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Abstract 

We define the propetty of l&-compactness of a statement 4 of set theory, meaning roughly 

that the hard core of the impact of 4 on combinatorics of RI can be isolated in a canonical 
model for the statement 4. We show that the following statements are Bz-compact: “dominating 
number = N 1.” “ cofinality of the meager ideal = RI “, “cofinality of the null ideal = N I “.“bounding 
number = N I “, existence of various types of Soushn trees and variations on uniformity of measure 
and category = N, Several important new metamathematical patterns among classical statements 
of set theory are pointed out. @ 1999 Elsevier Science B.V. All rights reserved. 

AMS classificrrtion: 03E50: 03E40; secondary 03E3S 
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0. Introduction 

One of the oldest enterprises in higher set theory is the study of combinatorics of 

the first uncountable cardinal. It appears that many phenomena under investigation in 

this area are Cl statements in the structure (HN:, E, 3), where HR, is the collection of 

sets of hereditary cardinal&y N1 and J is a predicate for nonstationary subsets of (IO,. 

For example: 

( 1) the Continuum Hypothesis - or, “there exists an 011 sequence of reals such that 

every real appears on it”; 
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(2) the negation of Souslin Hypothesis - or, “there exists an WI -tree without an un- 

countable antichain” [ 141; 

(3) b = N, - or, “there is a collection of Nr many functions in “‘cu such that any other 

such function is pointwise dominated by one of them”; 

(4) indeed, every equality = Ni for a classical invariant of the continuum is a Cz 

statement - b = N 1, 5 = N 1, additivity of measure = N 1 . . . [3]; 

(5) there is a partition h : [0112 --f 2 without an uncountable homogeneous set [ 171; 

(6) the nonstationary ideal is Ni -dense [20]. 

It appears that C2 statements generally assert that the combinatorics of Nr is complex. 

Therefore, given a sentence 4 about sets, it is interesting to look for models where 

$ and as few as possible CZ statements hold, in order to isolate the real impact of 

4 to the combinatorics of Ni . The whole machinery of iterated forcing [lo] and more 

recently the P,,,, method [20] were developed explicitly for this purpose. This paper 

is devoted to constructing such canonical X2-poor (or &-rich) models for a number 

of classical statements 4. 

We consider cases of 4 being b = N 1, cofinality of the meager ideal = N,, cofinality 

of the null ideal = Nr , b = Nr , existence of some variations of Souslin trees, variations 

on uniformity of measure and category = Ni and for all of these we find canonical 

models. It is also proved that 4 = “reals can be covered by Nr many meager sets” 

does not have such a model. But let us first spell out exactly what makes our models 

canonical. 

Fix a sentence 4. Following the &,, method developed in [20], we shall aim for a 

a-closed forcing P4 definable in L(aB) so that the following holds: 

Theorem Scheme 0.1. Assume the Axiom of Determinacy in L(R). Then in _L(rW)cb, 

the following holds: 

(1) ZFC, c = N2, the nonstationary ideal is saturated, 8: = N2. 

(2) 6 

Theorem Scheme 0.2. Assume that $ is a I& statement for (HH~, E, ol, 3) and 

(1) the Axiom of Determinacy holds in L( Iw); 

(2) there is a Woodin cardinal with a measurable above it; 

(3) q5 holds; 

(4) (HN:, E, ~1,s) l= $. 

If these two theorems can be proved for 4, we say that 4 is &-compact. 

What exactly is going on? Recall that granted large cardinals, the theory of L(R) 

is invariant under forcing [ 191 and so must be the theory of L( iw)&$. Now varying the 

ZFC universe enveloping L(R) so as to satisfy various II* statements $, from Theorem 

Scheme 0.2 it follows that necessarily L(R)‘4 must realize all such II2 sentences ever 

achievable in conjunction with 4 by forcing in presence of large cardinals. In particular, 

roughly if $i: i E I are Q-sentences one by one consistent with 4 then even their 

Sh:610



S. Shebh. J. ZapletallAnnals of’ Pure and Applied Logic 98 11999) 217~ 259 219 

conjunction is consistent with 4. And L(R)‘:” is the model isolating the impact of 4 

on combinatorics of N,. 

It is proved in [20] that 4 = “true”, “the nonstationary ideal is Nl -dense” and others 

are II?-compact assertions. This paper provides many classical Cl statements which 

are III-compact as well as examples of natural noncompact statements. In general, our 

results appear to run parallel with certain intuitions related to iterated forcing. The 

II?-compact assertions often describe phenomena for which good preservation theo- 

rems [3, Chapter 61 are known. This is not surprising given that in many cases the 

P,,,, machinery can serve as a surrogate to the preservation theorems - see Theorem 

1.15(5) - and that many local arguments in P,,,, use classical forcing techniques - see 

Lemma 4.4 or Theorem 5.6. There are many open questions left: 

Question 0.3. Is it possible to dqfinc a similar notion of II>-compactness vc,ithout 

vqftil-mce to large cardinals? 

Question 0.4. Is the Continuum Hypothesis rI2-compact? Qf course, (1) qf Theorem 

Scheme 0.1 nlould hatie to be Mleakened to accomodute the Continuum H_vpothesis. 

The first section outlines the proof scheme using which all the II, compactness 

results in this paper are demonstrated. The scheme works subject to verification of three 

combinatorial properties - Lemma schemes 1.10, 1.13, 1.16, of independent interest - 

of the statement 4 in question, which is done in Sections 2-5. These sections can be 

read and understood without any knowledge of [20]. The only indispensable - and 

truly crucial - reference to [20] appears in the first line of the proof of Theorem 1.15. 

At the time this paper went into print, a draft version of [20] could be obtained from 

its author. There were cosmetical differences in the presentation of P,,,, in this paper 

and in [20]. 

Our notation follows the set-theoretical standard as set forth in [6]. The letter 3 

stands for the nonstationary ideal on (01. A system a of countable sets is stationary if 

for every function f : (U a)“” 4 U a there is some x E a closed under ,f‘. H, denotes 

the collection of all sets of hereditary size < ti. By a “model” we always mean a model 

of ZFC if not explicitly said otherwise. The symbol 0 stands for the statement: there is 

a sequence (A,: 3 t cc)l) such that A, c x for each 2 E IJ)I and for every B c U)~ the set 

{X E toI : B n c( = A,} c ~1 is stationary. (01 -trees grow downward, are always infinitely 

branching, are considered to consist of functions from countable ordinals to 0) ordered 

by reverse inclusion, and if r, < is such a tree then T, = {t E T: ordertype of the set 

{SE T: t<s} under >, is just IX} and T<,= IJ,, l 7 T,;. For t E 7'. lev( t) is the unique 

ordinal #X such that t E T,. For trees S of finite sequences, we write [S] to mean the set 

{x: Vn t 01 x 1 n E S}. Wh en we compare open sets of reals sitting in different models 

then we always mean to compare the open sets given by the respective definitions. ,j! is 

the supremum of lengths of boldface Ai prewellorderings of reals, 0 is the supremum 

of lengths of all prewellorderings of reals in L(R). In forcing, the western convention 

of writing q d p if q is more informative than p is utilized. Q denotes the relation of 
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complete embedding between complete Boolean algebras or partial orders. RO(P) is 

the complete Boolean algebra determined by a partially ordered set P, and Cx is the 

Cohen algebra on k: coordinates. The algebra @ = C,,] is construed as having a dense 

set <“‘c~ ordered by reverse inclusion. Lemma and Theorem “schemes” indicate that 

we shall attempt to prove some of their instances later. 

1. General comments 

This section sets up a framework in which all &-compactness results in this paper 

will be proved. Subsection 1.0 introduces a crucial notion of an iteration of a countable 

transitive model of ZFC. In Subsection 1.1, a uniform in a sentence 4 way of defining 

the forcing P4 and proving instances of Theorem schemes 0.1, 0.2 is provided. In this 

proof scheme there are three combinatorial lemmas, 1.10, 1.13, 1.16, which must be 

demonstrated for each 4 separately, and that is done in the section of the paper dealing 

with that particular assertion 4. In Subsection 1.2 it is shown how subtle combinatorics 

of 4 can yield regularity properties of the forcing P4. And finally Subsection 1.3 gives 

some examples of failure of &-compactness. 

1.0. Iterability 

The cornerstone of the Pm,, method is the possibility of finding generic elementary 

embeddings of the universe with critical point equal to cc)]. This can be done in several 

ways from sufficiently large cardinals. Here is our choice: 

Definition 1.1 ( Woodin [ 191). Let 6 be a Woodin cardinal. The nonstationary tower 

forcing Kl!<s is defined as the set {a E I$: a is a stationary system of countable sets} 

ordered by bba if for every xEb, xfl UUEU. 

The important feature of this notion is the following. Whenever 6 is a Woodin 

cardinal and G c Q < 6 is a generic filter then in V[G] there is an ultrapower embedding 

j : V --+A4 such that the critical point of j is or, j(uy) = 6 and M is closed under o 

sequences; in particular A4 is wellfounded. All of this has been described and proved 

in [19]. We shall be interested in iterations of this process. 

Definition 1.2 (Woodin [20]). Let A4 be a countable transitive model of ZFC, M + 6 

is a Woodin cardinal. An iteration of M of length y based on 6 is a sequence (Ms(: CI E y) 
together with commuting maps j,b : Al, --+ Mp : a E /J E y so that 

(1) M=Mo; 
(2) each M, is a model of ZFC, possibly not transitive. Moreover, j,, are elementary 

embeddings; 

(3) for each CI with cc+ 1 E y there is a M, generic filter G, c (Q<,,z,a,)“y. The model 

MN+, is the generic ultrapower of M, by G, and j Xr+l is the ultrapower embedding; 

(4) at limit ordinals CY E y a direct limit is taken. 
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Convention 1.3. If the models Ivl, are well-founded we replace them with their tran- 

sitive isomorphs. Everywhere in this paper, in the context of one specific iteration 

we keep the indexation system as in the above definition. We write 0, = oj’:‘, and 

Q, = (Q+<,,),“,. 

Definition 1.4 (Wuodin [20]). An iteration j of a model M is called full if it is of 

length WI + I and for every pair (x, p) with x E Q/i and fl E njl the set {x E (r)l: j,i,(.~) E 

GY} c OII is stationary. 

If all models in an iteration j : M + N of length (01 + 1 are wellfounded then j can 

” be thought of as stretching g(o, ). into a collection of subsets of the real ~11. The 

fullness of j is then a simple bookkeeping requirement on it, making sure in particular 

that the model N is correct about the nonstationary ideal, that is 3 n N = 3’. 

Definition 1.5 (Woodin [20]). A countable transitive model M is said to be iterublc 

with respect to its Woodin cardinal ci if all of its iterations based on (5 produce only 

wellfounded models. M is called stub/e iteruble with respect to 6 if all of its generic 

extensions by forcings of size <ii are iterable with respect to 6. 

It is not a priori clear whether iterability and stable iterability are two different 

notions. We shall often neglect the dependence of the above definition on the ordinal 6. 

Of course, a problem of great interest is to produce many rich iterable models. The 

following Lemma and its two corollaries record the two methods of construction of 

such models used in this paper. 

Lemma 1.6 (Woodin [20]). Lrt N be m transitive model of ZFC such hut co1 = On 

f~ N and N + “6 < K are a Woodin und un inucwssihle curdinul respectiwl!?“. Then 

M = N n 1,: is stable iteruble ulith respect to ci. 

Corollary 1.7 (Woodin [20]). Suppose that the Axiom of Determinuq. holds in L(R). 

Then ,for every reul x there is u stable iteruble model containing x. 

Proof. The determinacy assumption provides a model N as in the Lemma containing 

every real x given beforehand [14]. Then .r EN n b:, =A4 is the desired countable stable 

iterable model. c! 

Corollary 1.8 (Woodin [20]). Suppose 8 <K ure u Woodin and a measurable curdi- 

nal respectire&. Then ,for ever>1 real .r there is u stable iteruble model elementuril~. 

cwhedduhlr into V, bchich contains x. 

Proof. Fix a real x and choose a countable elementary substructure Z 4 Kc. 2 containing 

n, f. x and a measure U on K. Let rc : Z - 2 be the transitive collapse. Then the model 

.? is iterable in Kunen’s sense [Ku] with respect to its measure n(U), since its iterations 

lift those of the universe using the measure U. Let N* be the wl-th iterand of 2 using 

Sh:610



222 S. Shelah, J. Zapletall Annals of Pure and Applied Logic 98 (1999) 217-259 

the measure z(U), let N = N* c1 F,];,, and let M = N n &K). The Lemma applied to 

N, n(6) and ~c(K) shows that the model M is stable iterable; moreover, A4 = _? n QKj 
and so the map 71 rA4 elementarily embeds A4 into K.. Since x E A4, the proof is 

complete. Cl 

Proof of lemma. We shall show that A4 is iterable; the iterability of its small generic 

extensions M[G] follows from an application of our proof to the model N[G]. 

For contradiction, assume that there is an iteration j : A4 + M* which yields an ill- 

founded model. Since j”(0, n M) is cofinal in the ordinals of M*, there must be some 

p E A4 such that j(p) is illfounded. Choose the iteration j of the minimal possible length 

yo and so that the least ordinal /?a with j(ba) illfounded is smallest possible among all 

iterations of length yo. Note that ya must be a successor of a countable limit ordinal. 

Now yo, fro are definable in the model N as the unique solutions to the formula 

$(.x, y, M) = “for every large enough cardinal 2, ColZ(w, A) If x(x’, 9, a)“, where 

x(x, y, z) says “X is the minimal length of a bad iteration of z and y is the minimal bad 

ordinal among such iterations of length x”. The point is that whenever K, y, /3 < /z < co1 

and G c Coll(~, A) is an N-generic filter, then in the model N[G] x(~o, Po,M) is a Ci 

property of hereditarily countable objects and therefore evaluated correctly. 

There must be ordinals yr <yo and /?I <j,;.,&) such that jY,;,O(pr) is illfounded. 

Since K is an inaccessible cardinal of N, the iteration j,,, can be copied to an itera- 

tion of the whole model N using the same nonstationary tower generic filters. Write 

j,;., : N + N’ for this extended version of jo.;., again and note that M, = j,;., (M) = N’ n 
5. .,(li). By elementarity, the ordinals j,;.,(yo), j,.,(/$) are the unique solution to the 

formula $(x,~,ji,~,(M)) in the model N’. However, an application of the previous 

paragraph to N’ shows that this cannot be, since yo - ~1, ,0, are better candidates for 

such a solution. Contradiction. 0 

1.1. The P,,,,, method 

In this subsection we present a proof scheme used in this paper to show that var- 

ious Cz sentences 4 for the structure (E&, E,uI,~) are II2 compact. For the record, 

all statements 4 considered here are consequences of 0 and therefore easily found 

consistent with large cardinals. 

