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This is the first of a series of articles dealing with abstract classification theory. 
The apparatus to assign systems of cardinal invariants to models of a first-theory 
(or determine its impossibility) is developed in [Sj. It is natural to try to extend 
this theory to classes of models which are described in other ways. Work on the 
classification theory for nonelementary classes [6] and for universal classes [9j Ied 
to the conclusion that an axiomatic approach provided the best setting for 
developing a theory of wider application. This approach is reminiscent of the 
early work of Fraisse and Jcinson on the existence of homogeneous-universal 
models. As this will be a long project it seems appropriate to report our progress 
as we go along. 

In large part this series of articles will parallel the development in [9]. A survey 
of that paper which could serve as an introduction to this one is [I.]. The first 
chapter of this article corresponds to Section 2 of [9]. In it we describe the axioms 
on which the remainder of the article depends and give some examples and 
context to justify this level of generality. As is detailed later the p~~cipal goal of 
this series is indicated by its title. The study of universal classes takes as a 
primitive the notion of closing a subset under functions to obtain a model. We 
replace that concept by the notion of a prime model. We begin the detailed 
discussion of this idea in Chapter 2. One of the important contributions of 
clarification theory is the recognition that large models can often be analyzed by 
means of a family of small models indexed by a tree of height at most o. svfore 
precisely, the analyzed model is prime over such a tree. Chapter 3 provides 
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236 J.T. Baldwin, S. Shelah 

sufficient conditions for prime models over such trees to exist. The discussion of 
properties of a class which guarantee that each model in the class is prime over 
such a tree will appear later in the series. 

We introduce in Chapters 1 and 2 a number of principles which we loosely refer 
to as axioms. At the beginning of Chapter 3 we define the notion of an adequate 
class - a class which satisfies those axioms that we assume in the mainline of the 
study. This notion of an adequate class will be embellished by further axioms in 
later papers of this series. Our use of the word axiom in this content is somewhat 
inexact; postulate might be better. In exploring an unknown area we list certain 
principles which appear to make important distinctions. In our definition of an 
adequate class we collect a family of these principles that is sufficient to establish 
a coherent collection of results. We thank N. Shi for carefully reading the paper 
and making a number of helpful suggestions. 

1. The abstract framework 

Shelah developed in [9] several frameworks for studying aspect of classification 
theory. In each case he studied a triple 

K= (K, +, NF&; 

K is a collection of structures, cK denotes elementary submodel with respect to 
K, and NFK is a 4-ary relation (nonforking) denoting that certain models are in 
stable amalgamation. The original paper primarily studied classes which admitted 
a fourth basic notion: ‘generated submodel’. We generalize that context here by 
taking as a fourth basic component a predicate cpr. Intuitively, cpr = cpr, holds 
of a structure M E K and a chain of models %’ (Section 1.2) if M is prime over W. 
Thus this paper studies quadruples 

K = (K, SK, NFK, cpru) . 

Section 1.1 reviews the properties of elementary submodel and free amalgama- 
tion which carry over from [9]. In Section 1.2 we provide a number of examples 
of classes which satisfy the basic axioms. 

1.1. Basic properties of SK and NF 

K always denotes a class of structures of a fixed similarly type. K and all 
relations that we define on it are assumed to be closed under isomorphism. 
Although technically both < and NF should be subscripted with K, we usually 
omit the subscript for ease of reading. M and N (with subscripts) denote members 
of K unless we explicitly say otherwise. A and B will denote subsets of members 
of K. We write M is contained in N (M G N) if M is a substructure of N; that is, if 
the universe of M is a subset of that of N, the relations of N are those imposed by 
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The primal framework I 237 

M and M is closed under any functions in the language. We write M is a 
submodel or more explicitly a K-submodel of N for M =S N. 

The first group of axioms describe our notion of elementary submodel. 

1.1.1. Axiom Group A: K-submodels 
AO. If MEKthen MSM. 

Al. If M s N then M is a substructure of N. 
A2. G is transitive. 
A3. If M,cM,GN, M,GNand M,GNthen M,,sM,. 

It is sometimes essential to distinguish between M sK N which implies M G N 

and the existence of an embedding f of M into N whose image is a K-submodel of 
N. 

1.1.2. Definition. A K-embedding is an isomorphism f from an M in K to an N in 
K such that rngf+ N. N is then a K-extension of M via 5 

If f is not mentioned explictly then it is the identity. 

We require one further important property of K and +. 

1.1.3. Definition. K has the il-Lijwenheim-Skolem property ()L-LSP) or (the 
Lijwenheim-Skolem property down to A) if A E M E K and IAl s A implies there 
is an N E K with A E N s M and (NI s rZ. The Liiwenheim-Skolem number of K 

is the least il such that K has the )L-Liiwenheim-Skolem property. We write 
LS(K) = A. 

Note that the set of cardinals for which K has the Liiwenheim-Skolem 
property may not be convex. Moreover the related requirement on A, for any A 

there is an N 2 A with N E K and INI G IAl + A, is still different and will be 
investigated later. 

1.1.4. Axiom Group A: K-submodels 

A4. LS(K) < CQ. 

Our axioms differ from those of FraissC and J6nsson in that there is neither a 
joint embedding nor an amalgamation axiom. Our approach here is to assume in 
the next set of axioms a particularly strong form of amalgamation. The use of 
nonamalgamation as a source of nonstructure has been explored by Shelah in 
several places. See especially Chapter 1 of [9] and [4] and its progenitor [6]. We 
will obtain joint embedding by fiat (by restricting to a subclass that satisfies it). 
The J6nsson Fraisd constructions also require closure under unions of chains. 
This requirement is more subtle than it first appears; it is the major topic of [3]. 

We say two structures are compatible if they (isomorphic copies of them) have 
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238 J.T. Baldwin, S. Shelah 

a common K-extension. Any class K that satisfies Axiom C2 (below) is split into 
classes with the joint embedding property by the equivalence relation of 
compatibility and if K has a Lowenheim-Skolem number then there will be only 
a set of equivalence classes. Given any fixed model M (or diagram of models) this 
equivalence relation will be refined by ‘compatibility over M’. We explore this 
refinement in Chapter 2. 

The second group of axioms concern the independence relation. We begin by 
describing a relation of four members of K. 

means that M1 and M2 are freely amalgamated over MO within M3. The notation 
NF arises from the reading the type of M, over M2 inside M3 does not fork over 
Ml. We will eventually show a dichotomy between nonstructure results and the 
existence of a monster model A. Thus, in trying to establish a structure theory we 
can introduce a 3-ary relation NF(M,, Ml, M,) to abbreviate NF(M,,, Ml, iw,, Ai). 

We usually write this relation as Ml A,+,,, M2. Even before showing the existence 
of the monster model we will employ this notation if the choice of M3 is either 
clear from context or there are several possibilities which serve equally well. 

1.1.5. Notation. A 4-tuple (MO, M,, M2, M,) is called a full free amalgam if it 
satisfies NF(M,, Ml, M2, M,). The three-tuple (MO, M,, M,) is called a free 
amalgam if it is an initial segment of a full free amalgam. We often write Ml and 
M2 are freely amalgamated over M,, in M3. We refer to such a diagram as a ‘free 
vee’. An isomorphism between two free amalgams m = (MO, Ml, M2) and 
P2 = (MA, M;, Ml) is a triple of isomorphisms f; mapping Mj to MI with f. 
contained in fi and f2. There is no guarantee (until we asssume Axiom C5 below) 
that the isomorphisms fi and f2 have a common extension to an M3 which 
completes ZR. We extend this notion of isomorphism to arbitrary diagrams in 

Section 1.2. 

1.1.6. Axiom Group C: Independence. The following axioms describe the 
independence relation. For convenience of comparison we have kept the 
numbering from [9] when we have just copied an axiom. Some axioms from that 
list (e.g. C4) are omitted here. In particular, the role of Axiom Group B from [9], 
which dealt with the notion of generation, is played here by Axiom Group D. 
(See Section 2.2.) 
Cl. If NF(M,,, Ml, M2, M3) then MO< M,s M3 and MO< Ml s M3. In particular, 

each Mi E K. If NF(M,, Ml, M2, M,), we say Ml and M2 are freely amalgamated 
(or independent) over MO in M3. 

C2. Existence. If M,, is a K-submodel of both Ml and M2 then there are copies 
(over M,,) M; and M; of Ml and M2 which are freely amalgamated in some 
M3e K. 
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The primal framework I 239 

C3. Monotonic&y. (i) If Mi and M2 are freely amalgamated over MO in M3 then 
so are MI and MS for any Mi with MO s Mk G M2. 

(ii) If MI and M2 are freely amalgamated over MO in M3 then they are freely 
amalgamated in any M; 2 M,,. 

