NUMBER OF STRONGLY \aleph_{ϵ} -SATURATED MODELS — AN ADDITION

Saharon SHELAH*

Institute of Mathematics, The Hebrew University, Jerusalem, Israel Rutgers University, Mathematics Department, New Brunswick, NJ 08903, USA

Communicated by Y. Gurevich Received 8 April 1988

We here improve Theorem 2.1 of [2].

2.1'. Theorem. Suppose T is unsuperstable, $\lambda \ge \lambda(T) + \aleph_1$. Then T has 2^{λ} pairwise non-isomorphic strongly \aleph_{ε} -saturated models of cardinality λ .

2.1.A. Remark. (1) $\lambda(T) = |\{ stp(\tilde{a}, \emptyset) : \tilde{a} \in {}^{\omega > \mathbb{G}} \}|$ (counted up to equivalence). (2) For most cases we get 2^{λ} such models, no one elementarily embeddable into another.

Proof. If T unstable use [3, III 3.10(3)] (see proof of [2, 2.1]). So w.l.o.g. T is stable.

Let $\varphi_n(\bar{x}, \bar{y}_n)$ $(n < \omega)$, \bar{a}_η $(\eta \in {}^{\omega >}\lambda)$ be as in [1, III, §3] so $\langle \bar{a}_\eta : \eta \in {}^{\omega >}\lambda \rangle$ is a nonforking tree, and for $\eta \in {}^{\omega >}\lambda$, $\operatorname{tp}(\bar{a}_\eta, \bigcup \{\bar{a}_v : v \in {}^{\omega >}\lambda\})$ does not fork over $\bigcup_{I < \omega} \bar{a}_{\eta \uparrow I}$ and $\operatorname{tp}(\bar{a}_\eta, \bigcap_{I \ll k} \bar{a}_{\eta \uparrow I})$ forks over $\bigcup_{I < k} \bar{a}_{\eta \uparrow I}$. Let $I \subseteq {}^{\omega >}\lambda$ be closed under initial segments, $|I| = \lambda$ and we shall construct a model M_I . We work in \mathbb{S}^{eg} .

We define $\langle A_i : i < \alpha \rangle$ and $\langle f_{c,d}^i : c, d \in A_i \rangle$.

(1) $\langle A_i : i \leq \alpha \rangle$ is increasing continuous:

 $|A_i| = \lambda, \qquad A_i \subseteq \mathfrak{C}.$

(2) $f_{c,d}^i$ is an elementary mapping, $f_{c,d}^i(c) = d$, $f_{d,c}^i = (f_{c,d}^i)^{-1}$, $\langle f_{c,d}^i: i \leq \alpha \rangle$ is increasing continuous, and for $c \in A_0$, Dom $f_{c,d}^i = \{c\}$.

(3) For each *i*: either

(i) $A_{i+1} = A_i \cup \{a_i\}$, tp $(a_i, A(i))$ does not fork over some finite subset B_i of A_i , or

(ii) for some c(i), $d(i) \in A(i)$, $A_{i+1} = A_i \cup f_{c(i),d(i)}^{i+1}(A_i)$ and $(\exists j < i)$ [Dom $f_{c,d}^i = A_j$] \vee [Rang $f_{c,d}^i = \{d\}$].

* The author wishes to thank the United States Israel Binational Science Foundation for partially supporting this research.

0168-0072/88/\$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland)

90

(4) For every $c, d \in A_{i+1}$:

(i) If $\{c, d\}$ is not a subset of A(i), then Dom $f_{c,d}^i = \{c\}$.

(ii) If $c, d \in A(i)$, case (i) in (3) holds or case (ii) of (3) holds but $\langle c, d \rangle \neq \{c(i), d(i) \rangle, \langle c, d \rangle \neq \langle d(i), c(i) \rangle$, then $f_{c,d}^{i+1} = f_{c,d}^i$.

(iii) If c = c(i), d = d(i) and case (ii) of (3) holds, then $tp(f_{c(i),d(i)}^{i+1}(A_i), A_i)$ does not fork over Rang $f_{c(i),d(i)}^i$.

(5) $A_0 = \bigcup \{\bar{a}_\eta : \eta \in I\}.$

We can clearly find $\alpha < \lambda^+$ and A_i , $f_{c,d}^i$ satisfying (1)–(5) such that:

(*) (i) For every finite B ⊆ A_α and b ∈ C, stp(b, B) is realized by some a ∈ A.
(ii) For every c, d ∈ A_α, Dom f^α_{c,d} = A_α = Rang f^α_{c,d}.