Definition 1.9. The set P$ is defined by induction on rank of its elements. p E Pd if 

p = (A$, wp, 6,,H,) where if no confusion is possible we drop the subscript p and 

(1) A4 is a countable transitive model of ZFC iterable with respect to its Woodin 

cardinal 6; 

(2) A4 k w is a witness for 4; 

(3) H EM is the history of the condition p; it is a set (possibly empty) of pairs (q, j) 

where q E P$ and j is in M a full iteration of the model MCI based on 6, such that 

j(w,) = w and j(H,) c H; 

(4) if (4,j), (4,k) are both in H then j = k. 

The ordering on P4 is defined by q < p just in case (p, j) E Hq for some j. 
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The notion of a witness for 4 used above is the natural one; if 4 = 3.x Vy x(.x. _v) with 

x a CO formula, then .X E I%+ is a witness for $J whenever (HN?, E, (‘II,_‘) + VJ’ x(x. JX). 

However, for obviously equivalent versions of the sentence $I this notion can vary a 

little. A special care will always be taken as to what variation of 4 we are working 

with. 

The idea behind the definition of the forcing &::, is to construct Hx_ of the resulting 

model as a sort of direct limit of its approximations in countable models taken under 

iterations - which are recorded in the histories - and extensions. 

The possibility of IIZ-compactness of 4 depends on the validity of three combina- 

torial Lemmas which show how witnesses for d, in countable transitive models can be 

stretched by iterations of these models into real witnesses for 41. These Lemmas are 

used in Theorem 1.15 for a-closure and various density arguments about e,,. 

The first combinatorial fact to be proved is: 

Lemma scheme 1.10 (Simple iteration lemma). Suppose 0 holds. [f M is (I c.ow~tohle 

transitiae model qf ZFC iterabk with respect to its Woodin cardinal ci and M k “IIS 

is a n,itness f&r 4” then there is a ,fadl iteration ,j bused on ci qf the model M .such 

that j(w) is N ,cYtnessfor 4. 

Certainly there is a need for some assumption of the order of 0, since a priori 4’, 

does not have to hold at all and then j(rc) could not be a witness for it! Later WC 

shall try to optimalise this assumption to (HN?, E, CL), ,J) + 4. the weakest possible. 

For a detailed analysis of the forcing e;, a more involved variant of this Lemma will 

be necessary. Essentially, the iteration j is to be built cooperatively by two players, 

one of whom attempts to make j(np) into a witness for 4. The other one stages various 

local obstacles to that goal. The relevant definitions: 

Definition 1.11. A sequence i of models with a witness is a system (n,.N,,ti,: i or co) 

where 

( 1) A’; are countable transitive models of ZFC+G, is a Woodin cardinal+*c is a witness 

for 4; we set Q, = Q <Cl, as computed in N, 

(2) N, t IV,, 1 and o;“’ is the same for all i E 0) 

(3) if N, /= “a t Q is a stationary system of coutable sets” then N, _r + “a is a station- 

ary system of countable sets”; so Q, c Q, c 

(3) if N, k “A c CD, is a maximal antichain” then N,+, I= “A c Q,, I is a maximal 

antichain”. 

We say that the sequence begins with the triple (No, tl’,rio), set U& = U, i ,,, Q, and 

IO> = UJ’~‘. A filter G c Q!\: is said to be I? generic if it meets all maximal antichains 

of Q,,- which happen to belong to IJ, t ,,) N,. 

This definition may seem a little artificial, an artifact of the machinery of [20]. The 

really interesting information a sequence of models carries is the model U, t (,, N, with 

its first-order theory. This model can be viewed as a n,-correct extension of No. It is 
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important that 

(1) (U&E) != w is a witness for 4 

(2) (Uj Ni, E) satisfies all II*-consequences of ZFC in the language E, 6, where 6 is 

the predicate for stationary systems of countable sets 

(3) Na is in U;N, correct about stationary systems of countable sets in P& and their 

maximal antichains. 

It should be noted that though QH is not an element of UN;, it is a class in that 

model - the class of all stationary systems of countable sets. If a filter G c Cl!,q is g- 

generic then the filters G n Qi are Ni-generic by (3,4) of the above definition. However, 

not every Ni-generic filter on Qi can be extended into an #-generic filter on Qz. 

Definition 1.12. 94 is a two-person game of length WI between players Good and 

Bad. The rules are: 

Round 0: The player Bad plays A4, w, 6 such that M is a countable transitive model 

of ZFC iterable with respect to its Woodin cardinal 6 and M + “w is a witness for 4” 

Round a>O: an ordinal ycr and an iteration jY7 : A4 + My7 of length yl + 1 based on 

6 are given. 

l Bad plays a sequence $ of models beginning with A4;, jY7(w), j:.,(6) and a condition 

pEQ,q. 

l Good plays an @-generic filter G c Q,q with p E G. 

l Bad plays an ordinal ya+i > ya and an iteration jrzl, of A4 of length yr+t + 1 which 

prolongs the iteration jYz and such that the y,X-th ultrapower on it is taken using the 

filter G 0 Qp,, . 

Here, ~1 = -1, j, = id and at limit a’s, j?, is the direct limit of the iterations played 

before a. 

In the end, let j be the direct limit of the iterations played. The player Good wins 

if either the player Bad cannot play at some stage or the iteration j is not full or j(w) 

is a witness for 4. 

Thus the player Bad is responsible for the bookkeeping to make the iteration full 

and has a great freedom in prolonging the iteration on a nonstationary set of steps. 

The player Good has a limited access on a closed unbounded set of steps to steering 

j(w) into a witness for 4. In the real life, the player Bad can easily play all the way 

through WI and make the resulting iteration full. 

We shall want to prove 

Lemma scheme 1.13 (Strategic iteration lemma). Suppose 0 holds. Then the player 

Good has a winning strategy in the game ?fd. 

Now suppose that the relevant instances of Lemma schemes 1.10, 1.13 are true for 4. 

Then, granted the Axiom of Determinacy in L( iw), the model L( rW)cb can be completely 

analysed using the methods of [20] to verify Theorem scheme 0.1. Let G c P$ be a 

generic filter. 
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Definition 1.14. In L( R)[G], for any p E G define 

(I) kp is the iteration of MI, which is the direct limit of the system {j: 3q E G( p.j) 

E H& 
(2) W = k,>(~+). 

It is obvious from the definition of the poset Ptij that the system {j: gq E G(p.j) E 

H(,} is directed, and that the definition of W does not depend on the particular choice 

of PEG. 

Theorem 1.15. Assume the Axiom of Determinac), in L(R) and the releaant instances 

of‘ Lemma schemes 1.10 and 1.13 hold. Then PCjl is a o-closed notion oj’fbrcing und 

in L( R)[G], the ,folloM?ing hold: 

(1) ZFC; 

(2) ,fbr ever), X E HN? there are p E G and x E MI1 such that X = k,,(x); 

(3) c = Nz, the nonstationary ideal is saturated, (5; = cl)?: 

(4) (HK,,E,OJ,,3) /==$ and W is a bvitness for 4: 

(5) Suppose $I = Vx 3 y x(x, y) for some Co-formula I is a Ill-statement for (HK:, E, 

(III. 5). Suppose that ZFC+ 0 proves that for each x t HsI there is u forcing P 

preserving M!itnesses to 4 and stationary subsets CI~ (c)I such that P It- 3yx(.u’, _C). 

Then (Hv?, t, ml, 3) k $. 

Proof. Parts (1,2,3) are straigthforward generalizations of Section 4.3 in [20]. Work 

in L(R)[G] and prove (4). 

First note that whenever p E G then ki(3)!‘jp = 3 n ki:M,,. To see it, suppose p t G, 

M,, /= “s c wl is a stationary set” and fix a club C c 0~~. By (2), there is a condition 

q E G and c E Mq so that C = k,(c). Let r E G be a common lower bound of p. q with 

(p,i), (q,j) E H,.. Then 
(1) A& +j(c’)co, is a club 

(2) M,- k i(s) is stationary, since the iteration i is full in M,-. 

Therefore j(c) n i(s) # 0. By absoluteness, k,j(c) n k,.i(s) # 0 and since k,-,j = k, and 

k,.i = k,,, we have C n k,(s) = 0 and k,(s) is stationary. 

Now suppose (4) fails; so 4 = _jx Vy a(x, y) for some Ca formula u, and W is not 

a witness for 4, and lu( W, Y) for some Y t H+. By (2) there is a condition p E G 

and y t M,, such that Y = k,,( y). 

But now, M,, k (Hs,, E,QI~,~) k u(M~, y), since M’,, is a witness for 4 in the model 

M,,. By elementarity of kp, absoluteness and the previous paragraph (HK,, l .col, 5) b 

U( ,i,,( 15))) = W,,i,,( y) = Y), contradiction. 

To prove (5) fix the formula x and note that by (2) it is enough to show that for 

p E PC,> and .Y EM,, there is q < p which forces an existence of Y such that (Hw,, E, 

01,. 7) /= ;c(k,,(x), Y). And indeed, using Corollary 1.7 choose a countable transitive 

stable iterable mode1 M with A4 b “ 0 + 6 is a Woodin cardinal” with p E M. Apply 

the Iteration Lemma 1.10 in A4 to get a full iteration j of M!, such that ~(Iv~~ ) is a 

witness for 4 in M. By the assumptions on x applied in M n V,, where K is the least 
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inaccessible cardinal of M, there is a generic extension M[K] of A4 by a forcing of size 

<K preserving j(w,) and stationary subsets of wi such that there is y E M[K] with 

x(j(x), y). Obviously, setting q = (M[K]J(vv,~), &H), where H =j(H,) U { (p,j)}, we 

have q d p and q II x(&,(x), k4(y)) as desired. 0 

The rudimentary comparison of the cardinal structure of L(R) and L(R)[G] carries 

over literally from [20]: namely Ni, Nl are the same in these models, 0 = Ni(“)‘G1 and 

all cardinals above 0 are preserved. This will not be used anywhere in this paper. 

It should be remarked that under the assumptions of the Theorem, the model K = 

L(Y(co])) as evaluated in L(R)[G] satisfies (l)-(5) and it can be argued that K is the 

“canonical model” in view of its minimal form and Theorem 1.23. In fact, L( R)[G] is 

a generic extension of K by the poset (o:“)’ )“. 

The final point in the analysis of the model L(R)[G] is the proof of Theorem 

Scheme 0.2 for Pd. We know of only one approach for doing this, namely to prove 

Lemma scheme 1.16 (Optimal iteration lemma). Suppose (Hx?, E,~I, 3) + 4. When- 

ever M is a countable transitive model iterable with respect to its Woodin cardinal 

6 and M + “w is a witness for 4” then there is a full iteration j of M based on 6 

such that j(w) is a witness for 4. 

It is crucial that the assumption of this optimal iteration lemma is truly the weakest 

possible. Provided Lemma schemes 1.10, 1.13 and 1.16 are true for 4, we can conclude 

Corollary 1.17. Suppose instances of Iteration Lemmas 1 .lO, 1.13 and 1.16 for 4 are 

true. Then C$ is &-compact. 

Proof. We shall prove the relevant instance of Theorem Scheme 0.2. Assume that $ 

is a II* sentence, $ = ‘dx’x3y x(x, y) for some Ca formula x. Assume that there is a 

Woodin cardinal 6 with a measurable cardinal k above it, and (HN:, E, wl, 3) + $ A $. 

It must be proved that L( rW)Q b (HN?, E, LOI, 3) b $. 

For contradiction suppose that p E P$ forces l$ = 3x Vy 1x(x, y) holds in (HN2, E, 

~1~5) of the generic extension. By Theorem 1.15(2), by eventually strengthening the 

condition p we may assume that there is x E (HNL, E, wI, r3)‘q~ so that p II Vy~x(k,(x), 

y) holds in (HR~, E, w 1,3) of the generic extension. 

Following Corollary 1.8, there is a countable transitive iterable model M elementarily 

embeddable into K containing p, which is a hereditarily countable object in M. By the 

relevant instance of the Optimal Iteration Lemma applied within M there is a full itera- 

tion j of the model Mp such that j(w,) is a witness for 4 in (HN~, E,oJ~,~)~. It follows 

that the quadruple q = (M, j(w,), 3, H), where H = j(H,) U {(p, j)} and 8 is a Woodin 

cardinal of M, is a condition in Pb and q < p. Since in M, (HH>, E, ol,S) + li/, necessar- 

ily there is y E (HN?, l ,o1,3)” such that (HN!, E, WI, 3)” k x( j(x), y). It follows that 

q IF x(&j(x) = k,(x),&(y)) in (HN*, E, WI, 3) of the generic extension, a contradiction 

to our assumptions on p,x. 0 
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Predicates other than 5 can be added to the language of HN, keeping the amended 

version of Theorem scheme 0.2 valid. For example, if Iteration Lemmas 1.10, I. 13 

and 1.16 hold for 4 then the relevant instance of Theorem scheme 0.2 can be shown 

to hold with the richer structure (H N:, E, 3,X: X c Lw,X E L(R)); however, the proof 

is a little involved and we omit it. See [20]. In certain cases a predicate for witnesses 

for d, can be added keeping Theorem scheme 0.2 true for 4. This increases the cx- 

pressive power of the language a little. Such a possibility will be discussed on a case- 

by-case basis. 

Let us recapitulate what we proved in this subsection. Let CJ~ be a Cz sentence for 

(HK,, E, WI, --\), a consequence of 0. If instances of Lemma schemes 1.10 and I. 13 

are shown to hold, then the model L( [w)‘::~ has the properties listed in Theorem 1.15 or 

Theorem scheme 0.1. And if the optimal iteration Lemma 1.16 for 4 is proved then 

the relevant instance of Theorem scheme 0.2 is true and C$ is &-compact. It should 

be noted that Iteration Lemma 1.10 follows from both Lemma 1.13 and Lemma 1.16. 

We include it because it is frequently much easier to prove and because it is often the 

first indication that a II?-compactness type of result can be proved. 

1.2. Order of ktnesses 

After an inspection of the proofs of iteration lemmas in the subsequent sections the 

following notion comes to light: 

Definition 1.18. Let 4 be a Cz sentence. For c, 1~ E HN, we set c <C1l>~ if in ev- 

ery forcing extension of the universe whenever 1’ is a witness to 4 then 1~ is such 

a witness. 

Of course, the formally impermissible consideration of all forcing extensions can be 

expressed as quantification over partially ordered sets. While restricting ourselves to just 

fbrcing extensions may seem to be somewhat artificial, it is logically the easiest way 

and the resulting notion fits all the needs of the present paper. It should be noted that 

Gdl is sensitive to the exact definition of a witness as it was the case for PC/,. Obviously 

6+ is a quasiorder and the nonwitnesses form the <(> / smallest < ,I]-equivalence class. 

Example 1.19. For 4 =“there is a Souslin tree” and S, T such trees the relation T <C/1 S 

is equivalent to the assertion “for every s ES there are s’ <s. t E T such that RO(S 1 s’) 

can be completely embedded into RO(T r t)“. For then. preservation of the Souslinity 

of T implies the preservation of the Souslinity of S. On the other hand, if the assertion 

fails, there must be s E S such that T It “S 1 s is an Aronszajn tree” because every 

cofinal branch through 5’ is generic. By the C.C.C. productivity theorem then, the finite 

condition forcing specializing the tree S 1 s preserves the Souslinity of T and collapses 

the Souslinity of S; ergo, T fi 4, S. 

