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BETTER QUASI-ORDERS
FOR UNCOUNTABLE CARDINALS'

BY
SAHARON SHELAH

ABSTRACT
We generalize the theory of Nash-Williams on well quasi-orders and better
quasi-orders and later results to uncountable cardinals. We find that the first
cardinal k for which some natural quasi-orders are «-well-ordered, is a
(specific) mild large cardinal. Such quasi-orders are %, (the class of orders
which are the union of = A scattered orders) ordered by embeddability and the
(graph theoretic) trees under embeddings taking edges to edges (rather than to
passes).
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§0. Introduction

We call a quasi-order Q well-ordered if for every g, €Q (n < w), for some
n <m, q. = q.. There is a beautiful and extensive theory on this notion, mainly
on proving various quasi-orders are well-ordered. See Erdos—-Rado [2], Higman
[4], Kruskal [7], [8], Rado [21] for the easier parts. For the harder theorems,
Nash-Williams suggests a smaller class, that of bqo (better quasi-order) which
has a more complicated definition but stronger closure properties. (Important
cases are: if Q is bqo, so is Seq--(Q)={(q::i <a):a an ordinal, ¢ € Q},
(g :i<a)=(q':i<p)iff there is a strictly increasing h: a« — B, ¢: = ¢"* (and
similar results on the power set and its iteration); the class of trees of height o,
with the order being: embedding by a function preserving < (and more) but not
the level; you can formulate it in graph theoretic terms.) (See [15-20].)

Laver uses this to get deep results: some classes of orders and trees are bqo.
But we were initially interested just in trees ordered by such embeddings which
preserve the level." Of course this class is not well-ordered, but we want to know
whether for every A it has A pairwise incomparable elements. A natural
approach is to say Q is x-well-ordered iff for every q: € Q (i < k) for some i <},
g: = q;, and to try to generalize Nash-Williams’ theory. Notice however that
some of the tools are missing: of course the choice of minimal subset like {15],
but more important is that the Ramsey theorem becomes problematic (« has to
be weakly compact) and even more Nash-Williams’ generalization of it which
says “‘every block contains a barrier” (x has to be Ramsey).

We succeed in proving the parallel of his basic theorems on ““Q is bqo iff every
P. (Q) is well-ordered” for any «, but we have to change somewhat his basic
definitions. In 2, (Q) we have to assume for ACQ, a€Q, that A =d when
(Vx € A) x = a (usually we say A £ a). Alternatively we demand Q X (w, <) is
k-bqo. Also we lose “‘every block contains a barrier” so we have to use another
intermediate notion k-I-barrier, and call our notion x-I-bqo.

We develop this also for a twin notion. We call Q «-narrow if for ¢ €Q

* This is interesting because of more general problems in model theory, see [23].
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(i <«) for some i#j, q=gq;. If we replace consistently «-well-ordered by
k-narrow, we get «-D-barriers, x-D-bqo.

Let the well-ordering number of Q be the first k such that Q is x -well-ordered.

But if we want to go any further, we have to consider some mildly large
cardinal, but don’t be afraid if you don’t believe in them. The theorems do not
say ““if some large cardinal exists then...” but rather ‘‘the well-ordering cardinal
of some naturally defined Q is a specific large cardinal”: so our results are
meaningful even if no such cardinal exists.

How are we forced to large cardinals? If Q is not No-narrow, and countable,
then the first « for which Q is x-I-bqo is the first uncountable beautiful cardinal
(see §2, mainly 2.5; it is strongly inaccessible but may exist in L). Also, further
theorems require such k, and a stronger notion — [x;A]-I-bqo for any
No= A < k. Then we get that the trees we mention are [« ; A ]-I-bqo (even when
labeled by a [k;A]-I-bgo Q), and also Seq--(Q).

Let N, be the class of ordered sets which are unions of A scattered orders.
(All ordered sets of power = A are inside.) Laver proved that Iy, is bqo (under
embeddability). Again some of his tools disappear ( = the universal (A, x )-order
of I,).

Generally we proved that under general conditions the I and D versions
coincide, and the D-well-ordering number is a beautiful cardinal.

But we prove that the well-ordering number of I, is the first beautiful x > A.

RemMARrk. One property we lose when we generalize well-ordering to x-well-
ordering is closure under product of two; this is saved for k weakly compact. But
as for k-X-bqo we have to make k Ramsey. If we want to save this property, a
reasonable way is as follows. We will have a system @ =(Ts : B a x-X-barrier),
95 a filter on B X B, and call Q 9-X-bqo if for any x-X-barrier B and ¢, €Q
(n €B),

{(n,v):m EB,vEB, nRxv, ¢, = q.} € Ds.
For closure under product of A, the filters have to be A *-complete.

For x > 2%, a natural filter is: @5 is generated by the sets G(B,M), M a
model with universe « and say N, relations, where

G(B,M)={(n,v):n €EB, v € B, Rxv, and 7, v realize the same type
in the model M [over the set {a : & <min{n(l), v(I): I}]}

REMARK. Most of the results (mainly in §1) go through for « an ordinal
(infinite for X = D, limit for X = I'). Moreover we have not used the hypothesis
that the two place relation = on Q is a quasi-order. We can define “«-X-well-
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ordered”, [x; a]-X-bgo for any Q =(Q, R), R a two place relation, as well as,
e.g., ?.(Q). We have not developed this theorem as we have no particular
application in mind.

I would like to thank M. Magidor for several helpful discussions and
information on large cardinals, and R. Holzman for his very careful checking,
and correcting errors.

Review

§0: We define X-barrier (0.1), the depth Dp(n, B), Dp(B) (0.2) and prove
some technical claims to be used later.

§1: We define «-well-ordered (k-narrow), B-bqo, (x, a)-X-bqo, etc. (1.1),
product (of quasi-orders) (1.2), 2(Q), #.(Q), ?3(Q), ?:*(Q), 22Q) (1.3),
characterize order in 2..(Q) (1.7). We prove «-X-bqo is preserved by 2 (1.8),
1.10is a simple case, 1.9 is used later. By 1.11, Q is k-X-bqo iff for every y 2, (Q)
is k-X-bqo iff ?...(Q) is k-X-well-ordered. The proof Q not k-X-bqo— 2, (Q)
not «-X-well-ordered is carried out in 1.12.

§2: We present weakly compact, Ramsey and beautiful cardinals (2.1-2.4).
Important for the paper is 2.5: if Q is not y-narrow, then for some a the 9-
well-ordering number of 2, (Q) is = the first beautiful x > y. In 2.7 we define
[k, ;A ]-X-bqo, [k; A ]-X-bqo, [« ]-X-bqo and give easy facts (2.8, 2.9). By 2.10,
if |Q|< «, k beautiful then Q is [x]-X-bqo. By 2.11, essentially Q is [x;A]-X-
bqo iff Q" is x-X-bqo iff QX (A, =) is x-X-bqo. In 2.12 we give a trivial
sufficient condition for non-x-narrowness, and by 2.13, [k ; A]-D-bqo, [k; A]-I-
bqo are equivalent for A = No, hence (2.14) the first k s.t. Q is [«; A]-X-bqo is
beautiful. By 2.15 “[«x;A]-X-bqo” is preserved by 9.

§3: We investigate our notions for Q linear and get examples showing that
X =D, X =1 may behave very differently (3.1, 3.2); in 3.3-3.5 we get other
examples, e.g., for the first beautiful k > R, we get a k-I-bqo linear Q which is
not [« ;2]-I-bqo.

§4: Here we generalize the theorems on preservation of well-ordering (rather
than of bqo).

We define ?L,(Q) (4.1), prove (4.2) that for « weakly compact, Q «-well-
ordered, ?..(Q) is k-well-ordered, we present subtle, almost ineffable (4.3,
4.4) and prove (4.5) that for « almost ineffable, Q x-well-ordered, PL.(Q) is «-
well-ordered. In the rest of the section we deal with the question when an
X-barrier has a subbarrier of some depth; and (4.10) prove that a counterexam-
ple to “%?.(Q) is D-well-ordered” can be chosen to have small hereditary
cardinality.
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§5: We introduce some classes of (labeled) trees ', 7'(Q), T=.(Q) (for
[=0,1,2) and embedding notions. The main theorem 5.3 says J'(Q) is
[«;Ne]-bqo if Q is (I =0, 1,2). For this we reduce it to the well-founded case in
5.4, and give a general criterion to [k;A]-X-bqo in 5.5. (Some previous proofs
could have used it.) Theorem 5.6 suggests “Q X (w, =) is k-X-bqo” as natural
(e.g. equivalent to U, P**(Q) is x-X-bqo) and in 5.7, 5.8 we compute the
well-ordering number of 7°, 7°(Q).

§6: We define M, (union of A scattered orders), I, [Q], and give their
representation by trees (6.2-6.6) hence bounding the well-ordering number. We
also get a bound for the well-ordering number of Seq.-(Q) (6.8, 6.9) and
compute the well-ordering number of M, (6.11, 6.12).

§7: We present 7 °, 7' (with which Nash-Williams has dealt) and other
variants 7, %%, define local embeddability, and compute the well-ordering
number of 77'(Q), 7 3Q), 77**(Q), and ?1.(Q).

ReMARK. Many questions remain open, but we have not tried to exhaust
either the problems or the conclusions.

NoraTiON. Let A, u, k, x be cardinals, usually infinite, &, 8, 7, & ¢, i, j be
ordinals, 8 a limit ordinal. Let (— 1)+ « be the unique y, @ =1+ y. Let, m, n, 1,
k be natural numbers, 7, v, o be sequences of ordinals, /() the length of 7 (an
ordinal), n(i) the ith element of n, n"v the concatanation of  and »,and n=v»
(n<v) means 7 is a (proper) initial segment of v.

Let n~ be the unique sequence satisfying n =(n(0))"n".

Let iR7j mean i <j and iR}j mean i# j.

Let X denote I or D, and nRx» mean n~ = » and n(0)R%v(0). When n = »
let n U*v be (n(0))" v

Let | A | be the cardinality of A.

WecallQ=(0, =)aquasi-orderif x S x,andx =y Ay =z = x =z forany
x,y,z2€Q. We let [Q|=0Q so Q] is |Q], called the cardinality of Q, but
sometimes we forget to distinguish between Q and Q (when the order is clear),
s0 a € Q means a € Q. Note that we have not assumed x Sy ay=x > x =y,
and let x <y mean x =y but not y = x.

Let Seq. (A)={n :n is a sequence from A of length a},

Seq<.(A)= U Seqs(A).

B<a

For a set A of ordinals
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X Seq.(A)={n €Seq. (A): (Vi)(i +1 < l(n)— n()Rxn (i + 1)},

X Seq«.(A)= U X Seqs(A).
B<a
Note that any n € I Seq. (A), for a = w, is increasing, and n € X Seq. (A),
B < a implies n [ B € X Seqs(A) (obviously Seq satisfies this too) and 5, v €
X Seq..(A), nRxv implies n U* v € X Seq-. (A).

0.1. DeriniTioN. (1) If B is a set of finite sequences of ordinals, its domain
Dom B = Dom(B) is U s Range(n). We call B C X Seq-., (Dom B) an X-
barrier if:

(a) for every n € X Seq.,(Dom B) for some n <w, n{n €B,

(b) no member of B is an initial segment of another,

{c) if n € B, then there is no v< 7~ in B (but we do not forbid ™ = v € B),

(d) B has at least two members (so the empty sequence ( ) is not in B) and
Dom B has no last element when X = [ and Dom B is infinite when X = D.

(2) We define «-I-barrier (k-D-barrier) similarly, adding

(e) Dom B is a subset of « of order type «, but for notational simplicity we
usually deal with the case Dom B = «.

REMARK. In the definition of an I-barrier, we deviate from the definition
Nash-Williams and Laver use, in (c).

REMARK. A set B cannot be both an I-barrier and a D -barrier, except when

B ={{a): e € Dom B}
or
B ={a):a €Dom B ~ {ay} U {{es, a): @« €Dom B —{as}},

where a is the least ordinal in Dom B.

0.2. DeriniTioN.  Let X €{I, D}, B an X-barrier, n € X Seq<.. (Dom B).
(1) we define an ordinal @ =Dp(n, B) as follows:

(a) if there is v=u, v € B then a =0;

(b) if (a) fails then @ = U{Dp(n"(i), B)+1:7"(i) € X Seq<. (Dom B)}.
(2) We define Dp(B), the depth of B, as Dp({ ), B).

0.3. CLamm. Definition 0.2 well defines Dp(n, B) uniquely, and it is
<|Dom BJ".

Proof. By part (1)(b) of Definition 0.2, and (1)(a) of Definition 0.1.

0.4. CLamM. Let B be an X-barrier, X €{I, D}.
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(1) If n € X Seq«.(Dom B) then for some v € B, n and v are comparable,
ie, nZvorv=y

(2) Moreover, in (1), if X =1 and A C Dom B is unbounded, or X = D and
A CDomB has =2 elements, we can assume (Vm)(I(n)=m <Il(v)—
v(m)E A).

(3) If n € B, then there is v, nRxv, v € B, and we can add the demands of (2).

(4) If i € Dom B, iR%n(0), n € B, then for some k =I(n), (i)"(nk)€E B.

Proor. (1) and (2). We can find », € X Seq.,(Dom B), <, such that
(Ym)((n)=m<w—vi(m)EA); this is by part (d) of Definition 0.1(1).

Now by part (a) of the definition for some k <, v,k € B, and choose
v =l k.

(3) We act as in the proof of (2) for i, but if [(n) = 1, we require 7 (0)R5%v (0).
The v we get satisfies n” = v as v<< % cannot hold by part (c) of Definition
0.1(1); and as I(n)=1 implies n(0)R%v(0), clearly n Rxv.

(4) Easy, by (1) and Definition 0.1(1)(c) (remember ( )& B).

0.5. Ceam. If B is an I-barrier, n € B, v € I Seq., (Dom B) and 7 (i) <
v(j)forevery i <I(nm),j<lIl(v), then we canfind n, € B (I = I(n))such that:

@) mo=m,

(b) 1 = for 1 <I(n) and even m; Rpnis1,

(c) v, M are =-comparable, hence if v € B then v = 1.

(d) (k)= nn (k) iff ky+1=k,+m (where 0=k, <I(m), 0=k, <I(n.)).

Proor. We define by induction on I =[(n), i € B such that:

@D mo=m,

(i) ni-+=n and even 7R,

(iii) nm and {(y(m):1=m <I(n))"v are comparable.

For | =0 there is no problem. Suppose we have defined for /, let o be the
longer of the sequences n, (n(m): 1 =m <I(n)) v. By 0.4(2), we let n.., be a
sequence from B comparable with o, hence 0.5(d) holds.

