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Abstract 

We construct two universes V,, 1’; satisfying the following GCH below N,, 2NW = N,+z and 

the topological density of the space Nd2 with No box product topology &N,(Nw) is k-?,+l in v 

and N,+2 in li2. Further related results are discussed as well. 0 1998 Elsevier Science B.V. All 
rights reserved. 
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W.W. Comfort asked us (see history below) the following question: Assume X is a 

strong limit singular, K > cf(X). Is dcK(X) = 2’? Is it always > Xf when 2’ > X+? 

cJiK(X) denotes the density of the topological space ‘2 with topology generated by 

the following family of clopen sets: 

{[f] / f E “2 for some u C X, ]a/ < K}, 

where [f] = (9 E ‘2 1 g 2 f}, i.e., 

(Ilch.(X) = min { ]F] 1 F C ‘2 and 

if n C X ]a] < K and ~1 E “2 then there is .f’ E F, CJ 2 f}, 

The aim of this paper will be to show that under SCH &N,(X) may be X+ even 

if 2’ > X+. Surprisingly, it turned out that it is easier to get &N,(X) = X+ than 

&N,(X) = 2’ for a strong limit X of cofinality No with 2’ > X+. We refer to the ZFC 

results using the cardinal arithmetic of Shelah [ 16, Section 51. 
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d(2No) = No by the classical Hewitt-Marczewski-Pondiczery theorem [8,10,11]. This 

has been generalized by Engelking and Karlowicz [5] and by Comfort and Negre- 

pontis [2,3] to show, for example, that &&(2”, a) = o if and only if cr = CI<~ 

[2, Theorem 3.11. Cater et al. [l] show that every nondegenerate space X satisfies 

cf(d,,(X,X)) > cf(K) when IC < X+, and they note (in our notation) that “d<,(X) 

is usually (if not always) equal to the well-known upper bound (logX)<““. It is 

known (cf. [1,4]) that SCH + &N,(X) = (logX)N”, but it is not known whether 

d<N, (A) = (log A) NO is a theorem of ZFC. 

The point in those theorems is the upper bound, as, of course, &,(,LL, 19) > X if p > 

2X undt9 > 2 [why? because if F = {fi: i < x} exemplify d<,(p, 19) < X, the number 

of possible sequences (Min{ 1, f%(c)}: i < x) (where < < p) is < 2x, so for some < # < 

they are equal and we get contradiction by g, g(c) = 0, g(t) = 1, Domg = {<,[}I. 

Also trivial is: for K limit, &,(A, 0) = K + supocn d<o(X,8), so we only use IC. 

regular; d<,(X, 0) > f1° for fl < n. 

Also if cf(X) < K, X strong limit then d<&(X) > X. The general case (say 2<@ < X < 

2@: cf(p) < 0) is similar; we ignore it in order to make the discussion simpler. 

So the main problem is: 

Problem. Assume X is strong limit singular, X > K. > cf( X), what is d<,(X)? Is it 

always 2 x? Is it always > X+ when 2’ > Xf? 

In [13] this question was raised (later and independently) for model theoretic reasons. 

We thank Comfort for asking us about it in the Fall of 1990. 

The paper is organized as follows. Section 1 is less involved and provides a model 

with a strong limit X, cf(X) = No, 2’ > X+ and d<~] (X) = Xf. The main disadvantage 

is that X is rather large and it is unclear how to move everything down to say N,. But 

as a bonus this construction gives a normal ultrafilter over X generated by Xf sets and 

2’ > Xf. Originally such models were produced by T. Carlson and H. Woodin (both 

unpublished). In Section 2 it is fixed at the cost of using more involved techniques. Also 

initial assumptions reduced from huge to hypermeasurable. 

Both sections can be read independently. Most of the construction in Section 1 is due 

to the second author. Only the final argument using a huge cardinal is of the first author. 

The construction in Section 2 is due to the first author. 

1. Density of box products from huge cardinal 

In this section, we prove the following: 

Theorem 1.1. Suppose that X is a huge cardinal. Then there exists a generic extension 

satisfying the following: 

(a) A is a strong limit of cojinality w. 

(b) 2’ > A+. 

(c) for every p < X d,,(X) = A+. 
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Let us recall the definition of the Prikry forcing with a normal ultrafilter U over a 

measurable cardinal K.. The set of conditions I& consists of all pairs (v. B) such that 

v E [k-l<“, B E U and max v < min B. A condition (7. A) > (v, B) iff 

(a) A C B, 
(b) ‘r~ extends V, 

(c) I/ \ Y E [B]-. 

The main property of this forcing (called the Prikry property) says that for every 

condition (v, B) and any sentence g of the forcing language there is A C B, A E U 

such that (u> A) j( O, i.e., (v, A) II- p or (v? A) It -q. This is crucial for showing that all 

the cardinals are preserved. We refer to Kanamori’s book [9] for a detailed presentation. 

Let K be a measurable cardinal and II be a normal ultrafilter over K. 

Definition 1.2. Let QD be a forcing notion consisting of all triples (f, Q. A) so that 

(a) A E D; 

(b) rw < K,; 

(c) f is a function on [A]<” such that 

(c 1) for every 7 E [A] O. f(q) is a partial function from min(A \ (maxv + I)) 

to 2. 

(~2) sup{) domf(q)J ) r) E [A]<“} < K. 

Definition 1.3. Let (f I.Q:I,AI),(~z,~~.A~) l Q~.Wedefine(f2,n~,Az) > (f,,c~~,A,) 

iff 

(a) (?I < ~2, 

(b) AI > AZ. 

Intuitively, the forcing is intended to add a set A 2 K which is almost contained in 

every set of D and a function f on [A]<” which is a name of a function in a Prikry 

forcing for changing cofinality of K to No. This function will be eventually a member of 

a desired dense set of cardinality K+. 