(iii) If MI and M2 are freely amalgamated over MO in M3 then they are freely 
amalgamated in any Mj containing MI U M2 and with Mj 6 M3. 

CS. Weak Uniqueness. Suppose (%R, M3) and (9J?, MJ) are full free amalgams. 
If m and 9X’ are isomorphic free amalgams (via f) then there is an N E K with 
M; G N, and an extension off mapping M3 isomorphically onto a K-submodel 
of N. 

C6. Symmetry. If NF(M,,, MI, M2, M3) then NF(M,,, MI, M2, M,). 
C7. Disjointness. If NF(M,, MI, M2, M,) then MI f~ M2 = MO. 

Axiom C7 is largely a matter of notational convenience. We will indicate in 
Chapter 3 how the major argument of this paper could be slightly revised to avoid 
this axiom. With it we obtain immediately the following monotonicity property. 

1.1.7. Proposition. Suppose NF(M,,, MI, M2, M,) and M,,G N which is a K- 
submodel of MI and M2. Then NF(N, MI, M2, MJ. 

This result could be easily deduced from the base extension axiom 2.2.2 
without using C7. 

By taking ‘formal copies’ of M1 and M3, one derives a variant of C2 where M; 
can be demanded to be MI. We refer to Axiom C.5 as weak uniqueness because it 
simply demands that any two amalgamations of a given vee be compatible. Thus, 
it is making the compatibility class of the diagram unique, not the amalgamating 
model. 

1.1.8. Lemma. Suppose (M,,, MI, M,, M,), (MO, MI, M;, M;) are full free amal- 
gams. If M; is isomorphic to M2 over MO by a map g then g is an isomorphism 
between Mi and M2 over MI. 

Proof. Apply the weak uniqueness axiom to the map f that is the union of the 
identity on MI and the given g from M2 to Mh. 

1.1.9. Smoothness. Does the class K admit a ‘limit’ of an ascending chain (or 
more generally a directed system) of K-structures? There are several different 
variants on this question and the answers determine signficant differences in the 
behaviour of K. We discuss the variants in detail in [3]; we now just mention a 
couple of possibilities and some of the consequences. 

The strongest requirement is to deal directly with unions of chains. But even 
here there are several variations. One can demand that any union of a 
(continuous) increasing chain of K structures be a member of K. More subtly, 
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240 J.T. Baldwin, S. Shelah 

one can ask that if each member of the chain is K-submodel of a fixed M then the 
union is also. 

Shelah has shown that a class K satisfying the axioms A0 through A4 
enumerated here and stringent requirements for closure under unions can be 
presented as the collection of models in a pseudoelementary class in an infinitary 
logic which omit a family of types. (See Section 1 of [6] and [4].) 

Beginning in Chapter 2 we discuss the ways in which unions of chains can be 
replaced by demanding the existence of a prime model over the union. Again, 
there are a number of smoothness properties that can be discussed in this context. 
One obvious application is attempts to improve the L6wenheim-Skolem property 
to demand that each set can be imbedded in a model of roughly the same size. 

1.2. Examples 

We describe in this section a number of examples of classes and notions of 
amalgamation which satisfy at least some of the axioms that we are discussing. Of 
course, the prototype is the collection of models of a stable first-order theory 
where a free amalgamation is one that is independent in the sense of nonforking. 

In this section we first discuss some contrived examples which although they 
lack any intrinsic interest make it easy to exhibit some of the pathologies that we 
are investigating. Then we place in context some classes which naturally arise in 
the attempt to extend classification theory to, e.g., infinitary classes. 

1.2.1. Contrived examples. Let B be the class of all structures of the following 
sort. We work in a language with two unary predicates, U, V and a binary 
relation E. Now M is in B if via E, each member a of V is the name of a subset 
X,={mEU(M):E( m, a)} of U and every subset of U has one and only one 
name. Thus each member M of B is determined up to isomorphism by the 
cardinality of U(M). NF(M,, M,, M2, M3) holds just if for each a E MI (M,), X, in 
the sense of M3 is a subset of M1 (M,). We can illustrate the axioms by defining 
sB in two different ways. 

(i) Define M dB N if U(M) z U(N), V(M) G V(N) and each element of V(M) 

names in N the same subset of U(M) that it names in M. Under this definition if 
M,, sB M1 sB M3 and MO sB M2 sB M3 then NF(M,, MI, M2, M,). Moreover, if 
M,, sB MI and MO cB M2, we can find a common K-extension for them letting M3 

be MI U M2 together with a collection of names for sets that intersect both U(M,) 

and U(M,). 

(ii) On the other hand, let M sB N just mean that M is a substructure of N. 
Now it is still possible to verify Axiom C2. If a subset X of MO is named by 
elements a of M, and b of M2 then a and b can be identified by the embeddings 
into MS. Using this strategy to amalgamate Axiom C7 fails; however the strategy 
outlined below when we consider an additional predicate Q, which is needed then 
to obtain even C2, will also show that C7 is verified. 
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The primal framework I 241 

Some of the problems with amalgamations become clear if we add a unary 
predicate Q and demand that for any subset W of U(M) with power less than K 

there exist both a and b in V(M) with a satisfying Q but b not satisfying Q so that 
X, and X, both contain W. (That is, both Q and its complement are dense.) 
Axioms C2 and C5 hold under the first definition of cB. To make C2 hold under 
the second interpretation of G we must deal with a subset X of M,, that has one 
name in Q(Mr) and another in lQ(M,). Now another strategy works. Add points 
to the set attached to one of the names and then fill out the model as freely as 
possible. It is easy to see (cf. Chapter 2) that there are extensions of chains which 
are incompatible. 

B, is defined in the same way but with the additional restriction that each 

IX,] < K. 
Another variant arises by replacing the single binary relation E by a family of 

binary relations Ei such that for each i < K and each a E V(M), there is a unique 
m E U(M) with Ri(a, m). Thus we code K sequences rather than sets. 

1.2.2. Hi-saturated models. Let T be a strictly stable first-order theory and let K 
be the class of X,-saturated models of T. Take NF, as nonforking and sK as 
elementary submodel. Then the basic axioms are clearly satisfied but K is not 
closed under unions of chains of small cofinality (not fully smooth). But there are 
prime models (F& in the notation of [5] or SETEl, in the notation of [2]) over such 
chains. 

The theory REF, of countably many refining equivalence relations has 
K-prime models over chains of cofinality w but they are not minimal. This leads 
to 2’ K-models of power A when Iz” = A. This argument is treated briefly in [7] 
(the didip) and will be reported at more length in the current series of papers. 

On the other hand if T is a two-dimensional stable theory (cf. Theorem V.5.8 
of [5]) then I@,, K) c ICY + 11. 

1.2.3. Universal classes. See 11.2.2 of [9]. 

1.2.4. Finite diagrams stable in power. See 11.2.3 of [9]. 

1.2.5. Infinitary classes. See [6]. 

1.2.6. Banach spaces. See [8]. 

Question. Are there any stable universal theories of Bunuch spaces beyond the 
LP-spaces? 

2. Prime models over diagrams 

In Section 2.1 we discuss diagrams of models and the basic properties of prime 
models over diagrams. Section 2.2 concerns prime models over independent pairs 
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242 J.T. Baldwin, S. Shelah 

of models. We also discuss several possibilities for the relation of a model M1 
which is independent from an M4 over MO with an M2 with M,c_ M2s M4. 
Surprisingly, 2.2.3 deduces a property of the dependence relation but needs the 
properties of prime models for the proof. In Section 2.3 we discuss prime models 
over chains. 

2.1. Diagrams 

We consider two kinds of diagrams. The first is more abstract because the 
partial ordering among the structures is witnessed by K-embeddings. In the 
(second) case of a concrete diagram the partial ordering is witnessed by actual 
set-theoretic containments. The existence axioms for free amalgamations have the 
general form: Given an abstract diagram, there is a concrete stable diagram which 
is isomorphic to it (in the category of diagrams). 

The discussion of abstract diagrams is essential at this stage in the development 
of theory. Once a ‘monster’ model or global universe of discourse has been 
posited, one can assume that all diagrams are concretely realized as subsets of the 
monster model. The monster model is easily justified in the first-order context so 
this subtlety does not seriously arise. In the more general case one must worry 
about it until ‘smoothness’ and thus the monster model are obtained. (See [9] and 

f31.1 
We will assume the existence of prime models over certain simple diagrams and 

certain properties relating prime models over more complicated diagrams. In a 
later paper when considering prime model over still more complicated diagrams 
(tall trees) we will only be able to obtain a dichotomy between the existence of 
prime models and the existence of many models. 

We call a triple (MO, MI, M,) with embeddings of MO into MI and M2 a ‘vee’ 
diagram. Thus, Axiom C2 asserts the existence of free amalgamations over vee’s. 

