 9us la lom in V[G I A] covering r~. So in V there are a 

P I A - n a m e / )  and a condition p such that 

I~-p[ A J~ is a g-slalom 

and 
p I~p B~ covers r~ 

We can find a node z / in p (a )  with sUCCp(~)(r/) having more than 9(Ir/I) elements. 
Increase p r A t o  decide BIll ,  then increase p(c~) to make ra  avoid this set. �9 

3.32 Fact. Fix ~*. Then the set of  conditions p satisfying 

~ F o r  all l: If  < then ~ *  I~l(p ), 

/ ) ' (fct(p)(kz) f~*(kz) hr < 
rain \ ~ , g~* (kz) ILevelkz (79)1 

is dense almost open. 

Proof. Write F~ for the function min ( ~ .  , f~* / h r  Recall that if ~ < ~ . ,  then 
g~* 

F~ tends to 0. Fix a condition p. We will use the game G(P, p). spendthrift will use the 
following strategy. Whenever a n C A~ and nr < t ~ . ,  then spendthrift first find m 0 
such that for all m > m o we have Fr < 1/ILevelh,~_1(p~_~) I. Now find u ~ D_ r] '~ 

of length > m 0 with a large enough norm, and play any condition p~ obeying the 
rules of the game. In particular, we must have ILevell,~l(p~)l = Igevelln~l(p~)l. 

Clearly the condition resulting from the game satisfies the requirements. �9 

3.33 Proof that I?p e(f~,9~) < ~4: Fix ~. We will write f for f~, etc. Let 

A:=U{Ar162 @. 
We will show that the g-slaloms from V P~A already cover ]-[ f .  This is sufficient, 
because I~-p (2RO) VPIA ~ IAI = ,%~. 

Let P0 be an arbitrary condition. Let ~ be a name of a function < f .  Find a 
condition p > Po satisfying (I)-(VI). 

For each 1 we now define sets F~l _C succpt~z)(~z ) as follows: 
(1) If  c h E A, then Fnz = succp(~z)(rh). 
(2) If  fcz(kz) =< g~(kz)/ILevelkz(p) I, then again Fvz = sUCCp(~z)(rh). 
(3) Otherwise, we thin out the set succp(~z)(rh) such that each 7) in Levelkz(p) 

decides E(kz) up to at most g(kz)/ILevelkl(p) I many values. 
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Here is a more detailed description of case (3): Let k = k t, C = @ 
Note that if neither (1) nor (2) holds, the letting c := f~ (k), d := 9g (k) / ILevel k (p)], 

we have c/d <= he(k). 
Using (c, d)-completeness of the norm II �9 II~,~ w e  define a sequence 

succp(~l)(~h) = L(0) _D L(1) D . . .  _D L(lLevel~(p)[) 

as follows. Let r]0, . . . ,  ~]]Levelk(p)[-1 be an enumeration of Levelk(p). 
Given L(i), we know that for each u E L(i) the sequence ~-+~, (i.e., the condition 

p[~+~l) decides ~(k). (See 3.27.) Since there only =< c many possible values for ~(k), 

we can use (c, d)-completeness to find a set L(i + 1) c L(i) and a set C(i) such that 
(a) IIZ(i + 1)ll > IIL(i)II - 1 
(b) IC(i)l < d. 
(c) For every u C L(i + 1), p[V['l IF- ~(k) E C(i). 

Now let Fvz be L(ILevel~(p)l), and let 

(~) B~ := ~ C(i). 
i 

So IB~[ < ILevel~(p)[. d < g(/~). 
1 Clearly I1"11  - I evel  (p)l > IIPlI  . 

This completes the definition of the sets F v .  
Let q _-< p be the condition defined from p using the Fvz (see 3.21). We will find 

a P I A-name for a g-slalom ~ = (B~: k e c~) such that 

q I~- D covers r .  

If/~ is not a splitting level, then every f / in  level k decides ~(/r by (Va). So in this 

case we can let 
B k := { i : ~ ]  E Levelk(p),p [~] I? ~(k) = i} 

This set is of size < ILevelk(p) ] < 9(k), and clearly q I~- ~(k) ~ B k. 

If k is a splitting level, k = k l, then there are three cases. 

Case 1: at  E A: We define B k to be a P I A-name satisfying the following: 

I[-p[A ~ k  = {i: 3~] E Levelk+l(p), V ~ p[~ I~- ~(/c) = i, ~)(c~l) _C ra~ } 

Thus, we only admit those f /which agree with the generic real added by the forcing 
Q ~ .  Clearly I~pF A IJBk] ~ Levelk(p) < g(k), and p I~-p E(/~) E B k. 

Case 2: fez(k) <= 9~(/;)/ILevelk(p) ]. 

So we have ILevelk+lCO) ] __< fez(h).  ILevelk(p) ] < g(k), so we can let 

B k := { i : 3 f /E  Levelk+l(p),p [~1 I~- Z(k) = i} 

This set is of size =< [Level~+l(p) I __< g(k), and again p I~- ~(k) c B k. 
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Case 3: Otherwise. We have already defined Bkl in (| By condition (c) above, 
q IF- ~(k) ~ B~. 

So indeed q I~- "B~ = (B~ "k E co} is a g-slalom covering ~" �9 �9 �9 

References 

[B1] 
[v Do] 

[CN] 

[Mi] 

[Sh 470] 

[Sh448a] 
[Va] 

Blass, A.: Simple cardinal invariants. (preprint) 
van Douwen, E.K.: The integers and topology. In: Kunen, K., Vaughan, J.E. (eds.) 
Handbook of Set-Theoretic Topology. North-Holland: Amsterdam New York Oxford 
1984 
Comfort, W.W., Negrepontis, S.: Theory of ultrafilters. Berlin Heidelberg New York: 
Springer 1974 
Miller, A.: Some properties of measure and category. Trans. Am. Math. Soc. 266, 93-114 
(1981) 
Shelah, S.: Vive la difference! In: Judah, H., Just, W., Woodin, W.H. (eds.) Proceedings 
of the MSRI Logic Year 1989/90 
Shelah, S.: Notes on many cardinal invariants. May 1991, (unpublished) 
Vaughan, J.E.: Small uncountable cardinals and topology. In: van Mill, J., Reeds, G. 
(eds.) Open problems in topology, pp. 195-218. Amsterdam New York Oxford Tokyo: 
North-Holland 1990 

Sh:448