The idea will be to add X new subsets to Ic (X = K++ or any desired value for the final 

2”) preserving supercompactness of m together with iteration of the length ~~ of forcings 

Q_o? (.i < K+), where _Di’s are picked to increase. Finally we will obtain ,D = U _Oi 

and force with the Prikry forcing for 8. The interpretation of the generic functions fi’s 

(i < K+) from each stage of the iteration will form the dense set of cardinality IC+. 

Let us start with a basic fact about names in the Prikry forcing. 

Lemma 1.4. Let D be a normal ultrajilter over K,. P, the Prikry forcing with D, r 

a P,-name of a partial function of cardinal@ < p (p < 6;) from IF. to 2. Then there 

are A and f satisfying the conditions (a), (c) c~j’ Theorem 1 .l so that (4, A) I- 1 = 

uTL<lc. .f((EO, 51. . . . A,)) where (tag 1 n < w) is the canonical name of the Prikry 

sequence. Also If(rl)I < pfor each Q E [A]‘“. 
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Proof. Using normality and the Prikry property, we pick A E D and (al) 1 17 E [A]<“), 

]a71 < p (7 E [A]<“) such that for every 7 E [A]<“, (q! A \ maxq) II- 7 n (maxq, the 

first element of the Prikry sequence above 77) = us. Thus, let (v, B) E PD. Shrinking if 

necessary we can assume that B consists of inaccessible cardinals. Let < E B. Applying 

the Prikry condition, we can find Bt C B in D such that (u”(t), Be) decides 7 n 

(max V, E). Take B, to be the diagonal intersection of Bc’s. Then B, E D and (v, B,) 

decides zn (max V, the first element of the Prikry sequence above v). With the above in 

mind it is easy to start from the weakest condition (8,~) and climb up to define A. 

Define f(r)) = uV for n E [A]<“. Then, clearly 

(45: A) IF z = u &I,. . A). •I 
rk<W 

Let G C Qo. We define AD = n{A E D 1 for some cr, f, (f, cy, A) E G} and 

will be a function with domain [AD]<~ so that for every rl E [AD]<~, fo(v) = 

t{F(,,) I for some CI: A, (f, CY, A) E G}. 

Let ,AD, f D, be a canonical name of ALI, fD. Let PD denote the Prikry forcing with D. 

The following lemma is crucial. 

Lemma 1.5. Suppose that D is a normal ultrafilter over K and 7 is a %-name of a 

partial function of cardinal& < 1-1 (for some p < n) from K to 2. 

Suppose that (4,0, K) kQ,, “there is a normal uftra@er D1, over K. with AD E Dj”. 

Then there is a generic G & QD, so that if DI is a normal ultrajlter in V[G] with 

AG E DI, then, in V[G] 

Proof. Applying Lemma 1.4 to D, 7 in V we pick A; f as in the conclusion of the 

lemma. Now let G C QD be generic with (f, 0, A) E G. Then AG C A and for every 

n E [AGY, f(v) C fG(r]), by Definition 1.2. But since 

and D C D1 we are done. 0 

Now the plan will be as follows: We will blow up the power of n to some cardinal of 

cofmality K+ using <~-support iteration of forcings of the type QE. Using hugeness, a 

sequence 

Do C Dl c 02 C ... C Da. c: ... (a < n+) 

will be generated and QECX ‘s will be used cofinally. The final step will be to use the 

Prikry forcing with UaCn+ &. 

Let us observe first that the forcing QD is quite nice. 

Lemma 1.6. QD is < n-directed complete. 
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Proof. It is obvious from the definition. 0 

Definition 1.7 (Shelah [12]). Let P be a forcing notion. P satisfies a “stationary” K+- 

C.C. iff for every (pi ( i < AI+) in P there is a closed unbounded set C C n+ and a 

regressive function f : ,s+ + fs+ such that for o, ,j E C if cfjo) = cf@) = K and 

f (~1) = .f (13) then p,, and po are compatible. 

Lemma 1.8. &D satisfies the “stationary” K+-C.C. 

Proof. Let pi = (fi ~ a,, A,) (i < PC+) be conditions in Qo. 

For every g. Q < K, a C a, y a function on [nlcw we set 

il U.ru,a.Q == {i < ,+ / o = sup { domfi(rl) 1 q E [ALlcil’}. 

o = uzr A,, n GEL = a and fi r [u]<~ = g} 

Then K+ is a disjoint union of these K sets. 

It is enough to prove the following claim: 

Claim. For every u, o, a, g as above among any (21”1+1”1)+ members of An,ru,n,y at 

least two are compatible. 

Let us first complete the proof of the lemma using the claim and then we prove the 

claim. 

Denote &,n,a.g by A. Assume that (6 < K+ 1 cf(6) = K} n A is stationary. Clearly, 

there are cr, cr, a, g for which this is true. Let 5 E A, cf(S) = K. We define by induction 

on E an increasing sequence of ordinals ~6,~ < 5 in A such that p,, E is incompatible 

with pb and with P~~,~, for p < E. At stage E just pick Q < 6, a E A such that p, is 

incompatible with ps and every P,,,~ (p < E) if there is such an cr. Otherwise we stop. 

Let (oh.= ( E < ~6) be such a sequence. Then, by the claim, rb < (21Ql+lul)+ < K. 

Hence, if we take a regressive function g(S) = a code of (~6.~ 1 E < Q), then whenever 

g(6t) = g(6~). p6,, poz will be compatible. So, we obtain a “stationary” K+-cc. 0 

Proof of Claim. Let (it / [ < (2 icl+lal)+) be a sequence from A. Set 

B. = n Ai,. 
Then BO E D. There is Br C_ Bo, B1 E D, such that the isomorphism types of structures 

(o,p>a, (domf,,(v”p 1 I) 1 ( < (21°1+i01)-t. v E [u]<“. I < length(p)), <) 

depends only on the length of p for p E [BI]<“. Choose ~0 < ~1 < . . < E,, < (72 < 

LJ) an u-sequence of elements of Bt. Now using the Erdos-Rado theorem it is easy 

to find to < <i < (2 ial+lal)+ such that for every p e [u U {&e / e < w}]‘“‘. fl,,,(p) 

and fi,, (p) are compatible. But then fi,,,(p) and fzc, (p) will be compatible for every 

p E [B,]<“. Which implies a compatibility of P,,(~ and pzE,. 0 
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Let now K be an almost huge cardinal with a measurable target point, i.e., there is 

j : V ---f M, critical(j) = K, j(6) = X, ‘>A4 C A4 and A is a measurable cardinal in _ 
V. Fix such an embedding j : V + M, j(~) = X and a normal measure 24~ over X. 