Note that in the above example the relation < C11 was Cl on the set of all wit- 

nesses. It is not clear whether this behavior is typical; the proofs of the iteration 
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lemmas in this paper always use a C 1 phenomenon to guarantee the relation < 4 or the 

<$-equivalence of two witnesses. 

Definition 1.20. Suppose 4 = 3x Vy x(x, v) for some CO formula x and let $(xo,xi) be 

Ci. We say that q is a copying procedure for $J if ZFC t (HH~, E, UI,~) bVxo,xi ($(x0, 

xl )--f (Vy x(x0, v) tf Yy x(x,, y))). In other words, $(x0,x, ) guarantees that xi is a 

witness for 4 iff x0 is a witness for 4. 

Example 1.21. Let 4 = “there is a nonmeager set of reals of size HI”. One possible 

copying procedure for 4 is $(x0,x, ) = “there is a continuous category-preserving hmc- 

tion f : R + R’ such that f”(x0) =x1”. Note that this is really a statement about a 

code for f, which is essentially a real, and it can be cast in a Cl form. 

The following theorems, quoted without proof, are applications of the above concepts. 

The first implies that the forcings Ps for sentences 4 considered in this paper are all 

homogeneous and therefore the C, theory of L( O;n)cb is a (definable) element of L( R) for 

every n E CO. The second shows that models in Sections 2, 3 and 5 not only optimalize 

the &-theory of (HN~, E, o1,3) but are in fact characterized by this property. The 

choice of copying procedures necessary for its proof will always be clear from the 

arguments in the section dealing with that particular 4. 

Theorem 1.22. Suppose the axiom of determinacy holds in L(R), suppose 4 is a & 

sentence for which iteration Lernmas 1.10, 1.13 hold and I/I is a copying procedure 

for q5 such that ZFC proves one of the following: 

(1) for every two witnesses x0,x1 for I$ there is a forcing P preserving stationary 

subsets of LOI and witnesses for C$ such that P IF $(x0,x1); 

(2) for every witness x0 and every countable transitive iterable model M with M 1 “w 

is a witness for 4” there is a full iteration j of M such that $(x0, j(w)) holds. 

Then Pd is a homogeneous notion of forcing. 

Theorem 1.23. Suppose the axiom of determinacy holds in L(R), suppose 4 is a C2 

sentence for which iteration Lemmas 1.10, 1 .13 hold and $ is a copying procedure 

for C$ such that ZFC proves ‘<for every two witnesses x0,x1 to 4 there is a forcing 

P preserving stationary subsets of WI and witnesses to $ such that P IF $(x0,x,). If 

the Cl-theory of the structure (HN*, E,~,X: XC R,X EL(R)) is the same in V as 

in L(R)nb then ~(w~)=~(w~)fIL(R)[G] f or some possibly external L( R)-generic 

filter G c Pd. 

1.3. Limitations 

Of course by far not every Cz sentence 4 can be handled using the proof scheme 

outlined in Subsection 1.1. Each of the three iteration lemmas can prove to be a 

problem; in some cases, it is possible to show that the statement 4 is not IIZ-compact by 

exhibiting II2 assertions $i: i E I each of whom is consistent with 4 yet l\,El $i k -4. 
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Example 1.24. The simple iteration lemma for 4 = “the Continuum Hypothesis” fails. 

The reason is that whenever A4 is a countable transitive iterable model and ,j is an 

iteration of M then j( iw n&f) # [W-namely, the real coding the model M is missing 

from ,i(RflM). 

Example 1.25. The simple iteration lemma for 4 = “there is a maximal almost disjoint 

family (MAD) of sets of integers of size N,” fails. Note that if A c .Y( c”‘(o) is a MAD 

extending the set of all branches in <“‘o then A is collapsed as a MAD whenever a new 

real is added to the universe. Thus if M is a countable transitive iterable model with 

M + “the Continuum Hypothesis holds and A is a MAD as above” then no iteration .i 

of M makes j(A) into a MAD for the same reason in the previous example. 

Example 1.26. The strategic iteration lemma for & = “there is a nonmeager set of reals 

of size NI” with the natural notion of witness fails. The reason is somewhat arcane 

and we omit it. 

Example 1.27. The optimal iteration lemma for 4 = “the reals can be covered with NI 

many meager sets” cannot be proved. For suppose that M is a countable transitive itcr- 

able model and n/l b “the Continuum Hypothesis holds and % = {X,: f E “‘cam}, where 

X, c “‘CO is the set of all reals pointwise dominated by the function J’. So % constitutes 

a covering of the real line by Nt meager sets.” Also suppose that 4 A b> NI holds in 

the universe - this is consistent and happens after adding N? Laver reals to a model 

of GCH [9]. Then no iteration j of the model M can make j(%) into a covering of 

the real line. because there always will be a function in “‘LO eventually dominating all 

of j( E8 n M). Note that in this case, % should be thought of as a collection of Bore1 

codes as opposed to a set of sets of reals. 

The previous example suggests that $I is not Hz-compact, and indeed, it is not. For 

consider II, sentences 

$1 = “for every bounded family A c “‘LO of size Ni 

there is a function infinitely many times equal to every function in A” 

Now q!i A $0 holds after iterating Laver reals, 4 A $1 holds after iterating proper 

“‘to-bounding forcings [12, Proposition 2.101, and $0 A $1 t -4 can be derived easily 

from the combinatorial characterization of 4 in [2, 31. 

Example 1.28. The optimal iteration lemma for d = “t = N,” cannot be proved. Recall 

that t is the minimal length of a tower and a tower is a decreasing sequence of 

infinite subsets of Q without lower bound in the modulo finite inclusion ordering. To 

see the reason for the failure, suppose M is a countable transitive iterable model and 

M + “the Continuum Hypothesis holds and t is a tower of height (01 consisting of sets 
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of asymptotic density one.” That such towers exist under CH has been pointed out 

to us by W. Hugh Woodin. Suppose that in the universe t = Ni holds and no towers 

consist of sets from a fixed Bore1 filter - such a situation can be attained by iterating 

Souslin C.C.C. forcings over a model of CH. Then no iteration j of A4 can make j(t) 

into a tower. 

It seems that the two 112 assertions 

$0 = “no towers consist of sets from a fixed Bore1 filter”, 

$1 = “every tower consists of sets from some Bore1 filter” 

provide a witness for non-II;!-compactness of 4, however, the consistency of 4 A $i 

seems to be a difficult open problem. 

Example 1.29. The optimal iteration lemma for 4 = “there is a Souslin tree” cannot be 

proved. For suppose that A4 is a countable transitive iterable model with A4 + “ 0 and 

T is a homogeneous Souslin tree”. Suppose that in the universe there are Souslin trees 

but none of them are homogeneous-this was proved consistent in [l]. Then no iteration 

j of M can make j(T) into a Souslin tree, since j(T) is necessarily homogeneous. 

Again, the above example provides natural candidates to witness the non-IIZ- 

compactness of 4. Let 

$0 = “for every finite set T, : i E I of Souslin trees there are ti E T, 

such that n 7; r t, is c.c.c.“, 

$1 = “for every Souslin tree T there are finitely many ti : i E I in T 

such that n T r t; is nowhere c.c.c.“. 

The sentence $ A $0 was found consistent by [l], but the consistency of 4 A $1 is 

an open problem. In view of the results of Subsection 4.0 the sentences +a, $i are the 

only candidates for noncompactness of 4. 

2. Dominating number 

The proof of &-compactness of the sentence “there is a family of Ni many functions 

in “‘w such that any function in “w is modulo finite dominated by one in the family” 

or b = Ni, is in some sense prototypical, and the argument will be adapted to other 

invariants in Section 3. The important concept we isolate to prove the iteration lemmas 

is that of subgenericity. It essentially states that the classical Hechler forcing is the 

optimal way for adding a dominating real. To our knowledge, this concept has not 

been explicitly defined before. 
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2.0. The combinatorics of b 

There is a natural Souslin [7] forcing associated to the order of eventual dominance 

on “‘CL) designed to add a “large” function: 

Definition 2.1. The Hechler forcing [D, is the set { (u,A) : dam(a) = n for some n E (‘). 

rng(a) c CO and A is a finite subset of “‘w}. The order is defined by (a,A) < (b,B) if 

(I) hcu,BcA: 

(2) Vn E dom(u\b) Vf E B a(n)af(n). 

For a condition p = (u,A) the function body(p) E “‘w is defined as body( p)(n) = CI( 17) 

if n E dam(u) and body(p)(n) = max{f(n): J’EA} if IZ $ dam(a). 

If G c D is a generic filter, the Hechler real d is defined as U{u: (u,O) E G). 

Below, we shall make use of restricted versions of ED. Say ,f’ E “I(I). Then d&e 

UI(f) to be the set of all p E [I3, with body(p) pointwise dominated by the function ,I’. 

with the order inherited from ED. Note that [D, as defined above is not a separative poset. 

Obviously, all forcings defined above are C.C.C. The important combinatorial fact 

about II3, is that a Hechler real is in fact an “optimal” function eventually dominating 

every ground model function. This will be immediately made precise: 

Definition 2.2. Let A4 be a transitive model of ZFC and f E “‘0. We say that the 

function ,f ED-dominates M if every g EM n”‘w is eventually dominated by ,f’. 

Lemma 2.3. Let M be a trunsitiue model of ZFC and let ,f E “‘cc) Ul-dominute M. If 

D c ID, n A4 is a dense set in M, then D f’ ED(f) is dense in mi( ,f) n hf. 

Note that lD, n M is ED as computed in M; also UJ(,f ) n M @ M. 

Proof. Fix a dense set D c D n M in M and a condition p = (u. A) in ED(,j”) f! M. We 

shall produce a condition q< p in Dn ED(f). Working in M, it is easy to construct a 

sequence (a,.A,): i E Q of conditions in D with dom(a,) = n, and 

(1) (44%) dP 
(2) (a,+,,~,, ,) is any element of D stronger than (body(p) rn,,A,). 

Define a function g E “‘0 as follows : for y1 <no, let g(n) = a(n). For n 3~. find 

an integer i~cr, with n,<n<n,_l and set g(n)= max{u,_l(n).h(n): heA,}. Since 

g E (“w n M, the function f dominates g pointwise starting from some n,. Then q = 

(a,, , .A,, ,)N E D n KD(f) is the desired condition. 17 

Corollary 2.4 (Subgenericity). Let P be a .forcing und 4 a P-nume such that 

( 1) P II 4 E “‘0 El-dominates the groztnd model 

(2) .ftir ezjery ,f‘ E “‘w the boolean tialue ((f ~4 pointwisellp is non-zero. 

Then there is a complete embedding RO( ED) Q P * (D(g) n the growd model) = R .so 

thut R II “2 <.Y pointwise”, nlhere d is the USgeneric real. 

Thus under every D-dominating real, a Hechler real is lurking behind the scenes. 
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Proof. The Hechler real a’ will be read off the second iterand in the natural way, 

and Lemma 2.3 will guarantee its genericity. By some Boolean algebra theory, that 

yields a complete embedding of RO( D 1 p) to RO(R), for some 0 # p E D. We must 

prove that p = 1. But fix an arbitrary q = (a, A) E ID, and let y = body(q). Then (11 g d f 

pointwisellp, +) E R is a nonzero element of RO(R) forcing that the D-generic real 

meets the condition q. Thus with the given embedding, any condition in D can be 

met, consequently p = 1 and the proof is complete. 3 

Corollary 2.5. Let M be a countable transitive model of ZFC such that M + ‘P 

is a forcing adding a dominating function f as in Corollary 2.4”, let p E P and let 
g E “‘0 be any function, not necessarily in the model M. Then there is an M-generic 

jilter G c B containing p such that g is eventually dominated by f/G. 

Proof. Apply the previous Corollary in the model M and find the forcing R and the 

relevant embeddings P Q R, D Q R. Assume PC R and set x to be the projection of 

Y into D via the above embedding. Step out of the model M and find a filter H c D 

such that 

(1) XEH; 
(2) H meets every maximal antichain of D which is an element of M; 
(3) the Hechler real e derived from H eventually dominates the function g. 

This is easily done. Now the key point is that the model M computes maximal 

antichains of ID correctly: if M + “A c D is a maximal antichain” then this is a IIt 

fact about A under suitable coding and therefore A really is a maximal antichain of D. 

Consequently, the filter H nM c D” is M-generic. 

Choose an M-generic filter K c R with H nM c K under the embedding of D 

mentioned above. Let G= K n P. The filter G c P is M-generic and has the desired 

properties: the function g is eventually dominated by e which is pointwise smaller 

than j‘/G. 0 

2.1. A model for b = NI 

A natural notion of a witness for b = NI to be used in the definition of Pb = N, is 

that of an eventual domination cofinal subset of ‘*cc of size N 1. We like to consider 

an innocent strengthening of this notion in order to later ensure that assumptions of 

Corollary 2.5 are satisfied. 

Lemma 2.6. The following are equivalent: 
(1) b=N,; 

(2) there is a sequence d : 01 + “co increasing in the eventual domination order such 
that for every f E ‘“co the set St = {a E 01: f <d(a) pointwise} is stationary. 

A sequence d as in (2) will be called a good dominating sequence and will be used 

as a witness for b = N1. 
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Proof. Only (1) -+ (2) needs an argument. Choose an arbitrary eventual domination 

cofinal set {,fY: a E QI} c “)o and a sequence (S,,.,: a E <“‘m,x E ~1) of pairwise dis- 

joint stationary subsets of 01. By a straightforward induction on /I E oI it is easy to 

build the sequence d : 01 + “‘co so that 

( 1) d(p) eventually dominates all fT: r E fl and d(x): c( t p: 

(2) if /I’ E S,,,, then d(b) pointwise dominates both a and ,f. 

The sequence d is as required. For choose ,f t “‘w. There are u E <“‘(I). x E (11~ so 

that .f is pointwise dominated by the function g taking maxima of functional values 

of a and ,fcl. The set St is then a superset of S,,., and therefore stationary. ;; 

Suppose now that M is a countable transitive model of ZFC, M + “d : (01 + “‘co 

is a good dominating sequence and (5 is a Woodin cardinal”. Working in A4 a sim- 

ple observation is that Q <J IF “(jad)( w:‘) D-dominates M”, where ,js is the term 

for the generic nonstationary tower embedding. Moreover, by (2) above the pair 

Q < ,). (j:d)( we’ ) satisfies requirements of Corollary 2.5. Thus there is a generic 

ultrapower of M lifting (jQd)(@) arbitrarily high in the eventual domination or- 

der in V. Also, whenever j is a full iteration of the model M such that j(d) is a 

dominating sequence, it is really a good dominating sequence. 