0.6. CLamm. If B is a D-barrier, n € B, v € D Seq~, (Dom B) and [(v)>
0—n(l(n)—1)# v(0), then we can find n, € B (I =l(n)) such that:

@ mo=mn,

(b) 77 = for [ <I(n) and even n Rpmis,

(¢) v, me are =-comparable, hence if v € B then v = niy.

Proor. Similar to that of Claim 0.5.
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0.7..CLamM. Suppose B is an X-barrier. Then for every m,v€&
X Seq<. (Dom B), ™ = v implies

Dp(n, B)=Dp(n ", B)=Dp(», B).

Proor. By the definition of Dp (Definition 0.2) it is trivial that v; = v, implies
Dp (v, B)Z Dp(v,, B). So we have just to prove: Dp(n, B)=Dp(n~, B), and
we prove this by induction on Dp(n, B).

Case I. Dp(n ,B)=0

By the definition of Dp, this implies that for some k =!(n"), (n )| k €B.
By Claim 0.4(4) this -implies that for some m=k, nf(m+1)=
(nO0)'(n)Im)EB. Clearly m+1=k+1=1l(n")+1=1I(n), so this implies
Dp(n,B)=0.

Case II. Dp(n ,B)>0

We can assume that Dp(n, B) > 0 too (otherwise the conclusion is trivial).

Whenever n"(i) € X Seq.(Dom B) then Dp((n"(i)),B)<Dp(n~,B) (as
n-<(n"{i))", by the definition of Dp), hence by the induction hypothesis

Dp(n*(i), B)=Dp((n"(i))", B) =Dp((n )'(i), B).
So by Definition 0.2(1)(b), the above inequality, and Definition 0.2(1)(b),
respectively,
Dp(n, B)= U{Dp(n"(i), B)+1: 1'(i) € X Seq<, (Dom B)}
= U{Dp((n —)i), B)+1:(n = )'(i) € X Seq-.,(Dom B)}

=Dp(n, B).
So we finish.

0.8. CLaM. Suppose B is a k-I-barrier, v € B— I(v)=2 and let us define
B” ={n € D Seq<. (k): n is not monotonic, and for every k <I(n), nlk is
monotonic but not in B)."

Then B* =B UBP? is a k-D-barrier (with the same domain «).

ProoF. We check Definition 0.1. Clearly Dom B* = «.
(a) If n € D Seq. (x), if for some k, n[k €B, then [k € B*; if not, 0
cannot be monotonically increasing (as B is a «-I-barrier) nor monotonically

* The aim of this claim is to be used in 2.13 (with 0.9). If we put inside all decreasing sequences of a
constant length, for any function F with small range, for some 7n,» of this length, nRLy,
F(n)= F(v), which is what we want to avoid in 2.13.
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decreasing (as « is well-ordered). So there is a minimal k for which 7 [ k is not
monotonic; obviously n [ k € B® C B*.

(b) Suppose n,v € B* and n<v. It is impossible that n,» €B as B is a
k-I-barrier; also it is impossible that n,» € B®, or 7 €B, v € B® (by the
definition of B”). We are left with the case n € B®, v € B, but v is increasing
(as B C I Seq-.(x)) whereas 7 is not monotonic, contradiction.

(c) Suppose n, v € B*, v<< . Clearly n, v € B is impossible and also 7, v €
B® (as then n [ (I(v)+ 1) is not monotonic, /(v)+ 1< I(n)). Obviously, v € B>,
1 € B is impossible (as n is monotonic, v is not). At last, if n € B®, v € B, so
I(v)z2, then, as 3= n[|(Il(v)+1)<7n is monotonic, v increasing, 7(0)<
n(1)=v0), so (n(0)'v€EISeq<.(xk). Hence for some m=I(»),
(nO) (v m)EB so nl(m+1)EB contradicts n € B”.

(d) |B*|z|B|=z2.

0.9. CLamm. Suppose B, B®, B* are as in 0.8,
Bl.={n €B" :l(n)=n, n(0)<n(L)},

na={n €B”:l(n)=n, n(0)>n()},
/

then B® is the disjoint union of the Bffi, B2, (3=n <w) and if n,v € B*,
nRpv then exactly one of the following occurs:

(@) n€B,

(b) n €BL.y., vEBL,, v=7" for some n =3,

() n €EBL4, vEBrL;, v=m" for some n =3,

(d) n €EB3., vEBL,, n =vIl2,

() nEBY, vEB.., n =vl2,

) n€EBL, vEB, n =v]|2.

Proor. Easy.

. 0.10. Cramm. Suppose B, B”, B* are as in 0.8. Then Dp(B*)=
Max{Dp(B), k}.

ProoF. We first establish, by induction on Dp (%, B*), that for monotonically
decreasing n, 1 <I(n)<w, Dp(n,B*)=n((n)—-1)+1.

Dp(n, B*)=U{Dp(n"(i), B*)+1: n"(i) € D Seq-., (x)}. For i>
n(l(n)—1), Dp(n"{), B*)=0, while for i <n(l(n)—1), Dp(n"{(i),B*)=i+1
by the induction hypothesis, so Dp (%, B)* = n(I(n)— 1)+ 1, as required.

Now we show, by induction on Dp (v, B*), that for » € I Seq.., (x), 1 <I(v),
Dp(v, B*)=Dp(v, B). By the definitions Dp(v, B*)=0< Dp(v,B)=0. As-
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sume now that Dp (v, B*)>0, then Dp(»,B*)= U{Dp (v*(i),B*)+ 1:v"(i) €
D Seq<. (x)}. For i <v(l(v)—1), Dp(»*i),B*)=0, while for i > v(I(»)—1),
Dp(»"(i), B*)=Dp(v*(i), B) by the induction hypothesis, so Dp(y, B*)=
Dp(v, B).

If I(v)=1, then it follows by what we have shown that Dp(y,B*)=
Max{Dp (v, B),v(0)+1}. Hence Dp({ ),B*)=Max{Dp(( ),B),k}, as re-
quired.

§1. The basic generalization

Here we define the central notions generalizing well-ordering and better
quasi-ordering, and generalize the basic theorem of Nash-Williams that better
quasi-order is preserved by the operation 2 (Q).

As in Nash-Williams’ works, we are interested in proving that various
quasi-orders are k-well-ordered, or k-narrow. But we are naturally drawn to
stronger notions (here, e.g., k-X-bqo) as they are preserved by more operations.
Our main conclusion is that Q is k-X-bqo iff every 2, (Q)is x-X-well-ordered.

1.1. DerFINITION. (1) A quasi-order Q = (Q, =) is k-well-ordered [« -narrow]
if for every ¢ € Q (i <«) there are i <j <k [i <k, j<k, i#]] such that
4 = g;.

(2) A quasi-order Q =(Q, =) is B-bqo (for B an X-barrier, X €{I, D}, bqo
standing for better quasi-order) if for every q, € Q (n € B)we canfind n,» € B
such that nRkv and ¢, = q.. For emphasis we write “B-X-bqo”".

(3) A quasi-order Q is (k, @ )-X-bqo if for every x-X-barrier B of depth = a,
Q is B-bqo.

(4) A quasi-order Q is k-X-bqo if it is (k, @ )-X-bqo for every a (in fact, for
every a < k).

(5) Let «-I-well-order mean k-well-order, and «-D-well-order mean -
narrow.

We do not list the obvious implications and monotonicity properties.
Now we define some simple operations on quasi-orders.

1.2. DeFiniTioN. (1) For quasi-orders Q; =(Q1, =), Q: = (Q,, =) we define
their product; its set of elements is Q, X Q, ={(q1,92): q: € Q., ¢, € Q-} and for
(Ih(I; € Q,, (12,(146 Q.

(9,9:)=(qi,q3) iff q=qiand g.=q:.
(@) ;<. Q. is defined similarly, and Q* is II;<. Q; where Q; = Q.
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1.3. DerINITION. (1) 2(Q) is the family of subsets of Q, and if Q =(Q, =),
we let = be the following order on it:

A = B iff there is a function h : A — B, such that g = h(q) for every q € A.

So we let 2(Q)=(2(|Q]), =).

(2Q) P-.(A)={CCA:|C|<«k}, and P.,.(Q) is defined naturally.

(3) For any set A we define #,(A) (o an ordinal) by induction on a as
follows:

QO(A)___ A,
P.i(A)= P, (A)U P(P.(A)),

P (A)= U P.(A) (for 8 limit),

a<$

Po(A)= U 2.(A).

We treat here the elements of A as urelements. Clearly ?, (A) increases with
a, and for x € 2, (A) let T, (x), its transitive closure, be the minimum transitive
set which D {x}.

(4) For any quasi-order Q = (Q, =) and ordinal «, we define the quasi-order
2.(Q)=(2.(Q), =) by induction on a:

For a =0, @ = 6 there is no problem; fora =8+1, A= A, iff (a) A, A, €
Ps(A), Ai= A, 0r (b) A, A; € P, (Q) but not {A,, A} C Ps(Q), and

(i) there is a function f: A,— A,, (Vg € A;) q =f(qg), or

(i) A,=q€Q and (VtETc(A) (t€EQ—>1t=q), or

(i) Ai=A'€E A, for some A’ (so A, € P:(Q)).

(5) 2:(Q)=(2.(Q),=") is defined similarly except that we omit 1.3(4)(b)(ii)
and demand in 1.3(4)(b)(i) A.& P (Q) or A, € P, (Q).

(6) 2:*(Q) is defined similarly to 2%(Q) but we omit the empty sets.

(7) P%Q) is defined similarly to 2, (Q), but we omit the empty sets.

Some obvious facts are

1.4. CLamM. Suppose k is a weakly compact cardinal.
(1) If Q,, Q; are k-well-ordered then Q, X Q; is k-well-ordered.
(2) If « <k, Qi (i <a) are «-well-ordered then II;., Q; is k-well-ordered.

1.5. Cramm. (1) A quasi-order Q is «-well-ordered iff it is (x,1)-I-bqo;
(2) A quasi-order Q is k-narrow iff it is (x,1)-D-bqo.
(3) If k =«’, a = a’ then any (x, @ )-X-bqo quasi-order is (x',a')-X-bqo.
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1.6. CLamM. If Q" is «-well-ordered [k-narrow] then P.,-(Q) is «-well-
ordered [«-narrow].

1.7. CLaM. Suppose A, A; € ?,(Q). Then A, = A, iff one of the following
holds:

(i) A, A2-£ Q, and for every a, € A, there is a, € A,, such that a, S a;

(ii) A:€Q, A ZQ and Va,€ A) G =A, (equivalently,
[Vq € (Tc(A)N Q)] ¢ S Au;

(i) A,€Q, A;Z2Q, and (Ja:€A,) A;=a, (equivalently,
(39 €(Te(A2)N Q)] Ai=q);

(iv) A,A€Q, A=A,

Proor. The proof proceeds by induction on «, following Definition 1.3(4);
the details are left to the reader.

The main result of this section is
1.8. THEOREM. Let X €{I, D}. If Q is k-X-bqo, then so is P, (Q) (for any a).

ReEMARK. If Q is a («, y(a, B))-X-bqo, then P4 (Q) is (k, a}-X-bqo for some
¥(a, B) which can be computed (but we have not computed it).

To clarify the proof, we proceed first to prove a similar fact about 2 (Q). We
start with a claim on barriers:

19. Cramm. (1) Let X €{I, D}, B an X-barrier, and let
B'={nU*v:n E€B, vEB, nRxr}.

Then B’ is a barrier, Dom B’ = Dom B, and Dp(B')=<Dp(B)+ 1.
(2) Let B be an X-barrier, X €{I, D}, C C B and

B:=CU{nU*v:n€B-C, vEB, nRkv}.
Then B¢ is a barrier with domain Dom B and depth <= Dp(B)+1.

Proor. (1) Let us check the definition of an X-barrier (Definition 0.1(1)):

(a) We shall show that for every n € X Seq., (Dom B), for some n, 5 [ n € B'
(thus establishing Dom B C Dom B').

As B is an X-barrier and n € X Seq,, (Dom B) for some m, n | m € B. Also
n~ € X Seq.(Dom B) hence for some k, (n7)[k € B. Clearly by 0.1(1)(c),
(nTm)Rx(n"[k) and n[max{m,k +1} =(nIm)U*(n 1 k)E B".

(b) No member of B’ is an initial segment of another.

Suppose oy = q U* vy, 7 € B, v € B, n,Rkw;, for [ =0,1 and o,< o;, and we
shall get a contradiction.
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As o1< o; clearly o7 < o7 . But vy =07, so v,<¢ v, but this contradicts
Vo, 1 € B.

(c) Similar to (b).

(d) B’ has at least two members. Obvious by (a) here.

Now we check Dom B’ = Dom B. One inclusion follows by (a) here, the other
by the definition of B’. So Dom B satisfies the requirement in 0.1(1)(d).

We are left with Dp(B’)= Dp(B)+ 1. To prove this we prove by induction on
a =Dp(B) that:

(*) ifn#( ) n € XSeq,(DomB)and Dp(n~,B)= e, then Dp(n,B’) = a.

First let « =0, so as Dp(n,B)=a (by 0.7) for some k, 0|k €B, and
as Dp(n ,B)=a«a for some m, (n [m)EB. So (nlk)y =(n Im), and
(ntk)U*(n~Im) belongs to B’ and is-an initial segment of =, hence
Dp(n, B')=0.

Second, let @ >0, so if n"(i)€ X Seq<, (Dom B) then Dp((n"(i)),B)<
Dp(n~,B)= a hence by the induction hypothesis:

Dp(n*i), B")=Dp((n"(i))", B).
So
Dp(n, B")= U{Dp(n"(i), B))+ 1: n"(i) € X Seq<., (Dom B)}

= U{Dp((n*(i))", B)+1: 7(i) € X Seq<. (Dom B)}
= U{Dp((n")i), B)+1:(n)(i) € X Seq., (Dom B)}
=Dp(n", B).
So we proved (*), so
Dp(B)=Dp( ), B')=U{Dp(i),B")+1:i €EDom B = Dom B'}
=U{Dp((i),B)+1:i €Dom B}
=U{Dp( ),B)+1:i €EDom B}

=Dp({ ),B)+1=Dp(B)+1.
(2) Similar proof.

1.10. THEOREM. Let B be an X-barrier, Q a quasi-order. If Q is B'-X-bqo,
then ?(Q) is B-X-bqo.

ProoF. For proving #(Q) is B-X-bqo it suffices to prove:

(*) ifA, € PQ)forn € B thenforsomen EB, v EB,nRxvand A, = A,.
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Suppose (*) fails, and A, (n € B) exemplify this failure.