We define an iteration (P, , QOa * Qla ] o < K as follows: if Q is not measurable in ) 

VP” then Qacv * Qtcv = 8; if Q is a measurable cardinal in VP-, then Qocu will be an 

atomic forcing picking an ordinal F(a) < K and Q la will be a <cu-support iteration of 

maximal possible length 6 F(a) of forcings of the form QD over all normal ultrafilters 

_D over cr. I.e., first over Q we force with a <o-supported product of forcings QD where 

_D runs over all normal ultrafilters over 0. If o remains measurable after this forcing, 

then again we force with &D’S for each normal ultrafilter D of this extension and so on 

as far as possible up to F(o). Easton support is used at limit stages of the iteration. By 

Shelah [12] and Lemmas 1.8 and 1.6, Qta satisfies Q+-C.C. and is a-directed closed over 

vpe *Qoa , for cy < K. 

The role of the trivial forcing Qacu is to bound the length of the iteration of &I~. It is 

needed, since, for example, if cy is a supercompact and o-directed closed indestructible, 

then forcings QD will preserve its supercompactness and hence also the measurability. 

So new ultrafilters will appear over cy forever. 

Let us work now over /c. Let G, C P, be generic. We consider in ill j(P&) = PjcK) 
and PjcK,/GK in M[G,]. Let us split Pjc,,/GK into QnK. * Qtn and P>&. The generic 

object for Qnr; is just any ordinal F(lc) < j(~) = X. We want that IC should remain 

measurable after forcing with P, * Qo,& * Q where Q is an initial segment of the desired 

&I,&. As is standard the method to show this is to show that some elementary embedding 

Ic can be extended to a Ic* in V[G, x {S} * G]. By standard techniques this will be the 

case so long as the generic extends to one (over k[V]) for k(P, * Qo,& * Q). The key here 

is that the k(n)th term of Pkc,, should be an extension of IC”(QO,~ * Q). This, of course, 

is why we defined P, as we did. By standard arguments on backwards Easton forcing 

(see, for example, A. Kanamori [9]), for every F(K) < X the length of Qtn will be F(K). 

For a while set F(K) = X, i.e., we like to deal with iteration Qln of the length X. We 

consider an enumeration (_A, 1 IT < A) of Qi,-names of subsets of K in M[G,][{X}], 

such that 71 < 7-2 < X implies that &, depends on the part of Qtn of the length at 

most those of &. Since X is measurable and Qtm has </c-support there will be C E UA 

consisting of inaccessibles such that for every S E C, (& 1 7 < 6) enumerates the 

names of all subsets of yi appearing before the stage S, i.e., Qtn r S-names. Equivalently, 

all the subsets for the QtK. with F(K) = S. Now let S be in C. For every _D appearing 

in &I~ 1 6 let TD E Qj(D) be defined as follows: 

rg = (.&4), 

where 

_f 1 K = fD and above K. we take 

f(n) = U {j@)(n) I _f appear in a condition in GE}. 

Sh:597



M. Gitik, S. Shrlah / Topology and its Applications RX (1998) 219-237 225 

Let q6 E Qlj(,) consists of these r-~‘s sitting in the right place. 

Clearly, if p > S is also in C, then:], / 6 = qs. 

Let p be in C. Pick a master condition p, E P>h. * (j(p) * Qlj(K)) deciding all the 

statements “K E j(&)” for r < p and stronger than q,, i.e., pp satisfies the following: 

for every T < p there is s E G, * {p} * Qtn 1 p so that (s,p,) I/ K E j(&). 

Shrink the set C to a set C* E UX so that for any two pi < p? E C* decisions are the 

same, i.e., for every s, r < p1 as above 

(.s, P,,,) II K E .i(AT) 

iff 

iff 

For every p E C* we define in V[G, * {p} * G(Ql&)] a normal ultrafilter D(p) over 

K, where G(Qt,) C QtK is generic and Q tn has length p. Let us set A E D(p) iff for 

some s E G, * {p} * G(&I,), (s.pp) It K E J&T) w h ere the interpretation of _A, is A 
for r < f. 

Suppose now that p < pt are two elements of C*. Work in V[G, * {pj} * G(QIK)]. 

Then, clearly, (~(&I&) 1 p will be V[G, * {p}] g eneric for Q iK, (or Qtn r p in the sense 

of the iteration to pt). So D(p) E V[G, t {pi} * G(QIK)]. 

Claim. D(p) 2: D(p,). 

Proof. Let A E D(p). Pick 7 < p, A, and s to be as in the definition of D(p). By the 

choice of C”, then (s:pp,) It K E ,j(&). So, ~c(Q,,,(&) = i~(&,,~~)(&) = A is in 

D(pt) as well as in D(p), where in is the function interpreting names. 0 

Now we are about to complete the construction. Thus, let 6 be a limit of an increasing 

sequence (pi I i < 6’) of elements of C*. We consider V[G, * {b}], i.e., the iteration 

Qth: will be of the length 6. By the claim, 

D(ljo) c D(P,) c . . 2 D(p,) c ‘. (i < K+). 

For every i < K+, D(p,) is a normal ultrafilter over K in V[G, * (6) * G(Q,,) 1~~1. 

Hence, the forcing QDtp,) was used at the stage pi + 1. Finally set D = lJi++ D(p,). 