2.1.1. Definition. An abstract K-diagram (indexed by a partial order (I, <)) is a 
pair: a sequence of models and collection of maps. The models {M, :x E Z} and 
the maps {f, :x, y E I, x < y} must satisfy the following conditions. 

l M,EK. 
l If x < y then there is a K-embedding fXy from M, into M,. 
l if x <y =6z thenf,, =fyLofXy. 

We will often suppress mention of the maps. When we need to refer to them we 
will often describe the family {f, :x, y E Z} by f and write f ( Y for {f, :x, y E Y} 
when Y is a subset of I. 

2.1.2. Definition. fl and 8 are biomorphic K-diagrams if they are both indexed 
by the same partial order Z and for each x E Z there is an isomorphism cu, between 
M, and N, such that the a; and f, in 2172 and 8 commute in the natural way. We 
will write (Y for the family of the aX. 
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The primal framework I 243 

Note that no single function f is a morphism for K unless its domain is in K. In 
particular, we cannot speak of a single map whose domain is a vee. 

2.1.3. Definition. A concrete K-diagram m inside M (indexed by I) is a 
collection, 9X = {M, :x E Z}, of members of K such that each M, s M and if x =5y 
then M, s My. 

We extend the notion of a free amalgam to more general diagrams. 

2.1.4. Definition. A stable K-diagram 9J2 inside M (indexed by the lower 
semilattice (Z, A )) is a concrete K-diagram inside M satisfying the additional 
condition 

l For any x, y E Z, M, and M,, are freely amalgamated over MXhY within M. 

2.1.5. Definition. (i) N is a K-extension of %? if there is an isomorphism f 
between !l,R and a concrete K-diagram %’ inside N. f is called a K-embedding of m 
into N. 

(ii) N is a stable K-extension of ,%! if there is an isomorphism f between %R and 
a stable K-diagram (32 inside N. f is called a stable K-embedding of m into N. 

The phrase 9.X is a stable K-diagram’ means 9X is stable in some M which is 
suppressed for convenience. A vee (MO, Ml, M,) is stable if there is an M3 

completing it to a full free amalgam. Note that an isomorphism between diagrams 
need not preserve stability. It only guarantees isomorphism between the 
individual M, and ML. In particular an isomorphic copy of a free amalgam need 
not be free. So we cannot say a vee diagram is free without specifying an ambient 
model and an embedding into it. This is true even in the first-order case. In this 
case we usually think of the monster model as the ambient model and identity as 
the embedding. 

2.1.6. Examples. Of course a (full) free amalgam is a stable K-diagram. So is any 
chain of K-models which have a common K-extension. Another natural example 
is an ‘L’-diagram (see Fig. 2.1) where for each i =S S, Mi JMo N inside the ambient 
model. 

Compatibility of two extensions of a single model is a straightforward notion. 

2.1.7. Definition. Two members N,, N2 of K are said to be compatible over the 
K-embeddings fi, f2 of No into N,, Nz if there is an N3 in K with both N1 and N2 
K-embeddible in N3 by K-embeddings g,, g, such that g, ofi = g20f2. 

In view of the existence axiom for free amalgamations any two members Ml, 

M2 of K with an MO E K that is a K-substructure of each of them are compatible 
over MO. When No is replaced by a diagram 98 involving infinitely many members 
of K the situation is more complicated. 
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244 J.T. Baldwin. S. Shelah 

Fig. 2.1. An ‘L’ diagram. 

2.1.8. Deli&ion. Suppose m is a K-diagram. Let fi, fi be K-embeddings of k?JI 
into Ml and M2 respectively. Ml and M2 are K-compatible over 9J2 via fi, fi if there 
exists an N E K and K-embeddings g,, g, of Ml, M2 into N such that g, 0 fi and 
g20f2 agree on YJL 

(The X are families of maps and the gi are single maps but the meaning of the 
composition should be clear.) 

Clearly over each rol, compatibility defines a reflexive and symmetric relation. 
Axiom C2 shows that the relation is also transitive so for any diagram D we have 
an equivalence relation, compatibility over 9JI. 

2.1.9. Definition. The abstract K-diagram 9.JI is stably univalent if all stable 
K-extensions of rXn are compatible. 

In this language Axiom C5 asserts that every vee is stably univalent. 
There is little hope to find a ‘prime’ model (in the usual categorical sense) over 

an arbitrary diagram 9JI. For, if a diagram isomorphism from mZ into N collapsed 
two elements of models M E 2Jl then there could be no isomorphism from a 
structure containing all members of ‘92 into N. Thus, we restrict the following 
definitions to stable embeddings. We first define the notion of a ‘prime’ model 
within a compatibility class. Remember that the image of a stable embedding is 
required to be stable. 

2.1.10. Definition. (i) Let f be a stable K-embedding of the abstract diagram fill 
in M. We say M is compatibility prime over (9% f) (or over m via f) if for every 
M’ E K and stable embedding f’ of !IJI into M’ such that M and M’ are compatible 
via f, f’ there is an embedding of g : M H M’ with g of = f ‘. 

(ii) We omit f if it is an identity map. 
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The primal framework I 245 

Strictly speaking, we should refer to a triple (B, f, M). A little looseness to 
ease reading seems acceptable here. We are more precise when we introduce the 
notion of canonically prime in Section 2.3 since a new basic relation is added to 

the system. 
Note that if the diagram ‘ZR has a unique maximum element then that element 

is compatability prime over YJL Note that if M is compatibility prime over ?lR via f 
then M is isomorphic to an M’ which is compatibility prime over !lR via the 
identity. 

There are various ways in which a compatability prime model can fail to be 
unique. There could be more than one compatibility class; within a given 
compatability class there could be nonisomorphic compatibility prime models. 

2.1.11. Definition. M is absolutely prime over (%R, f) if M can be embedded over 
(m, f) into any stable K-extension N of m. 

Clearly, if M is compatibility prime over !?X and m is univalent then M is 
absolutely prime. In view of the weak uniqueness axiom if there is a prime model 
over a stable diagram ZR then !E is stably univalent. We will see that with strong 
enough hypotheses on K the various notions of prime coalesce. We have 
introduced the notion of ‘absolutely prime’ to emphasize the distinction with 
compatibility prime; ‘absolutely prime’ is the natural extension of the usual model 
theoretic notion to ‘prime over a diagram’. When we write ‘prime’ with no 
adjective we mean ‘absolutely prime’. 

2.2. Prime models over vees 

In the next two sections we discuss axioms concerning the existence and 
properties of prime models over certain specific diagrams. We begin by assuming 
the existence of prime models over vee’s. In the light of C5 (weak uniqueness) two 
completions of an amalgam are compatible so it would be equivalent to replace 
absolutely prime by compatibility prime in the following axiom. We will often just 
say ‘prime’ for the absolutely prime model over a vee. Again because of weak 
uniqueness we don’t have to specify M3 is prime over Ml U M2 in M4. 

2.2.1. Prime models over vees 
Dl. There is an absolutely prime model over any free amalgam (M,,, Ml, M2). 

For compactness we write M is prime over Ml U M2 instead of M is prime over 

(MO, Ml, Mz). 
Now we describe properties which relate independence and prime models. The 

next axiom of this group corresponds to Axiom C4 of [9]. Diagram 2.2 illustrates 
each of the principles discussed below. 
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Fig. 2.2. Base extension axioms. 

2.2.2. The base extension axiom 
D2. Suppose M, and M4 are freely amalgamated over MO in Ms. If MO s M2 c M4 

and M3 is prime over Ml U M2 in MS then M3 and M4 are freely amalgamated 
over M2 in Ms. 

To understand the base extension axiom in the first-order context, think of M3 

as MJM,]. (For this notation see [2].) Then the axiom is implied by the fact that 
for any X and any model M (in the appropriate category, e.g. w-stable and the 
normal notion of prime model), X dominates M[X] over M. 

Axiom 2.2.2 yields a somewhat surprising consequence. We can obtain the 
following ‘transitivity of nonforking’ from 2.2.2 and the weak uniqueness we 
posited in Axiom C5. This result is remarkable because we are establishing a 
property of the nonforking relation which makes no reference to prime or 
generated models. But, the proof uses properties of either generated models (the 
version in [9]) or prime models (here). 

Theorem 2.2.3 (Transitivity of independence). 1f NF(M,, M,, M2, M,) and 

NF(M,, M3, M4, MS) then NF(Mo, Ml, Met, MS). 