Optimal Iteration Lemma 2.7. Suppose b = N /. LVheneaer A4 is u countable trwzsitiw 

model iterahle with respect to its Woodin curdinal 6 and A4 + “d is ~1 good domi- 

nating sequence” there is a jiill iteration j sf‘ A4 so thut j(d) is u good dominrrting 

sequence. 

Proof. Let {.f,: z E 01) be an eventual domination cofinal family of functions. WC 

shall produce a full iteration j of the model M based on 6 with H, = UI,~‘~ such that 

the function jd(fJ,) eventually dominates the function ,f,. for every CI E (!I~ This will 

prove the lemma. 

The iteration j will be constructed by induction on ‘2 E (!)I. First, fix a partition 

{S;: < E tr)l } of ~1 into pairwise disjoint stationary sets. By induction on x E (ui build 

models M, together with the elementary embeddings plus an enumeration { (.Y;. /I’_ ) : < E 

co1 } of all pairs (x, /I) with x E Q/j. The induction hypotheses at x are: 

(1) the function jd(0,) eventually dominates .fy. 
(2) the initial segment {(x:, fls) : 4 E O,} of the enumeration under construction has 

been built and it enumerates all pairs (x,/I) with s E Q,,, /I t ,x. 

(3 ) for ;‘ E x if fI;, E Si for some (unique) < E 0;. then j,_.,.(.x,) E G,.. 

The hypothesis (1) ensures that the resulting sequence ,jd will be dominating. The 

enumeration together with (3) will imply the fullness of the iteration. 

At limit stages, the direct limit of the previous models and the union of the enumer- 

ations constructed so far is taken. The successor step is handled easily using a version 

of Corollary 2.5 below the condition j&y;) E Q:, if x E SC for some <E 0, and the 

observation just before the formulation of Lemma 2.7. Let j be the direct limit of the 

iteration system constructed in the induction process. L 
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This lemma could have been proved even without subgenericity, since after all, the 

forcing Q adds a Hechler real by design. With the sequences of models entering the 

stage though it is important to have a sort of a uniform term for this real. 

Strategic Iteration Lemma 2.8. Suppose b = NI. The player Good has a knning 

strategy in the game 9b = N,. 

Proof. Let i? = (d,N;, 6i: i E o) be a sequence of models with a good dominating se- 

quence d, let yo E Q.37 and let f E ‘“w be an arbitrary function. We shall show that there 

is an 3-generic filter G c Q,g with yo E G such that (jQd)(o$) eventually dominates 

the function ,f. where j, is the generic ultrapower embedding of the model NO using 

the filter G n O’>,j,,. With this fact a winning strategy in the game $, = N, for the good 

player consists of an appropriate bookkeeping using a fixed dominating sequence as in 

the previous lemma. 

First, let us fix some notation. Choose an integer i E CO, work in Nj and set Q = 0’2,. 

Consider the Q-term j, for a Q-generic ultrapower embedding of the model N;. 

The function j;d(c$‘) is forced to be represented by the function CI H d(a) and to 

D-dominate the model N;. Applying Corollary 2.4 in N, to Q, and j;d(of ) it is pos- 

sible to choose a particular dense subset R; of the iteration found in that Corollary, 

namely Rj = {(y, a,A): y E Qi, (a,A) E D, A c rng(d) and for every x E y the func- 

tion d(x n 01) pointwise dominates body( (a, A) )} ordered by (z, b,B) < (y, a, A) just in 

case z < y in Q and (b,B) < (a,A) in ED. It is possible to restrict ourselves to sets 

A c rng(d) since rng(d) is an eventual domination cofinal family in N;. As in that 

corollary, the Q;-generic will be read off the first coordinate and the D-generic real 

e E “J’w will be read off the other two, with j,d(cq ) pointwise dominating the func- 

tion e. With this embedding of ID into the poset R;, we can compute the projection 

priD((y,a,A))=Crro{(b,B)EIDI: (b,B)<(a,A),Bcrng(d) and the system z={x~y: 

d(x n 01) pointwise dominates the function body( (b,B))} is stationary}. 

Now step out of the model N;. There are two key points, capturing the uniformity 

of the above definitions in i E CO: 

(1) RocR, c . . . . 

(2) priD((y,aJj) computes the same value in ID in all models N; with y E Qi. 

Therefore we can write prD((y,a,d)) to mean the constant value in D of this 

expression without any danger of confusion. Another formulation of (2) is that NO 

computes a function from ID, into RO which constitutes a complete embedding of D 

into all R; in the respective models Ni. Note that RO is not a complete suborder of 

the Ri’s. 

Now everything is ready to construct the filter G c Q!Q. First, let us choose a suffi- 

ciently generic filter H c D. There are the following requirements on H: 

(3) pr&(.vo,O,O))EH; 
(4) H meets all maximal antichains of D which happen to be elements of lJj N;; 

(5) the Hechler real e E “‘0 given by the filter H eventually dominates the function 

,f E “‘Co. 
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This is easily arranged. It follows from (4) that H n N, is an Ni-generic subset of 

UY’J since the model N, is Et correct and therefore computes maximal antichains of UZ 

correctly. 

Let XL: k E tc) be an enumeration of all maximal antichains of Qc which are elements 

of U, N,. By induction on k E o build a descending sequence yo 3 yl 3 3 ya 3 

of conditions in Q,q so that 

(6) >‘A _ 1 has an element of XL above it; 

(7) y~((ya-1~0.0))EH. 
This is possible by the genericity of the filter H. Suppose yi; is given. There is an 

integer i t o such that yk E Qi and XL EN, is a maximal antichain in Q,. Now H (-1 A’, 

is a Hechler N;-generic filter and 2~. = {(z, 0,O): z E &} c R, is a maximal antichain in 

R,. Therefore, there must be a condition yk+l < yi as required in (6,7). 

In the end, let G c U2:i be the filter generated by the conditions ye : k E (1). It is 

an p-generic filter by (6) and the fkction jod(o,f ) pointwise dominates the Hechler 

function e by (7) and therefore - from (5 ) - eventually dominates the fkction ,f E “‘rr~ 

as desired. [7 

Conclusion 2.11. The sentence c#~ =b= N1 is rI2-compact, moreover, in Theorem 

Scheme 0.2 lrte can add a predicate ,fbr dominating sequences of’ length (!)I to tlw 
language qf (H+, ~,w1,3). 

Proof. All the necessary iteration lemmas have been proved. To see that the dominating 

predicate T‘ can be added, go through the proof of Corollary 1.15 again and note that 

if j is a full iteration of a countable transitive iterable model M such that .j(.M P R ) is 

cofinal in the eventual domination ordering then ‘P nM,.,, = P’\l”~ c! 

3. Other b-like cardinal invariants 

The behavior of the dominating number seems to be typical for a number of other 

cardinal invariants. We present here two cases which can be analysed completely. 

Recall that for an arbitrary ideal, the cofinality of that ideal is defined as the minimal 

size of a collection of small sets such that any small set is covered by one in that 

collection. This is an important cardinal characteristic of that ideal [3]. 

3.0. Cbfinality of the meager ideal 

In this subsection we prove that the statement “the cofinality of the meager ideal 

is N,” is II?-compact. It is not difficult to see and will be proved below that it is 

enough to pay attention to the nowhere dense ideal. As in the previous section. there 

is a canonical forcing related to this ideal. 

Definition 3.1. (1) NWD is the set of all perfect nowhere dense trees on { 0. 1 }: 

Sh:610



236 S. Shelah, J. Zapletall Annals of Pure and Applied Logic 98 (1999) 217-259 

(2) for a tree T E NWD and a finite set z c T the tree T r x is defined as the set of 

all elements of T c-comparable with some element of x; 

(3) for a tree SENWD and a sequence y ES the tree S(q) is the set {r: virus}; 

(4) UM, the universal meager forcing [S, Definition 4.21, is the set {(n,S): n E w,S 

E NWD} ordered by (n, S) d (m, T) if IZ > m, T c 5’ and S n “‘2 = T n “l2; 

(5) for a tree UENWD we write OJM(U)={(n,S) EUM: ScU}; this set has an 

order on it inherited from U M. 

Obviously, the collection {[T] : T E NWD} is a base for the nowhere dense ideal. 

UM is a a-centered Souslin forcing designed so as to produce a very large nowhere 

dense tree: if G c UM is a generic filter, then this tree is Uo = U{ T: (0, T) E G}; 

it is nowhere dense and it codes the generic filter. The following is the instrumental 

weakening of genericity: 

Definition 3.2. Let A4 be a transitive model of ZFC and U t NWD. We say that 

the tree U UJ-dominates the model A4 if there is some element T E A4 n NWD in- 

cluded in U and for every T E A4 n NWD there is an integer n E o such that setting 

x = T f? U n “2, the inclusion T /x c U r x holds. 

This notion has certain obvious monotonicity properties. Suppose S c T and U 

are perfect nowhere dense trees and n is an integer such that setting x = T n U n “2, 

T rxc U 1.x holds. Then with y=Sn Un”2 we have S 1 yc U 1 y and for any inte- 

ger m>n and z=TnUn”‘2 we have T IzcU /z. 

It is immediate that if U E NWD is UJ M-generic then it UM-dominates the ground 

model. On the other hand, any UJM-dominating tree covers an UM-generic 

tree: 

Lemma 3.3. Let A4 be a transitive model of ZFC and let U E NWD U M-dominate 

the model kf. If D c UM nA4 is a dense set in A4 then D n UM(U) is dense in 

uM(u)nlzl. 

Proof. First, the set UJM(iY) nA4 is nonempty. Now let (n,S) t IuM(U) nA4 and let 

D EM be a dense subset of U Ml nM which is an element of the model A4. We shall 

produce a condition p ED n UM(U), pd (n,S), proving the lemma. 

Work in M. By induction on i E u, build conditions (ni, z), pr,; E UM so that 

(1) (no,To)=(n,S) and (n;hI,T+i)d(ni,T;); 
(2) for every integer i>O, for every sequence ye E ‘2 there is a sequence r E “12 with 

ycz and rrfz; 

(3) to produce (n;+ ,, T;+l) from (n;, T), for every nonempty set x c “12 n T, find a 

condition P,~,; = (n,,, S,,,) 6 (ni, z r x;) in the dense set D. Set &+I = US,,, and 

let nj+l be arbitrary so that (2) is satisfied. 

After this is done, let T,., = Uj T. The induction hypothesis (2) implies that T,,] E 

NWD n A4 and therefore, there is an integer i E w such that setting x = ‘12 n T n U we 
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get T,,, 1 .x c U 1.~. Note that the set x is nonempty, because it includes S n “$2. Now 

y,, is the desired condition. 0 

Corollary 3.4 (Subgenericity). Let P be a ,forcing and s a P-name such that 

( 1) P IF the tree $ UFkU-dominates the ground modek 

(2) ,fkr ererj T t NWD the boolean v&e 1lF c Slip is non-zero. 

Then there is a complete embedding RO( U FUI ) Q P* ( 01 M(s) n the pund model) = 

R such that R II “0 c @‘, where i? is the Ui-generic tree. 

Corollary 3.5. Let M be a countable transitice model qf’ ZFC su& that A4 k “P is 

a ,forciny adding u UJ-dominating tree $ as in Corollu~~~ 3.4”, let p E P and let 

T E NWD he an!* tree, not necessaril?, in the model M. Then there is an M-generic 

filter G c P containing p such that ,fbr some sequence 11 E g/G ule hate T c j/G(q)_ 

Set 4 = “cofinality of the meager ideal is N,“. The analysis of the forcing P,, is now 

completely parallel to the treatment in Section 2. 

Definition 3.6. A witness for 4 is an (JI{-sequence s of perfect nowhere dense trees 

such that 

( 1) for every NWD tree T the set { CY E (01: T c s(x)} c WI is stationary; 

(2) for every NWD tree T the set CT = {x E ~1: there is II E (I) such that if .r = “2 r? 

Tns(x) then T txcs(c() tx}cojl contains a club: 

(3) there is a NWD tree T which is contained in all s(x): a E ~1. 

Of course, it is important to verify that this notion deserves its name. 

Lemma 3.7. The .following are equiwlent: 

( 1) the cqfinalit~~ of the meager ideal is Hi ; 

(2) the cqfinalit), ?f the nowhere dense ideal is N 1; 

(3) there is a n1itnes.s ,for 4. 

Proof. (1)~(2):Let{Y,:r~o,}beabaseforthemeagerideal,Y,~U{[T~]:i~~~~} 

for some sequence Ti: i E o of NWD trees with Ti c Td t’. We shall show that the 

collection {[T;(q)]: SI E 01, i E (11, q E Tj} is a base for the nowhere dense ideal, prov- 

ing the lemma. Indeed, let S be a nowhere dense tree on o. We shall produce x. i. ‘1 

so that SC T;(v) and therefore [S] c [T.j(~l)]. 

It is a matter of an easy surgery on the tree 5’ to obtain a nowhere dense tree 3 so 

that for every q E 3 there is 7 E 3 with 11 c 7 and $( 7) = S. Choose a countable ordinal 

x so that [s] c Y, and attempt to build a descending sequence q,: i E w of elements 

of s so that fll @ Ti. There must be an integer i E OI such that the construction cannot 

proceed past 17, - otherwise the branch IJ, t ,,, kl, E [s] would lie outside of the set Yy. 

But then, s(q;) c T’i(q,) and if 7 t 3 is such that vi c 7 and s’(7) = S then necessarily 

S=$s)c T;(z). 
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(2) + (3): Let T,: 5 E WI be a c-cofinal family of NWD trees. Fix a partition 

St: t EON of 01 into disjoint stationary sets and a NWD tree T. For each a~ WI 

choose a filter G, c U M such that 

(1) (O,TUT:)EG, whenever @ES< 

(2) G, meets the dense sets D/i = {(n, U) E UJM: setting x = U n “2 we have T/j 1 x c 

Urx forallpEa. 

Using the remarks after Definition 3.2 it is easy to see that the sequence s: 01 + 

NWD defined by s(g) = U {U: (0, U) E G,} is the desired witness for 4. 

(3) 4 (1): Let s: 01 --f NWD be a witness for 4. Obviously, the family Y, = U,it,X 

[$/I)]: (Y E oi is c-cofinal in the nowhere dense ideal. q 

Now if M is a transitive model of ZFC with A4 + “s is a witness for 4 and S 

is a Woodin cardinal” then in M, U&s It “j.s(wi) is a NWD tree e]MJ-covering the 

model M”, where j is the term for the generic nonstationary tower embedding; also 

M, Q,;i, js(wi ) satisfy the assumptions of Corollary 3.5. The proof of &-compactness 

of 4 translates now literally from the previous section. We prove the strategic iteration 

lemma from optimal assumptions. 

Strategic Iteration Lemma 3.8. Suppose that the cojinality of the meager ideal is 

equal to NI. The good player has a winning strategy in the game 94. 