Lemma 1.9. In V[G, * (6) * G(Q,&)] D IS a normal ultrajlter over K, generated by tif 
sets and 2” = 6 > K,+. 

Proof. 2” = b since at each stage of the iteration &I K a new subset of K is produced 

and 6 is a limit of inaccessibles of cofinality IF+. 
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Notice that D is a normal ultrafilter over K. since it is an increasing union of pi+ normal 

ultrafilters D(pi) (D(pi) is such in V[G, * (5) * &I~ 1 pi]) and QIK satisfies K+-C.C. It 

is &+-generated since for every i < n+ a set A D(,,,) generating D(pi) is added at stage 

Pifl. 0 

Let (f~(~,) ( i < K+) be the generic functions added by QD(~,) ‘s. Use the Prikry 

forcing with D. Let (K~ j R < w) be the Prikry sequence. Then by Lemma 1.5 we obtain 

the following: 

Theorem 1.10. Thefollowing holds in the model V[G, * (6) * G(Ql,) * (K, 1 n < w)] 

(a) K is a strong limit cardinal ofcojinality w; 

(b) 2” = 6 > K+; 

(c) thefunctions (f~(~,) 1 i < kc+) are witnessing d<~, (6) = 6+. 

Remarks. 

(1) If one likes to have 2& = K+’ then just collapse S to K+~ using the Levy collapse. 

No new subset of IF will be added. So &N, will still be K+. 

(2) R+ as the density can be replaced by K++, K+‘, etc. Just pick a longer sequence 

of pi’s and argue that no smaller family is dense. It requires simple arguments 

about names in the Prikry forcing. 

(3) N1 can be replaced by any regular 6’ < K. 

2. The basic construction 

In this section we will show how to apply [6] in order to produce a model with a 

strong limit K, cf(lc) = No, 2” = K++ and d<N, (K) = K+. 

The idea will be that we can reflect the situation above K in the ground model below 

K once changing its cofinality. 

Theorem 2.1. Suppose that V IF GCH and there exists an elementaql embedding j : 

V --f M with a critical point K such that 

(a) hJ _> K+2; 

@) M = {j(f)(& >. . . ,S,) 1 n < w: 61 < . . . < 6, < K++ and f : [K]” + V}; 

(c) “M c M. 

Then there is a cardinal preserving extension V[G] of V so that 

(1) for every cy < )i or Q: > K 2a = cu+; 

(2) 2” = ,++; 

(3) Cf(K) = Ho; 

(4) d<N, (~1 = PC+. 

Remark 2.2. 

(1) The assumption used in Theorem 2.1 is actually the F’2(,)-hypermeasurability of 

K or in the Mitchell order O(K) = K++ + 1. 
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(2) Let us determine the cardinality of j(~) in order to get a feeling of the matter. 

First, j(~) > K,++, since, in M, j(~) is inaccessible and by (a) (,++)‘I = K;++. 

Second, j(~) = j(c&)(O) = cj(,)(0), w h ere c, : K + K + 1 is the constant function 

with the value K. Then every ordinal below j(~) is represented by j(f)(S,. . ,6,,) 

for some f : [&In + K and some 151 < ‘.. < & < K++. But V satisfies GCH, 

so the number of possibilities is K++. Hence, K++ < ,j(K) < K+++. By (c) it 

follows that cf(j(6)) 3 K+. Using further considerations it is not hard to see that 

cf(j(h-)) is K+. 

Proof of Theorem 2.1. Let Llo = {X C K 1 K E j(X)}. Then L& is a normal ultrafilter 

over r;. Let Z : \’ + N z Ult( V, 240) be the corresponding elementary embedding. Then 

the following diagram is commutative. 

IL1 

where k(i(f)(~)) = J’(~)(K). 

Since, if n E V then i(a) = I. k(i(cl)) = k(i(cn)(lc)) = :~(c~)(K) = a, where 

c’~, is the constant function with the value a. 

The critical point of k is (K++)“. Thus, k:(~,) = k(i(id)(n)) = j(id)(K) = id(K) = 

h’, “.v C N and 2” = K+ imply k(~‘) = K+. But (K++)~ < K++ = (K++)hf, since 
2”+ = K,++ and ZAO $! N. 

Lemma 2.3. There is a sequence (A, / cu < K+) so that 

(i) j(lc) = Uacr;+ A, and.for every cv < K+, 

(ii) A,, E 111, 

(iii) IA,1 6 K++, and 

(iv) A, E rng k. 

Proof. For every 7 < j(~) there are 61:. . . _ S,, < K++ and J’ : [K]” - ti such that 

j(S)(n,. . . , dT1) = T. Consider a function .f’ : K, + [&I<” defined as follows: 

.f’(V) = {,f(o,. . . :v,) 1 VI>. . . II,, < .++>. 

Then. in Al, I.i(f’)(~)l < K++ and 7 E j(f’)(K). Clearly, k(a(f’))(K) = j(f’)(~). 

Hence ,j(f”)(K) E mgk. 

so, 

,j(~) = U {.j(f’)(K) 1 j’: K - [K]<” and for every v < K. If’(v)1 6 v++}. 

Since the number of such f’ is K+, we are done. 0 

Lemma 2.4. There exists a dense set F of cardinal@ k-+ in the topological space jcr;) K 

with the topology generated by < lc+ products such that eve? element of F hefongs to 

rng A, and in particular also to n1. 
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Proof. Let a sequence (A, j a < K+) be given by Lemma 2.3. Assume also that it 

is increasing. For every cr < K+ there is AZ E N, such that k(A;) = A, and N b 

IA:1 = K++. Working in N and using GCH, we pick a dense subset Fz, with IF: 1 = n+ 

of the topological space Azrc with the topology generated by countable products. Then 

let F, = k(F,*) and F = Uucn+ F,. Notice, that lFcy 1 = K+ in both M and V, since 

c&(k) > K+. Clearly, F is as required. 0 

The family F of Lemma 2.4 will be used to generate a dense set in the space “2 with 

countable product topology once the cofinality of K is changed to LJ and its power is 

blown up to K ff Thus, if (n, 1 n < w) is the Prikry sequence for the normal measure 

of the extender, i.e., for 2.40 and f = k(f*) E F, then let f** be a function such that 

(i)(f**)(~) = f*_ Th e d ense set will consist of functions Un<w f**(nn) t (K~+, \ R,). 