Proof. By the existence axiom there are Mq and M: and an isomorphism g of M4 
and MI; over MO such that Ml iluo Mi in Mg. By monotonicity (C3(iii)) we may 
assume M’; is prime over Ml U MI;. Let M; denote g(M2) so M,, s Mg s Mz. We 
want to show the existence of an isomorphism with domain M’; which fixes Ml 

and maps Mi to M4. 
Let M; be prime over Ml U M2 and contained in M3. By the monotonicity 

axioms (C3(iii) and C3(i)) we have Ml I,+,” M2 in M; and M; AM2 M4 in Ms. 

Similarly, if M; is chosen prime over Mj U M4 in MS then M; c M5 and M; Jicl, M4 

in M[ using axiom C3(iii). 
Since M2 and M’; are isomorphic over MO and both are independent from Ml 

over MO there is an isomorphism f taking Mj into M’; which extends g ) M2 U l,,. 
(This follows because M; is prime over M2 U Ml and applying the weak 
uniqueness axiom.) Let M’j denote f(M;). Then M; is prime over Mg U Ml since f 
is an isomorphism. By the base extension axiom 2.2.2, Mi JMs M[i in M;. Let My 
be prime over MI( U ML; and let h be a map from My into some N which extends 
guf-1. Now Mi= h(Mi) and M4 are isomorphic over M2 and both are 
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independent from Mj over M2. So by the weak uniqueness axiom there is an h ’ 
defined on N which takes M; to M4 and fixes M;. Now h' oh takes MI; to M4 and 
fixes Ml as required. 0 

Theorem 2.2.4 (Transitivity of primality). Suppose Ml and M4 are freely amalga- 
mated over MO in Ms. Zf MO s M2 c M4, M3 is prime over MI U M2 in MS and MS is 
prime over M3 U M4 in M5 then MS is prime over MI U M4 in Ms. 

Proof. Let N be a stable K-extension of (MO, Ml, M,). That is, there exist maps 
fi, f4 from MI, M4 to K-submodels Mi, Ml of N that agree on MO; let MA denote 
the common image of the i on MO. Then since the embedding is stable M; J,,.,6 Mi 
inside N. We must find a common extension of the J to Ms. Let f2 denote the 
restriction of f4 to M2 and M; its image. Now, since M3 is prime over Ml U M2 

there is a map f3 with domain M3 which extends fi U f2. Denote the image of f3 by 
MS. By the base extension axiom 2.2.2, M; Jw; M; in N. So there is an fs 
mapping MS into N and extending f3 U f4. A fortiori, f5 extends f3 U f4 and we 
finish. Cl 

There are some further properties of prime models which both arise in some 
natural situations and are useful tools. We describe them now but they do not 
play an important role in the theory until we reach some rather special cases. 

2.2.5. Definition. The concrete K-extension M of m is minimal over the diagram 
?IR if there is no proper K-submodel of M that contains UY 

2.2.6. Some further axioms 
D3. The prime model over a free amalgam XR is minimal over ?E 
D4. The prime model over a free amalgam $3 is unique up to isomorphism over 

Y.R. 
D5. Suppose MI and M4 are freely amalgamated over MO in M, and MS is prime 

over MI U M4. If MC, s M2 s M4 and M3 is prime over M2 U Ml then MS is 

prime over M4 U M3. 

D5 is a kind of ‘converse’ to Theorem 2.2.4 that we may need later. It will only 
hold in very restricted cases. It is true for the notion of generation in universal 
classes; it fails for prime models in the first-order case (even w-stable). However, 
if prime models over vees are minimal (e.g. for a first order theory without the 
dimensional order property) then an even stronger version of D5 holds easily. 
Namely the monotonicity requirement that if MS is minimal over MI U M4 then M, 
is minimal over M3 U M4. 

2.3. Prime models over chains 

An abstract chain (Mi, A,j: i, j E Z) is an abstract diagram whose index set Z is 
linearly ordered. Any closed initial segment of an abstract chain has a natural 
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representation as a concrete chain. To see this consider (M;, L,j : i, j s a). Let M] 
denote fi,,(Mi). Then the MI are a concrete chain with inclusion maps 
f:,j=fi,aOfi,jOfLA. Thus for any chain indexed by an ordinal y and any limit 
ordinal 6 < y it makes sense to speak of Uic6 Mi as we can concretely realize 
nlIinMgforanypwith6c/3Gy. 

We discuss in this section the specification and existence of prime models over 
chains. In general, given an increasing chain of K-models there is no reason to 
assume that the chain has any common extension in K, let alone one that is 
prime. If we assume the existence but not the weak uniqueness of compatibility 
prime models, there may be two incompatible compatibility prime models over 
the same chain. (We say K is not smooth.) For this reason, we can not in the 
most general case just define ‘prime’ as compatibility prime and posit that ‘prime’ 
models exist. We would need to introduce another axiom asserting that there is 
only one compatability class over any chain. Justification of such an axiom is the 
main point of [3]. However, to reduce the set theoretic hypotheses of that 
argument we introduce a new predicate (cpr) with the intuitive meaning, ‘M is 
canonically prime over YJ? and prescribe axioms describing the behavior of such 
prime models. 

Consider the last example in Paragraph 1.2.1. We have a unary predicate U 
which is dense and codense. At any limit stage of cofinality K, we have to decide 
whether the name of certain K sequences are in U or not. Different answers 
correspond to different compatability classes. 

We want to demand the existence of a ‘prime’ model over a union of a chain. If 
the chain has length longer than w several possibilities arise for what we should 
demand of models at limit stages in the chain. It is unreasonable to demand the 
existence of ‘prime’ models over chains that are not K-continuous in the following 
sense. 

2.3.1. Definition. (i) The chain (Mi, 5.j : i, j < /3) is K-continuous if for each limit 
ordinal 6 < /3, cpr(XR6, iMa, f 1 6). 

(ii) the chain (M,,f;::i</3) is continuous if for each limit ordinal 6 < 0, 

& = Ui<s M* 

Axiom Chl gives an implicit definition of a canonically prime model; Axiom 
Ch2 asserts that such a model exists. Suppose %! is a ‘long’ chain. At each limit 
stage one has a choice of compatibility classes for a ‘prime’ model over that 
segment of the chain. The notion of a canonically prime model requires that these 
choices cohere. 

Chl. cpr(YJZ, M, f) implies 
(i) n is a K-continuous chain. 

(ii) M is compatibility prime over %R via f. 
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We often write MS is canonically prime over Xl& = (Mi : i < 6) for the formal 
expression cpr(k?.&, Ma, f ( 6). That is, for brevity we do not mention the specific 
embeddings J;,j unless they play an active role in the discussion. 

Ch2. For any K-continuous chain tXn there is a model M and a family of maps f 
that satisfy cpr(YJL M, f). 

Ch3. The canonically prime model over an increasing chain 9.R is unique up to 
isomorphism over ?R 

Again the uniqueness axiom is regarded as a desirable property to prove and is 
not assumed in the general development. 

2.3.2. Definition. The chain (M;, f;,j : i <i < /3) is called essentially K-continuous 
if for each limit ordinal 6 < /!l, there is a model Mk which can be interpolated 
between the predecessors of M6 and Mb and is canonically prime over YG$. 

More formally, we add to the index set a new 6’ for each limit ordinal 6. There 
exists a system of embeddings g such that if (Y and p are successor ordinals 
gn,B =fol,B, and for each limit ordinal 6 and each IX < Ggmy,s factors as ga,6,0gbS,6. 
Finally cpr(YJ&, Mb’, g 1 8’). 

The next axiom provides a local character for dependence of the prime model 
over a chain over another model. This is our only basic axiom connecting the 
independence of an infinite diagram with that of its constituents (see Fig. 2.3). 

2.3.3. Axiom Ll: Local dependence for L diagrams. If ( Mi : i 6 S) is a K- 
continuous increasing sequence inside M’ and for each i < 6, Mj AM,, N in M’ then 
Mb J,,,,” N in M’. 

M” 

M, 

MO N 

Fig. 2.3. Local dependence for L’s, 
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3. Prime models over small loose trees 

In this chapter we extend the existence of prime models over simple diagrams 
to obtain prime models over more complicated diagrams. Ideally we would show 
the existence of prime models over an arbitrary independent tree. This project 
runs into difficulties when considering trees of height greater than o; as a 
substitute we show how to obtain prime models over ‘loose trees’ of models 
indexed by subsets of )ccw. In a later paper we expect to reduce the discussion of 
prime models over trees with large height to treatment of loose trees of height w. 

While the original motivation for loose trees was the reduction of problems 
about tall trees to problems about loose trees of countable height, it turns out 
that loose trees are closed under several useful operations such as quotient and 
trees are not. Thus, by passing through loose trees we are able to obtain results 
about trees that, at least a priori, are otherwise unavailable. 