For every o € B’, there are n € B, v € B such that nRxv and o = nU* y,
and the pair (7, v) is unique (for o). Choose g, € A, such that for no g € A,
does g, = q; this is possible as not A, = A,. We shall prove that (g, : ¢ € B)
exemplify Q is not B’-X-bqo, getting a contradiction to the assumption, thus
finishing.

So suppose aRxo 1, and oy, o, € B', and we have to prove that not ¢,, = g.,.
For 1 =0,1 there are m, v € B, n\Rxv, such that o, = n U* v, Clearly v, =
oo =0, and 1, = oy, hence vy, 1, are comparable; but both are in B, so by
Definition 0.1(1)(b), vo = ..

Now q,, € A, (by the choice of g,,) hence g, € A,, but (Vg € A,)(q., & q) so
not q,, = q,,, as required.

Now we return to

ProoF oF THEOREM 1.8. Let B be a «-X-barrier; we have to prove that
?.(Q) is B-X-bqgo. Suppose A, € Z,(Q) (n € B) exemplify %,(Q) is not
B-X-bqo. We shall prove that Q is not k-X-bqo, thus finishing.

We now define by induction on n, B, and ¢, € %, (Q) (for every n € B,) as
follows:

For n =0, B, = B, and

th=A, for every n € B,.

For n+1. We let B,,={nU*v:n€B,, vEB, nRky, and t,€Q}U
{n:n€B,, 17€Q}

We shall prove that nRxv, 7 € B,, v € B, implies “not ¢, =1t}”. (See Fact A
below.) So for o = n U*v € B,,, as above choose t;"' €t} such that for no
e, 2=t and if t7€Q, then not ¢3! = ¢ (possible by 1.7). If € B,
th€Q then 7' =17, We let t"(n) =1t}

Let B* ={n: for some n, 7 € B,, and ¢, € Q}. We shall prove that B* is an
X -barrier with domain DomB and if n €B, and t;€Q then (Vm =n)
(nEB,AtT=1t}). Let t, be th; n,v € B*, nRkv implies “not t, =t,”, thus
proving Q is not B*-X-bqo, hence not x-X-bqo.

Facr A. B, is an X-barrier, Dom B, = Dom B; and not ¢, = ¢, whenever
anv, n €B,, vEB,.

We prove this fact by induction on n; for n = 0 it is an assumption so suppose
it holds for n and we shall prove it for n + 1. The first part follows by 1.9(2); the
proof of the second part is similar to that of 1.10 and is left to the reader.



Sh:110

Vol. 42, 1982 BETTER QUASI-ORDERS 191

Fact B. If n €B, and ¢t,€Q, then n €8, t; =1, for m=Zn.

We prove this by induction on m = n. The induction step is by the definition of
B,

ConventiIoON C. Form € B*, t, is t; forevery n suchthatn € B, t, € Q.

Fact D. If n € X Seq., (Dom B), then for some m,n[n € B*.

As B is a «-X-barrier, there are 7 (I <w) such that n, €B and 5 <
(nl+m):m<w).

We now define by induction on k < w, a (k)= w and n} (I < a(k)) such that:

(@) a(0) is defined, a(k +1)=a(k), a(k)>0 and a(k +1) is defined iff
a(k)>1,

(b) for every | <a(k), nf € Be; 1=,

(c) if I+1<a(k)then t*(n)ZQ and (nHRx(nf.1),

(d) if a(k)<w, I +1=a(k) then t“(n/)ENQ,

(e) if a(k +1) is defined then t*"'(n5"") € t*(n0),

0 nr<{n@)n(+ 1), +2),- ).

This is sufficient, because by (e), as € is well-founded, necessarily for some k,
a(k +1) is not defined but a(k) is defined (remember that by (a) a(0) is
defined). So by (a), a (k) =1, hence by (d), t“(n6) € Q, but n{ € B,, so n§ € B*.
As by (f) ni<n we shall finish the proof of Fact D.

So we have only to carry the induction. For k =0, a (k) is the first [ such that
I=1, t°(ni-)€Q if there exists such I, and w otherwise. For k +1 define
ni=niU i forl<a(k)—1,and 0" =nifor I =a(k)-1 (if a(k)<w)
and then define a(k + 1) (if a(k)>1) to satisfy (¢) and (d).

Fact E. B*is an X-barrier, Dom B* = Dom B, and not t, = t, when nRkv,
n E€EB*, v EB*.

Just sum up the previous facts; most properties can be reduced to properties of
B, by Fact B, which then hold by Fact A; the rest follows by Fact D.

As we have indicated before, we use now Fact E to obtain a contradiction to
the assumption of Theorem 1.8.

1.11. THEOREM. The quasi-order Q is x-X-bqo iff for every

P (Q} is k-X-well-ordered iff for every a < «*,
P.(Q) is k-X-well-ordered, ift ?,(Q) is k-X-bqo (for any specific y).

Proor. The fourth phrase follows from the first by 1.8 and implies it as we
can embed Q into 2,(Q).
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The first phrase implies the second by Theorem 1.8, the second phrase implies
the third trivially. The third phrase implies the first by the following lemma, thus
finishing the proof.

1.12. LEMMA. (1) Suppose Q is not (x, a }-X-bqo, then P ). (Q) is not k-X -
well-ordered.

(2) Suppose

(A) CC X Seq.(x), C closed under initial segments, f: C— k" is such that
Fon) = U{f(n“@)+1:9"G)E C} and |D | = x, where D ={i :(i) € C}, and let
Co={n€C:f(n)=0}

(B) g, €Q for n € Co; and n,v € C,, nRxv implies not q, = q. ;

(C) for every n € C~ Cy, v € C if nRkv, I(n)=1(v) then n U*v € C;

(D) there are non € Cy, vECy, v < 77 .
Then

Piayse »(Q)is not k-X-well-ordered.

Proor. (1) We will show that part (1) follows easily from part (2).
As Q is not (k,a)X-bqo, there is a k-X-barrier B, of depth =, and ¢,
(n € B) such that nRkxv implies not ¢, = q.. Now let

C={nlk:n€EB, k=ln)
f:C— k" isdefined by f()=Dp(7, B).

Clearly Co= B and al! the assumptions of 1.12(2) hold (part C) by 0.4(1), and
f(¢ »=Dp( ) B)=Dp(B)=a. So by 1.12(2), P yy¢ »(Q) is not x-X-
well-ordered. As f({ N=a, Py »(Q)C Pion+a (Q) hence P 1y (Q) is not
k-X-well-ordered.

(2) Let g(n)=(=D+(f(n)+1) (s0 f(n)=0 g(n)=0). We define 1, €
P.(Q) for n € C, by induction on f(n). If f(n)=0 then n € C,, and let
t, = @, €Q = Po(Q) (by Definition 1.3). If f(n)>0, let t, ={t,~i,: (i) € C}.
Note that n"(i)€ C implies f(n)>f(n"(i)) which implies f,.; is already
defined and belongs to Py in(Q)C P1yesm)(Q). Hence 1, C P1)eyn(Q), s0
l € @g(n)(Q)'

Now for i€D, gi)=(-D+{FiN+D=(-D+f( ) hence t,E
Peir(Q)C Piyi¢ »(Q). As | D] =«, D Ck, it suffices to prove that:

(*) l,] (S D, lR())(] lmplieS not ¢, = t(,'>.

So suppose i, j form a counterexample to (*). We now define by induction on I,
ordinals i(/), j() such that:



Sh:110

Vol. 42, 1982 BETTER QUASI-ORDERS 193

(@) i0)=4i jO) =},

(b) m =), -, iNEC, v =(j0), -, jUNEC

(c) i(I1+1)is defined iff f(m)>0, and then it is j(I),

dt, =,

For [ =0, use (a). If we have defined i(0), j(0),- - -,i(!),j(!) and f(m)> 0, then
let i(l +1)=j(l). Now 7., € C by assumption (C) since i(0)R2}(0).

By the definition of t,, t,,, €¢,. Hence by 1.7 for some t€1¢,, ¢, =t or
t, €Q. In the first case by the definition of ¢, for some j.1, v/ (ji.1) € C and
t = t,34.0- SO we carry the induction. In the second case, necessarily » € C, (by
t,’s definition; recall that we treat the members of Q as urelements).

By induction on f(n) one can easily show that for each n € C there is
1n* € Co, n=n*. Thus, let n* € Co, i = n*. Then v = (i) =(n*)", so by
assumption (D), » = (n*)", hence n..=n* € Co.

By 1.7, t,., =, and clearly n,.,Rx», contradicting assumption (B); so the
second case never occurs, and we can carry the induction.

As m < 4y, clearly f(m) > f(m.1), hence for some m, f(n..) =0;s0 i(m + 1) is
not defined. So ¢, €Q, 7. € C,. Now we can define by induction on [ = m, j(I),
such that v, = (j(0),- - -, j(I)) € C, j(I + 1) is defined iff f(»)>0, and 1, =1, (for
[ =m, j(I)is already defined). Again we can carry the induction and for some n,
v, is defined and is in Co. So ,, €Q, 1, =t,, n.Rxv. and again we get a
contradiction to assumption (B).

§2. Existence theorem and a stronger notion suitable for powers

The interest in the theorems of §1 is not clear till we find non-trivial examples
of k-X-bqo (in addition to the No-I-bqo with which Nash-Williams dealt). It is
also not clear what the additional case X = D gives us. Another fault is that we
do not have any parallel of the fact “if Q is bqo, then so is Q° = Q x Q. This
section suggests remedies.

2.1. DEFINITION. (1) A — (@ )<” if for every function F from I Seq«. (1) to «,
there is aset A C A of cardinality u such that for every n < o, F[ (I Seq.(A))is
constant (this relation has obvious monotonicity properties). We define A — (u)»
similarly.

(2) We call A a Ramsey cardinal iff A — (L)< for every « <A.

(3) We call A a weakly compact cardinal iff A —(A); and A > N,.

2.2. THEOREM. (1) Every Ramsey cardinal is weakly compact, and every
weakly compact is strongly inaccessible, and A is a Ramsey cardinal iff A — (A )5,
and A >N, is weakly compact iff A = (). for every n < o, u <A.
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(2) If x is Ramsey, B a k-I-barrier, then for some A CDom B, |A | =« and
B N (ISeq<.(A))=1Seq,.(A) for some n. For weakly compact cardinals this
holds for every I-barrier of depth < w.

Proor. For part (1) see [5], and part (2) is trivial.
REMARK. See 4.7.

2.3. DeFINITION. (1) k % (w);” means that for every function F from
ISeq-.. (k) to yx, there are a(0)<a(l)<:---<a(n)<--- such that for every
n, F{a(0),---,a(n—1))=F(a(l), -+, a(n))). Notice that if we replace
ISeq-. (k) by D Seq..(x) we obtain an equivalent definition.

(2) We call « beautiful if k3 (w);” for every x <« or k =8,. We call k a
successor beautiful cardinal, if it is the first beautiful cardinal > y, for some y;
limit otherwise (see 2.4(6)).

By Silver [25]

2.4. THEOREM. (1) If Kk is a beautiful cardinal, then also in the universe L
(= the class of constructible sets, introduced by Godel) « is beautiful.

(2) If k is the first cardinal such that k =5 (w);° then k is beautiful (hence is the
first beautiful cardinal > x), and is strongly inaccessible, but is not weakly
compact.

(3) The class of beautiful cardinals is closed, and every member is strong limit,
and moreover is limit of weakly compact cardinals, provided it is uncountable.

4) k> (w);" iff every model M with universe k and x relations and functions
(finitary, of course) has a submodel N and a non -trivial monomorphism f : N—- N
(i.e., f is not the identity). Notice that by using Skolem functions, we can assume
that N is an elementary submodel of M, and f is elementary embedding.

(5) Suppose « is beautiful > 8o, M a model with universe x and < « relations
and functions. Then for any a < k there are a(n) <« (for n < w) such that

@ a<a@<a)<---<a(n)<---,

(b) for every n, (a(0),- - -, @ (n)), (a(l), -, a(n + 1)) realizes the same type in
M over a(0), i.e., for every formula ¢ (xo,* * *, Xuy Yo, * *, Y1) in the language of M,
and vo," "+, Ve < a(0),

MEe[a0), -, a(n), yo, **, Ye-1] iff

MF= (P[a(1)9 te "a(n + 1), YO’ S ‘yk-1]-

(6) In (5), if  is a successor beautiful, C C k is closed unbounded, then we can
choose the a(n)’s in C. A « with this property is called strongly beautiful ; singular
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cardinals are not strongly beautiful, but if k is regular and {A <« : X strongly
beautiful} is stationary, then « is strongly beautiful.

2.5. THEOREM. Suppose Q is not x-narrow (x =No) and k - (w);” fails.
Then for some «, P.(Q) is not k-narrow.

ReEMARK. Why have we not done it this time for well-ordering as well?
Because it fails, see 3.1.

ProoF. Let F: D Seq«., (k)— x exemplify the failure of x 5 (w);". By easy
changes (which retain its being a counterexample) we can assume:

(a) From F(n) we can compute I(n) and F((n(k), -, n(m—1)),
F({(n(k),n(m)) for k =m =I(n).

(b) From F({i, j)) we can compute the truth value of i <j, j <i.

We define by induction on n a set C" C D Seq. (x):

C’ = D Seqo(x), C' = D Sequ(x),
C"'={n€DSequu(k):nin€C",n €C"and F(n[n)=F(n )}

Let c=U,C"

It is easy to prove that each € C is monotonic (increasing or decreasing) (by
induction on n, using assumption (b)). It is also clear that C is closed under initial
segments, and also n €C > n €C.

A little less trivial fact on C is that it contains no set of the form {n [/ : | < w}
where 7 € D Seq,, (k). If n is a counterexample, it is monotonic (by what was
said above), but as it is infinite, it is necessarily increasing. Checking the
definition of C", we see that n(0) < n(1)<--- contradicts the choice of F (as
exemplifying that x > (w);" fails). Hence there is no such 7.

Let B={n €D Seq,(«): ] (I(n)—1DECbut n€ C}. Let {ti:i <y} be x
pairwise incomparable elements of Q, and define for n € B, q,, = tream»-1- We
want to apply Lemma 1.12(1). By the conclusion of 1.12(1), for some a, %, (Q) is
not k-D-well-ordered, i.e. not k-narrow, just what we need. So we have to
check the assumptions of 1.12(1). We will show that B is a k-D-barrier and for
no n,v € B, nRpy, g, = q..

FacT. Assume 7, v € B, nRpv. We have to show that not ¢, = gq..