Now, in order to show that this works, we need to deal with names of clopen sets in “2 

in the forcing of [61. Finite iterations described below are needed for a nice representation 

of such names. 

The model M is the ultrapower of V by the extender E = (E, / a E [PC++] <w), where 

X E E, iff a E j(X). 

Going the other direction, an embedding 7r can be generated from the extender E and 

a model M which is to be the domain of 7~ 

7[.:~r_tUIt(h~,E)={[a,f]: aE(K+f]<WandfEMandf:QK.--tM}: 

where [a, f = [a’! f’] if and only if {cr E aUa’~: f(a t a) = f’(o t a’)} E Eauaf. 

This will define an embedding on M provided that E, is an ultrafilter on at least the 

subsets of [~]1”1 which are in M. 

Now, j(E) = df El E M = df MI and it is an extender over J’(K++). Using EI 

we obtain ji : MI --f Mz = Ult(MI, El) with a critical point j(~) =df IFI. Let j; = 

j, V = MO and 6 = ~0. In the same fashion we can use jl(El) =df E2 over M2 

and form jJ : Mz -+ Mj N Ult(M2, E2) with a critical point ji(&r) =df ~2, and so on. 

Thus, for n < w, we will have J’; : A& + J%&+~ N Ult(n/l,, En), crit(&) = K~. Let 

j,:v 4 Mn, crit(&) = K be the composition of $,, j{, . . , ji,_, . Also set $I = id, i.e., 

the identity map. Another way to obtain M=‘s is using finite products of E and their 

ultrapower. Thus we consider E * = (Ez 1 a. E [K++]<~) where for a E [nlm (m < w) 

and X C [K]~ x [lclm, X E Ez iff 

{ 
(0,: . . . . a,)1{(8,,-..:Pm)I(CYI, . . . . &7zr PI,-..:Pm) E X} E E,} E E,. 

It is not hard to see that MZ N ult(V, E’) and the corresponding embedding is the same 

as j02, In the same fashion for every n, 0 < n < w, we can reach Mn using only 

one ultrapower. Thus if En = (EE / a E [K++]<~), then Mn N Ult(V, E”). Instead of 

dealing with finite a’s we can replace them just by ordinals using a reasonable coding. 

The following lemma is folklore. 

Lemma 2.5. For every cy < j,,(~) = K, there are f0 : \tc)” 4 n and 6 < K++ such that 

0 =j,(f,)(S,jl(6>,j2(S),...,jn_l(S)). 
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Let us sketch the proof. We deal only with the case n = 2. So let cy < jz(~~) = ~2. 

Then cr < ji (K I ) and it is an element of Al, N Ult( Ml. El ). Hence, in Mi , for some 

h < K:’ and f : ~1 + ~1, ji (f)(b) = n. Also, Ml = A1 Y Ult(V E) and El = j(E). 

First we like to show that it is possible to choose 5 of the form :j(s) for some (5 < h-++. 

Thus, there are g : 6 + K++ and < < K++ so that j(g)(<) = 6. Let 67 = sup(rngg). 

Denote Et_,) by U, for y < K‘ ++. Then Ui is above 2A, in the Rudin-Keisler ordering 

for every y < 6, i.e., Ui projects onto U,. It is easy to see this considering the following 

commutative diagram: 

where k,(i,(t)([id]ub)) = j(t)(s). A s in the beginning of the proof of Theorem 2.1, the 

critical point of kz is (K++)~“. But ICg([id]Uli) = 8 < ri++. So, [id]u, = 8. Then for 

every y < 6, function representing y in Ult(V,ui) will project 2,./z onto U,. 

In particular, for every y E mgy, U7 < RE( Liz (i.e., < in the Rudin-Keisler or- 

der). Now in ill, i U,Ci, > RK Uh since 6 E rngj(g). Hence for some f: PC,~ ---t 61 in 

Mi. ji(fl)(j(s)) = Q. Findsome h:K + K, andp, 8 < p < PC++ suchthat f= j(h)(p). 

Then (ji(j(h)(p)))(j(S)) = a. Replacing h by a two-place function g : [K]’ + 6 we ob- 

tain j~(.g)(p,j(@) = o. Since p 3 6. Up >RK Ui. Hence Up x Up IRK U,, x Us. It 

means that for some g’ : K; x K -+ PC, j2(g’)(p,j(p)) = (Y. 

Now fix n! 1 < n < in. We would like to describe one more way of constructing 

M,,. Thus, we consider ErL-’ and Ail,. E”-’ and even E is not in MI but we still can 

measure subsets of r~ of ,911 from the outside. So we can form Ult(Mi, En-‘). Since 

Vh+2 C Mi and “MI C MI, it is routine to check that Ult(Mi, En-‘) z I&. Let I be 

the corresponding embedding. Then P(K) = r;_i, [(PC,) = K~. 

Lemma 2.6. For ever?; Q < PC?, there are go: : [tc]“-’ -+ nl and 6 < PC++ such that 

0 = ~(g,)(S.9,(6)?....~n~2(6)). 

Proof. Let ga be a function representing a in the ultrapower by En-‘, i.e., for some 5 < 

I(;++. jn-~(g~Y)(~,j~(S),...,Il'n-2(S)) = a. Then ga:[~]"-' - KI, since cy < h;,, and 

&,-i((~~l) = PC~~. But then also e(g,)(&ji(@. . . ,jll_2(5)) = a, since tiM, = “V. 0 

Further let us add to such L the subscript 11. 