Consider a concrete stable diagram. An initial strategy for building a prime 
model over rXn is to enumerate m say as Mi for i < LY and choose a family of 
models Nj for i < a! so that for each i, k&+1 is independent from Ni over the 
predecessors of Mi+ 1 in the tree and then to take N,+i prime over M,+i and Ni. 
Take canonically prime models over the earlier Ni at limits. The resulting model 
clearly depends on the order of enumeration. Can one still prove that this model 
is compatability prime over the diagram ? We show that the answer is yes if the 
diagram is a ‘short’ tree (and generalize to allow loose trees). Finite trees are 
considered in Section 3.1; trees of countable height in Section 3.2. In the case of 
finite trees we show fairly directly that if a loose tree is free under one 
enumeration then it is free under any enumeration. In the second case we pass to 
the ostensibly more general notion of locally free loose tree, show the existence 
of prime models over such a tree, and deduce from that the fact that a locally free 
loose tree is free under any enumeration. 

‘Assumption: An adequate class. We assume in this chapter axiom groups A and 
C, axiom Dl and D2 from group D, Chl, Ch2 from group Ch, and (beginning 
with 3.2.6) Ll. We call a class with these properties an adequate cfuss. 

3.1. Free loose trees 

In this section we show that if 9X is a finite free loose tree (definitions follow) of 
models from an adequate class then there is an absolutely prime model over %J2. 
More precisely, we say that N is explicitly prime over a finite loose tree m if it is 
the last in a sequence of prime models over vee’s satisfying crtain conditions. We 
show that if N is explicitly prime over a subdiagram of mZ then the sequence 
witnessing this can be extended to one witnessing the existence of an explicitly 
prime model over %R. This ostensibly technical result is essential for the discussion 
of prime models over infinite loose trees in the next section. 
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3.1.1. Notation. A tree T is a partially ordered set which is isomorpnic to a 
subset of A’” which is closed under initial segment. We will often deal directly 
with this representation. A tree is partially ordered by containment. If s, r ET 
then s A t denotes the largest common initial segment of s and t and for any t 

other than the root, denoted ( ), t- denotes the predecessor of t. 

As in the study of stable diagrams we work only with embeddings that are 
inclusions, that is, with concrete diagrams. 

3.1.2. Definition. A loose tree of models $2 = {M, : t E T} inside M indexed by a 
tree T is a collection of K-models such that if t- = s then M, fl MS s M, and 
M,nM,cM,. 

Note that any stable diagram indexed by a tree is a loose tree. 
We have not introduced a loose tree as a kind of partial order. All our index 

sets are trees in the normal sense. A loose tree of models is loose because of the 
inclusions amongst the models determined by the indexing. 

In defining an independent loose tree (below) we will speak of independence 
over M, rl M,-. This use of intersection depends on Axiom C7 (which implies that 
MS fl M, E K). However, at a cost in complexity of notation the results of this 
chapter could be obtained through modifying the definition of a loose tree and a 
free loose tree by replacing M, n MS by a substructure M,,, E K. This would allow 
us to extend the definition of loose trees to abstract diagrams. With such an 
extension the analogy would be closer between the notion of compatibility prime 
(over a stable embedding of an abstract diagram 2.1.10) and the definition 3.1.16 
of a compatibility prime model over a loose tree. 

3.1.3. Definition. An isomorphism of loose trees f : 2Jl- i?Jl’ is a family of 
isomorphisms fr taking M, E ZR to M: E 9J? such that for t c s, ft ( (M, fl MS) cJ. 

We say the loose tree m can be K-embedded in N if there is such an isomorphism 
between Z?JJ and a loose tree YJ? inside N. 

3.1.4. Definition. A wellordering f = {ti: i < /3}, where I/31 = ITI, such that if ti 

precedes t,. in T then i G j is called an enumeration of the tree T. 

An enumeration of T induces an enumeration of any !lJZ indexed by T. 

3.1.5. Example. The following observation does not figure in our argument but 
illustrates one of the subtle differences between a loose tree and a tree of models. 
The partial order of a tree of models is determined by containments among the 
models. The partial order of a loose tree is artificially imposed (and thus cannot 
be ignored). Consider a collection of models MO E MI, MO E M2 E M3 E M4 with 
MI &, M4 and MI n M4 = MO. As a loose tree of models they can be indexed by 
the integers less than 5 with the following tree order; 0 is the root, 1 and 2 are 
incomparable successors of 0, 3 and 4 are incomparable successors of 2. Clearly 
(0, 1,2,3,4) is an enumeration of the loose tree;.so is (0, 1,2,4,3). 
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Again, we could index these models by a tree with 0 as an initial element, 2, 3, 
4 as incomparable succesors and 1 above 2. Now one can enumerate the tree as 

(0,2,3,4,1>. 
With this housekeeping out of the way we can introduce a more important 

concept. 

3.1.6. Definition. The loose tree ZlX indexed by T is free or independent in M with 
respect to an enumeration i of T if there exists an ordinal /3 and a sequence of 
K-models ( Ni : i < /3) such that 

(i) All the M,, Ni 6 M. 
(ii) M,, = No. 

(iii) Fix k < i such that t; = fk. 

l If 1 s i < w then Mti JM,ioM,k Ni-1 in Ni. 
l If i 3 o then M1, AM,j”M,k Ni in Ni+r. 

(iv) (Ni : i < /3) is K-continuous. 
thus I/31 = IT( but when T is infinite the ordinality of /3 will be ord(i) + 1 which 
may be greater than ITI. If ?lX is actually a tree the Mt, n Mtk in condition (iii) 
becomes Mt,. We call % a witnessing sequence for the freeness. 

3.1.7. Remark. The two conditions in (iii) of 3.1.6 could be combined if we 
indexed the Ni by 1 <i 6 /3. We didn’t make the change to avoid introducing 
errors in the proofs of the later theorems using finite trees indexed in accordance 
with the official definition. 

A trivial induction shows the following refinement of the definition. We use this 
observation without comment below. 

3.1.8. Lemma. Zf 9Jl is a loose free in M indexed by the finite tree T, the witnessing 
sequence (Ni : i < p) can be chosen to satisfy Ni is prime over M1, U Ni-1 inside N. 

With this lemma in mind, suppose the loose tree YX indexed by T is free or 
independent in M with respect to the enumeration f of T and there is an initial 
sequence ( Mti : i < j) of the enumeration with Mt, E M,+,. Then for i C j, Ni can be 
chosen as MI,. This is a likely possibility for a tree, an unlikely one for a properly 
loose tree of models. 

3.1.9. Some generalizations. The following variant may turn out to be necessary. 
Define a loose tree to be almost free in N with respect to an enumeration i if it is 
free in some extension N’ of N. Then a compatibility class of ?lX is almost free 
with respect to f if some m is free with respect to f in some N in the compatibility 
class. We will finally show in this section that almost free implies free by showing 
the explicitly prime model over B inside N’ can be chosen inside N. This 
paragraph is analogous to the monotonicity conditions on freeness over a vee. 
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The following lemma is proved by a straightforward induction on the length of 
the enumeration using the existence of prime models over independent pairs and 
canonically prime models over chains. 

3.1.10. Lemma. Let YJ2 be a loose tree in M enumerated by i. There is an N and 
an isomorphic copy of 9JI inside N that is free with respect to the enumeration 5 
in N. 

Note that the isomorphism in Lemma 3.1.10 is an isomorphism of loose trees. 
Example 3.1.5 is not free in either enumeration. We want to replace ‘free with 
respect to an enumeration’ in Lemma 3.1.10 by ‘free’; that is to show that if DI is 
free with respect to one enumeration it is free with respect to any enumeration. 
Then we will show that compatibility prime models exist over free trees. We first 
handle the case of finite trees. For this we need some combinatorial tools to 
reduce the main result to a more manageable case. 

3.1.11. Definition. Let J and f be enumerations of T. Then, S and i are close 
neighbors if for some i, si = ti+l, ti = s~+~, and they agree on all other arguments. 
f and i are neighbors if there is a sequence f = f”, 7l, . . . , fk = S such that for 
each j < k, Ti and fj+’ are close neighbors. 

The next lemma reduces many problems about the relations between two 
enumerations to the relation between neighbors and thus by easy induction to 
relations between close neighbors. 

3.1.12. Lemma. If S and f are enumerations of T then they are neighbors. 

Proof. Fix S and 5. Choose k maximal such that for some neighbor i’ of t, 
9 ) k = t’ 1 k. Choose the least I, necessarily greater than k, such that for some 

such f’, &+l= t;. Note that Sk+* = t; is incomparable with t;-1, 1- 12 k. Now if 
we manufacture Z” from f’ by switching t; and t;_* we contradict the minimality 
OfI. 0 

3.1.W. Remark. Our notion of enumeration corresponds to the concept of 
‘linear extension’ in the theory of partial orderings. We are not aware if this result 
has been proved in that context although it seems likely. 