Suppose g, = q., SO trmum-1 = tewiue)-1, SO by the choice of the f’s (as
pairwise incomparable) necessarily F(n[(I(n)—1))=F(»[((»)—1)). So by
assumption (a) in the beginning of the proof, I(n) = I(»),and let {(n)=n + 1. So
nin, vIn€C", F(nin)=F(vln) so by the definition of C*', 5 =
(nln){v(n—-1)€C"". But n € C""' C C contradicts n € B, so we finish.
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Facr. B is a k-D-barrier.

Notice that n € B, implies [(n)= 2.

By the definition of B, clearly for no n,v €B, n<v. Also for every
1 € D Seq. () we proved above that for somek < w, 5 [ k& C; if k is minimal,
clearly n | k € B. Now we have to prove that n € B, v<< 7~ implies v£& B, but if
N ={(ao, ", A1), then (ao, ", ax—)E C (by the definition of B) hence
{ai," -, ar-2) € C. (As mentioned above v €C = v €C.) So v<7 means
v=(a," ", a-,) implies v € C implies v& B.

Trivially Dom B = « and B has at least two members, so by definition B is a
k-D-barrier.

2.6. ConcLusioN. For any quasi-order Q, the first infinite cardinal x for
which Q is k-D-bqo is beautiful.

REMARK. We could have proved directly « is strongly inaccessible.

PrOOF. If k 5 (0);*, x <k, and k > 8o, x Ny, then by «’s definition Q is
not y-D-bqo, hence by 1.11 for some @, %, (Q) is not y-D-well-ordered (= not
x-narrow), hence by 2.5 for some B, 23 (%.(Q)) is not x-narrow (=not k-D-
well-ordered). But by 1.8, as Q is xk-D-bqo, %4 (P. (Q)) is «-D-bqo, contradic-
tion.

2.7. DerINITION. Let X €{I,D}, A = 1.

(1) The quasi-order Q is [k, a;A}-X-bqo if for every «-X-barrier of depth
= qa, B and function F: B— X and q, €Q for n € B, there are n€B, v EB
such that F(n)= F(v), nRkv and ¢, = q..

(2) Q is [k;A]-X-bgo iff Q is [k,a;A]-X-bqo for every @ <A*. Q is
[, a]-X-bqo iff Qis [k, a;A]-X-bgo for every A < k,and Q is [«]-X-bqo iff Q is
[k, a;A]-X-bgo for every a <«", A <«.

(3) In all the above definitions we omit the letter X (or I or D) if the two
versions with I and with D are equivalent.

2.8. Cram. (1) Inall versions of bqo, the I version implies the D version.

(2) Suppose k = k', a Z2a’, A 2 A, then:

(a) Q is (k,a)-X-bgo implies Q is (k', «')-X-bqo.

(b) Q is k-X-bgo implies Q is «'-X-bgo.

(c) Qis [k, a;A)-X-bqo implies Q is [«',a’;A']-X-bgo.

(d) Q is [«;A]-X-bgo implies Q is [x';A']-X-bqo.

(3) If Qis [k, a;A]-X-bgo (A >0, of course) then Q is («, @ }-X-bqo; and if Q
is [k;A]-X-bqo then Q is k-X-bqo.

(4) If A =« then no Q is [k, a;A}-X-bqo.
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Proor. Trivial.

29. Ceam. (1) Q is [k, a;1}-X-bqo iff Q is (x,a)-X-bgo; and if A <cf«k
then Q is [k, 1;A]-X-bqo iff Q is (k,1)-X-bqo; and if cfx = A <« then Q is
[, 1; A]-X-bqo iff Q is (', 1)-X-bqo for some k' < k.

(2) Q is [Ny, a}J-I-bqo iff Q is (N, @ )-I-bqo.

(3) If « is weakly compact, then Q is (x, n)-I-bqo iff Q is I Seq.(«)-I-bqo.
Also Qis [k, n;A)-I-bgo (A < «)iff Qis [«,n]-I-bqo; and if Q; (i <A)is [« n]-
I-bgo (A < «) then I1; Q: is [k, n]-I-bgo.

(4) If k is Ramsey then: Q is [k ]-I-bqo iff Q is (k, n)-I-bqo for every n, also if
A <k, Q; is k-I-bqo then Il;<, Q: is x-I-bgo.

(5) In Definition 2.7(1) for infinite A, we can assume w.l.o.g. that from F(n)
we can compute [(n), the truth value of n(n)<n(k) for n,k <I(n) and the
value F((n(l), -, n(k)) for any k <I(n), lh<Il(n), -+, L <I(n), such that
(ml), - »m(k))€B. Instead of Range(F)CA we can demand that
|Range(F)| = A.

Proor. (1) By the definitions.
(2) By Nash-Williams [19].
(3), (4) Easy (see 2.2).

(5) Trivial.

2.10. THEOREM. If « is beautiful, ||Q|| < « then Q is [«]-I-bqo. (Hence, by
2.8(1), Q is also [«]-D-bqo.)

Proor. For the case « =N, see [19]. So we assume k > N,.
Let B be a «-I-barrier, g, €EQ for n €B and F:B—x, x < k. We define a
model M: its universe is k, and its relations:

R ={n€B:l(n)=n4q,=q,F(n)=j} forq€Q, j<x, n<o.

So by 2.4(5) there is 5 € I Seq., (k) such that for each n, the sequences 7 [ n and
(n7)[ n realize in M the same type. As B is an I-barrier for some n, [ n € B.
For some gq,j MER;[nIn], hence MER;[(n )In]: thus (n)In EB,
F((m)In)=F(nIn)and qu yim = @ua. So p 1 n, (7)) n are as required from 7,
v in the definition of [«]-I-bqo.

2.11. THeorReM. (1) For any X €{,D}, Q, «x, a and A, 1< A <k, the
following conditions are equivalent (where A = A (0)A (1)):

(a) Q is [x,a;A])-X-bgo.

(b) QX(A, =) is (k,a)-X-bqo (note that (A, =) is a quasi-order).

(€) Qx(A(0), =) is [k, a;A(1)]-X-bgo.
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(2) If Qis [k, +1; (A (0)+ 1)A (1)}-X-bqo then Q' (this is a power of Q) is
[k, a; A (1)}-X-bqo.

(3) For X, Q, k, a and A as above, the following are equivalent, with two possible
exceptions, (i) (Vq,q.€ Q)(q1=q:V q2= q) and A = A(0)=2, (ii) (Vq:,9.€ Q)
q1 = @y, (iti) A(0)<2 or A(0)=2. Q has no three incomparable members:

(@) Q is [x;A]-X-bgo.

(b)y QX (A, =) is k-X-bqo.

(©) QXA O)+1, =) is [x;A(1)}-X-bqo.

(d) Q" is [x;A(1))-X-bgo.

(4) For infinite A, Q is [«;A]-X-bqo iff Q" is [«x;A]-X-bqo.

REMARK. For A =1, the theorem holds trivially by 2.9(1).

Proor. (1) Clearly (b) is a particular case of {c) (for A(1}=1,see 2.9(1)). So it
suffices to prove (a) = (Chwam = (@) (for any A(0), A(1)).

(@) 2 ©roam

So we assume Q is [k, a;A]-X-bqo and B is a k-X-barrier of depth = q,
t, =(q.,j,) EQX(A(0), =) and F:B - A(1). We have to prove that for some
n,vEB, nRxv, F(n)=F(v)and t,=1,. Let p:A(0)XA(1)— A be one to one
and onto A (it exists as A{0)A(1)= 1}, and p,: A = A(0), p.: A — A(1) be such
that for every i <A, i =p(pi(i), p(i)). We define a function F': B— A by
F'(n)= p(ja, F(n)) hence:

(*) Fn)=F() #Fmn)=F), j,=J.

As Qis [k, a;A]-X-bqo, B a k-X-barrier of depth = a, ¢, € Q for n € B, and
F':B — A, clearly for some n €B, v € B, 3Ry, F'(n)=F'(v) and g, =g..
Now as F'(n)= F'(v) necessarily F(n)= F(v) and also j, =j,, hence t, =
(gn>Jn)=(q.,j.)=t. So we find n € B, v € B such that nR\y, t, =t,, F(n) =
F(v), as required.

(hoaw = (a)

So we assume Q X (A (0), = )is [«, a;A(1)]-X-bqo, B is a k-X-barrier of depth
=a and g, €Qfor » € B, F: B— A. We have to prove that for some 7, v € B,
nRxy, F(n)=F(v) and ¢, =q..

We use p, pi, p, defined above. Let t, = (q,, po(F(n)) €Q x (A (0), =) and
F':B—A(1) be F'(n)=psF(n)). So as Qx(A(0), =) is [k, a;A(1)]-X-bgo
there are 7, v € B such that nRxy, t, =t, and F'(n)= F'(v). Hence q, = q.,
p(F(n)) = pu(F(»)) and px(F(n)) = p:(F(»)). So F(n)= F(v) and we finish.

(2) Let B be a «k-X-barrier of depth =a, F:B—>A(l) and g, =
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(q4:i <A 0)EQ" (so g4, € Q) for n € B. We suppose for no 7, » € B does
7Ry, §, =q., F(n)=F(v). Let B’ be as in 1.9, and we shall define ¢, € Q,
F'(c)<A =(A0)+1)A(1) for every o EB’. So let ¢ € B’. Then there are
unique 7, ¥» E B, o = nU*y, nRxw. If F(n) # F(v) we leti(a) = A(0), t, = ¢\,
F'(o)=p(i(c), F(n)). But if F(n)= F(v) then by an assumption above not
d» = §., hence by the definition of the order of Q**, for some i(a) < A (0), not
g>=q.. In this case we let t, = q%”, F'(c) = p(i(c), F(n)).

So we have a x-X-barrier B’ of depth =a +1(by1.9)and t, € Q for o € B’
and F': B'—A. So as Qis [«,a +1;A]-X-bqo there are o, 0, € B’ such that
oRxo, 1,51, and F'(0)) = F'(0,).

Let o, = U*», ; € B, » € B, Ry, for | =1,2. As F'(0,) = F'(0,) and as
we know that p,(F'(ov))= F(m) clearly F(n:)= F(n,). It is also clear that
necessarily 7, = vy, 50 F(n,)= F(v). So i = i(g,)is <A(0)and not q;, =q.,. On
the other hand F'(0+) = F'(o2) implies i = i(0,) = pi(F'(01)) = p\(F'(02)) = i(02)
hence ¢, = t,, =t,, = q*,, contradiction.

(3) By the first part (a) < (b) & (c), and by the second part (a) > (d). Hence
it suffices to prove not (b) implies not (d), and for simplicity assume A (0)+1= A.
Let B be a «-X-barrier, (¢,, a,) €Q X (A, =), n € B, exemplify not (b), and it
suffices to prove Q" is not B-X-bqo.

Case (a). In Q there are two incomparable elements q°, q', A = 4. Then let
v, €292 (@ <L) be distinct (they exist as 2* 2= A for A >4) and define
27z A for A 24, G, =(q7:i <A0)EQ", ¢%=q., g7 =q' where [ = v, (i)
for 0<i <A(0). It is easy to check that (¢, : n € B) exemplify not (d).

Case (b). In Q there are ¢° £ q', 2*™? = A (i.e. A 210). Find v, €2
(a <A)such that a# B — (3i)(v.(i)=0 ve(i) = 1), and proceed as above.

Case (c). In Q there is a strictly decreasiné sequence of length A, 10> A >3
(G€EQ(<A)qg'Zq fori<j) Letv,(1)=a, ».(2)=A —1 - a, and proceed
as before.

Case (d). InQ there are three incomparable members, q°, ¢, ¢°, and A = 3.

We define v, (1)=q" for « <A and proceed as before.

Let us show that either one of the cases apply or one of the exceptions apply.
We can assume that exception (iii) does not apply, hence by Case (d) we can
assume A =4.

If (a) is not the case, we can assume that Q is a linear order (by considering Q
modulo the relation q, = g, A g: = ¢,). If (b) is not the case and we are not in
exception (ii), we can assume further that A <10, and since we are not in
exception (i), A > 3. Thus, if (c) is not the case, we can assume that Q is a finite
ordinal and A <10, but then (b) holds by 2.10.
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(4) Easy, by part (3).

2.11 A. ReMark. From the proof it is clear that, e.g., for 3= < w, Q" is
k-X-bqo iff Q’ is k-X-bqo.

2.12. TueoreM. (1) Suppose a;, b €Q for every i <« and

() fori<j<k, aZa, bZb;

(ii) for i,j <k, a; and b; are incomparable.
Then P(Q) is not x-narrow.

(2) If for some a, P.(Q) contains a;, b; as above then P,.,(Q) is not k-narrow
hence Q is not k-D-bqo.

Proor. (1) Let & ={a;, b} € P(Q) for i <«. It is easy to check that for
i?éj<K,n0t tiét,.
(2) Easy.

2.13. THEOREM. (1) If Q is [k,a +1;A +4]-D-bqo then Q is [k, a;A]-I-
bqo, provided that o Z k.

(2) If A is infinite, Q is [x;A]-D-bgo iff Q is [«;A]-I-bqo (so we can omit I
and D).

Proor. (1) Let B’ be a «-I-barrier of depth =@, F': B'— A and q,€ Q,
1 € B'; we want to show that for some n,v € B’, nRiv, F'(n)= F'(v) and
qn=q.,. Define B={n"(i):n € B’, n'(i)EISeq-.(k)}, and for n"(i)EB
define F(n"(i))=F'(n) and ¢,~&y=q,. Then B is a «-I-barrier of depth
=« +1, and it suffices to show that for some 0, v € B, nRiv, F(n)= F(v) and
¢» = q.. For B we can apply 0.8 to obtain the x-D-barrier B* = B U B®. Define
F*:B*— X +4 as follows (using the notations of 0.9):

F(n) it n€E€B,
A if n € B7, for some even n >3,
F*(n)=4 A +1 if n €BZ, for some odd n =3,
A+2 if 5 € B, for some even n >3,
A+3 if n €BE, for some odd n = 3.
Define q3 = gq,, for 7 € B, and q% = some arbitrary element of Q, for n € B”.
Since by 0.10, Dp(B*)=a +1, we can find n,v € B*, nRpy, F*(n)=F*(v)
and g3 =q7. Since nRpv and F*(n) = F*(v), by 0.9 we must have 1, » € B. By
our definitions nR;v, F(n)= F(v) and ¢, = g,, so we have finished.
(2) One direction follows by part (1), the other follows by 2.8 (1).

