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Abstract. In this paper we present two consistency results concerning the existence of large
strong measure zero and strongly meager sets.

1. Introduction

Let . denote the collection of all meager subsets of 2¢ and let ./” be the collection
of all subsets of 2 that have measure zero with respect to the standard product
measure on 2¢.

Definition 1.1. Suppose that X C 2% and let 4+ denote the componentwise addi-
tion modulo 2. We say that X is strongly meager if for every H € N, X + H =
{x+h:xe X, heH}#2%.

We say that X is a strong measure zero set if forevery F € M, X + F # 2°. Let
S denote the collection of strongly meager sets and let SN denote the collection
of strong measure zero sets.

For a family of sets ¢ < P(R) let

cov(y) = min{|&¢'| o/ C Fand | oA = 2“’}.

non(#) =min{|X|: X &€ #}.

Strong measure zero sets are usually defined as those subsets X of 2 such that
for every sequence of positive reals {¢, : n € w} there exists a sequence of basic
open sets {I, : n € w} with diameter of I,, smaller than ¢, and X C Un I,,. The
Galvin-Mycielski-Solovay theorem ([4]) guarantees that both definitions are yield
the same families of sets.
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Recall the following well-known facts. Any of the following sentences is con-
sistent with ZFC,

FN = [2°]=N0, (Laver [7])

FN = [2°]=™1, (Corazza [3], Goldstern-Judah-Shelah [5])

Ll = [2°1=R0_ (Carlson, [2])

non(sA") =0 = 2% > Ry, cov(.#) = ¥ and there exists a strong measure
zero set of size 280, (Goldstern-Judah-Shelah [5])

b

The proofs of the above results as well as all other results quoted in this paper can
be also found in [1].
In this paper we will show that the following statements are consistent with

ZFC:

e for any regular k > Rg, S2H = [2°]<F,
o LM is an ideal and add(L#) > add(.#),

e Non(LA") = 2% = R, 9 = ¥ and there is a strong measure zero set of size
2%,

2. Y4 may have large additivity
In this section we will show that 4 can be an ideal with large additivity. Let
m = min{y : MA, fails}.

We will show that 24 = [2°]<™ is consistent with ZFC, provided m is regular.
In particular, the model that we construct will satisfy add(#£#) = add(.#).
Note that if 24 = [2°]<™ then 2™ > m, since Martin’s Axiom implies the
existence of a strongly meager set of size 2%0. Our construction is a generalization
of the construction from [2].
To witness that a set is not strongly meager we need a measure zero set. The
following theorem is crucial.

Theorem 2.1 (Lorentz). There exists a function K € ® such that foreverye > 0,
if A € [2°12K©® then for all except finitely many k € w there exists C C 2F such
that

1. |C|-27F<¢,
2. (Alk) + C = 2%,

Proof. Proof of this lemma can be found in [8] or [1]. O

Definition 2.2. For each n € w let {C}}, : n,m € w} be an enumeration of all
clopen sets in 2° of measure < 27", Forareal r € w® and n € w define an open

set
ro__ m
Hy = Cliy-
m>n

It is clear that H), is an open set of measure not exceeding 27". In particular,
H" = (,c, H); is a Borel measure zero set of type Gs.
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Theorem 2.3. Let k > Ng be a regular cardinal. It is consistent with ZFC that
MA _, + L = [2°]1°° holds. In particulay, it is consistent that S is an ideal
and add(FLH) = add( ) > N;.

Proof. Fix « such that cf(x) = x > Rg. Let A > « be a regular cardinal such that
A=<* = A. Start with a model V = ZFC + 2% = ).

Suppose that 2 is a forcing notion of size < k. We can assume that there is
y <ksuchthat Z=yand <, LC y x y.

Let {Z,, ;@a : o < A} be a finite support iteration such that for each o« < A,

I by 2y > C,if o is limit,
2. there is y = y, such that Ik, 2, >~ (y, <, 1) is a ccc forcing notion.

By passing to a dense subset we can assume thatif p € £, then p : dom(p) — «,
where dom(p) is a finite subset of A.

By bookkeeping we can guarantee that V7* = MA _,. In particular, V7* =
[2¢]~F C S .

It remains to show that no set of size « is strongly meager.

Suppose that X € VZ* N 2% is a set of size «. Find limit ordinal @ < A such
that X C 2N V7« As usual we can assume that « = 0. Let ¢ be the Cohen real
added at the step « = 0. We will show that V7 = X 4+ H¢ = 2%, which will end
the proof.

Suppose that the above assertion is false. Let p € 2, and let z be a 2 -name
for a real such that

plz ¢ X+ HE.

Let X = {x¢ : £ < «} and for each £ find pg > p and ng € w such that
pe b 2 & xe + Hy,.
Let Y C «k be a set of size x such that

1. ng=nfor§ e, N
2. {dom(pg) : & € Y} form a A-system with root A,
3. pg[& =p,foré €Y,
4. pe(0) =5, with [5] =€ > 7n,for§ € Y.
Fix a subset X' = {xgj 1] < K2 %} C Y and let 1 € w be such that
Ct+X =20
Define condition p* as

(B = | Pe ifa # B & B edom(pe), j <K@
sTmifa=p for B8 < A.