3.1.14. Lemma. Zf T is a finite tree and 2X is a loose tree indexed by T which is 
free inside N with respect to any enumeration i then 2X is free inside N with respect 
to any enumeration 9 of man. 

Proof. By Lemma 3.1.12 it suffices to show that if ZJI is independent with respect 
to f then D is independent with respect to the enumeration fo (i, i + 1). Let 
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i = k + 1. Since f and s = fo (i, i + 1) are enumerations, ti and fi+l are incom- 
parable. We will construct a witnessing sequence Ni for the independence of m 
with respect to S from the given sequence Ni witnessing the independence of YJ 
with respect to 5. For 1 s k, let N; = N,. To simplify notation, let 44“ denote M,, 
Ma denote M,-, Mb denote M,+,, and Mb denote MtiT,. We have M” AMonMn Ni-1 
in Ni and Mb JMt+-,M, Ni in Ni+i. Since Mb = Ml, for some 1 <i, Mb =S Ni_l. By 
monotonicity, Mb 1 Mbn,,,p Ni_l in Ni. Now choose Nf < Ni+, prime over Mb U 
N,_i. By the base extension axiom Ni AN,_, NI in Ni+,. Since we also have 
M” JManM. Ni_, in Nj and M” s Ni transitivity of independence, Theorem 2.2.3, 
yields M” 1 ManMa Ni in Ni+i. Since N; G Ni+r and if l> i, Mt, AW Ni implies 
M,, JM7 Ni we can let N; = N, for 1 > i + 1. 0 

3.1%. Definition. Henceforth we will say a finite loose tree of models is free if it 
is free under some enumeration. 

We want to find an analogous result for certain loose trees indexed by subsets 
of A<,. This requires several further concepts. We begin by extending our notion 
of prime over a stable diagram to free loose trees. Compare the following 
definition to Definitions 2.1.8 and 2.1.10. 

3.1.16. Definition. The model M is compatibility prime over the free loose tree .9.R 
with respect to the enumeration f via the embedding f of ?lR into M if the image of 
m under f is free inside M with respect to i and for every N E K and every g 
embedding ,ZR into N with the image of q free inside N such that M and N are 
compatible over 9X via f and g, there is a g mapping M into N such that g = g o$ 

As in the definition of prime over a stable diagram, we need some ‘freeness’ 
condition on a loose-tree before it makes sense to speak of a ‘prime’ model over 
it. If we strengthen the definition by allowing N to be arbitrary rather than 
requiring that N be compatible over ?lR with M we call M absolutely prime 
over 9JL 

We need a new ‘categorical’ definition for prime over a loose tree because the 
hidden requirements on composition of maps are much looser when a family is 
indexed as a loose tree than in our notion of prime model over a stable diagram. 

When we restrict to finite loose trees of models we can define absolutely prime 
models. 

3.1.17. Lemma. Zf T is a finite tree and 2R is a loose tree of models indexed by T 
which is free inside N with respect to an enumeration f = (yi : i < k ) then there is an 
absolutely prime model over the loose tree 9JI. 

Proof. An easy induction on ITI shows Nk--l is the required model. 0 

We christen the result of the last construction. 
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3.1.18. Definition. (i) If (Ni : i < k) witnesses that the finite loose tree 2lJ2 is free 
then we say Nk--l is explicitly prime over 2R (with respect to the embedding map 
and a specific enumeration). 

(ii) If (Ni : i < p) witnesses that the loose tree 9J2 is free and fi is a limit ordinal 
then we say N, is explicitly prime over DJ (with respect to the embedding map and 
a specific enumeration) if N, is canonically prime over {Ni : i < /I). 

Now we invoke the prime models to strengthen the sense in which ‘freeness’ is 
independent of the enumeration of Zm. In order to state the result we need several 
further notations. 

3.1.19. Definition. (i) An ideal of a tree T is a subset T1 of T that is closed under 
initial segment. 

(ii) If Z is an ideal of T then TI denotes the (quotient) tree whose elements are 
(T - I) U { ( )} with the same meets as T if possible but, if x A y in the sense of T 

is in Z, then x A y = ( ) in the sense of T,. 

Any diagram can naturally be restricted to a subset X of its index set T by 
forgetting the models attached elements T-X. We describe several conditions 
when the restriction !lR 1 Z of a (loose) tree ‘D is a (loose) tree. For loose trees 
(but not trees) there is a natural complement or quotient structure 2& to M 1 Z 
which we describe in (iii) of the next definition. 

3.1.20. Notation. (i) If X E T then for any set of models .YJ3 indexed by T there 
is a natural notion of the restriction YJ3 1 X of ‘$2 to Z : 2J3 1 X = {M, : c E X}. 

(ii) MI denotes some compatibility prime model over n ( 1. 
(iii) Suppose 2.R = (Zt4, : t E T) is a free loose tree inside M. If Z is an ideal of T 

then 2J& denotes (M, : t E T,). 

The term MI is an abuse of notation since we are choosing one of a number of 
possible compatibility prime models. If Z is an ideal of T and 2J2 is a free loose 
tree of models indexed by T it is easy to see that the quotient tree is also free. 
Formally, 

3.1.21. Lemma. Zf 9.R is a free loose tree inside M and Z is an ideal of T then mZ, is 
a free loose tree inside M indexed by TI. 

Now we consider substitutions for a model in a loose tree. 

3.1.22. Notation. Suppose 9J2 = (M, : t E T) is an indexed family of models. Then 
2J2(Nls) denotes the indexed family of models, obtained by replacing MS by N. 
Y.J2(NJs,, N./s,) is the natural extension of this notation to allow two 
substitutions. 
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We are interested in a number of substitutions in indexed trees. Most will be 
approximations to the result of replacing the root in the tree %J& by the prime 
model over I: n,(M,l( )). The next lemma describes two slightly less simple 
ways of deriving new loose trees from a given one. The fact that loose trees are 
obtained by the constructions is an immediate verification: the more important 
fact that the second construction preserves freeness is proved in Lemma 3.1.24. 

3.1.23. Lemma. Suppose YJ2 = (M,: t E T) is a loose tree inside M. 

(i) Fix s ET and a model N < M such that for each t with t- = s or s- = t, 

N n MI G M, and N n M, < N. Then W = 2JI(N/s) is a loose tree inside M. 

(ii) Fix s, r E T with r- = s and M, <M,. Let T’ denote T - {r}. Then 

22 = 2R 1 T’(MJs) is a loose tree inside M. 

We have established the notation to state the following lemma. 

3.1.X Lemma (The Omission Lemma). Suppose YJI = (M, : t E T) is finite and 

free loose tree inside M, s, r E T with r- = s and M, 6 M,. Let T’ denote T - {r}. 

Then 92’ = 2X 1 T’(MJs) is free. 

Proof. Let 1 enumerate T with r = ti+I and s = tj. Suppose 8 witnesses the 
freedom of 1111 and ITI = k. Now define 

t; = G ifi<j, 

h+l ifj<i<k- 1, 

N; = Ni if i <j - 1, 

N,+r ifj-l=Gi<k-1. 

It is straightforward that %’ witnesses the freeness of YJ? with respect to the 
enumeration I’. 0 

The following theorem asserts that the freeness of a finite loose tree is 
independent not only of the enumeration but for a given enumeration of the 
choice of the prime models Ni witnessing the freeness. This theorem allows us to 
decompose m into %R 1 Z and YJ&. An advantage of loose trees in performing this 
construction is that they allow the mixing of the models in the tree and the 
witnessing sequence. 

3.1.25. Theorem. Suppose ‘2JI is a free loose tree of models inside M indexed by 

the finite tree T and Z is an ideal of T. Suppose also that N is explicitly prime over 

2.X. ( Z for an enumeration f of 1. Then k?J&(N/( )) is free inside M. 

Proof. Suppose 111 = j. Extend the given enumeration of Z to an enumeration of T 
and also denote the extension by I. Let 8 witness that 11111 Z is free. Noting that 
any initial segment of an enumeration is an ideal, let Tj be the ideal composed of 
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the first i elements in the enumeration. Let ZJ? = -rXn,(Ni/( )). We finish by 
showing by induction on i < 111 that YJ? is free inside M. 

If i = 0, YJ? = 2Jl and the result is clear. Suppose we know P? is free and 
consider $J2’“l. In TT,, ti+l is an immediate successor of ( ). Lemma 3.1.26 below 
shows Z.l?(Ni+l/ti+l) is free inside M. This implies DP’ is free by the omission 
lemma and the induction hypothesis. Thus, it remains only to prove Lemma 
3.1.26. 

Note that any finite tree can be enumerated so that Mtz, c Mt, for any i. 

3.1.X Lemma. Suppose XJI is a free loose tree of models inside M indexed by the 
finite tree T. Let N s M and suppose N is prime over M, U M,- for some v E T. 
Then 2J? = P2(N/v) is free inside M. 