2.14. CoNCLUSION. Suppose A = No, Q a quasi-order. The first cardinal « for
which Q is [«; A )-bqo is beautiful.
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2.15. THEOREM. Theorem 1.8, which we proved for k-X-bqo, holds for
[«;A]-X-bgo (0< A < k) and [«x]-X-bgo as well, with P, replaced by P,.

PrROOF. We are given in addition to A, € ?%(Q)(n € B)also F: B— A. We
define by induction on n, B,, F, : B, — A and t; (for n € B,).

Forn=0: By=B, Fo=F, t,= A, (for n € By).

Forn+1: We let

B.o={nU*v:n€E€B,,vEB, R\, 11€Q}U{n:n €B, and t,€Q}.
Foa(qU*v)=F,(y) for nU*v€B,., nRky,

F..(n)=F,(n) for n € B,, t,€Q,

e if o =n€B,, t"€Q:
any member of if c =qU*vy €B,,,
e =) Te(t)EQ nRxv, F.(n)#F,(v);

any t € t7, such that if e =nU*v€B,.,,nRy,
(Vset)) (not t =) F.(n)=F.(v).
and if 12€Q, t£1)

At last
B* ={n:forsome n,n € B,, t,€ Q}.

In the rest of the proof, we have to introduce only minor changes.

§3. Examples

3.1. THEOREM. Suppose Q is a linear order.

(1) If in Q there is no descending sequence of length k, then Q is k-I-bqo.
(2) If @ is an ordinal, then ?,(Q) has no two incomparable elements.

(3) Q has no descending sequence of length k iff Q is k-well-ordered.

4) Q is Np-D-bqo.

REMARK. We can replace here x by any limit ordinal.

ProOF. (1) Suppose B is a «-I-barrier, g, € Q for n €B, and n,v €B,
nRiv implies not ¢, = q,. We shall find a descending sequence of members of Q
of length «, thus finishing. W.l.o.g. Dom B = «.

We now define by induction on a < k a sequence 1, € B such that

(i) for B <a, k <I(np), ms (k)< na(0),

@) n.(Dis <a+ow.
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For any a, let v, = U{ns(1)+1: 8 <a, I <I(n)}. It is easy to check that
Yo <a+w. Now (Yo, ¥a +1,7. +2,-+)EISeq.(x), hence some initial seg-
ment 7, ={y, +1:1<I(n.)) € B. Clearly n, is as required.

We shall now prove that for g < a, ¢, > ¢,,, thus trivially finishing. Now we
apply (for specific B < a) Claim 0.5. By it, there are k < w, gy, - -, g, such that
a1 € B, 09 = g, 0« = N, oiRjo1... For each [, by the choice of the g,’s, clearly
not q,, =4.,.,- But Q is a linear order, hence q,, > q.,,,. Thus

q’lli = q”n> q”l >z q"k = qﬂa’

SO ¢, > qn,, as required.

(2) By induction on « we can prove that for every q’€ 2, (Q) there is
q' € ?:(Q) such that (Vq,4') g €q'rqg'SqrqEQrg' EQD g Eq.

(3) By definition.

4) By (2) and 1.11.

3.2. Concrusion. (1) For every «, there is a quasi-order Q. which is k’-I-bqo
iff «'2Z k.

(2) For any ordinal & >0 there is a linear order Q., satisfying: there is a
descending sequence of length 8 from Q. iff 8 <a.

RemaRrRk. Compare this with 2.5, 2.6.

Proor. (1) By 3.1 and part (2).
(2) By induction on a. If there are B,y <a such that a =8+, let
Q. =Q, +B* (B* denotes the inverse order). Otherwise, let Q, = 2,.,B8*.

33. Cam. If Q=U,_, Q,, A <k, k >N, beautiful, each Q, is linear N,-
well-ordered, then Q is [«]-I-bgo.

Proor. Similar to 2.10.

Remark. Q= UQ; implies Q; = Q1Q;| but for g, €Q;,, ji # j», 9, €Q;, we
do not restrict the order between g, q;,.

3.4. CLaiM.  Suppose « is beautiful and singular. Then there is a quasi-order
Q which is foy X = I, D, k-X-bqo, but not [«, 1; cf k}-X-bqo, and not «'"-X-bqo
for k' <k (not even k'-X-well-ordered).

PROOF. Let k =%, ki, p =cfk <k <k, O =U,., 0, the Qs pairwise
disjoint, | Q;| = «;, and for a,b € O
a=b iff a=b or a€Q, bEQ, i<]j
Let Q=(Q, =)
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Fact A. Qs not [k, 1, cf k]-X-bqo.

Let B = {(l): i< K}, F((l)) = min{a i< Ka}, q<.*)€ QF((,')), and lfé] $
qar 7 qqp-

Fact B. Q is not x’-X-bqo nor «’-X-well-ordered for «' < «.
For each «’' <« for some a < pu, k' <k,, and use Q,.
Fact C. Qis k-X-bqo.

Let B be a k-X-barrier, Dom B = «; q, €Q for n € B be a counterexample.
Now the relation R(x,y)=" “not x < y” is transitive. Hence, as in the proof of
3.1(1), we can prove that if n(I)<wv(n) for all I <Il(n), n <l(v) and n,v EB
then “not ¢, <g.”. For some m,7,=(0,1,2,---,m —1) € B, and let g, € Q.
so vEB, v(0)Zm implies “not ¢, <gq.”. Hence q €U, Q.. B'=
Bl(DomB —m) is a k-X-barrier, and |U,=,, Q.| <k, so by 2.10 for some
n,v € B'C B, n Rk, ¢, = q., contradiction.

3.5. Ceamm. If « >N, is not weakly compact (e.g., any successor beautiful
cardinal is like that by 2.4 (2)) then some linear order I is k-I-bqo but not [« ;2]-
I-bqo (nor [« ;2]-D-bgo).

PROOF. As «k is not weakly compact, there is a linear order I with |I] = « but
no descending nor ascending sequence of length . (See e.g. [6].) We can assume
that there is f:I— 1, which is an anti-isomorphism (i.e., x <y & f(x)>f(y);
we can assume this as I+ I'* satisfies this).

In P(Ax{2. =}), there are « pairwise incomparable elements: {t, :x €I}
where ¢, = {(x,0), (f(x), )}.

ReEMARK. Clearly I? is not x-@-bqo.

§4. More information

4.1. DEFINITION. P L.(Q) = (P-.(Q), <)) is defined similarly to 2. (Q) (see
1.3) but the mappings have to be one-to-one.

4.2. THEOREM. Suppose « is weakly compact and Q is k-well-ordered. Then
P (Q) is k-well-ordered.

REMARK. Note that if V = L, « is regular not weakly compact, then Jensen
proved that there is a k-Suslin tree T (see [1]). Now it is well-known that even
P_«(T) is not k-well-ordered, whereas T is.
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PrROOF. Suppose S; € ?..(Q) (i <«) from a counterexample. For every
i<j, as not §;=§S;, there is ; €S, such that for no s€S,, #;=s. Let
R ={(a,B,7): @ <B <y <K, tag = lay}, 50 as k is weakly compact k — (k)5 so
there is A C k, | A | = k, such that all increasing triples from A are in R, or all of
them are not in R. The second case is impossible, as then for a € A,
{t.s:a <B € A}is aset of k distinct members of S,, but S, € ?..(Q) hence
|S.|< . So for every a« €A there is t, €S, such that « <B € A implies
t.=te Leta<B,a€EA BEA oL =t.p3 ES,, ts €S, hence by the choice
of t,s not t, =t5. So {1, : @ € A} exemplifies that Q is not k-well-ordered.

4.3. DerFINITION. (1) We call a cardinal « subtle if for any sequence
(S, :a < k), S. C a, and closed unbounded subset C of «, there are a« <8 in C
such that S, = Sz N a.

(2) We call A C « subtle if we could have chosen , 8 in A NC.

(3) We call « almost ineffable if every set A C x which is in the weakly
compact filter D3 is subtle, where

D7 ={k —S: for some A C H(x), and ) sentence ;(H(k),E,A)E ¢,
but for no a €S, (H(a),E€,A N H(a))kE ¢}

For the following see Kunen and Jensen [9].

4.4. LEMMA. (1) A subtle cardinal is strongly inaccessible and even the limit of
weakly compact cardinals.

(2) Any successor beautiful cardinal is subtle.

(3) A cardinal « is weakly compact iff S & D iff DY is a normal filter.

(4) Any almost ineffable cardinal is weakly compact and subtle, but bigger than
the first cardinal which is weakly compact and subtle.

(5) Any ineffable cardinal is the limit of almost ineffable cardinals.

(6) A cardinal « is almost ineffable iff for every two-place function on «
satisfying f(i,j)<i for 0<i<j, there are a and ACk, |A|=k st
[LjEAANI<)] > f(i,j)= c.

4.5. THEOREM. Suppose « is almost ineffable and Q is k-well-ordered. Then

PLAQ) is x-well-ordered.

PrOOF. Suppose S; € PL.(Q)for i < x,s0 S; CQ,|S:| < k. We have to prove
that for some i <}j, §,=,S;, i.e., there is a one-to-one h:S;,— S; such that
t = h(t) for every t € S,.

For any a < 8, let

S(a,B)={t €S, :{s € Sp :t = s}has cardinality =], |}.
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Notice S(a,B)C S. and:
(*) if S(a, B)=:S, then S, =, S;.

Because by the assumption there is a one-to-one h,: S(a, B8)— Ss, t = hy(t), and
we can extend it to h : S, — Sz by the definition of S(ea, B8).
Now for a < B, let

S*(a,B)={s €S8, : for some t € S(a, B), t = s},

§3=U §$%a.B).
«<p

Let S:={t7:i<|S*%|}. Let aGB mean that:

(i) a<B<k,

) IS3l=]S3,

(iii) (Vi <|S*|)e=1?,

i) (S« —S%)=(S: —S})
Assume aGB. Let h be a function exemplifying (iv). If t €S, — S% then since
h(t)& S*(a, B) it follows that t& S(a, B). This shows that S(a, B)C S%. The
mapping ¢+ tf shows that S¥=,S% and by monotonicity properties of this
relation it follows that S(a, B)=,Ss, hence by (*), S. =, S;s. Thus it suffices to
prove that there are a, 8 such that aGB. Let A ={a <« :|S%|<a}.

Case I. A is stationary in «

Then by Fodor’s theorem |S%| is fixed for k a’s, and by weak compactness of
k, we obtain « of them such that {i : ¢{
them. By Theorem 4.2 we can find some a < among them with (S. —S%)=
(Ss — S%). Since Q is «-well-ordered, there is no i with t7Z t?. We have shown

that aGB.

= tf} is fixed whenever @ < 8 are among

Case II. A is not stationary in «

Then let C be a closed unbounded subset of k with ANC=. Let
D ={A <k :A is an infinite cardinal and for all a <A |S,|=A}; it is obvious
that D is closed, and by Fodor’s theorem one can see that it is unbounded. Since
by the definitions [S}|=< .4 |S.|>, we have for A €D, |S%|= A. Denoting
E = C N D, we obtain that E is closed unbounded and for A €E, |S}| = A.

We will finish by showing that for some «, 8 € E, aGB. Assume that this is
false. Define f(a, B8)for a, 8 € E, @ < B, as follows: if (S, — S%) Z(S; — S%) then
f(a, B)=0; otherwise since aG@ is false, there is an i <|S%|=a such that
t7Z 1%, and let f(a, B) be the successor of the least such i. Now we use almost
ineffability of x to obtain F C E,|F| =k, and j sothatfora < in F, f(a, B) =]
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(see 4.4(6); observe that since f is defined on a closed unbounded set, it can
always be extended in a manner that yields such F). This, however, is a
contradiction, since j =0 would contradict Theorem 4.2 while if j =i + 1 then
{t7:a € F} would contradict the assumption that Q is x-well-ordered.

4.6. DerINITION. UF Bx (A, k, @) means that for every A-X-barrier B of
depth =@, there is A C A, |A| =k, such that X Seq<..(A)N B C X Seq=,(A)
for some n.

47. LemMA. (1) If « is weakly compact, a < k then UF By (x, k, ) holds
(X=LD).
(2) If x is Ramsey, then UF B, (k, k, a) for every a.

Proor. (1) By induction on a.

For a < w, this is trivial. For a = w, let « = § + n, 6 a limit ordinal, n finite,
and let B be a k-X-barrier of depth a.

As « is weakly compact, « — (k).', hence there is a set A C« of
power «, such that if n € X Seqz.+1(A), Dp(n, B}depends only on [(n) (and the
order-relations between the n(m) when X = D). Hence S ={Dp(n,B):n &
X Seq=n+1(A)} is finite. Now if n € X Seqm(A) then Dp(n,B)=é6+n—-m
(prove by induction on m) hence for n € X Seq...(A), Dp(n,B)< 4. Let
8* = Max(S N §), so for any n € X Seq<.(A), Dp(n,B)< 8 = Dp(n,B)=8*
(if /(n)=n +1 — obvious, otherwise Dp(n,B)=Dp(n[(n +1),B)=5§%*). So
Dp({ )»BNXSeq<.(A)=8"+n+1<a, and we can apply the induction
hypothesis.

(2) Obvious.

4.8. LeMMA. UF Bx (A, k, @) when A Z h(k, a), where h is defined by induc-
tion on a:

(i) fora<w, hik,a)=«;

(i) fora = 8, limit h(k, a) is the first X which is = h(k, B) for every B < @ and
has cofinality > cf(a);

(iii) fora =8+ n,0<n<w, 6§ >0 limit, h(k,a) =13, (Zs<s h(x, B))" or even
:n_1(2<12h(~,8)])+.

ProOOF. We prove this by induction on a. W.l.o.g. A = h(k,a), Dom B = A.

Case I. a<w

There is nothing to prove.

Case 1I. a =6 limit

For every i<\, Dp({(i),B)<a, so as cfA =cfh(x,a)>cf(a), for
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some B<a, A={i<A:Dp(i),B)=8} has power A. Now let B’'=
B N X Seq<.(A), a'=B +1, and apply the induction hypothesis.

Case IIl. a=686+n,n>0, 8 limit

We can easily prove by induction on k, that if n € X Seqx (x), Dp(n, B)=
§+(n—k) and if k>n, Dp(n,B)<é. Let 6 =U g5, a, <8, i<j >
a; <a;, Ay = h(k,@; + n + 1) and we define a function G:

Dom G = I Seq,.i(k),
G(n)=min{i : @, ZDp(n’, B)where n’ € X Seq..:(x), range (') C range (n)}.

By the Erdos-Rado Theorem we know that A — (A;)i<4;, so there are i < cf §,
A C A =Dom B, the order-type of A is A; and G [ I Seq...(A) has the constant
value i. By the definition of A; and the induction hypothesis we finish.