Proof. Let $ = (s,1v;, 6;: i E w) be a sequence of models with a witness for 4, let 

yo E Q!q and let T be an arbitrary NWD tree. We shall show that there is an @-generic 

filter G c Q,q such that letting S = j4ps(o’y), where j, is the Q‘z:,“-generic ultrapower 

embedding using the filter G n Q~~60, we have that for some q E S, T c S(q). With this 

fact in hand, the winning strategy for the good player consists just from an appropriate 

bookkeping: 

Since cofinality of the meager ideal is N 1, it is possible to choose a c-cofinal family 

TX: cx E WI of NWD trees. So the good player can easily play the game so that with 

the resulting embedding j of the initial iterable model M, for every tl E 01 there is 

y E 01 and a sequence n in the tree js(y) such that T, c js(y)(u). It is immediate that 

if this is the case and the iteration j is full, the sequence j(s) is a witness for 4 and 

the good player won the run of the game. For let S E NWD be an arbitrary tree. Then 

there are cr, y and y such that S c T, c js(y)(q) and so 

(1) the set {pool: Scjs(fi)} contains the set {p E ~1: js(y)(q) c is(p)} which is in 

the target model of the iteration j, is stationary there from Definition 3.6( 1) and 

so is stationary in V by the fullness of the iteration 

(2) the set {BE 01: for some n E w, S 1 x c js(B) 1 x holds with x: = “2 n S n j.s(fi)} 

contains the set {p E 01: for some n E w, js(y)(y ) r x c js(B) 1 x holds with x = ’ 

2 n js(y)(n) n js(fi)), which is in the target model of the iteration j and contains 

a club by Definition 3.6(2). 

Therefore Definition 3.6( 1,2) are verified for j(s) and (3) of that definition follows 

from elementarity of the embedding j. Thus js is a witness for 4 as desired. 
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The proof of the local fact about the sequence of models carries over from Lemma 2.8 

with the following changes: 

(1) d is replaced with s, EO is replaced with UM. the Hechler real r is replaced with 

a NWD tree U 

(2) the step (5) of that proof is replaced with: there is a sequence q E Cl such that 

TC U(q). Note that the set {(n,S) E UM: 3~1~5 TcS(q)) is dense in WM. 

(3) the ordering R, is defined as follows: R, = { (y,n,S): J’ t Q,. (n.S) E U M. S = 

s(a) 1 z for some M E cd7 and finite set 2 such that VX E J’ S c s(x n OJI )}. It is 

possible to restrict ourselves to the trees S of the above form, since the sequence 

s(x): r E 01, is C-cofinal in NWD 11 :V,. 1 

3.1. Cofinalit~~ qf the null ideal 

In this subsection we shall show that “cofinality of the null ideal = WI ” is a II?- 

compact statement. The following textbook equality will be used: 

Lemma 3.10. C~jinalit~~ oJ’ the null ideal is equul to the cqfincdit~~ qf’ the posrt of thcj 

open subsets qf’ reals qf ,$nite measuw ordered hi, inclusion. 

Therefore we will really care about large open sets of finite measure. 

Definition 3.11. The amoeba forcing A is the set {(C. E): C is an open set of finite 

measure and E is a positive rational greater than /L(C)} ordered by ((i . ;:) < (.Y.$) if 

.Y c P and c < 6. The restricted poset A( C ) for an open set 0 c Ft is { (,ip. E) EA: ./P :r t } 

with the inherited ordering. 

It is not a priori clear why the different versions of the amoeba forcing should 

bc isomorphic, see [ 181. The amoeba poset is a a-linked Souslin forcing notion de- 

signed to add a “large” open set of finite measure. If G c A is generic then the set 

P (; = U { .Y: (9, c) E G for some E} is this open set and it determines the generic filter. 

Again, there is a natural weakening of the notion of genericity. Fix once and for all a 

sequence ,f:: i E OJ of measure-preserving functions from iw to [w so that the sets f;“&F 

arc pairwisc disjoint and the sequence is arithmetical. 

Definition 3.12. Let A4 be a transitive model of ZFC and 6’ be an open set of reals. 

We say that (c’ A-dominates the model A4 if for every open set .Y of finite measure in 

the model M for all but finitely many integers m E (Q. ,fn; ’ .Y c Cc. 

Obviously, the amoeba generic open set does A-dominate the ground model. We 

aim for the subgenericity theorems. 
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Lemma 3.13. Let M be a transitive model of ZFC and let 8 dominate M. For every 
dense set D c A nM which is in the model M the set Dn A(C) is dense in M n 

A(O). 

Proof. Let M, 0, D be as in the lemma and let (9, E) EM n A(e). We shall produce 

a condition p E D n A(O) below (P, E), proving the lemma. 

Work in the model A4 By induction on i E o build conditions (9i, 6,) < (9, si) so 

that 

(1) E=Eo,(~?;,&) ED; 
(2) for every integer i>O the inequality E, - ,u(P) <2-’ holds. 

Let Y EM be any open set of finite measure which covers the set UiEc,> fi(9$?;\9). 

Since fl A-dominates the model M, there must be an integer i E co such that f;-‘Y c 8, 

and so 2; c 0. Then (&, Si) d (P, si) is the desired condition. q 

Corollary 3.14 (Subgenericity). Let P be a forcing and 8 a P-name such that 
(1) P If “the open set & c R A-dominates the ground model”; 
(2) for every open set 9 of jinite measure the boolean value Ii@ c 811,~ is nonzero. 

Then there is a complete embedding RO(A) G P * (A(d) n the ground model) = R 
such that R If “& c @, where @ is the name for the A-generic open set. 

A witness for 4 = “cofinality of the null ideal = N1 ” is an 01 -sequence o of open 

sets of finite measure such that 

(1) for every open set 9 of finite measure the set {a E ol: 9 c O(M)} c 01 is sta- 

tionary; 

(2) for every open set 9 of finite measure the set {M E WI : for all but finitely many 

integers m E ok f;‘? c o(a)} contains a club. 

Again, it is very simple to prove using Lemma 3.10 that 4 is equivalent with the 

existence of a witness. The analysis of the forcing Pb almost literally translates from 

Section 2. We leave all of this to the reader. 

Conclusion 3.15. The statement rj = “cojinality of the null ideal is NI” is IIz-compact. 
Theorem Scheme 0.2 holds even with a predicate for cojinal families of null sets added 

to the language of (HN?,E,uI,~). 

4. Souslin trees 

The assertion “there is a Souslin tree” does not seem to be l&-compact as outlined 

in Subsection 1.3; however, some of its variations are. A Pmax-style model in which 

many Souslin trees exist was constructed in [20] and in the course of the argument 

the following theorem, which implies the strategic iteration lemmas for all sentences 

considered in this section, was proved. 
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Let 99s be a two-person game played along the lines of !!?(b - in Definition 1. I2 - 

with the following modifications: 

( 1) in the 0th move the player Bad specifies a collection .Y of Souslin trees in the 

model M instead of just one witness; 

(2) in the xth step the player Bad must choose a sequence (Ni: i E co) of models such 

that j;,?( cY) consists of Souslin trees as seen from each N,: i E to; 

(3) the player Good wins if j,,,, (,Y’) is a collection of Souslin trees. 

Strategic Iteration Lemma 4.1 (Woodin [20]). Assun7e 0. Then the player Good hers 

a winning strateg!) in the game 9~. 

Proof. Recall that wt-trees are by our convention sets of functions from countable or- 

dinals to co with some special properties. Fix a diamond sequence (A,): /I E o,l) guessing 

uncountable subsets of such trees. The player Good wins the game as follows. Sup- 

pose we are at ccth stage of the play and let /? = o-y * and ,Y: = j~.;,~( 9). Suppose Bad 

played a sequence i? = (N,, 6,: i E w) of models according to the rules - so N,, = M, ~ 

and some p E Q,,;. Let us call an H-generic filter G c Q!c good if setting j,,,~ to be the 

ultrapower embedding of No derived from G f? QJ we have: for every tree 5’ E ,Y,. if 

A,] c S is a maximal antichain then every node at /I-th level of jr(S) has an element 

of A/i above it in the tree ordering. 

If the player Good succeeds in playing a good filter containing p at each stage 

IX E tc)l of the game then he wins: every tree in the collection jo(,,, (9) can then be 

shown Souslin by the usual diamond argument. Thus the following claim completes 

the proof. 

Claim 4.2. At stage a there is a goocl,filter G c Cl,, containing p. 

Proof. Actually, any sufficiently generic filter is good. Note that every Q. name y E No 

for a cofinal branch of any tree S E yj is in fact a Q,,--name for a generic subset of 

S - this follows from the fact that S is a Souslin tree in every model ;Y,: i E co. 

Thus if a filter G c Q,q meets every dense set recursive in some fixed real coding 

fi and Ail, necessarily the branch 1;/G meets the set .4/j if A,, c S is a maximal an- 

tichain. Consequently, such a filter is good, since every Qo name j, E No for an ele- 

ment of /?th level of jo(S) can be identified with a name for a cofinal branch of the 

tree S. EI 

4.0. Free So&in trees 

The first IIz-compact sentence considered in this section is $I = “there is a free tree” 

as clarified in the following definition: 

Definition 4.3. A Souslin tree S is free if for every finite collection s,: i E I of distinct 

elements of the same level of S the forcing ni,, S ts, is C.C.C. 
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Thus every finitely many pairwise distinct cofinal branches of a free tree are mutually 

generic. It is not difficult to prove that both of the classical methods for forcing a 

Souslin tree [5, 151 in fact provide free trees. It is an open problem whether existence 

of Souslin trees implies existence of free trees. 

The following observation, pointed out to us by W. Hugh Woodin, greatly simplifies 

the proof of the optimal iteration lemma for $: any sufficiently rich (external) collection 

of cofinal branches of a free tree determines a symmetric extension of the universe in 

the appropriate sense. 

Lemma 4.4. Suppose that M is a countable transitive model of a rich jragment oj 
ZFC, M k “S is a free Sot&in tree” and B = {b,: i E I} is a countable collection 

of cojinal branches of S such that U B = S. Then there is an enumeration bi: j E w 
of B such that the equations bi = cj determine an M-generic jilter on Ps. 

Here, Ps EM is the finite support product of countably many copies of the tree S, 

with Cl: j E u being the canonical Ps-names for the added w branches of S. 

Corollary 4.5. Suppose M, S and B are as in the Lemma and suppose that M + “P 
is a forcing, p E P and P II- C is a collection of cojinal branches of the tree S such 
that u C = S”. Then there is an M-generic jilter G c P with p E G and C/G = B. 

Proof. Work in M. Without loss of generality we may assume that p = 1 and that the 

forcing P collapses both K = (2N’)+ and ICI to No. (Otherwise switch to P x ColZ(o,3,) 
for some large enough ordinal 2.) There is a complete embedding of RO(Ps) into 

RO(P) such that P Ik Y? is the canonical set of branches of S added by Ps under 

this embedding”. This follows from Lemma 4.4 applied in M’ to MnH,, S and C. 

Another application of the Lemma to M,S and B gives an M-generic filter H c Ps 
such that B is the canonical set of branches of the tree S added by H. Obviously, 

any M-generic filter G c P extending H - via the abovementioned embedding - is as 

desired. 0 

Proof of lemma. Say that the conditions in Ps have the form of functions from some 

n E o to S with the natural ordering, We shall show that for each injective f: n + B and 

every open dense set 0 c Ps in the model M there is an injection g: m + B extending 

f and a condition p E 0 with dam(p) =m and &_,, p(k) E g(k). Granted that, a 

construction of the desired enumeration is straigthforward by the obvious bookkeeping 

argument using the countability of both M and B. 
So fix f and 0 as above. There is an ordinal a E c$’ such that the branches 

f(k): k E n pick pairwise distinct elements Sk: k E n from ath level of the tree S. 

Let D = {z E flkt,, Srsk: 3~~0 p/n=z}EM. Since OcPs is dense below the 

condition (Sk: k En) E Ps, the set D must be dense in nkE,? S rsk. Since this product 

is ccc. in the model M, the branches f(k): k E n determine an M-generic filter on it 

and there must be z E D such that AkE,, z(k) E f (k). Choose a condition p E 0 with 
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dom( p) = m and p 1 n = z. Since U B = S, it is possible to find branches g(k ): n <k -cm 

in the set B which are pairwise distinct and do not occur on the list ,f(k): k E n such 

that A,, 6 h c: n, p(k) E g(k). The branches j’(k): k EPI and g(k): M <k <m together give 

the desired injection. 3 

Optimal Iteration Lemma 4.6. Assume there is a jiee tree. Whenever M is u count- 

able traruitivr model of ZFC iterable ~c,ith resprc~ to its Woodiu cardinal ci and 

M b“iY is 11 .fuee tree” there is a .fidl iteration j of M SLKIT that ,j(U) is a .ftiee tree. 

Proof. Let T be a free Souslin tree and let M, U. 6 be as above; so M k “U is a free 

Souslin tree”. We shall produce a full iteration j of M such that there is a club C c (ul 

and an isomorphism 71: T r C 4 j(U) 1 C. Then, since the trees T, j( U) are isomorphic 

on a club, necessarily j(U) is a free Souslin tree. This will finish the proof of the 

lemma. 

The iteration will be constructed by induction on a E (01 and we will have H, = u:‘, 

and C = {H,: x E ml}. Also, we shall write UX for the image of the tree U under the 

embedding j,,,c/. This is not to be confused with the x-th level of the tree U. In this 

proof, levels of trees are never indexed by the letter c(. 

First, fix a partition {S:: 5 E WI} of the set of countable limit ordinals into dis- 

joint stationary sets. By induction on M E WI, build the models together with the el- 

ementary embeddings, plus an isomorphism 7~ : T 1 C + jU 1 C, plus an enumeration 

{(x;, p,): < E LOI} of all pairs (.~,fi) with x E Q,j. The induction hypotheses at x E (I), 

are 

(1) the function 7-t 1 T / {O;.: 7 E LX} has been defined and it is an isomorphism of 

T 1 {U;.: :r’ E a} and U, 1 {tl;.: 7 E z}: 

(2) the initial segment {(x5,/?:): 4 E 0,) has been constructed and every pair (s,/~) 

with p E ‘2 and x E Q/i appears on it; 

(3) if 7 E E belongs to some - unique - set S, then j,j_,;.(x; ) E G;.. 

At limit steps, we just take direct limits and unions, At successor steps, given 

M,, U,, 6, and 7-t r {B;.: 7 E r}, we must provide an A4,-generic filter G, c Qe7 such that 

setting CT,,_, = jaUyi,, where j, is the generic ultrapower of M, by G,, it is possible to 

extend the isomorphism 71 to 8,th levels of T and U,, 1. 

First suppose 3 is a successor ordinal, z = /j + 1. Let G, be an arbitrary M,-generic 

filter; we claim that G, works. Simply let for every t E To,; 7r 1 (T 1 t),), to be a bijection 

of (T rt)~, and (C~+I rz(t))~,. Th’ is is clearly possible since both of these sets are 

infinite and countable. Induction hypothesis (1) continues to hold, induction hypothesis 

(2) is easily arranged by extending the enumeration properly and (3) does not say 

anything about successor ordinals. 