Proof. Fix an enumeration i of 2J2 with ti = v. Suppose that % = (Ni: i < ITl) 
witnesses the freedom of m. Before constructing the sequence Ni which will 
witness the freedom of the new tree we need an auxiliary sequence. We define for 
j G i < JTJ an increasing chain of models NT beginning with NT = M,, = Ml, such 
that 

(i) each N,? s Ni, 

(ii) M,+, JM,,,“~ ,,+, NT inside NT+,, 
(iii) Ni*,, lNTNi inside Ni+r, 
(iv) Ni*,, is prime over M,+, U NT. 
Base Step. First note setting NT = M1, satisfies conditions (ii) and (iii). 

Choosing NT+ r to satisfy (iv), we must verify (iii). This follows by the base 
extension axiom applied as in Fig. 3.1. Recall Mt, = M, = N,?. 

Znduction Step. Suppose that for some k aj we have chosen Nz to satisfy (ii) 
and (iii) (with i = k - 1). Choose Nz+r inside Nk+r prime over M,+, U N: to 
satisfy (i) and (iv). Now N k*+l satisfies (ii) by monotonicity and (iii): 

Nk*+1 At Nk in Nk+l 

follows from the base extension axiom as in the induction step diagram, Fig. 3.2. 
This completes the construction of the NT. 
Let u denote v-; note that since NT = M, we have N,_r JMUnMU NT. With this as 

Fig. 3.1. The base step. 
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Fig. 3.2. The induction step. 

the base an easy induction on 1 for j s 16 k shows N,_r JMUnMU NT. We will rely 
on the case 1= k. 

We have from the free enumeration that MU JMUnM, Nj_l. The base extension 
axiom then gives, since N is prime over M,, U M,-, N JM,, Nj_,. Choose ML c Nk 
prime over N U Nj-1. By transitivity of primeness, Lemma 2.2.4, ML is prime 

over M,, U Nj_1. 
From the base extension axiom and the conclusions of the last two paragraphs, 

we deduce ML iMU Nz. This allows us to perform the i = j step of the following 
construction. Choose N! so that 

N if i <i, 
M: ifi=j 

and for j < i so that Ni G M is prime over NT U Ni-, and N,! AN: Nz. The choice of 
the Nf for i > j is a straightforward induction. 

Now to complete the proof we must observe that the Nf witness the freeness of 
%“. That is we must show that N:+r is prime over M,+, U Ni. This follows from 
transitivity of primeness, Lemma 2.2.4, since for each i we have NET+, is prime 
over M,+, U NT and N,!+r is prime over N,F+, U Nf . 0 

We restate Theorem 3.1.25 in a more applicable form. 

3.1.27. Corollary. Suppose 2JI is a free loose tree of models inside M indexed by 
the finite tree T and I is an ideal of T. Zf f is an enumeration of Z and %I witnesses 
that !?A 1 Z is free inside M then % can be extended to a sequence witnessing that Y%R 
is free inside M. 

We have shown that if K is an adequate class and YA is a finite (loose) tree DI 
which is free inside N under some enumeration then m is free under any 
enumeration and there is an absolutely prime model over 96 With more difficulty 
we showed that if Z is an ideal of 9JI and NO is explicitly prime over Z then there is 
a sequence defining an explicitly prime model over n which includes NO. 

3.2. Locally free loose trees 

We now extend our analysis to infinite trees. Recall that in the absence of the 
monster model we can only speak of a diagram being free when we have an 
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embedding into an ambient model in mind. And only then we can we discuss the 
possibility of any sort of ‘prime’ model over the diagram. This freeness can be 
verified by an enumeration of the loose tree and if the index tree is finite the 
freeness is independent of the enumeration. We do not at first claim so much for 
an infinite tree. Rather we introduce a notion of a locally free (loose) tree that 
has the following properties. If % is free under some enumeration then n is 
locally free. The property of being locally free does not depend on the 
enumeration. We will establish the existence of compatibility prime models over 
locally free loose trees (which have height at most w). From this we deduce that 
if such a tree is free is under one enumeration then it is free under any 
enumeration. 

3.2.1. Definition. A loose tree of models Y%! is locally free in N if n = (M, : t E T) 
is contained in N and for every finite subtree T, ET the finite loose tree 
XXITT1=(M,:t~T1) isfreeinsideN. 

3.2.2. Remark. This definition relies on our restriction to subtrees of il<“. Since 
subtrees are closed under predecessor trees of greater height cannot be covered 
by finite subtrees. Thus, when we deal with trees of greater height we will modify 
the definition of locally free but leave the meaning the same on the low trees 
considered here. 

The next proposition is obvious. 

3.2.3. Proposition. Zf the loose tree 2E is free inside for N for some enumeration 
then m is locally free inside N. 

Now we define ‘prime’ models over locally free loose trees. Definition 3.1.16 is 
almost a special case of this. (Ostensibly, a map could take a free tree to a locally 
free tree so prime over locally free is more restrictive than prime over free.) 

3.2.4. Definition. The model M is compatibility prime over the locally free loose 
tree !?.I? via the embedding f of m into M if the image of m under f is locally free 
inside M and for every NE K and g embedding n into N with the image of g 
locally free inside N such that M and N are compatible over n via f and g there is 
a 2 mapping M into N such that g = 2 of. 

The name of this notion is unconscionably long so we resort to the following 
abbreviation: LFP(ZlX, M, f). W e omit the f if Zaz is concretely realized in M 
(whence f is family of inclusions). 

We are going to show that if a loose tree m is locally free there is a ‘prime’ 
model over the loose tree m. We need the following notation (extending 3.1.19 
and 3.1.22) for trees obtained from a representation of given tree as a union of 
(smaller) trees to carefully state and prove this proposition. 
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3.2.5. Notation. Suppose T = U =<*Za where the Z, form an increasing con- 
tinuous sequence of ideals in T. 

(i) ?Ea denotes the quotient of n indexed by the quotient tree {t : t E T,}. 
(ii) For /3 < r~, lt171,,, denotes the quoteient of m ( (Za) by I,+ That is, lan,,, is 

indexed by the quotient tree {t :t E (Zn),a}. (R emember Z, is a subtree of T so this 
is a natural extension of our previous notation 3.1.22). 

Thus YDJ1, just abbreviates nn,. 
quotient of Y%! 1 (Zol), 

Although %, is a quotient of %! and %Xol,,, is a 
as sets of models !l& and roZ,,, are contained in m. 

Here is the main result of this section. Condition 1 is the result we really want 
(see Conclusion 3.2.10) but to establish it we must prove Conditions 1 and 2 by a 
simultaneous induction. A first try to prove this theorem by induction would 
decompose a tree T as a union of properly smaller ideals and then choose a 
‘prime’ model over each of these ideals and take the canonically prime model 
over this chain of models. The difficulty is to guarantee that the sequence of 
models forms a chain. The double induction accomplishes this end. 

3.2.6. Theorem. Suppose Y.JI is a locally free loose tree indexed by TO in N. 
Conditions 1 and 2 will be proved by simultaneous induction on A. 

Condition 1. Zf IT,-,1 = 3, then there is a compatibility prime model for locally free 
loose trees over YJL That is, there is an N satisfying LFP(YJ& N). 

Condition 2. Zf Z is an ideal of TO and 111 = A then %J$(M,/( )) is locally free 
inside M. 

Note that the cardinality of T,, is not bounded in Condition 2. The following 
lemma provides most of the technicalities of the proof. 

Lemma 3.2.7 (The key lemma). Suppose ??R is a free Zoose tree in N’ indexed by 
the finite tree T and suppose s is a minimal (#( )) element of T. Suppose also 
(M:: (Y < 6) is an increasing K-continuous sequence satisfying the following 
conditions. 

(i) For each a < 6, YXrJz” = !?J?,(M~/s) is a free loose tree inside N’. 
(ii) For each (Y < 6, M( ) s MP. 

(iii) Zf t- = s then Mt AM,“,,,; Mr. 
Then XJI(Mf/s) is free inside N’. 

Proof. Fix an enumeration f of T such that the elements not in the cone with 
vertex s come first. Suppose s = tk and ITI = n. Let 8” witness that %Y is free. By 
Corollary 3.1.27 we may assume that NF = @ if i < k. (This use of Corollary 
3.1.27 only simplifies notation; the later use is essential.) In order to discuss 
uniformly the trees ma, we refer below to models Mr. Unless t = s, MP = 
My = M,. 
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Expand the tree T to 9 by adding a new element 
elements above r. We define for each (Y G 6 a loose 
sequence of models $I?&: 

n;l,“= 
1 

M: ifxeT, 

MP if x = T, 

261 

r with r- = s but with no 
tree of models fi2jl” and a 

Consider the following enumeration ii of 9 which we obtain from f: 

{ 

ti if i s k, 

Ui= r ifi=k+l, 

ti-1 ifk+l<i<n-1. 