4.9. LemmA. If UFBx (A, k,a), Q is (k,n)-X-bqo for every n, then Q is
(A, a)-X-bqo.

ProOF. Trivial.

4.10. LEMMA. Suppose that for some a, P, (Q) is not A-D-well-ordered. Then
there are y<A', and 1, € P,(Q) (i <2") of hereditary power =A (ie.,
| Te ()] = A) which are pairwise incomparable.

Remark. If'2.(Q) is not A-D-well-ordered, then 2,.,(Q) is not 3,(A)-D-
well-ordered at least when there is no strongly inaccessible x, A <« = .

ProoF. Choose s; € 2. (Q) (i < A) pairwise incomparable. Choose w regular
such that A, Q, «, s, P..1(Q) € H(p) (H () is the family of sets (in the universe
of set theory), with transitive closure of power < w), and let N be an elementary
submodel of H(i), A +1C N, of power A to which (s;:i <A), Q, Z...(Q)
belong. Let 5! be s; as interpreted in N (in other words, collapse the ? hierarchy
over Q).

It is easy to check that if y is the order-type of N N u (which is <A ") then
STE P,(Q) (i <) and they are still pairwise incomparable (by absoluteness).
Now let S. CA (a <2") be subsets of A incomparable by inclusion, and
t. ={si:i €S.} € P,..(Q) are as required.

§5. The trees

5.1. DerNtTION. (1) 7 is the class of trees T = (T, =) of height = w with a
root rt(T)=rty and T, is the set of elements from level n, for x € T,_,,
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Sr(x)={y :x <y €T,}, so Sr(x) is the set of immediate successors of x. We
write sometimes S(x) instead of Sr(x).

(2) For each tree T=(T, =) a depth function is defined:

() Dpr(x)=sup{Dpx(y)+1:y € Sx(x)},

(i) Dpr(x) = if not eventually defined by (i).
Let Dp(T) = Dp+(rty).

() T ={TET":Dp(M=a}; 7% =U{JL,: « an ordinal}.

(4) For T,,T,€ J°, an embedding f:T,— T, is a function preserving the
order and the level and is not necessarily one to one.

5.2. DeFINITION. (1) J' is the class of models M = (T, =, <) such that
(T, =)E J°, and < is a partial order which is union of <, (x € T) where <,
well orders S(x).

(2) J7is the class of models M = (T, =,E, <)such that (T, =)€ J°, E is an
equivalence relation, such that each equivalence class is included in some S(x),
and < well orders each equivalence class, and x <y — xEy.

(3) 7'(Q)is defined as I but we add to the model a function from the tree to
Q. We look at it as writing an element of Q on each node.

(4) An embedding for J' is defined as in J°, but it has to preserve the
additional relations (but not their negations). For 7'(Q) we have to demand
q(x)= q(h(x)), as usual.

(5) T5.(Q), 7L.(Q) are defined as in 5.1(3).

Embeddability naturally quasi-orders 7', 7'(Q).

5.3. MAIN THEOREM. If A Z N, Q a [«;A]-bgo then T*(Q) is [k ; A]-bqo too
(hence, also, T°(Q), 7'(Q) are [«;A]-bqo).

PrOOF. We first prove two claims and then return to the theorem.

Now for each w-tree T and ordinal ¢, we defined the « th approximation T* to
it:

the elements are {(s,n):s € T,, I(n)=n+1, a =n0)>n)>--->n(n)
for some n < w}, and

(o, )= (s, ) ff 50=51, Qe =1,.

If M =(T,E, <,q)is a 7°(Q)-tree we can similarly define its « th approxima-
tion M* =(T* E% <% q"). We have to define q°((s,m)), E&.), <&n for
(s,m)eT.

Let q°((s,m))=q(s). If s€T,, (s,7)ET" then Eg,,={{(t,»), (&, v)):
L, t € S1(s), HLEt,, v =n"(i), i<qn((n)-1} and <tm=
{(t, v), (2 ) i i < 1, v = (i), n(I(mn)—1)>i}.
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5.4. CLam. (1) Every ath approximation to M has an embedding into it.
Also if a = B, the a th approximation has an embedding into the 8th approxima-
tion.

) If MieT?Q) for | =0,1, A Z|M,|[+|[M.||, A infinite, and for every
a < (2", there is an embedding of M§ into M, then there is an embedding of
M, into M.

(3) Dp(M*), =a.

4) It M, € T(Q), A | M| +]||M.], A infinite, @ = (2*)" and M§ = M7 then
M= M,.

ProoF oF 5.4. (1) Just map (s,n) to s. The second phrase is easy too.

(2) Let g, : M§— M, be a T*(Q) embedding. We now define by induction
on n, for every s € (M,), = the nth level a set A, C (2*)", |A,|=(2")", and for
each { € A,, an ordinal «°({), { <ea*({)<(2")" and a decreasing sequence
n: such that I(n)=n+1, ni0)=a’(), nyn)=Z¢ and a function
h, {rtz} U U, S5,(t)> M, such that for every a € Dom(h,), a € (Mo)m 1,
hi(a) = gase)((a, il m)) for all L € A,

We assure also that the functions h, are consistent. It is easy to define and
show U, cr, b, is the required embedding.

(3) Easy — prove by induction on y that s EM,, n(n)=vy, (s,n)EM"
implies Dp((s, n)) = v.

4) By (1) and (2).

5.5. THE bgo CriterioN LEmMMA. The following is a sufficient condition on a
quasi-order Q, for being [«;A]-X-bqo, when A =1 or A 2N, Let So=
{(91,92): ¢: €Q, g€ Q but not ¢, = q3}.

THe CrITERION. There is a (rank) function rk from Q to ordinals (or any
well-ordered class, or even well-founded one), a two place function s from Sq to
Q and a function F* from S¢ to A such that:

(a) for no qi, gz, g3, (91,92) € Se, (92,45) € So; ¢ 7 5(q1,92) = 5(q2,43) # q2
and F*(q:,92) = F*(4245);

(b) if t €Q is not with minimal rank then s(¢,q)# t and rk[s(t,q)] <rtk[?];

(c) the set of members of minimal rank of Q, i.e., Q. ={g € Q :for no 1,
rk(t) <rk(q)}, is [«x;A]-X-bqo;

(d) if A <N, then s(t,q)=t;

(e) if A <Nq, (g1, 92) € Sq, 1k(g:) is minimal but not rk(q;) then not s(g:,¢:) =

s
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ReEMARK. For A =1, X =1 this is essentially the forerunner criterion of
Nash-Williams, but his formulation involves barriers and he used a stronger
definition of a barrier, so also the domain of the barrier is changed, and the
notion “warily forerun” is involved. In fact we move more of the proof to the
criterion.

PrOOF OF 5.5. Suppose Q is not [«;AJ-X-bqo and we shall get a contradic-
tion. So there is a k-X-barrier B, g, €Q for n € B and a function F: B — A,
such that for no n,v € B, nRkxy, F(n)=F(v), and ¢, =q..

We now define by induction on n, B,, C. C B., 47€ Q(n € B,), and F, such
that B, is a «-X-barrier, Dom B, = Dom B, F, a function, B, = Dom F,,
A = |Range F, | such that for no 7, v € B., nRxv, F.(n)=F,(v), and ¢, =4},
and C, ={n € B, : q, is of minimal rank}.

Forn=0. B,=B, qv=4q., F, is F,(n)=(F(n),0);

C, ={n € B. : q»has minimal rank}.
For n+1. Let B,.;= B4, UC, where
B, ={nU*v:n EB,, v EB,, nRxy, n& C.}.

Let Cooi = G, U{n U*v:n U* v € B\.1, nR%v and s(q7, q7) is of minimal rank
or F.(n)# F.(v)}. Choose q* €Q,, arbitrarily. Let us define q5"' (o € B,+1)

n+t

qs g* if o =mU*v €B5.1, mRxy, F.(n)# F.(v),

{8(42,613) ifo =nqU*v €BL.1, nmRywy, F.(m)=F,(v),
qs if e €C,.

We now define F,.:

F.(n) ifA <Ry, c=nU*veBY,, nRxy
(u,F,(m),F.(¥),n+1) ifAZRo, 0=nU*vEBL4, nRX,
Fou(o) = where u = F*(q5,9%) if q7Z 47
and u =« otherwise,
F. (o) ifo €C,.

Fact A. The induction hypothesis is satisfied.
For n =0, this is an assumption. For n +1, let us check
(A1) B...1 1s an X -barrier with domain Dom B.

Let n € X Seq., (Dom B), and we shall show that for some I, n [l € B,... For
some k,n | k € B, and forsome m,n [m €B,.If n [ k € C, then n [ k € B4,
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otherwise (n[k)U*(n~Im)<n is in By, hence in B..,. Now the other
conditions for “B,.; is an X-barrier” are trivial in our case, and Dom B,.,; =
Dom B, obvious by the above.

(A2) C. ={n € B. : q7 minimal}, |RangeF,|=\.

The proof is easy.
(A3) Suppose o1, 02 € B,+1, Fuii(01) = Foii(02), 01Rx0,. We shall prove that
n+l

not g7 = q5.
We check by cases:

Case (i). o1,0:€C,
Then 01,0, € B., 95 =45, 957 = 45, Faui(0) = F.(01), Foui(02) = Fa(02),
so use the induction hypothesis.

Case (i)). 0,0,€ B,

Then let for [ =1,2: o, = U* v, ) € B,, v €B,, nn& C,.

As 071 = 0, clearly v, = o, hence v,, 1, are comparable but both are in the
X-barrier B,, so v, = 1. As F,.(0}) = F,..(a,), necessarily by F,.,’s definition,
F.(n)) = F,(n2) and F, (v\) = F, (v2), so by the induction hypothesis not g7, = g3,
nor g5, = 4%, So (4n g% € Sa. Also F*(q5,,q")=F*(q5,,q",): we have already
proved they are defined. They are equal; if A = N,, by the definition of F,.,, if
A <N, as |Range F*|=1.

By the induction hypothesis, if n € B,, g5 is of minimal rank, then n € C,.
Hence, as 0 & C,, ¢4, and g7, are not of minimal rank.

Now let ¢, = g, 4= q%, = 4, 43 = q.,, 50 we have proved that q,, g are not
of minimal rank, hence (by part (b) of the criterion), s(q:, 42) # q1, s(q2, q5) # q2;
and also not q, = g, nor g, = g, (by induction hypothesis on n) and F*(qi,q2) =
F*(qs,95)- So by (a) of the criterion, not s(qi,q:) = s(q>¢gs), that is not
s(q%,q)=s(q%,, q5,) So by the definition of ¢;*' this means not ¢, = g5, so
we finish Case (ii).

Case (iii). o, €B%,, 0:€C, and 02 E€B,. So o, =m,U*p; as in (ii),
o, € B..

So as o7 = 03, now v, = 0, € B, and v, = 0. If A = N,, by the definition of F,,
the last coordinate of F,. (o) is n + 1, while for F,,(o) this is not the case,
contradicting the assumption that F,. (o) = Fasi(02).

So assume A <N,.

Now F,, F* are constant, hence by the induction hypothesis not g5, = q*, and
as m & C., q» is not minimal, but o,= v € C,, hence (we can prove by
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induction on n) ¢, has minimal rank. So by part (e¢) not s(q=r,,q>,) = g%, which

n+l

means ¢, Z g5 as required.

Case (lV) O']E Cn, UzeB?.+1
So let 0= 1> U* Va, n2€ B,,, Vze B,,, an}(Vz, 1]2E C,,. As in case (lil) we
know A <Nq, F,(n,) = F.1i(02) = Fuui(0). So g5 =4q7%, not q5, = q~,. Now if

n n+1

qn.Zqs, , our conclusion is trivial. As F,(n;)=F,(»;) by the induction
n n+l1

hypothesis not g5, = q,, so by part (d) of the criterion 47, = s(9+,.4%,) = g5, , S0
we finish.

We thus finish the proof of (A3) hence of Fact A. Now let B'= U, C,,
q,=qrforneC,—U,.,C,and F'(n)=F, () forn € C, — U,., C.. We shall
prove that B’, q., F' exemplify Q.. is not [k; A ]-X-bqo (i.e., B' is a k-X-barrier
and n,v €B’, nRky, F'(n)=F'(v) implies not q,=gq.), thus getting the
required contradiction.

Fact B. If n €C, then forevery m=zn, n €C, CBn, qn=qn Fn(n)=
Fn(n)'

ProoF oF Fact B. Check in the definition of F,, C'r-
Factr C. If n,v € B’, nRkv, F'(n) = F'(v) then not q,=<gq..

Proor. By Fact B, for every large enough n, F'(n)=F.(n), F'(v)=F,(v)
and n,v € C, C B, ; and use Fact A.

Fact D. If n € X Seq., (Dom B) then for some n, nfn € B'.

For every n, as B, is a k-X-barrier, Dom B, = Dom B (by Fact A) there is
k(n)<w, n 1 k(n)€ B,. If for some n, n [ k(n)€E C. then by the definition of
B', plk{n)€ C, C B’, so we finish. Suppose . =7 [ k(n) € B, — C, for every
n. For each n, there is m(n) < w such that v, =(n")[m(n)€ B,. As B, is an
X -barrier 5, = v, and even 7n,Rxv,, so by the definition of B}.., 7. U* v, €
B%..C B,.1, so necessarily 7, U*v, =nl(m(n)+1)=1n.1. As Nt & Cosyy
clearly F,(n.)=F,(v.), hence q7.., =s(qn.q.) As 1.€C,, q5 is not of
minimal rank. Therefore by part (b) of the criterion rk(g5!,) <rk(q+,). Since this
holds for all n < w, this is a contradiction to the well-foundedness of the range of
the rank function.

The other requirements for an X-barrier are easy to verify. This completes the

proof of 5.5.

CONTINUATION OF THE PrROOF OF 5.3. By Claim 5.4 (3), (4) it suffices to prove
that 72,(Q)is [k ; A ]-X-bqo for every a. We define a rank function from 7%,(Q)
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to triples of ordinals, ordered lexicographically. So let M =(T, = ,E, <,q), and
we define rk(M) = (a,(M), a:(M), as(M)) where a (M) = Dpu (xx-1(M)), where
k =k(M)=min{k":|T.-| #1}, x;(M) is the unique x € T, for I <k,

O, Tk = @,
a(M) =11, T, is an E-equivalence class,
2, otherwise,

as(M) s the order type of (Ti, <) when it is well-ordered, and zero otherwise.

So Q.., the set of M €Q with minimal rank, is just the set of M with
Ty =3. Now suppose M,N € 7%.(Q) but not M =N. We shall define
s(M,N) and F*(M, N) so that we can apply the criterion of 5.5.