Let F be the family given by Lemma 2.4. We define F,, = Pz( F) for every rb. 0 < 

r/, < LJ. Let&k = {f r [6,&l (Kk) 1 .f E F,,} f or every k, 0 < k < n. For n. 0 < n < LJ 
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and t E Hz==, &I, U rng t is a partial function from tin to 2 and it belongs to Mn as a 

finite union of its elements. Set 

Ut]forsomem. O<m<n, tEfi&k . 

k=l 

Lemma 2.7. For every n, 1 < n < w, Fz is dense in the topological space nn2 with 

countable product topology. 

Proof. Let (Q, / m < w) be an w-sequence of ordinals below K,, for some n, 1 < 

n < id. Let cp E {LyrrLI m<w}2 By the definition of F,” it is enough to prove the lemma in . 

the situation when all Q,,,‘s are in some fixed interval [&k-t) IQ) for 0 < Ic < n. Also 

by Lemma 2.4, we can assume that Ic > 1. Since nothing happens between ok and IC., , 

we can assume that Ic = n. For every m < w, by Lemma 2.6 there are ym : [K]“-’ 4 /cl 

and 6, < K,++ such that o, = !n(gm)(6m,ji(S,), . ,jn,_~(6m)). We can code the 

sequence (S,, 1 m < w) into one S < K++, since (K++)~O = K++ and M is w-closed. 

Hence, for every m < w 

a! m =en(gm)(S,jl(S),.“:j7L~2(b)). 

Since o’,‘s are all different, there will be A E UT-’ such that for every m # l < w 

and ;E A gm(s) # gr(s), where 246 denotes E16j and UT-’ = En-‘. Let us also show (6) 
that the ranges of g,‘s can be made disjoint. Let us do this for two go and gi . Using the 

completeness of 246 it is easy then to get the full result. 

Claim 2.8. There is B c A in L/F-’ suchthutmggo rBnrnggl IB=Q). 

Remark. It may not be true iff either oyg, cy] are in different intervals [Q, X;k+l ) or if 

a same measure appears in the extender several times. 

Proof. In order to simplify the notation, let us assume that n. = 3. So ~2 < (~0 < oi < ~3. 

Recall that es(&) = ~2 and !j(~~i) = ~3. So, for almost all (modUj)(P,r) E [n12, K < 

.9o(P.Y) < 9W.r) < ~1. Consider pi = infcGu; (sup mg(gi 1 C)) for i < 2. If pa # pi, 

then everything is trivial. Suppose that pa = pi =dr p. Then cf(p) = 6 by K-completeness 

of Ub. Notice also that go or gi cannot be constant (modZ4:) since then this constant will 

be p. Consider sets X0 = (g,!,‘[K-12) n p and Xi = (gi’[s]‘) n p. We define a K-complete 

ultrafilters Wa and WI over X0 and Xi as follows: 

S E wk iff g,“‘S E Ui: where k < 2 

Then Wo, WI <RK 24; (less in the Rudin-Keisler ordering) and go, yi are the corre- 

sponding projection functions. Now, go # 91 mod2462 and the extender E has the length 

IC,++. So, WO # WI Cjust use the argument of Lemma 2.5 (or see Mitchell [14]) for 

similar arguments). Now we pick BO E WO \ WI and set BI = XI \ Bo. The set 

B = (g;“‘Bo) n (g,“‘B,) 

is as desired. 0 
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So let B E L/i be so that gk B f~ g:B = 8 for every m # Ic < w. Denote g$ B 

by B,, (m < LV(). Consider now the clopen set in “‘2 with K-products generated by 
r+/) &,<U Ban 2 where q5 [ B, takes the constant value ~(0,~). Now pick f E F,, f 2 dl. 

Then P,(f) > w, since for every m < d, 

{Wr) E 1~1’ I f(sn(4.d) = ~(4) 2 9,“‘(%) E 4$ 

Suppose now that the extender E has the length 6 1-7 instead of ti++. We would like to 

apply previous arguments in order to produce a dense set of cardinality K+~. We change 

the assumptions (a) and (b) of Theorem 2.1 as follows: 

(a’) Al > K+7; 

(b’) M = {j(f)(st, . . i S,,) 1 n < w, 61 < . < b, < K+~ and f : [K]” --7‘ V}. 

In Lemmas 2.3-2.7 and Claim 2.8 we replace K++ by K+~ and the proofs do not 

change. 

The only obstacle is that Lemma 2.7 breaks down if we use the family F,* defined 

there. The problem is that once the length of the extender is > K+++ the same measures 

are starting to appear in it at different places. It was crucial for Claim 2.8 that this does 

not happen. The solution is going to be to take a larger family and use the fact that for 

any two measures in the extenders there is a measure with index < hf6 which provides 

a difference between them inside the extender. 

First let us define the new F,. Let FA = {t ( t: [IC]~’ --f F}. Clearly, II?;1 = IFI” = 
(/$+fy = /$+e. 

Also, every t in FL is in M since KM 2 nf. Now for every 0 < K+~ and t E FL we 

consider !,(t)(n,jt (S), ,,j7,_2(S)). It is an element of AIn,. Set 

F, = {&(t)(S,jl(S), . 5jn_~(~)) 1 h < dh and t E F:,}. 

Now, we define F,* as in case h;++ using this new I$. We need to show that the analog 

of Lemma 2.7 is true with our new F,,. The argument of Lemma 2.7 and Claim 2.8 are 

running smooth until the point where it is claimed that WO # Wt. 

Suppose now that I440 = Wt. Let us assume in order to simplify the presentation that 

K < 61 < Ul(),QI < K2 = K,,. 

Thus go> gt are now one-place functions. 

The ultrafilters WO, WI are then isomorphic to some measures U,,, UT, of extender, 

where ra, 7-1 < K+’ and for T < IY,+~, U, = {S C K / ‘T E j(S)}. Just take the bijections 

pa, pr between n and Xa, XI. The general case is slightly more complicated since we 

need to deal with E2, E’ etc. and instead of U, it will be Uzr. U:, etc. 