Finally, suppose tl is a limit ordinal. In this case, the O,th level of the tree U,,, is 

determined by n / T r (6;: y E CY} and the necessity of extending the isomorphism n to 

the O,th level of the tree T. Namely we must have f3,th level of U,, 1 equal to the set 

D = {d,: t E T,,,} where d, = l-(x(r): Y E T r (8,: ;’ E CL}, t ~7 r}. Corollary 4.5 applied 

to M,, S,, Q,, (S,,, ),I, and D shows that an appropriate generic filter on Q, can be 
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found containing the condition j,j,Jx,) if a E St. The isomorphism n then extends in 

the obvious unique fashion mapping t to d,. 0 

Conclusion 4.7. The sentence $ = “there is a free tree” is &-compact. 

Another corollary to the proof of Lemma 4.6 is the fact that Cl theory of free trees 

is complete and minimal in the following sense. Suppose II/ is a Cf property of trees 

T which depends only on the Boolean algebra RO(T), that is, ZFCt”RO(S) = RO(T) 

implies T + $ iff S b I/?‘. Then, granted large cardinals, the sentence + is either true 

on all free trees in all set-generic extensions of the universe or it fails on all such 

trees. Moreover, if $ fails on any ml-tree in any set-generic extension then it fails on 

all free trees. Here, by Cl property we mean a formula of the form ZlA c TX, where 

all quantifiers of x range over the elements of T only. 

It should be noted that it is impossible to add a predicate 6 for free trees to 

the language of (&, E, LUI, 3) and preserve the compactness result. For consider the 

following two II2 sentences for (HN~, E, 3,G): 

&=VS, TEG &ES, tET SrsxT It is c.c.c., 

$1 = for every Aronszajn tree T there is a tree S E ti such that T II S is special. 

It is immediate that $0 and $I together imply that G is empty, i.e. -4. Meanwhile, 

$0 A 4 was found consistent in [AS]-and in fact holds in our model - and $i A 4 holds 

after adding N2 Cohen reals to any model of GCH, owing to the following Lemma: 

Lemma 4.8. For every aronszajn tree T, C N, If “there is a free tree which is special- 

ized after forcing with T”. 

Note that Cohen algebras preserve Souslin trees. 

Proof. Let T be an Aronszajn tree. Define a forcing P as a set of pairs p = (sp, fp) 
where 

(1) sP is a finite tree on 01 x IX such that (a, n) <,+, (/I, m) implies p < CI . this is a 

finite piece of the tree S under construction; 

(2) fP is a finite function with domain contained in T and each fp(t) a function 

from dam(s) fl ({E} x w) to cr) where CI = h(t). . . this is a finite piece of the 

S-specializing T-name; 

(3) for every i <.+ j and t < TU the inequality fp(t)(i) # fp(u)( j) holds, if the relevant 

terms are defined... this is the specializing condition. 

The ordering is defined by q d p if dom(sp) c dom(s,) and sq n dom(s,) x dom(s,) 

=sP and &(t) c fq(t) whenever t E dom(fl,). 

Let G c P be a generic filter and in V[G] define a tree S on 01 x w as the unique 

tree extending all sP: p E G, and a function r on the tree T to be z(t) = UpEG fp(t). 
Obviously, r represents a T-name for a specializing function on S: if b c T is a 

cofinal branch then the function g: S + w, g = UIEb z(t) specializes the tree S due to 

the condition (3) in the definition of the forcing P. To complete the proof, we have 
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to verify that RO(P) = (CN, and that P lb 5’ is a free Souslin tree. This is done in the 

following two claims. 

Claim 4.9. RO(P) is isomorphic to CN, 

Proof. Obviously, P has uniform density N 1, therefore it is enough to prove that P has 

a closed unbounded collection of regular subposets [S]. Let a E 01 be a limit ordinal 

and let P, = {p E P: dom(s,,) c a x CO}. It is easy to verify that all P,,‘s arc regular 

subposets of P and that they constitute an increasing continuous chain exhausting all 

of P. proving the lemma. 0 

Claim 4.10. P II S is u fke Souslin tree. 

Proof. Assume that p IF “A = {a,: x t WI } is a family of pairwise distinct elements of 

s r i() x s 1 i, x x s 1 i,,“, for some integer n and pairwise s,-incompatible elements 

in i,, of dom(s,). To prove the Lemma, it is enough to produce a condition y < p 

and ordinals c1< /, such that q IF cjx and ci,l are compatible. 

Pick p7,ul: x E (01 such that each py is a condition stronger than p and it de- 

cides the value of the name U, to be u,, regarded as an n + I-element subset of 

dom(s,,,) rig) U dom(s,,X) 1 il U . U dom(s,,X ) r i,,. 

By a repeated use of counting arguments and a A-system lemma, thinning out the 

collection of pr,ax’s we may assume that 

( 1) dom(s,,, ) form a A-system with root r and s,,, r r x I’ is the same for all x 

(2) even the sets le~(s,,~) = {p E WI : dom(s,,X ) n {p} x w # 0} form a A system with 

root /W(Y) = { fi t wI : r n {p} x (of 0); 
(3) .f),, [ T,c~ are the same for all x, this for all /j E /W(Y); 

(4) a, form a A-system with root b c I.. 

Now let X, = dom(f,,‘ )\ U ,j E ,erCi, 7’11. Thus X, are pairwise disjoint finite subsets of 

the Aronszajn tree T, and it is possible to find countable ordinals x<B such that 

every t tx, is T-incompatible with every u E.x/~. It follows that any tree s,, with 

dom(s,) = dom(s,,I ) U dom(s,,, ), s,, 1 dom(s,,d ) x dom(s,,> ) = s,‘, and s’, 1 dom(s,,,, ) x 

dom(s,,, ) = s,,;,, together with the function ,f, = ,f;,, u ,& give a condition q = (s,. ,f,) 

in the forcing P which is stronger than both px and p/f, It is a matter of an easy 

surgery on s,‘~ and si7,, to provide such a condition q so that a,, u/i are compatible in 

.s,, r i() x sy r i / x x sy 1 i,,. Then p >q II “a, and &ii are compatible elements of A” 

as desired. II 

4.1. Strongly homogeneous Souslin trees 

In this subsection it is proved that the assertion 4 = “there is a strongly homogeneous 

Souslin tree” is &-compact, where 

Definition 4.11. Let T be an WI-tree. A family {h( sfl,s~ ): SO,S, E T are elements of 

the same level of T} is called coherent if 

(1) h(s~~.sl) is a level-preserving isomorphism of T 1 SO and T 1 .~I; h(s,s) = id; 
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(2) (commutativity) let SO,SI ,s2 be elements of the same level of T and to <so. Then 

&I > s2 )&o, SI >(fo) = h(so3 s2 Xl0 1; 

(3) (coherence) let SO, si be elements of the same level of T and to <SO. Let tl = 

&o,~I)(~o)<~I. Then N~o,~I)=~~~oJI) r T TAO; 

(4) (transitivity) if c( is a limit ordinal and to, tl are two different elements at ccth level 

of T then there are sa,.sr E T,, such that h(so,sl)(to)=ti. 

A tree is called strongly homogeneous if it has a coherent family of isomorphisms. 

The existence of strongly homogeneous Souslin trees can be proved from 0 by 

a standard argument. Also, Todorcevic’s term for a Souslin tree in one Cohen real 

extension provides in fact for a strongly homogeneous tree: 

Theorem 4.12. C 11 there is a strongly homogeneous Souslin tree. 

Proof. An elaboration on Todorcevic’s argument [16]. Let T be a family of functions 

such that 

(1) every f E T is of the form f: x --+ U, finite-to-one for some countable ordinal a; 

(2) for each c( E 01 there is f E T with CI = dam(f); 

(3) every two functions f, g E T are modulo finite equal on the intersection of their 

domains; 

(4) T is closed under finite changes of its elements. 

Such a family is built as in [ 161 and it can be understood as a special Aronszajn 

tree under the reverse inclusion order. If c E(OO is a Cohen real then [16] the tree 

T,, = {co f: f E T} ordered by reverse inclusion is a Souslin tree in V[c]. To conclude 

the proof of the theorem, we shall find a coherent family of isomorphisms of the tree 

T which is easily seen to lift to the tree Tc. Namely, let f ,g E T, dam(f) = dam(g). 

Define h(f) s)(e) = g U (e\f) f or e E T with f c e. By (3) and (4) above this is a 

well-defined function and an isomorphism of the trees T r f and T ] g. The easy proof 

that these isomorphisms form a coherent family on a tree T which lifts to the tree T, 

is left to the reader. 0 

Paul Larson proved that every strongly homogeneous Souslin tree contains a regularly 

embedded free tree. In fact, every strongly homogeneous Souslin tree can be written 

as a product of two free trees. 

Optimal Iteration Lemma 4.13. Assume there is a strongly homogeneous Souslin 

tree. Whenever A4 is a countable transitive model of ZFC iterable with respect to its 

Woodin cardinal 6 with A4 + “U is a strongly homogeneous Souslin tree” there is a 

full iteration j of A4 such that j(U) is a strongly homogeneous Souslin tree. 

Proof. Let T be a strongly homogeneous Souslin tree with a coherent family {g(to)(tl): 

to, tl E TX for some CI E WI} of isomoxphisms and let M, U, 6 be as above and M + “U is 

a strongly homogeneous Souslin tree as witnessed by a family h = {h(so)(sl ): SO,SI E lJ< 
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for some < E 001~ }“. We shall produce a full iteration ,j of M such that there is a club 

C c QI and an isomorphism rt : T [ C -j(U) 1 C which commutes with the internal 

isomorphisms of the trees: r-rg(to, tl )(u) =.jh(~t~~, xtl )(nu) whenever the relevant terms 

are defined. Then, since the trees T’j( U) are isomorphic on a club, necessarily j(U) 

is a Souslin tree, and it is strongly homogeneous as witnessed by the family j(h). This 

will finish the proof of the lemma. Again, below U, denotes the tree ,&U and not the 

ath level of Ii. Levels of trees are never indexed by CY. 

The iteration will be constructed by induction on x E ejI and we will have 0, = ($, 

and C = (0,: a E ~1). First, fix a partition {S;: { E 01) of the set of countable limit 

ordinals into disjoint stationary sets. By induction on x E (/II, we shall build the mod- 

els together with the elementary embeddings, plus an isomorphism 7-r : T 1 C -_.jU 1 C. 

plus an enumeration {(xc, /I;): < E CII~ } of all pairs (X p) with .X E Q,,. The induction 

hypotheses at x E ol are: 

( 1) the function i 1 T 1 {d:.: y E cc} has been defined. it is an isomorphism of T 1 {I): 

;’ E Y} and ZJ, [ { 8,: 7 E a} and it commutes with the internal isomorphisms of the 

trees, i.e. ng(t,j, tl )(u) =j&(ntc~, ntl )( nu) whenever the relevant terms are defined; 

(2) the initial segment {(xc, PC): < E HY} has been constructed and every pair i\-, /j) 

with p t x and x E Q,I; 

(3) if 2: E CA belongs to some - unique - set S; then j/;.,:.(.~_ ) E G; . 

As before, (1) is the crucial condition ensuring that the tree T is copied to ,j( U) 

properly. (2,3) are just bookkeping requirements for making the resulting iteration full. 

At limit steps, we just take direct limits and unions of the isomorphisms and enumer- 

ations constructed so far. At successor steps, given M,, we must produce a M,-generic 

filter G, c Qo, such that setting (My+~, (/,,I, a,_,) to be the generic ultrapower of 

(MY. U,, 6,) by G,, the isomorphism 7-t can be extended to fI,th level of the trees T 

and U. 1 + l preserving the induction hypothesis (1). 

l Cuse I. x is a successor ordinal, CI = fi + I. Choose an arbitrary MY-generic filter 

G, c Qp,. We shall show how the isomorphism rr can be extended to the 0,th level of 

the trees 7’ and U. ,c~ preserving the induction hypothesis (1). 

Let t E To, be arbitrary. The Op-whit of t is the set {U E T,I~: 3t0, tI E T,,, u = 

g(to, ti )(t)}. By the commutativity property of the isomorphisms y, the tI,th level of 

the tree T partitions into countably many disjoint y-orbits 01,: k E CII. Also. for every 

u E T,I,, and integer k E Q there is a unique t E 0~ with t d ,- II. The same analysis ap- 

plies to the tree U,. 1 and isomorphisms h. The (I,th level of the tree U, 1 partitions 

into countably many disjoint y-orbits Nk: k E to. 

Now it is easy to see that there is a unique way to extend the function in to To, 

so that ~“01, = Nk and 7-t is order-preserving. Such an extended function will satisfy 

the induction hypothesis (1). The induction hypothesis (2) is easily managed and the 

induction hypothesis (3) does not say anything about successor ordinals r. 

l Cuse 2. ‘X is a limit ordinal. In this case, Q,th level of the tree U,+I is already pre- 

determined by rc 1 T 1 {fl;.: 7 E x} and the necessity of extending 71. Namely, we must 

have (U,_ 1 )(I, = {u: there is t E Toz such that II = lJ{ nr: t < T r}}. The challenge is to 

find an M:,-generic filter G, c Qo, such that (ii,_ I )r,,/G-/ is of the above described form. 
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Then necessarily the only possible orderpreserving extension of rr to To, will satisfy the 

induction hypothesis (1). We shall use the fact that it is enough to know one element 

of (U,,, )(I, in order to determine the whole level - by transitivity, Definition 4.2(4). 

Work in A4,. Fix ti, an arbitrary Q,-name for an element of (U,+i )o,, which will 

be identified with the cofinal - and therefore A4,-generic - branch of the tree U, it 

determines. Let ba E QX be defined as jpJx<) if CI belongs to some - unique - set SC 

with t E OX, otherwise let bo = 1 in Q,. Let B be the complete subalgebra of RO(QP,) 

generated by the name z.i. By some Boolean algebra theory, there must be bl d bo and 

s E U, so that prBb, = [[SE ti]]~ = b2 and B 1 b2 is isomorphic to RO(U, rs) by an 

isomorphism generated by the name ti. Without loss of generality lev(s) = 19;~ for some 

y E c(, since the set (8:: y E CX} is cofinal in 8,. 

Now pick an element t E To2 such that t <T C’S. Then c = U {Z(Y): t <T T-} is a 

cofinal A&-generic branch through U, containing s. Let H c B be the &-generic filter 

determined by the equation c = ti and let G, c RO(Q,) be any M7 generic filter with 

H c G,, b, E G,. We claim that G, works. 

Let (MX+i, U,,, ,6,+1) be the generic ultrapower of (A4,, U,, 6,) using the filter G,. 

Define 7~ r T[I~ by ng(rg, YI )(t) =j~,~+~h(so,s~ )(c) where ro,ri E To, for some y E CI and 

t <T ~0, Z(Q) = so, 7c(rl) = SI and t is the element of r,lZ used to generate c in the pre- 

vious paragraph. By the induction hypothesis (1) and coherence - Definition 4.2(4)-n is 

well-defined, and by transitivity applied to both T and U side rc 1 To2 : TCI~ --f (U,+l )Q, is 
a bijection. It is now readily checked that x commutes with the internal isomorphisms 

g,h and the induction hypothesis continues to hold at CI + 1. The hypothesis (2) is 

easily managed by suitably prolonging the enumeration, and the induction hypothesis 

(3) is maintained by the choice of bo E G,. 0 

Conclusion 4.14. The sentence “there is a strongly homogeneous Souslin tree” is Ill- 

compact. 