Case 1. k(M)=k(N), a(M)=2

Checking the definitions it is clear that there is a set A C M, such that

(a) A N M, is exactly one E-equivalence class, x,(M)€E€ A for | <k, and
x<yEMAXxEANMw—YyEA,

(b) not MITA =N.
Now we let s(M,N)=MT] A, F*(M,N)=1.

Case 1. k(M)=k(N), a:(M)=1=ayN)

Let Mo ={al:i <}, where for i <j, ai<a}, and Ny ={ai:i <}
where for i <j, al<™a|. Let {, = B + n, where n, < w, B, is zero or limit. Let
for I = 0[1], Abe the set of elements of M [of N] which are comparable with a..

By an assumption, not M = N, hence there is no monotonic f:{y— {
such that M]AY=NJA}, for i<{. Hence not MJU{A%:i<B}=
NITU{A}:i <}, orforsome ] < ng,not M[ A% ;= NI Ap,..If the first thing
occurs then basically’ not M [ U{AV:i < B} =N and we define y(i)< 8; by
induction on i<, as the first y <B, such that y > y(j) for j<i and
M]A?=N]A},. We cannot succeed to define y(i) for every i, so let i * be the
first i for which y(i) is not defined.

We let s(M,N)=M[U{A?:i=<i*}, F*(M,N)=2.

If the first thing does not occur, [ <n, is minimal such that M[ A} =
N A} fails (maybe Bo+ 1= ¢,) then we let

F*(M,N)={3,1), s(M,N)=MITAjp..

Case L k(M)#k(N), or k(M)=k(N), axs(M)=1# as(N)
We let F*(M,N)=(4,k(M),k(N), a:(M),a;(N)); s(M,N) is a tree with a
single element.

* The point is that we are interested in the case F*(M,N)= F*(N,N').
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Case 1IV. k(M)=k(N), a,(M)=0

We let s(M,N)=M, F*(M,N)=5.

Now it is easy to check that (a), (b), (c) of the criterion are satisfied, so we
finish. (For (c) we have to prove that {M : a,(M)=0} is [«;A])-bqo.

5.6. THEOREM. The following are equivalent:

(a) QX (w, =) is k-X-bqo,

(b) PE*(Q) is k-X-bqo for every a (see Definition 1.3(6)),

(c) P:*(Q) is k-X-bqo,

(d) for every k-X-barrier B, and q, €Q (n € B) for some m,v € B, nRxv,
g =q, and 9~ # v.

PROOF. not (a)=> not (c). Define ¢ € ?%*(Q) by induction on n for
g€EQ:9®=gq, ¢"*"={q"}. Now we assume Q X (0, =) is not x-X-bqo, so
there is a k-X-barrier B, and (g,, k,) € Q X (w, =), such that for no nRx»,
n € B, v € B, and (¢., k,) = (¢., k.). Now define for € B, t, = ¢4 € 22*(Q).
Now g™ =" iff ¢ =1, n = m, so we finish.

(b) > (c). Trivial

(a) = (d). As{(gs.!(n)): n € B)does not show Q X (w, =) is not k-X-bqo,
for some n €B, vEB, nRxv, and (¢.,/(n))=(q.,I(v)). So g, =q. and
I(n)=I(v), hence i~ # v, so we finish.

(d) > (b). Repeat the proof of 1.8

ReMARK. Clearly [k ;2]-X-bqo implies (d) from the theorem (use F: B —2,
F(n)=l(n)mod2). Also for k =N, X = I, (a), - - -, (d) are equivalent to X-bqo.

5.7. THEOREM. The well-ordering number of I° ordered by one-to-one em-
beddability is the first beautiful cardinal ko> No.

Proor. By 5.3, 7°is ko-I-bqo, even under one-to-one embedding; now let
A <k, and we prove that it is not A-narrow. Let Q =(w, =) so it is not
No-narrow, hence by 2.5 for some a %, (Q) is not A-narrow, so let £, € 2, (Q)
(i <) be pairwise incomparable. Let S; (i = w) be infinite, pairwise disjoint
subsets of w, Us, ={3n+1:n <w}. For each i <A we shall define a tree
T. € 9°. The elements of T; are the sequences (so, - *, Sw) such that:

@) so=1t,

(b) if s €Te(t), s€Q, I <m and | €S, then 5., E sy,

() if s €Te(t), s€Q, I<m and IS, then si.1 = s,

(d) if s, €Q (so s is a natural number), [ <m and [Z S,, then 5., = s,

) if s €Q, €S, and I <m then 5., E{w,® +1}, 5. E{w +2,0 +3},

(f) if s Zw+2, then [ =m (so s+ is not defined).
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The order = on T; is an initial segment.
We leave the reader to check that T, = (T;, =) (i < A) are pairwise incompar-
able.

REMARK. (1) T has well-ordering number No, as T, = T, iff the depth of T, is
= the depth of T..

(2) The choice of T; is such that they will be suitable for 5.8 too. The point is
that we should be able to easily reconstruct from the tree what form each s, has,
hence .

5.8. THEOREM. Suppose Q is non-trivial in the sense that for some q., q, € Q,
q £ q>

Then the well-ordering number of 7°(Q) and even T%.(Q) is the first k for which
Q is [k;No]-bgo (see 2.13(2)).

Proor. If Q is [« ;No]-bqo, then by 5.3, T%Q) is [« ; No}-bqo hence x-well-
ordered. Now suppose Q is not [A;N.]-bqo, then by 2.11, Q X (w, =) is not
A-D-bqo, then for some a, ?.(Q X (w, =)) is not A-D-well-ordered, so there
are 1 € 2, (Q X (w, =)) (i <A) pairwise incomparable. We define T; as in the
proof of 5.7 replacing ‘s, EQ” by s, = (¢, ;) EQ X (w, = )" and §,, by S,. We
then define f; : T, — Q by:

(@) if (s0,",Sm) ETi, Sw =(q, ) EQ X (w, =), m €S, then f, ({50, *,5m)) =
4

(b) if §=(s0,"**,8m)ETi, $» = w Or 5, = @ +3 then f;(§) = g,

(c) in the other cases f;(5) is g.

We leave the rest to the reader.

§6. Unions of few scattered orders

6.1. DeFINITION. (1) A (linearly) ordered set 1= (I, =) is scattered if we
cannot embed the rationals into it. Equivalently, by a theorem of Hausdorff, .
they are generated from {1}, by well-ordered and inversely well-ordered sums.

(2) P, is the class of linearly ordered sets I, which can be partitioned into
=N, scattered orders. I, is naturally quasi-ordered by embeddability.

6.2. DErFINITION.  Let 7, v € Seq<. (a). We say that n <*v iff for some k,
nlk=vik n#v and

[k even, (k)< v(k)] or
[k even, I(n) = k] or
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[k odd, n{k)> v(k)] or
[k odd, I(v) = k].
The relation <* linearly orders Seq-. (a).

6.3. TueorReM. (1) Every scattered order is isomorphic to some (A,=*),
A CSeqe. (a).
(2) Every 1€ IRy, is isomorphic to (A,=*), A C Seq<. (a).

Proor. See Laver [10].

6.4. DeFiNtTION. (1) A triple P = (L F,, F;) is a A-representation if
(a) I is a set of sequences of ordinals closed under initial segments,
(b) Fi(n)=0iff for no i, n"(i)E I
(c) if Fi(y)=1then {i : n"(i) € I} is some ordinal a, = A,
(d) Dom F, = Fy'({1}), Fx(n) is an ordered set with universe a,,
(e) Range F; =1{0,1,2,3}.
(2) P is called standard if I is standard, which means: I C Seq<., (a) is closed
under initial segments and n"(i)EI A j<i 2 n"(j)EL
(3) The order J[P]=J" = (J",<”) which P represents is defined by: J* =
Frdop;
n <"v iff Fi(n)= Fi(v)=0, and for some k
nlk=vik vi(k+D)#nl(k+1)
and Fi(n1k) =1 Fy(n 1 k) n(k)< v(k)
and Fi(nlk)=2 = n(k)<w(k)
and Fi(n [ k)=3 > n(k)> v(k).

6.5. CLamM. Suppose P,, P, are A-representations, f:P,—P, (ie.,
f: 1" — I™) is a one-to-one function, it preserves the level, 'F,, the order < and if
f i) =v*() (1 =1,2) then

@) Fr(n)=2,3> [Li<ik=j<j);

(b) Fii(m) =1 [Fi(n)k ir < is & Fiw)k j, <Jo]

Then J[P,] is embeddable in J[P,].

ProoOF. Trivial.
6.6. THEOREM. Every member 1 of I, has a standard A -representation.

ProOF. We prove this by induction on the power of the order. If |I| = A, this
is trivial, so suppose |I|=pu >A. As IEIM,, there are A; CSeqeniy(nt), I=
Ui L, L = (A, =) (see 6.3), and let g : A, — I, be the isomorphism. W.L.o.g.
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A; = Seq<ni (1), since any partially ordered set can be linearly ordered by a
relation extending the partial order, and if we have a A-representation of an
order we can easily obtain a A-representation of any subset with the induced
order.

We get I from I by inserting in each Dedekind cut two elements (small and
big). Let I'={a€L:1(g ' (a))<n(i)—-1}, I'={a€L:gi'(a)=7n"(8) for
some 7 and limit 8}. We define hi:Ii—1I°, 1=0,1, by hi(g(n))=
lim._, g (n"(a)) and hi(g (n"(8))) = lim,_sg (1" (a)). Let I*=
TU{hi(a):a €I,i<AI<2.LetIi={a €I :g:'(a)=n"(a +1) for some 7,
a}, and define hi:Ii— I by hi(g(n"(a +1)))= g (n"(a)). For every x € I'*,
a=g(n)€IL welet hi*(a)= g (n"(a)) where a is minimal so that g (n"(a))<
x, and we define h;*(a) analogously (the functions h*, h7* are not always
defined). Let I* = U, . I%, |I%|<p, I* increasing and continuous, so that
I NI7contains {g;(( )):i<A}andisclosed under h, i < A, and under h{*, h7*
fori<i x€lIi,and IZ=(INIHUhI(a):aETINTE, i<A 1<2}.

Now for each b €15 — I, we define a Dedekind cut of I*: if b is the small (big)
member in a pair which we inserted in a Dedekind cut of I, then

Di={ce€li:c<blicElt:c=bh})
(then Dy =({c €EIi:c =b}, {c €ELL:c > b})).
CruciaL Facr. Every a €I* — 1% realizes some Dy, b €1 - 1.

To prove this, assume first that a € (I* ~I*) N1 So let a = g (n), and let v be
the maximal initial segment of 5 such that g (v) € I'Y. We distinguish between
two cases: (i) For no a > n(I(v)) does g, (v*{a)) € % — in this case we take
b = h{(g(v)); we leave the checking here and in the sequel to the reader,
mentioning only that A7, h7* should be used for would-be counterexamples x.
(i) If (i) is not the case, let @ > n(I(v)) be minimal such that g, (v"(a))E I%.
Since I NIY is closed under h} and g (v (n(I(»)))Z I%, a must be a limit
ordinal, and we take b = hi(g (v"(a))).

Assume now that a € (I* —I%) — 1. Then for some [ <2, i <A, a’€I!-I*,
a = hi(a’). Let a' = g (n), let v be the minimal initial segment of n such that
g(v)ZI%, and let a” = g;(v). One can verify that a and a” realize the same
Dedekind cut of I ; thus by the first part of the proof we finish.

Now we define by induction on a =cfu, J,, F{, F3, g. such that:

(1) J. is a standard set of sequences of ordinals.

(2) F7, F3 are as in Definition 6.4(1), except that in (b) we require just “only
if”.
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(3) g.:I%—J, is one-to-one; if a €I NI then Fi(g.(a))=0; if a €15 -1
and is small (big) in its pair then Fi(g.(a))=2 (3).

(4) g. is order preserving, where the order on range (g. ) is defined as in 6.4(3)
with the additional rule that if n <v then F{(n)=2 2> n>v and F{(n)=3 >
n<w

(5) 1., Ft, F5, g. increase with @ and are continuous.

For the first step of the construction, we use a standard A -representation of I§
(it exists, since it is easily seen from the definitions of the h{’s that I} € It,, and
[I%| <), and modify F, so as to satisfy (3). At limit steps we take the unions.
Let us describe the construction for a + 1. For each a €1%,, —I%, we pick some
b €I’ -1 such that a realizes Dj. Now for every such b we take a standard
A-representation of the set of a’s for which b was picked, and add it to J, above
8. (b) (renaming the new nodes so that we will obtain a standard J,.,). Here
again we modify F, of the representation so as to satisfy (3). Our definitions and
construction assure that the resulting g... is order preserving.

Thus, the construction goes through, and from J,., Fi™ F5* one can easily
obtain a standard A -representation of I, with g, [ I giving the isomorphism.

6.7. ConcLusiON. For any A ZN, and beautiful « >\, M, is [«]-I-bqo.
Moreover, e.g., if Q is [«;2"]-X-bqo, then M, [Q] is [x;2*]-X-bqo, where
M, [Q] is the class of (I, f), YEM,, f:I—Q, ordered by embeddability where
F: (I, fi)— (I, f;) is an embedding if F :I,— I, is order preserving and f,(x)=
fal F(x)].

Proor. By 6.5, 6.6, 5.3.

RemArk. (1) This is a quite strong result. We can prove by it [«;A]-I-bqo,
e.g., for (#(Q),=:) (the mappings are one-to-one), and the trees with the
embeddings Nash-Williams used.

(2) For A = N,, we could get k = N,, which is the celebrated result of Laver,
which we generalize here. '

6.8. THEOREM. Let Q be a quasi-order, A a regular cardinal. Then we can find
a function H, such that

(1) DomH ={a € %(Q):| Tc(a)| < A},

(2) Range H C Seq-,+(Q),

(3) if not a = b then not H(a)= H(b).

REMARK. Seq<.(Q) is ordered by (qi:i <a)=(q’:j<p) iff there is a

monotonic increasing h:a — B, ¢; = q"".
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Proor. We define H(a) by induction on a = Dp(a)=min{B : a € P3(Q)}.
For 0 <i <A, let fi: A =i be such that for every j <i, {& <A :f;(a)=j} has
power A.

a=0. Soa€Q,and we let H(a)=(a :i<A).

a>0. Leta={a:i<i(a)<A}, so Dp(a;)<a, and let

H(a) = H(afl(a)(O))AH(afi(a](l))A o .AH(afi(a)(a))A e (a <A )

Clearly H(a) has always length an ordinal of cofinality A, and in fact A °"®*",
We prove by induction on « that:

(*) If a,b € P%.(Q), Dp(a), Dp(b)=< a, and not a =b then no end
segment of H(a) can be embedded into H(b) (when they are
defined). Formally, for no y<AP"®*' js there a function
fi]y, APP@ )= AP £ strictly increasing and QF H(a)(i)=
H(b)(f(i)) for every i €[y, AP,

This is straightforward.