Recall that if i # k, MT= Mr. Note that both Mz and MP occur in !I@ 
@,a = M,O, &Z,a = &fu”,+, = M,“). We will show below that for each LY, gn witnesses 
that %?P is free inside N’. Assuming this fact we now complete the proof of the 
lemma. 

Since we proved that the freeness of a loose tree does not depend on the 
enumeration, each ll@ is also free by an enumeration that places r last. That is, 
ha is free with respect to the enumeration ZI defined as follows: 

ti ifisn-1, 
Vi = 

I r if i =n. 

Let Z = {Vi : i < n}. By Corollary 3.1.27 any sequence, in particular go = 
(#. * . A$-l), which witnesses the freeness of YJP 1 Z can be extended to a 
sequence witnessing the freeness of ??&. Let N denote x-i. (It was to make the 
choice of N independent of LY that we needed to prove Theorem 3.1.25 and 
Corollary 3.1.27.) Now for each (Y since &jEa is free with respect to b we have 

N&&r_ AF 

inside &, That is, 

N 5 
M:n@ 

MP 

inside some N,S This implies since My E MP that for each (Y 

inside N’. Therefore, by Ll, 

inside N’. Choosing N,, prime over N U Mf, we finish the proof of the key lemma 
from the assumption. 
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We are left with verifying the assumption; that is, showing that for each (Y, 5@ 
witnesses that @P is free inside N’ with respect to ii. We will rely on the following 
fact. For each (Y and each i < n 

A4: MgiMp_ Ni”_, inside NY. 
I I 

We must show that for each i < 12 + 1, 

(3.1) 

(3.2) 

For i c k this is an immediate translation of property (3.1) (with (Y = 0). For 
i = k + 1 property (3.2) translates to 

(3.3) 

since A?ifr+, = &Ek = My, = My. Remember that Ni is prime over flk_, U My and 
since pk--I = Nz-r, NE is prime over N’jk_r U M,". Moreover, MP II M,” = M,” n 

MT j = MT ). Now property (3.3) follows by base extension from 

MP M AMy) Nz_-l inside Ng 
,” 

which is an instance of property (3.1). 
For i = k + 2, since u;+~ = t;+r = t, = s property (3.2) becomes 

Mz+, 4 
M$+,“MY 

Nt inside Ng+r. 

(3.4) 

(35) 

Now by assumption (iii) of the lemma, Mt+, J.+,MIz+,,,,,~ MP so we can deduce 
property (3.5) from property (3.1) and transitivity of independence (Theorem 
2.2.3). 

For i > k + 2, property (3.2) translates to 

ML I NE2 inside NF (3.6) 
MS-, “M?;_, 

which follows immediately from property (3.1). 
We will apply the following consequence of this lemma (with Z6 a proper ideal 

of T) in the main proof. 

3.2.8. Corollary. Suppose 92 is a locally free loose tree in some N which is 

indexed by T and (Z, : cr s S) zk a continuous increasing sequence of ideals in T. 
Suppose further that there is a K-continuous sequence (N, : (Y s S ) such that for 

each (Y < 6, Ute,, M, c N, s N and 2JIxn,(N,I( )) is a locally free loose tree inside 

N. Then D$(Z%l( )) is a locally free loose tree inside N. 

Proof. Without loss of generality, (since we are trying to establish local freeness), 
T - Z, is finite. Let {ti : i < k} be the minimal elements of T - Z, and let Si E Z, be 

Sh:330



The primal framework I 263 

the predecessor of ti in Z6. Again, without loss of generality, we may assume all 
the si are in Z,. For each (Y < 6, we define a loose tree fia (not following our 
previous conventions) as follows. @e is indexed by (T - Z,) U {s, ( )} where s is 
interpolated above ( ) and below each member of T - I,. A?: = h4, if 1 E (T - I,), 
No if t = ( ) and N, if t = s. ‘ifi= is a free loose tree inside N. (Just enumerate 
( ), s and then the rest using !IX&N,l( )) . IS a locally free loose tree inside N.) 
By the choice of the ti and Si, and the local freeness of ?l&(N,/( )) inside N we 
verify the third asssumption of Lemma 3.2.7. In the present context (since 

M,, G No and MI, n 4, <N,) it translates as for each i <k, Mti l,++,-,nr,, N,. Now by 
Lemma 3.2.7, fi” is free. Applying the omission lemma to 9%’ we conclude that 
9,&(N,/( )) is a locally free loose tree inside N. 

Now we continue with the proof of the main theorem (Theorem 3.2.6). 

3.2.9. Proof of 3.2.6. We assume by induction that Cond’tion 1 of the theorem 
holds for any tree with cardinality less than A. and Condition 2 of the theorem 
holds for any tree and any ideal of cardinality less than A. 

Fix a subtree T1 E TO with IT11 = A. We will describe a construction relative to 
T1. Then to verify each of Conditions 1 and 2 we use a different choice of T1. 

As in 3.2.5, suppose T, = U n<),Zm where the Z, are an increasing continuous 
sequence of ideals in T1 and IZ,l <A. We define by induction on a < A, an 
increasing K-continuous sequence (N, : a < A) of K-submodels of N satisfying the 
following conditions. 

(i) If (Y = j3 + 1 then N, is prime for loose trees over %k&(Na/( )). 
(ii) n&NW/( )) is locally free. 

Recall that Y.J& denotes the quotient of Y.J$ ) (Zol) by Z,. Note that 9& is indexed 

by@,-Z,)U{( >> (not (Ti-Z,)U{( ))). Th is is crucial for the verification of 
Condition 2. 

There are three cases in the construction. 
(Y - 0. Condition (i) doesn’t apply. Condition (ii) holds by the induction 

hypothesis applied to Condition 2 of the main theorem. 
a is a limit ordinal. Let N, be canonically prime over (N, : p < a). Condition 

(i) does not apply and condition (ii) is immediate from the last result: Corollary 
3.2.8. 

(Y = y + 1. Applying condition (ii) y, D$,,(N,/( )) is locally free in N. So the 
subdiagram YJ& ,, is locally free in N. So by induction applied to Condition 1 of 
the main theorem with Z, as Z there is an N, satisfying condition (i). That is, N, is 
prime for loose trees over YJ&,(N,/( )). In particular, note N,, is embedded into 

N,. Applying the induction hypothesis for Condition 2 (with T,, = tnz,) 

En,(N,/( )) is locally free and we satisfy condition (ii). 
This completes the construction. 
To see that Condition 1 holds of TO, take T1 as TO. We must show that if N* is 

taken canonically prime over (N, : p < A) then N* satisfies LFP(‘%, N,). Suppose 
f = (J : t E T) maps the loose tree XX isomorphically to a loose tree YJ? which is 
locally free in some M’. We must extend f to an embedding of NA into M’. 
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For this, repeat the preceding argument constructing a sequence Nk for a < A 
inside M’ which satisfy conditions (i) and (ii) (for !I@‘) and simultaneously 
construct a continuous increasing sequence of maps g, for a < 6 which map N, 
isomorphically onto Nb, and such that g, extends each fi with c E Z, We conclude 
Condition 1. 

For Condition 2 we must show that if Z is an ideal of T and IZ( = A. then Zot, is 
locally free. Applying the construction above with Z as T1, we have constructed 
the N, so that Y&(N,/( )) is locally free. Thus, by Corollary 3.2.8 %Rkn,(N, ( )) is 
locally free and we can conclude Condition 2. 

3.2.10. Conclusion. Let K be an adequate class and suppose %R is a loose tree of 
K-models indexed by a subtree of A’“. If %R is locally free then there is a 
compatibility prime model M over 9X (i.e. LFP@, M, f), see 3.2.4.) 

In fact, if 98 (indexed by a subtree of A<,) is free under one enumeration then 
it is free under any enumeration. For, by Proposition 3.2.3 it is locally free. Let 
I= (ti:i< ITI) b e an arbitrary enumeration of ?E. For each y < ITI let I,, be the 
ideal containing each ti with i < y. Now construct a family of models (NY : y < ITI) 

as in the proof of Theorem 3.2.6. By the basic properties of independence (using 
Ll at limit stages) these models witness that m is free under the given 
enumeration. 

We have shown that if %R is indexed by a subtree of A<” and if !IR is free with 
respect to some enumeration then there is a compatibility prime model over YJk 
In [3] we will show that if K is at all manageable then there is only one 
compatibility class over ??J& We are attempting to show that models in 
manageable classes are ‘tree-decomposable’ by trees of small height. The 
existence of such prime models is an essential step in this program. 
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