Again, the proof of Lemma 4.13 shows that the C 1 theory of strongly homogeneous 

Souslin trees is complete in the same sense as explained in the previous Subsection. 

The first order theory of the model obtained in this Subsection has been independently 

studied by Paul Larson. 

4.2. Other types of Souslin trees 

One can think of a great number of Ci constraints on Souslin trees. With each of 

them, the first two iteration Lemmas can be proved for C$ = “there is a Souslin tree 

with the given constraint” owing to Lemma 4.1. However, the absoluteness properties 

of the resulting models as well as the status of &-compactness of such sentences 4 

are unknown. Example: 

Definition 4.15. A Souslin tree T is self-specializing if T II- “?\i) is special, where 6 

is the generic branch”. 
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A selfspecializing tree can be found under 0 or after adding Nl Cohen reals. Such 

a tree is obviously neither free nor strongly homogeneous and no such a tree exists in 

the models from the previous two subsections. 

5. The hounding number 

In this section it will be proved that the sentence b = NI is TIl-compact even in 

the stronger sense with a predicate for unbounded sequences added to the language 

of (H+, E. (0~,3). Everywhere below, by an unbounded sequence we mean a module 

finite increasing tol-sequence of increasing functions in “‘(II without an upper bound in 

the eventual domination ordering of “‘(IJ. 

5.0. Combinatorics qf b 

A subgenericity theorem similar to the one obtained in the dominating number section 

can be proved here too, in this case essentially saying that adding a Cohen real is an 

optimal way of adding an unbounded real. It is just a restatement of a familiar fact 

from recursion theory and is of limited use in what follows. 

We abuse the notation a little writing Q: = <“oj ordered by reverse extension and 

for a function ,f E ‘9w, C(f) = {II E C: ~1 is on its domain pointwise <.f’} ordered by 

reverse extension as well. 

Lemma 5.1. Let M be a transitiae model ?f ZFC and ,f E “‘(I) be un increasing jtmc- 

tion which is not bounded by any .function in M. Whenever D EM, D c a3 is u dense 

.set. then D n @( f) c C(f) is dense. 

Proof. Fix a dense subset DE M of c and a condition p E E(,f ). We shall produce 

q d p, q E D n c(,f ), proving the Lemma. 

Work in the model M. By induction on n E w build a sequence ~(1, pI . p,,, of 

conditions in @ so that 

(1) PO= P,dom(p,+l)>dom(p,,); 

(2) PutI is any element of the set D below the condition r = p-(0.0.. .O) with as 

many zeros as necessary to get dam(r) = m,,. 

Let X c w be the set {dom( p, ): IZ l CD} and let g : X + co be given by g(nz,, ) = 

max(rng( p,, + I)). Then X, g EM and since the function ,f is increasing and unbounded 

over the model M, there must be an integer n such that f(dom(p,,)) > g(dom( p,,)). 

Then obviously q = pII+ < p is the desired condition in D n C(f). 17 

Corollary 5.2 (Subgenericity). Let P be a,forcimg and f a P-name such that 

(1) P IF “f E “‘0 is an increasing unbounded function”; 

(2) .for ever>’ jinite sequence q of integers the boolean value I\i is bounded on its 

domain bzs ,f I( p is nonzero. 

Sh:610



250 S. She/ah, J ZapletallAnnals of Pure and Applied Logic 98 (1999) 217-259 

Then there is a P-name Q and a complete embedding @ < RO(P * e) such that 
P * Q Ik “f pointwise dominates &, the C-generic jimction”. 

Proof. Set Q = C(f) and use the previous lemma. 0 

It follows that a collection A c “‘LO of increasing functions is unbounded just in 

case the set X = {f E “‘0: some g E A eventually dominates the function f} is non- 

meager. For if A is bounded by some h E “‘01 then XC (f E “‘co: h eventually dom- 

inates f} and the latter set is meager; on the other hand, if A is unbounded then 

Lemma 5.1 provides sufficiently strong Cohen reals in the set X to prove its non- 

meagerness. A posteriori, a forcing preserving nonmeager sets preserves unbounded 

sequences as well. 

A more important feature of the bounding number is that every two unbounded 

sequences can be made in some sense isomorphic. Recall the quasiordering <L, defined 

in Subsection 1.2. 

Definition 5.3. For b, c E HN? set b d 1, c if in every forcing extension of the universe 

b is an unbounded sequence implies c is an unbounded sequence. 

While under suitable assumptions (for example the Continuum Hypothesis) the be- 

havior of this quasiorder is very complicated, in the model for b = N1 we will eventually 

build there will be exactly two classes of <h-equivalence. The key point is the intro- 

duction of the following Cl (HN?, E,uI,~) concept to ensure ,<,,-equivalence of two 

unbounded sequences. 

Definition 5.4. Unbounded sequences b, c are locked if there is an infinite set x c w 

such that for every (x E cc)] there is /3 E 01 with b(P) r x eventually dominating c(a) 1 x; 

and vice versa, for every M E 01 there is /? E WI with c(b) 1 x eventually dominating 

b(a) Ix. 

It is immediate that locked sequences are <I,-equivalent. Note that any bound on an 

infinite set xc w of a collection of increasing functions in “‘0 easily yields a bound 

of that collection on the whole w. 

Now it is possible to lock unbounded sequences using one of the standard tree 

forcings of [3]: 

Definition 5.5. The Miller forcing KvU is the set of all nonempty trees T C <“o con- 

sisting of increasing sequences for which 

(1) for every t E T there is a splitnode s of T which extends t; 

(2) if a sequence s is a splitnode of T then s has in fact infinitely many immediate 

successors in T. 
&A is ordered by inclusion. 

The Miller forcing is proper, d-friendly - see Definition 6.6 - and as such pre- 

serves nonmeager sets of reals and unbounded sequences of functions by the argument 
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following Corollary 5.2. If G c YuII is a generic filter then f = U U n G E “‘cc) is an 

increasing function called a Miller real. 

Theorem 5.6. Ml It “euerv two unbounded sequences ,from the ground model LWC 

locked’. 

Corollary 5.7. It is consistent with ZFC thut there are exurtly twv classes of 

6 I,-equivulence. 

Proof. Start with a model of ZFC + GCH and iterate Miller forcing Q? times with 

countable support. The resulting poset has N2-c.c.. it is proper and .K-friendly [3], 

therefore it does not collapse unbounded sequences and forces b = Nr In the resulting 

model, there are exactly two classes of <r,-equivalence: the objects which are not 

unbounded sequences and the unbounded sequences, which are pairwise locked by the 

above theorem and a chain condition argument. I 

It also follows from the Theorem that whenever there are two unbounded sequences. 

one of length 01 and the other of length 02, Miller forcing necessarily collapses N? 

to N,. 

Proof of Theorem 5.6. Let .? be an N-name for the range of the Miller real. We 

shall show that every two unbounded sequences b, c’ : WI + “‘Q in the ground model arc 

forced to be locked by li-. To this end, given T E m/a and Y E cur a tree S t Ru!, S c I‘ and 

an ordinal b E (01 will be produced such that S It “c( 2) 1 k is eventually dominated by 

h(p) r i”. The theorem then follows by the obvious density and symmetricity arguments. 

So fix 6, C, T and x as above. Let /I E (11 be an ordinal such that b@) is not eventually 

dominated by any function recursive in c(r) and T. A tree S E F&4. S c T with the same 

trunk t as T will be found such that 

s ES. n t dom(s)\dom(t) implies c(x)(n) <b(P)(n). (“) 

This will complete the proof. Let S be defined by s E S iff s E T and if s’ is the 

least splitnode of T above or equal to s then for every n E dom(s’)\dom(t ) it is the 

case that c(x)(n) < b(P)(n). 

Obviously t E S c T and S has property (*). moreover S is closed under mitial 

segment and if s E S then the least splitnode of T above or equal to .F belongs 

to S as well. We must show that SE tU, and this will follow from the fact that if 

s E S is a splitnode of the tree T then s has infinitely many immediate successors in 

S. And indeed, let J: c w be the infinite set of all integers n E 0) with s-(n) t T and 

let g : y 4 w be a function defined by s(n) = ~(a)(. 7’ m - 1) ), where s’ is the least ( 

splitnode of T above or equal to s- (II) and m = lth(s’). Then by the choice of the 

ordinal /j t tr11 the set z={n~y: g(rl)<b(P)(n)}~ (1) is infinite and every sequence 

.T-(M): n E z belongs to the tree S. ‘1 
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5.1. A model for b = N1 

The PI,,, variant for b = N1 will be built using the following notion of a witness: 

b:co, + ‘“CO is a good unbounded sequence if it is unbounded and for every sequence 

vlE ““CL) the set {U E ol: b(cc) pointwise dominates y1 on its domain} c 01 is stationary. 

Note that if j is a full iteration of a model M, A4 + “b is a good unbounded sequence” 

and j(b) is unbounded then in fact j(b) is a good unbounded sequence. Also, whenever 

6 is a Woodin cardinal of M and j, is the Q <s-term for the canonical ultrapower 

embedding of M then j,b(o$‘) is a name for an unbounded function. 

Optimal Iteration Lemma 5.8. Assume b = N 1. Whenever M is a countable transitive 

model of ZFC iterable with respect to its Woodin cardinal 6 and M b “b is a good 

unbounded sequence” there is a full iteration j of M based on 6 such that j(b) is an 

unbounded sequence. 

Proof. Drawing on the asumption, choose an unbounded sequence c of length WI and 

fix an arbitrary iterable model M with M k “b is an unbounded sequence and 6 is a 

Woodin cardinal”. Two full iterations ja, jl of the model M will be constructed simulta- 

neously so that the function IZ H max{ job(No,Z)(n), jl b(Bl.,)(n)} eventually dominates 

the function C(U), this for every a E 01. Here 190,~ is 01 in the sense of the clth model 

on the iteration jo; similarly for ei,@. 

It follows immediately that one of the sequences jo(b), j,(b) must be unbounded, 

since if both were bounded-say by functions fo, f, respectively - then the sequence 

c would be bounded as well by the function n++ max{_f”(n), f,(n)}, contrary to the 

choice of c. 

Now the iterations jo, ji can be constructed easily using standard bookkeeping argu- 

ments and the following claim. 

Claim 5.9. Let Mo,Ml be countable transitive models of ZFC und let 

(1) MO k P is a pose& p E P, and p Ii-pi E “‘CO is an increasing function unbounded 

over MO. 

(2) MI k Q is a pose& q E Q, and q kQ j E “o is and increasing junction unbounded 

over MI. 

Suppose f E “‘CO is an arbitrary function. Then there are MO (MI, respectively) 

generic filters p E GcP, q EH c Q such that the junction n ++max{(i_lG)(n), 

(y/H)(n)} eventually dominates f. 

Proof. Without loss of generality assume that f is an increasing function. Let Ck: k E w 

and Dk: k E o enumerate all open dense subsets of P in the model MO and of Q in Ml, 

respectively. By induction on k E w simultaneously build sequences p = p. 2 p1 2 . . 
apl,a ... of conditions in P, q = go > q1 > 2 qk 2 . of conditions in Q and in- 

tegers 0 = no = MO, mk < ?& < mk+l so that 

(1) pk+l ECk, qklr E& for all kEo; 
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(2) pk _+ 1 decides .U r tnk, qk+l decides ?; [ nl, ; 

(3) for k >O, for infinitely many integers i E co there is a condition I; <PA such that 

Y, lb/J “.$ mb ) = i”; similarly, for infinitely many integers i E co there is a condition 

S, <qh such that si I~Q j(nk) = i; 

(4) for li>O. ph- I k.+(m~)>f(n~) and qkhl I~j(n~)>,f(m~_l). 

This is easily arranged - (3) is made possible by the fact that ,?, k are terms for 

unbounded functions. Let G c P. H c Q be the filters generated by the p,‘s or yI’s 

respectively. These filters have the desired genericity properties by (1) above and the 

function n-max{(x/G)(n),(j’/H)(n)} pointwise dominates ,f from nl on. This can 

be argued from the induction hypothesis (4) and the fact that .<iG. ?j/H and ,f are all 

increasing functions. 3 

Strategic Iteration Lemma 5.10. Assume the Continuum Hypothesis. The goodplr~~~er 

has a ~l?nnin(g strategy in the game 94, ~ K, 

Proof. Let i? = (b,Ni,6;: i E co) be a sequence of models with a good unbounded 

sequence, let ~0 E Q,- and let ,f E (‘iw be an arbitrary function. We shall show that 

there is an G-generic filter G c Qe!q with J:(, t G such that the function job( wf) is not 

eventually dominated by the function ,f’, where Jo is the QP’,,,-generic ultrapower of 

the model NO using the filter G. Then the winning strategy of the good player consists 

essentially only of a suitable bookkeeping using the Continuum Hypothesis. 

Now the proof of the existence of such a filter G is in fact very easy. We indicate 

a slightly inefficient though conceptual proof. Just use the subgenericity Corollary 5.2 

and the proof of Lemma 2.8 with the following changes: 

(1) d is replaced with b, the Hechler forcing is replaced with Cohen forcing and the 

real e E “‘CC) will be taken sufficiently C-generic: 

(2) step (5) in the proof of Lemma 2.8 is replaced by: e is not eventually dominated 

by the function ,f’; 
(3) the poset R, is now the set of all pairs (y,~) with 4‘ E Q. q E (“‘o and for cv- 

et-y .Y E )’ the sequence y is everywhere on its domain dominated by the function 

b(x n (0, ). rl 

Conclusion 5.11. The sentence b=Nl is rI?-compact, even ivith the predicate B fbr 
unbounded sequences added to the language qf (HN?, t. 01, 3). 

Proof. II,-compactness follows from Lemmas 5.8 and 5.10. To show that II, state- 

ments of (HN?, E ,3,%3) reflect to the model L(R)‘” No . proceed as in Corollary 1.17. 

Suppose in V, a II2-sentence $-equal to V,X 3y x(.x, y) for some Co formula x-holds in 

(HN:, t, 3, ‘23) together with b = NI and let (5 < K be a Woodin and a measurable cardinal 

respectively. For contradiction, suppose that p E PI, N, forces -$ to hold; strengthening 

the condition p if necessary we may assume that for some .X E M,,, p II Vy~x(k,,(.r), ~3) 

where It/, is the term for the canonical iteration of MJ, as defined in 1.14. By Corollary 

1.8, there is a countable transitive model A4 elementarily embeddable into F\ such that 
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p EM and M and all of its generic extensions by posets of size 6 cM are iterable. 