6.9. Concrusion. The X-well-ordering number of Seq...(Q) s at least that of
P%.(Q) and at most that of T*(Q).

REMARK. Many times the lower and upper bound agree (use 2.5 and 5.3), so
we get an exact value.

6.10. Cramm. If the D-well-ordering number of Seq<.(Q) is a strong limit
Kk >N, then the I-well-ordering number of it is also «.

Proor. Clearly the I-well-ordering number of Seq-.(Q)is = «;ifitis A <k,
there are ¢, (i <(2*)"), g:iZ g; for i <j. By the Erdos-Rado theorem, w.l.0.g.
(1(g:): i < A)is strictly decreasing, strictly increasing or constant. The first case is
impossible; the second implies {g; : i < A} are pairwise incomparable. So assume
[1(@)=a for i<A.

We can assume that a is divisible by A (otherwise replace §; =(q;:j < a) by
(ql;: ] <Aa), qhrj+y = ¢qi; for j<a, ¥y <A) and then choose q'€EQ, let §i=
(q':j<i), and let 5 =4/ q:.

Now {q%:i <A} C Seq<-(Q) are pairwise incomparable.

REMARK. Really Erdos-Rado is not needed, and for A <«, A regular the I-
well-ordering number of Seq<-(Q) is > A.

We return now to the computation of the well-ordering number of I, .

6.11. LEMMA. Suppose ko< k. are beautiful cardinals, but there is no beautiful
cardinal k, ko< k < k1.
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If N+ ko= A\ < ki, then the well-ordering number of M, is «,. Moreover for
any ko= p <k, there are orders 1, (a <p) such that

@ [L]=p"

(i) a# B implies that not 1, =1,

(iii) L, is the union of X well-orderings (so even of R+ ko well-orderings).

PrOOF. By [24] there are K, + k, orderings J; (i <N, + ko) each with no first
element of power N;+ ko, no initial segment of one embeddable in a well-
ordered sum of copies of the others." Let ko=pu <k,. We consider Q=
(N1 + Ko, =). Checking the proof of 2.5, one can see that it holds for 2 too.
Since by our assumptions not u % (w )z, it follows that in some 23(Q) there are
i pairwise incomparable elements. By 4.10 we may assume that they are of
hereditary power < pu”, so that applying the function H of 6.8 we obtain a
pairwise incomparable family {f, }.<, C Seq<~(Q) such that the length of f, is an
ordinal B., p "= B. <u*". We let I, = 2,4, [J2r.4) t Jorip+1]. Requirement (i) is
obviously satisfied, and for (iii) enumerate each summand (each has power
N, + ko) and consider for every y <&, + Kk, the set of y-th elements. Finally if g
embeds I, into I, then for j < B, we let j’ be such that g” maps an initial
segment of Jy ;) into Ju .~ hence necessarily f, (j) = fo-(j'). Then the mapping
j— j' shows that f, = f., thus proving (ii).

6.12. ConcrLusioN. The well-ordering number of I, is the first beautiful
cardinal > A, provided that A > N,.

§7. Some exact computation

7.1. DeFmNITION. (1) T22(Q) is the class of (T,f)E J%.(Q) ordered by
embeddings F : (T, fi)— (T,, f2) preserving < and satisfying f,(£) = fo(F(1)).

(2) T-4(Q) is defined similarly but F must preserve also the relation ¢ is the
largest lower bound of s, and s,” (this is the order Nash-Williams used).

(3) 7'(Q), T.(Q) (I = — 1, —2) are defined similarly.

7.2. DeFiNiTION.  Let Q be a quasi-order, a an ordinal. We define the
quasi-order 2.(Q) as follows: the elements are as in Definition 1.3(3), but we

' Let A =N, + k. If A >N, regular or A = A, trivially by [24]. The remaining case is A strong
limit of cofinality Ny. Let A =X, __A,, A, <A,., A, regular. For each A, let S, (a < A,) be pairwise
disjoint subsets of {8 : 8 < A,, cf 8 = N}, for 8§ €U S, let n, be an increasing w-sequence of ordinals
with limit 8, let I*=>>A_ v{n, : 8 €8,} ordered lexicographically. Let J, (n < w) be sets of reals,
[J, | = 2" and let J7 be the inverse of I7 X J,."Then {J2: a < A,, n < @} is as required, if the J, were
chosen correctly.
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allow sets with repetitions and omit the empty sets; to define the order, we do
the following modifications in 1.3(4): in (b)(i) the function has to be one-to-one,
(b)(ii) is omitted, and in (b)(iii) A, has to be in Q.

7.3. LEmMA. If Q is No-I-bqo then so are T7'(Q), 77%(Q), 2:*(Q), ?1.(Q),
Seq<-(Q).
Proor. By Nash-Williams.

7.4. DerFINITION.  Let Qy, Q;, be quasi-orders (their universes may be proper
classes). We say that Q, is locally embeddable into Q, if for every set K, K C Q;,
there is a function H : K — Q, satistying: H(q)= H(q') = q = q'. We say that
Q. is embeddable into Q, if there is such a function with domain Q,.

7.5. CLAIM. Suppose Q, is locally embeddable into Q,. If Q, is x-X-well-
ordered, then Q, is k-X-well-ordered. Similarly for “Q is [k, a;A]-X-bqo”,
“QX(w, =) is k-X-bqo”, etc.

ProoF. Trivial.

RemMARK. We have already proved some local embeddability results.

7.6. LEMMA. J2.(Q) is embeddable into T-.(Q) and T '(Q) which are
embeddable into T°(Q).

Proo=. Trivial.

7.7. LemMA. (1) 97%(Q) is locally embeddable into T 2(Q).
(2) Similarly for 771(Q).

ProoF. Like 5.4(4).
7.8. LEMMA. Seq<.(Q) is embeddable into T22(Q).

PrOOF. For any §=(q :i<a)ESeq(Q) let T,={n:n a decreasing
sequence of ordinals < a}, f; ({ )) = arbitrary, f; (n(0), -, n(n —1))) = gua-y).

Now, if F embeds (T,,f;) into (T:,f;) then the function F* defined by
F*(i)=min{j: for some n €T,, n(I(n)—1)=1i and (F(n))({(F(n))—1)=j}
shows that § = 1.

7.9. LemMA. (1) P22(Q) can be locally embedded into Seq<-(Q).
(2) P%.(Q) can be embedded into P**(Q).

Proor. (1) By 6.8’s proof.
(2) Trivial.
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7.10. Lemma.  T2.(Q) is locally embeddable into T 2.(Q) if T (Q) is not No-
well-ordered.

PROOF. We observe that if |T| <A, TE€ JZ., A regular, then

@) Dp(M<A,

(ii) T is isomorphic to a tree of finite sequences of ordinals < A closed under
initial segments.

Let H be a subset of 72.(Q) (which we want to embed into J2%(Q)), and let
((T",f"): n < w) exemplify that J %(Q) is not No-I-well-ordered. We choose a
regular A bigger than the cardinalities of all the trees in H and the T"’s. We also
choose q*,q** € Q such that g* £ q** (this is possible since otherwise J2(Q)
must be N,-I-well-ordered).

Given (T,f)EH, we define (T,f) as follows: T=TUT UT", where:
T ={n"(A)Yr:n €T, 7 a decreasing sequence of ordinals <A}, T'=
{p A AV i AT ET, 7' €T},

f(V)9 VET’
_ ~ q**, veT, v(l(v)-1)#0,
fv)= q*, vET, v(I(r)-1)=0,

fl(n)(T/), V___ﬂ/\(A)ATA(A)ATleTU‘

It is easily verified that:
(T,f)E TZQ);

v=n"A)TA)ET" = Dpr(r)=Dp(T"'”)<A;
vET,v(l(v)-1)=a <A > a=Dp1(r)<A;

n €T = Dpz(n"(1)) = A, Dpz(n)>A.

Now, assume that F : (T, fi))— (T, f>) is a 72%(Q) embedding. Since always
Dpi#,(v) = Dp1,(F(v)), we conclude that the restriction of F to T, maps it into T,
so that in order to prove that (T, f1) = (T, f2) in J<.(Q) it suffices to show that
[(F(n))> l(n) never occurs for n €T,.

Assume that n €T, is a counter-example to this. If for all v=
n*(A)"r €T}, F(v) € T, then for all such v, Dp,(v) =< Dpr,(F(v)) + 1+ Dp(T"")
(prove first that the depth of v in T, U T} is = Dpr,(F(v)) and then by induction
on Dps,(»)), in particular Dpr,(n"(A))<A, a contradiction. So for some v =
n"(A)' 1 €T}, F(v) € T; U T5; by considering some extension, if necessary, we
may assume that »(I(v)—1)=0. Since fi(v) = f(F(v)), either F(v)ET; and
(F))(I(F(»))-1)=0 dbr F(v)ET;. In any case, F induces a J2%(Q) embed-
ding of (T"™, f'™) into (T, f) for some n = I(F(n))>I(n), a contradiction.
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7.11. CLam. In 7.10 it suffices to demand that Q is not N-I-bqo.

Proor. By 7.9(2), 7.9(1), 7.8 (and the transitivity of local embeddability),
#°.(Q) is locally embeddable into I 2%(Q). Now if Q is not No-I-bqo, PL.(Q) is
not No-I-well-ordered (check in the proof of 1.12), hence J22(Q) is not 8o-I-
well-ordered.

7.12. DeFINITION. T 24(Q) is the class of pairs (T,f), T as usual and f:
{n €ET:Dp:(n)=0}— Q. We call F:(T,, fi)— (T, f.) an embedding if it is a
function from T, to T, preserving < and satisfying: n € Domf, =
[F(n)EDom f; and fi(n) = f2(F(n))].

Notice that (T, f)=(T,,f.) in T=(Q) iff there is a function F from T,
to T, preserving < and satisfying: for every n €Domf, there is v, F(n)=

v €Dom fo, fi(n) = fav).
We define 7 (Q), 7 =x(Q) similarly.

7.13. Lemma. P 1*(Q), T=:(Q) are isomorphic.
Proor. Straightforward.

7.14. DerINITION.  J 22%(Q) is the class of pairs (T,f), T as usual and f a
function from T into Q U “the ordinals”, such that Dpr(n) = 0 implies f(n) € Q,
Dpx(n)>0 implies f(n) is an ordinal and n < » <7 €T implies f(n)<f(»).
F: (T, fi)— (T, f,) is an embedding if F maps T, into T, preserves < and the
depth being 0, and satisfies fi(n)= fAF(n)) (in Q if Dpr(n)=0, as ordinals
otherwise); w.L.o.g. no ordinal belongs to Q.

NotatioN. For (T,f)€ 722°(Q), n €T, let (we consider T as a tree of
sequences closed under initial segments):
Twy={v:n"v €T}
fo@)=f(n"v) forn"vET,
(T’f)(n) = (T(n)’f(n))'
7.15. LEMMA. If Q is not Ro-1-bqo, then T%.(Q) can be locally embedded into
TQ*Q).
Proor. Basically we repeat the proof of 7.10, 7.11. As in 7.11, we know that
P°.(Q) is not Ry-I-well-ordered, hence surely 223(Q) is not Ro-I-well-ordered,
which by 7.13 means that 7 23(Q) is not No-I-well-ordered, hence surely 7 Z2*(Q)

is not Ng-I-well-ordered. Now we use an example of the latter to define a local
embedding as in 7.10, with the following differences: for » €T and v € T' such
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that »(I(v)— 1) # 0 we let f(v) be ordinals chosen as small as possible (respect-
ing the order of the tree); for v €T', »(I(r)—1)=0 we let f(v) =y be a fixed
ordinal which is bigger than all those chosen in the previous stage for any of the
trees; for v = " (A)"r"(A)"7' €T", if Dpz(v)>0then f(¥)= vy + 1+ f (') and
if Dpx(¥)=0 then f(v)=(f(n),f"”(s"). The reader will see that the proof
of 7.10 goes through; in addition to what was done there, we have to verify that
filn) = f:(F(n)) for # €T,, and for this one has to notice that in order to avoid
the contradiction in the end of the proof of 7.10, it is necessary that n =

I(F(n))=1(n).
7.16. LEMMA. 2%Q x Q) is locally embeddable into T2%°(Q).

ProoF. Let K C 72%°(Q X Q) be a subset, and let y be an ordinal bigger than
all those occurring in K. Given (T, f) € K, we obtain (T, f) € 72%°(Q) by the
following modifications: if f() = (qo, 1) we let f(n)= v, we add new nodes m;,
i=0,-+-,4,s0 that n <. <3< and 5 < 7. < o, letting f(n)=1vy+i for
i=2,3,4 and f(n)=gq for i=0,1. It is straightforward to check that
(T,f)— (T, f) is indeed a local embedding of J2%°(Q X Q) into T 3°(Q).

7.17. Lemma. T 22°(Q) is embeddable into PL.(Q).

Proor. We define the embedding H by induction on Dp(T). If Dp(T)=0
then f({ ))=q € Q and we let H(T,f)=gq. If Dp(T)>0 we let H(T,f)=
{H{T, )ey): l(n) =1}: 8;« » times} (this is a set with repetitions).

7.18. LEmMA. PL.(Q) is embeddable into T -.(Q).

ProorF. We define the embedding H by induction on Dp(a)=
min{a :a € 2.(Q)}. If Dp(a)=0 we let H(a) be a tree with a single node
labeled a. If Dp(a)>0 we let H(a) be a tree constructed from copies of the
H(b)’s, b ranging over the elements of a, so that each node in level 1 of H(a)
corresponds to one such b (being the root of a copy of H(b)); we choose
arbitrarily a well-ordering of level 1, and also an element of Q among the labels
in this level to label the root of H(a).

7.19. THEOREM. Suppose Q is not 8o-I-bqo. Then the following conditions on
K are equivalent for X €{[,D}, FE{T*, T%., T, T4, T°, T, T, T2, T2,
T& T, Pk

(1) Q is [x;No)-bgo.

(2) F(Q) is k-X-bqo.

(3) F(Q) is x-X-well-ordered.
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REMARK. As (1) does not involve X or F, we get all variants are equivalent.

ProoF. If F is one of the 7' or T, | =0, use the results in §5. Now, using
the results of this section, one can see that the theorem holds also for the other
F’s listed.
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