This is easy by reasonable bookkeeping and (3) above. Hence A_{α} is the universe of a strongly \aleph_{ε} -saturated model (of cardinality λ) (remember we work in \mathbb{C}^{eg}). We call it M_I (and should have written $\alpha_I < \lambda^+$, A_i^I , etc). Note that we can prove by induction

- (**) If $\text{Dom} f_{c,d}^i \neq \{c\}$, then
 - (i) $(\exists \delta \leq i)[\text{Dom } f_{c,d}^i = A_\delta = \text{Rang } f_{c,d}^i],$
- or (ii) $(\exists \alpha < \beta \le i)[\operatorname{Dom} f_{c,d}^i = A_\beta \& \operatorname{Rang} f_{c,d}^i = A_\alpha \cup (A_{\beta+1} A_\beta)],$

or (iii) $(\exists \alpha < \beta \le i)[\operatorname{Rang} f_{c,d}^i = A_\beta \& \operatorname{Dom} f_{c,d}^i = A_\alpha \cup (A_{\beta+1} - A_\beta)].$

Our next note that we can prove by induction on *i* that:

(remember: A is $F_{\aleph_0}^f$ -atomic over B if: for $\bar{a} \in A$, $tp(\bar{a}, \beta)$ does not fork over some finite subset of B). (We use [1, III §3] for $F_{\aleph_0}^f$, see table in [1, III §2].)

- (***) (i) For j < i, A_i is $F_{\aleph_0}^f$ -atomic over A_j , and
 - (ii) for $j \leq i$, $c \in A_j$, $d \in A_j$ we have: A_i is $F_{\aleph_0}^{f}$ -atomic over $\text{Dom} f_{c,d}^{j}$ and over $\text{Rang} f_{c,d}^{j}$.

Now we define by induction on *i*, a well ordering $<^i$ of $A_i - A_0$ such that: for j < i, $<^i \upharpoonright (A_j - A_0) = <^j$, and $A_j - A_0$ is an initial segment of $(A_i - A_0, <^i)$, and for $x \in A_i - A_0$, A_i is $F_{\aleph_0}^f$ -atomic over $A_0 \cup \{y \in A_i : y < x\}$. In other words M_I is $F_{\aleph_0}^f$ -constructible over $\bigcup_{\eta \in I} \bar{a}_\eta$. So for every $b \in M_I$ we can find finite $B_b \subseteq M_I - \bigcup_{\eta \in I} \bar{a}_\eta$, $\mu_b \subseteq I$ such that: if $b \in A_0$, $B_b = \emptyset$; if $b \notin A_0$, b is the maximal (by $<^{I,\alpha}$) member of B_b and for $c \in B_b$, tp $(c, A_0 \cup \{d \in M_I - A_0; b <^{I,\alpha} c\})$ does not fork over $\{d \in B_b: d <^{I,\alpha} c\} \cup \{\bar{a}_\eta; \eta \in \mu_b\}$ (so if $b \in A_0$, then $b \in \bigcup_{\eta \in \mu_b} \bar{a}_\eta$).

W.l.o.g. $[c \in B_b \Rightarrow B_c \subseteq B_b].$

Now we can note that the proof of [1, VIII 2.7] works when λ is regular; when λ is singular combine the proof of [1, VIII 2.7] with the suitable proofs of [1, VIII §2]. Alternatively, let

$$R_{n_1,n_2,n_3} = \{ \bar{a}^{\wedge} b^{\wedge} \bar{c} : \bar{a} \in {}^{n_1} M_I, \ \bar{b} \in {}^{n_2} M_I, \ \bar{c} \in {}^{n_3} M_I \text{ and} \\ \operatorname{tp}(\bar{a}, \ \bar{b}^{\wedge} \bar{c}) \text{ does not fork over } \bar{b} \}.$$

$$\Delta^* = \{ R_{n_1, n_2, n_3} : n_1, n_2, n_3 \in \omega \}.$$

Claim. M_I is semi Δ^* -representable in $\mathfrak{M}_{\aleph_0,\aleph_0}(I)$.

Remark. See the second version of [3, Ch. III 2.2] for the definition.

Proof. W.l.o.g. the \bar{a}_{η} ($\eta \in I$) are pairwise disjoint with no repetition. Let $F_{l}(x_{\eta})$ represent the *l*-th element of \bar{a}_{η} , and $b \in M_{I} - \bigcup_{\eta \in I} \bar{a}_{\eta}$ will be represented by $F_{n}(\sigma_{1}, \ldots, \sigma_{k}, \eta_{1}, \ldots, \eta_{k})$ where $\{\eta_{1}, \ldots, \eta_{k}\} = \mu_{b}$ (in increasing lexicographic order of *I*), and $\{\sigma_{1}, \ldots, \sigma_{k}\}$ are the representations of $\{d: d \in B_{d}\}$ (in $<^{l, \alpha}$ -increasing order).

The rest is by the nonforking calculus.

Now by the second version of [3, Ch. III] we get our conclusion.

References

- S. Shelah, Classification Theory and the Number of Non-isomorphic Models (North-Holland, Amsterdam, 1978) 542 + xvi pp.
- [2] S. Shelah, On the numbers of strongly \aleph_{ε} -saturated model of power λ , Ann. Pure Appl. Logic 36 (1987) 279–287.
- [3] S. Shelah, Universal classes in: J. Baldwin, ed., Proc. of the United States-Israel Conf. on Classification Theory, Chicago, December 1985, Lecture Notes in Math. 1292 (Springer, Berlin, 1987) 264-418.