On one hand p* Ik, Cf;l C Hﬁé, so p* Iky X'+ H;f = 2. On the other hand,
P*=pejnJ < KQ Y, sop*lFyz¢ X' + Hg Contradiction.

To finish the proof we show that V”* |= add(.#) = «. First note that MA _
implies that add(.#) > « in V7. The other inequality is a consequence of the
general theory. Recall that (see [1])
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1. add(.#) = min{cov(.#), b}
Suppose that F C w® is an unbounded family of size > «.

2. if 2 is a forcing notion of cardinality < « then F remains unbounded in V7.
3. if {Zy, 2, : @ < A} is a finite support iteration such that Iy |2,| < « then
V7% |= F is unbounded..

(From the results quoted above follows that add(.#) < b < « in vZ *, which
ends the proof. (]

3. Strong measure zero sets

In this section we will discuss models with strong measure zero sets of size 2%0.
We start with the definition of forcing that will be used in our construction.

Definition 3.1. The infinitely equal forcing notion EE is defined as follows: p € EE
if the following conditions are satisfied:

1. p:dom(p) — 2<%,
2. dom(p) C w, |w\ dom(p)| = Ry,
3. p(n) € 2" forall n € dom(p).

For p,q € EE and n € w we define:

l.p>qg < p2gq,and
2. p>nq < p > q andthe first n elements of v \ dom(p) and w \ dom(q)
are the same.

It is easy to see (see [1]) that EE is proper (satisfies axiom A), and strongly o®
bounding, that is if p IF T € w and n € w then there is ¢ >, p and a finite set
F Cwsuchthatg IFt € F.

In [5] it is shown that a countable support iteration of EE and rational perfect
set forcing produces a model where there is a strong measure zero set of size 20,
In particular, one can construct (consistently) a strong measure zero of size 250
without Cohen reals. The remaining question is whether such a construction can
be carried out without unbounded reals.

Theorem 3.2. ([5]) Suppose that {Py, 24 : @ < w2} is a countable support iter-
ation of proper, strongly w®-bounding forcing notions. Then

V7o = S C [R]IFN. 0

The theorem above shows that using countable support iteration we cannot build a
model with a strong measure zero set of size > 0. Since countable support itera-
tion seems to be the universal method for constructing models with 2% = &, the
above result seems to indicate that a strong measure zero set of size > 0 cannot be
constructed at all. Strangely it is not the case.

Theorem 3.3. It is consistent that non(FA") = 2% > o = V| and there are
strong measure zero sets of size 220,
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Proof. Suppose that V }= CH and x = «™ > R]. Let 2 be a countable support
product of x copies of EE. The following facts are well-known (see [6])

. 2 is proper,

. 2 satisfies Rp-cc,

. 2 is w®-bounding,

. for f € V[G] N w® there exists a countable set A € x, A € V such that
f € VIGTA]

It follows from (3) that \'&4 = 0 = 8. Moreover, (1) and (2) imply that 2R =
in V7,

Foraset X C 2°NV7 letsupp(X) C « beasetsuchthat X € V[G[supp(X)].
Note that supp(X) is not determined uniquely, but we can always choose it so that
Isupp(X)| = [X] + Ro.

AW N =

Lemma 3.4. Suppose that X C 2°NV? andsupp(X) # k. Then V” = X € SN

Note that this lemma finishes the proof. Clearly the assumptions of the lemma are
met for all sets of size < x and also for many sets of size «.

Proof. We will use the following characterization (see [1]):

Lemma 3.5. The following conditions are equivalent.

1. X C 2% has strong measure zero.
2. Forevery f € w® there exists g € (2<°)® such that g(n) € 2™ for all n and

Vx € X dn x| f(n) = g(n). O

Suppose that X € V7 N2¢ is given and supp(X) # k. Leta* € « \ supp(X).
We will check condition (2) of the previous lemma.

Fix f € VZNw®. Since 2 is w®-bounding we can assume that f € V. Consider
acondition p € 2. Fix {k, : n € w}suchthatk, > f(n) and k, ¢ dom(p(a*)) for
n € w.Let py > p be any condition such that w \ {k, : n € w} C dom(pf(a*)).
We will check that

prlbp Vx € X In x| f(n) = G kn)] f(n),

where G is the canonical name for the generic object. Take x € X and r > p fe
Find n such that k, ¢ dom(r(a*)). Let r’ > r and s be such that

1. supp(r’) < supp(X)
2. r' = rsupp(X),
3. r' lkp x Tk, = 5.

Let f
1" _ r/(f}) if B # a*
r (ﬂ) - {r/(a*) U {(kn, S)} if,B —a

Itis easy to see that #” IF x [ f (n) = G(a*)(k,)| f(n). Since f and x were arbitrary
we are done. O
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