Let 70 < 71 < K +7 The opposite case is identical. 

Claim. There is T < K+~ such that Et,,,,} # E{,,,,}, where for a E [K]<“’ 

E, = {s c & I a E j(s)}. 

Proof. Let us assume that U,, = E{,l = EI,) = UT,, since otherwise everything is 

trivial. Suppose also that 70 > K +6 It will be clear from the argument below that this 

only needed for simplification of the notation. 
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Consider the following commutative diagram 

where k,, ([f]UT,) = j(f)(71) for every f : K + V. Let ?I = [id]u,, . By elementarity, 

(K+6)N7, < 7, < (K+‘)~T~ Let 7: (K,+~)“~I H 7, be a function in N,, . Pick h : K --) V 

representing f in N,,, i.e., &,(h)(?i) = T N ow consider f = k,, (7). Then by ele- 

mentarity of k,, ~ f : tcc+b ++ ~1. We pick r < K+’ to be f-‘(70). Let us show that 

Ei,,,,) # Ef,,,l. Suppose otherwise. Let 2.4 = Ef,,,) = E{r,7,1. We consider the 

following commutative diagram: 

where k,,,, ([flu) = j(.f)(~,71) and @h, I = [dlu,,, with d(a,P) = g(P) for all 
a < /3 < K. Let T* = \idi]u, T; = [id& and f” = a(F), where idi(a, /3) = a! 

and idz(a, /3) = ,!? for every Q < ,!3 < K. Using commutativity and elementarity, then 

Q?,) = r;, k,,,,((7*,7;)) = (7,~~) and f* : (lt+6)NT,T~ u 7;. Let r$ = f*(~*). 

Clearly, k,,,, (7;) = TO. Also, X E U iff (r”, 7;) E i,,,(X). But since U = EI,,,,), X E 

2.4 iff (7,~) E j(X) iff (7*,7-l) E &,(X). Hence, X E 24 iff (r”,~;) E i,,,(X) 

iff (r*:r$) E i,,,(X). Now &,(h)(r;) = f*. There is X E U so that for every 

(%P) E X h(P) : IPI c) ,C3 and cr < IpI. Define a projection rr on X: rr(~,/l) = 

(a. M)(a)). Th en x projects U on itself, since whenever Y 2 X is in U (r*, r;) E 

i,,,(Y). Then (T*. 7;) E &,(x”(Y)) h’ h w ic im ies rr”(Y) E U. Now we are ready pl’ 
to get a contradiction. Just consider the following sets in M: X = Xc, r-“‘(X) = 

XI,-ir -I” (F”‘(X)) = X2,. . ,Xn+, = T-“‘(X,). . Let X” = nncwXn and 

(cu, ,!?) E X*. Then (01, p) E n-“‘(X) nX, so (q hp(a)) is well defined and it is in X. 

In particular, p > h(P)(a). But (a, 0) E v”‘(T-“‘(X)) n X, hence (cy, h(P)(o)) E 

n-“‘(X) and hence (cy, h(h(,O)(a))(cr)) is well defined, is in X and so 0 > h(p)(~) > 

h(h(P)(a))(a). W e continue in the same fashion and obtain a decreasing w-sequence of 

ordinals. Contradiction. 0 
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Next, we replace 6 by some S* < ~~~ coding { 7.70. ~1, S} . Or in other words, we 

find Uh. in the extender E which is Rudin-Keisler above Uh, E{,.,,}, E{T.T,}. Let ~6 

be the corresponding projection of Z& onto Ub. Define 9: : K - lcl (i < 2) as follows 

s:(B) = 97 (%(a)>. 

Then, CQ = JJ,($)(n*). Hence gt projects U,* onto IVi. Consider an ultrafilter Ei over 

IC x X, defined as follows: 

S E E, iff for some S’ E EI~,~~), 

s = { (PJm) I (P, 7) E S’>. 

I.e., we are using the bijection pi to transfer Et,&] back to I&‘,. Pick projections ?Ti and 

YT of 246* to E, and .?& such that 7ri(E) = (7r(<),gf(<)) for almost all <mod.!&. 

Now we find disjoint BA E EO and Bf E El. There is B E US. such that T{(B) C Bl, 

and x:(B) C Bi. Let C = T”(B), BO = n;(B) and BI = T:(B). Then C E U,, Bo E 

EO and BI E El. The following is important: 

(*I for every 13 E C and y < ~1 it is impossible to have both (/3, y) E Bo and 

(4,~) E BI. 
For 3 E C we consider the set C,J = {y E X0 u XI 1 (3.7) E BO u BI ). For every 

/j E C let $0 : Co --) 2 be defined as follows: 

Notice that by (*) such defined $0 is a function. Since ICo 1 6 K, Co E M and 

Co C ~1, there is fp E F. fLl: > ~$3. Let t : K ---) F be defined by t(P) = fp for 

/3 E C and arbitrarily (but in F) otherwise. Then, 12(t)(~) E F2 and let us show that 

~2(t)(7) 2 P r { a~, (~1 }. It is enough to show that the set 

{E < K. I 40 E C. d(EJj d (0 E G(C) and .fr(o (d (0) = P(Q~) for i < 2} 

is in US*. We claim that it contains B. Thus let < E B. Then, n(t) E C, (r(r), g;(r)) E 

BO and (r(<).g;(<)) E BI. Hence, g;(<),g;(<) E CT(c) and fncE) was chosen so that 

.f~~~~(s~(F)) = ~(0%) where i < 2. 
This show the density for ~0. ~1. In order to deal with ((-I, / m < w) instead of only 

two ~0, ~1, just produce disjoint (B,, 1 rrr < w) using WI -completeness of the ultrafilters 

involved. 