So M /= “b = N1 and (HN>, E, 3, !B) k II/ and some cardinal 3 is Woodin”. The optimal 

iteration Lemma applied in M yields there a full iteration j of the model Mp such that 

j(b,) is a good unbounded sequence. Let N be an M-generic extension of the model 

MP and let q = (N,j(b,), &j(H,l U {(j, P)}). 

First, q E Pb = N, is a condition strengthening p. To see that note that the model N 

is iterable, the iteration j is full in N, since the forcing M preserves stationary sets, 

and j(b,) is a good unbounded sequence in N since M preserves such sequences. 

Second, q IF “23 in the sense of the structure &(HN> >” is just 23 n &(HN~ )I”‘. Observe 

that N k “all sequences in (HN2)M which there are unbounded are locked with j(b,,)“, 

by Theorem 5.6 applied in the model M. Therefore q forces even the following stronger 

statement, by the elementarity of the embedding I;, : “whenever &(HN~)“ b ‘c is an 

unbounded sequence’ then c and k,j(b,,) are locked; since &.j(bp) is unbounded, the 

sequence c must be unbounded as well”. 

Third, q IF “EIyx(&,j(x) = I;,(x), y)“, giving the final contradiction with our choice of 

p and X. Since $ holds in the model M, there must be some y E (H&’ such that 

(HN?, E, 3, B)” k x( j(x), y>. Then q If (&, E, 3, B)“” b x(&j(x),$(y)) by the previ- 

ous paragraph and absoluteness of Ca formulas. 0 

6. Uniformity of the meager ideal 

The sentence “there is a nonmeager set of reals of size N 1 ” does not seem to be 

compact, however, a similar a bit stronger assertion is. 

Definition 6.1. A sequence (r,: a E 01) of real numbers is called weakly Lusin if for 

every meager X c R! the set {a E or: Y, EX} c WI is nonstationary. 

Thus the existence of a weakly Lusin sequence is a statement intermediate between 

a nonmeager set of size Nr and a Lusin set. It is equivalent to neither of them, as will 

be shown below. 

6.0. A model for a weakly Lusin sequence 

We will prove the iteration Lemmas necessary to conclude that the sentence $ = 

“there is a weak Lusin sequence” is &-compact. Note that if (M, k, 6) is a triple such 

that M + “k is a weak Lusin sequence and 6 is a Woodin cardinal” then in M, Q cc5 IF 

“jQk(wy) is a Cohen real over M”, and so it generates a natural Cohen subalgebra of 

Q<J. The following abstract copying lemma will be relevant: 

Lemma 6.2. Let N be a countable transitive model of ZFC, N + “P is a partially 

ordered set and P If i is a Cohen real”. Suppose that p E P and s E “0 is a Cohen 

real over N. Then there is an N-generic jilter G c P so that p E G and i/G = s modulo 

jinite. 
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Proof. In the model N, let P = @ * Q where @ is the Cohen subalgebra o.f E! generated 

by the term I:. It follows from the assumptions and some boolean algebra theory in N 

that there are 4 d p in RO(P) and a finite sequence q such that prs(y) = [[q c /“]I0 

Let t t “‘co be the function defined by t/ c t and s(n) = t(n) for n #dom( v). Since 

the real s is Cohen over N and s = t modulo finite, even t is Cohen and the filter 

H c @ generated by the equation I: = t is N-generic. Finally, choose an N-generic filter 

G c P with H c G and 4 E G. This is possible since pi! (q) E H. The filter G c P is as 

desired. ‘-1 

Optimal Iteration Lemma 6.3. Assumcj tiurt there is a ,lxeukl>, Lusin sequence. When- 

crer M is a countaIde transitioe model iterahle ,txith respect to its Woodin cndinul 

ci such thut M b= “k is a weakly. Lusiv sequence”. then there is ci .fiill iterution 1 of 

M such that j(k ) is a u,eaklj, Lusin wqucnce. 

Proof. Fix a Lusin sequence J and M, k, 2 as in the Lemma. We shall produce a full 

iteration ,j of A4 such that there is a club C c ml with b’x E C ,jk(r) =J( x) modulo 

finite. Then ,jk really is a Lusin sequence and the Lemma is proved. 

The desired iteration ,j will be constructed by induction on x t cui. Let S_: < E (‘jI 

be a partition of (01 into pairwisc disjoint stationary sets. By induction on Y E (‘)I 

models M, together with the elementary embeddings will be built plus an enumeration 

{ (.u,, /(J: < t (o)} of all pairs (x, p) with .V E Q/t. The induction hypotheses at tl are 

( 1) if 1’ < r and J(O,.) is a Cohen real over A+‘:, then k: , I (I&) = J(k) modulo finite: 

(2) if ;‘<a then {(x~,~J: CEO;} enumerates all pairs (x. p) with /i < ;‘. .Y t 3,;: 

(3) if ;’ < x and 0;. E SC for some ;’ E 0,. then j,;_.:.(s_ ) E G, 
As before, the hypothesis (1) makes sure that the sequence J gets copied onto jL- 

properly and (2,3) are just bookkeeping tools for making the resulting iteration full. 

At limit ordinals just direct limits arc taken and the new enumeration is the union of‘ 

all old ones. The successor step is handled easily using the previous Lemma applied 

for ,li =M,. P = Qy. I:=jgk,(O,), s =J( 0,) and h=j,i y(.r_), the last two in the cast 

that .X is Cohen over M, and 0, E S, for some (unique) 5 t 0,. 

To prove that the resulting iteration is as desired, note that it is full and that the 

set D = {x E wi: J(f),) is a Cohen real over M,} contains a closed unbounded set. Fol 

assume otherwise. Then the complement S of D is stationary and for every limit ordinal 

: E 5’ there is a nowhere dense tree in some M ,;. /j E r such that the real J(cf,j’ ) is 

a branch of this tree ~ this is because a direct limit is taken at step X. By a simple 

Fodor-style argument there is a nowhere dense tree and a stationary set T c S such 

that every J( 0,): x E T is a branch of this tree. This contradicts the assutnption of .I 

being a weakly Lusin sequence. 

Strategic Iteration Lemma 6.4. Assume the Continuum Hypothesis. The ~JOC~ plu~w 

hc LI \~~innin(g strategy in the game 9+ connected \llith t~~eakl~~ Lusin sequrnccs. 

Proof. Given a sequence G = (k. N,, 6,: i E w) of models with a weakly Lusin sequence 

/;. a condition ~0 t Q,: and nowhere dense trees T,,: n E w, we shall show that there 
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is an N-generic filter G c Q,c with ya E G such that the real j&o?) is not a branch 

through any of the trees T,, where j, is the generic ultrapower embedding of the 

model NO using the filter G n Q’z,u. With this fact in hand, a winning strategy for the 

good player consists of just a suitable bookkeping using the Continuum Hypothesis. 

Again, we provide maybe a little too conceptual proof of the existence of the filter G, 

using the ideas from Lemma 2.8. No subgenericity theorems are needed this time. Let 

i E o and work in Ni. Let Qi = QJ, and ji to be the Q; term for the generic ultrapower 

embedding of the model Ni. So the term jJr(~0~~) is a term for a Cohen real, and it 

gives a complete embedding of @ into Q. The key point is that with this embedding, 

the computation of the projection pr@(y) gives the same value in @ in every model 

N; with y E Qi, namely &{I? E <“‘OX the system {.x E y: v c k(x n ml )} is stationary}. 

First, fix a suitably generic filter H c @. The requirements are 

(1) muff; 
(2) H meets all the maximal antichains that happen to belong to U; Ni; 

(3) the Cohen real c E “‘w given by the filter H does not constitute a branch through 

any of the nowhere dense trees T,,. 

This is easily done. Now let X,,: n E w be an enumeration of all maximal antichains 

of Q,c in UNi and by induction on n E w build a decreasing sequence y,*: n E w of 

conditions in Qp,- so that 

(1) muff; 

(2) Yn+I has an element of X,, above it. 

This can be done since the filter H is C-generic over every model Ni. In the end, let 

G be the filter on Q,Q generated by the conditions y,,: n E w. This filter is as desired. 

Note that c is the uniform value of j&o;“) as evaluated according to this filter. 0 

Conclusion 6.5. The sentence “there is a weakly Lusin sequence qf reals” is 

III-compact. 

It is unclear whether it is possible to add a predicate for witnesses in this case. 

6.1. Combinatorics of weakly Lusin sequences 

In this subsection it is proved that the existence of a Lusin set, weakly Lusin se- 

quence and a nonmeager set of size NI are nonequivalent assertions. 

The following regularity property of forcings will be handy: 

Definition 6.6 (Bartoszyriski and Judah [3, 6.3.151). A forcing P is called &-friendly 

if for every large enough regular cardinal 2, every condition p E P, every countable el- 

ementary submodel A4 of H;. with p, P EM and every function h E “‘01 Cohen-generic 

over M there is a condition q d p such that q is master for M and q It “i is Cohen- 

generic over M[ G]“. 

It is not difficult to prove that &-friendly forcings preserve nonmeager sets. More- 

over &‘-friendliness is preserved under countable support iterations [3, Section 6.3.C]. 
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The following fact, pointed out to us by Tomek Bartoszynski, replaces our original 

more complicated argument. 

Lemma 6.7. (1) The Miller forcing mill - see Definition 5.5 - is _ M-jriendly. 

(2) m/o destroys all weakly Lusin sequences ,from the ground model. 

Corollary 6.8. IT is consistent with ZFC that there is a nonmeuger set qfsize N, hut 

no tveukly Lusin sequences. 

Proof. Iterate Miller forcing over a model of GCH w? times. ‘? 

Proof of Lemma. Suppose M is a countable transitive model of a rich fragment of 

ZFC, T E FUI n M and f E “‘OJ is a Cohen real over M. We shall produce M-master 

conditions SO, Sr c T in I$4 such that 

(1) & II-j’ is a Cohen real over M; 

(2) Sr 1b.f is eventually dominated by the Miller real. 

This will finish the proof: (1) shows that RJI is J-friendly and (2) by a standard 

argument implies that for any weakly Lusin sequence (Y,: x E ~1) of elements of “)(I) the 

set {z E QI: rr belongs to the meager set of all functions in “‘w eventually dominated 

by the Miller real} c WI is M-forced to be stationary. 

By a mutual genericity argument there is an M-generic filter G c Coll(tn. (2’)” ) 

such that the function f is still Cohen generic over M[G]. Work in M[G]. Let vk: k E (II 

enumerate the Cohen forcing <“‘Q, let dk: k E o enumerate all the F&4 n M-names for 

dense subsets of the Cohen forcing in M and let Dk: k E CO enumerate the open dense 

subsets of F+J nM in M. Build a fusion sequence T = To 3 TI 3 Tz 3 of trees in 

Fti n M so that if s is a kth level splitnode of Tk and {i,,: n E OI} is an enumeration 

of the set of all integers i with s-(i) E T, then for every n E o the sequence S- (ii,) 

belongs to T,,+ 1, Tk+, r s-‘ (i,,) E Dh and there is some extension ?l of q,! in the Cohen 

forcing <“‘CII such that Tk+, If rj E 6,. This is readily done. Let S = U, T, E m/o n M[G]. 

The tree S is an M-master condition in RYII and since ,f E “‘0 is Cohen generic over 

the model M[G], the following two subtrees So,Sr of S are still in m/a: 

( 1) SO = {s t S : whenever s is a proper extension of a kth level splitnode t E Th then 

r~_, ~.slI~EO~ for some qcf}; 

(2) Sr = {s E S: Vn E dom(s\the trunk of T) f(n) <.Y(F~)}. 

It is easy to see that the trees &,S, are as desired. CI 

Question 6.9 Does the saturation of the nonstationary ideal plus the existence 

c?f‘ u nonmeager set of reals qf size Ni impl?. the existence sf’ a vt,eaklJ’ Lusin 

sequence? 

Next it will be proved that the existence of a weakly Lusin sequence does not 

imply that of a Lusin set. A classical forcing argument can be tailored to fit this need; 

instead, we shall show that there are no Lusin sets in the model built in the previous 
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Subsection. This follows from Theorem 1.15(2) and a simple density argument using 

the following fact: 

Lemma 6.10. (AD L(w)) Let M be a countable transitive iterable model, M + “K is a 

weakly Lusin sequence and X is a Lusin set”. Then there is a countable transitive 

iterable model N and an iteration j E N such that N /= “j is a fill iteration of M, 
j(K) is a weakly Lusin sequence and j(X) is not a Lusin set”. 

Proof. Fix A4, K and X and for notational reasons assume that X is really an injective 

function from cry to “‘0 enumerating that Lusin set. Working in the model M, if 6 

is a Woodin cardinal, Q <(s is the nonstationary tower and j, is the Q <(j-name for 

the canonical embedding of M then both j, K(o$' ) and j&7(w‘y’) are Q <6 terms for 

Cohen reals. 

Using the determinacy assumption, choose a countable transitive model No such that 

M E NO is countable there and NO and all of its generic extensions by forcings of size 

N’y are iterable. Work in NO. Force two wr-sequences (c,i: p E WI), (dp: /I E 01) of 

Cohen reals - elements of “‘w - and a function e E ‘“w eventually dominating every 

dp: b’ E WI with finite conditions. 

Set N = Na[(cp: /I E or), (d/l: fi E wl),e] In the model N. the reals (cl{: /3 E or) con- 

stitute a weakly Lusin sequence, indeed a Lusin set, because their sequence is Cohen 

generic over the model No[(dp: p E WI), e]. In the model No[(c,~: /l E WI), (dp: p E WI)] 
build a full iteration j of M so that 

(1) if c( E WI is limit then whenever made possible by the model M, we have jK( 0,) = 

CO, modulo finite; 

(2) if CI E co] is successor then jX(6,) is equal to one of the reals dp: fi E WI modulo 

finite. 

By the arguments from the previous subsection and the fact that (c/j: p E or), (dtj: 
/I E 01) are mutually generic sequences of Cohen reals over NO, (2) is always possible 

to fulfill and the set {/3 E or: jK(p) = c/j modulo finite} c WI will contain a club. 

Now N, j are as desired. In the model N, the iteration j is full since N is a C.C.C. 

extension of No[(clj: p E or), (d/i: p E ol)] in which j was constructed to be full; the 

sequence jK is on a club modulo finite equal to a weakly Lusin sequence (cp: p E 01) 

and so is weakly Lusin itself; and the set { jX(Q,) : c( E ~1 successor} is an uncountable 

subset of rng(jX) contained in the meager set of all reals eventually dominated by 

e E “w, consequently mg( jX) is not a Lusin set. Cl 

6.2. The null ideal 

The methods of this paper can be adapted to give a parallel result about the null 

ideal. 

Definition 6.11. A sequence (r,: CI E or) of real numbers is called a weakly Sierpinski 

sequence if for every null set S, the set {E E w: rr E S} is nonstationary. 
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Theorem 6.12. The sentence “there is a ~~~eakly Sierpiriski sequence” is II,-compact. 

By an argument parallel to 6.7(2) it can be proved that existence of a nonnul set of 

size NI and of a weakly Sierpiliski sequence are nonequivalent statements. 
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