Now we are ready to complete the proof of Theorem 2.1. For every n2? 0 < V, < w 

let Fz be a set given by Lemma 2.7. Then for every f E F,T (1 < n < w) there will be 

f: [ii]” 4 “b, representing f in the ultrapower by U/J’, i.e., 
- 

.in~I(f)(fi-o,KI> . . . . G-1) =.f. 

SetF1L={J/J;:[~]n.i~~~andj,_,(J)(no,~,,...,~c,_1)EF,*},whereO<71<~. 

Let Fo = (7 1 dom f = (0) and f(0) : K 4 K}. Define F = n,, <w F,. Clearly, 
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Suppose now that we have forced with the forcing of [63, then basically, a Prikry 

sequence was added for every measure of the extender E and no new bounded subset 

of 6 was added. So, GCH holds below 6, cf K = Na and 2” = K++. Let (v, 1 n < w) 

be the Prikry sequence for Uo, i.e., for the normal measure. We are going to use it in 

order to define a dense set D in the topological space n2 with topology generated by 

countable products. The idea is to transfer F;‘s to the space “2. We are going to take 

functions representing elements of F;‘s, i.e., the members of F, and apply them to the 

(VI 3 . . , vn). Then, in order to show density we will notice that a name of a basic clopen 

set can be transferred back to K~‘S using the same process but in the opposite direction. 

Over /c~ we find an element of F,’ inside such clopen set and pull it back to n2. 

Now let us do this formally. For every t E F we define a partial function t* from K. to 2 

as follows. Let Q < K. We find n, < w such that vn, < cr < vn,+ 1, where vo denotes 0. 

If n, = 0 and t(O)(a) < vI, then set Q E domt* and t*(a) = t(O)(a). Suppose now 

thatn,>O.IfaEdomt(n,)(v,,...,v,U)andv,a6t(n,)(vl,...,v,~)(a)<v,n+~ 

then set a: E domt” and t*(a) = t(ncy)(vl,. , . , vn, )(a). Otherwise t*(a) is undefined 

or if one likes to have it total just set then t*(ai) = 0. Set D = {t* 1 t E F}. Obviously, 

IDI < IFi = Kf. 

Lemma 2.9. D is dense in the topological space “2 with the topology generated by 

countable products. 

Proof. Suppose ‘p E {‘mlm<w)2. W e need to find some f E D f > ‘p. Let us work in 

V with names instead of working in the generic extension. So, let 7, be a name of an 

ordinal r, (m < w) and cp a name for cp. 

Our basic tool will be Lemma 2.11 of [6] or actually the condition p* = p U {(p, 8, 

S*)} produced in this lemma if instead of g we deal with (1, I m < w) and ‘p there. In 

order to make the presentation as self-contained as possible, let us state here the main 

properties of p*. Thus S* is a subtree of [K]<” such that for every s E S*, SUCS* (s) E 

Up. For every m < w there is a level n, < w in S* such that for every si, s2 E S* 

from this level, i.e., Is1 ) = 1~21 = n, there are yi, 72 and i < 2 such that the following 

holds for Ic = 1,2. 

(Sk.(%))’ < y,+ < (minSucs* (SE))‘? (4 

(P u {(Pl a s*)))sk ‘1 (G m = ?‘k and cp(L$rL) = i)> @) 

where O-denotes the projection function to the normal measure UO and (pU{ (0, 0, S*)}),5, 

is the condition obtained from p U {(p, 8, S*)} by adding sk to be the initial segment 

of the Prikry sequence for ,8 (or 2.40) and then shrinking S* to the tree above Sk and 

projecting sk to the appropriate coordinates in p. 

Now consider the following set 

A={n<wI3m<w, n=nm}. 
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Let 71 E A. Denote {m < w 1 II, = n} by A,,. We define a function grL on Lev,(S*). 

Let s E Lev,,(S*). By (a), (b), for every m E A,, there are y7n.,s and i,, < 2 such that 

(s(71))” < yrn < ( minSucs* (s))()% (1) 

(P u { (!j. 0. S*)}),s 11 (cc,, = x..~ and &zmL) = irn). (2) 

Set g,,(s) = {(hsl k) I urn E A,,}. Hence, gT1(s) E {~~~z~slnrEil~~}2. Then, gn rep- 

resents a basic clopen set in “812 in MT,,. Namely, j,(_I(g,,)(/3,j1(;?). . . ,j,_l(@)). Us- 

ing the density of F,*, we find fil. E F; , .fi7 2 &l(gn)(P.5(B). . ,.%-I($)). Pick 
T,, E F,, such that j,_~(~,)(eo~ ~1,. . , K,~_I) = J;!,. Then for almost all 

(modu;), E Lev,, (S*)T,, ((s)O) Z? gn (5) 

Now let us do it for every 71, E A we will get a sequence (T,, 1 n, E A). Let t E E be 

such that for every n t A. t(p)) = f,,. Then the corresponding t* or here its name &* 

will be as desired, i.e., pU (($_ 0. S*)} IF t* > F. This completes the proof of the lemma 

and hence of the theorem. 0 

3. Some generalizations 

Under the same lines we obtain the following theorem: 

Theorem 3.1. Suppose that O(K) = X+ + 1 (i.e., extender of the length X+) and cf X > K. 

Then the follo\ving holds in a generic extension V[G]: 

(l)fr,rever~(1<h.orN~X2”=~+; 

(2) 2” zz A’-; 

(3) cf h’ = No; 

(4) d<*,(K) = x. 

Proof. Apply the construction of Section 2 with extender E of the length Xc instead of 

K+’ . An additional property that we need to show in the present situation is that d<~, (K,) 

cannot be below X. But this follows by [ 16, 5.3, 5.41 and the pcf structure of the models 

of [6] or just directly using the correspondence established in Lemma 2.9 between basic 

clopen sets of K 2 of V [G] and Kri 2 of A&. Since already Kil 2 cannot have a dense set of 

cardinality less than X because ‘+2 embeds it and GCH holds. 0 

The following two results are straightforward applications of the techniques for pushing 

everything down to N, [6, Section 21 or changing cofinality to NI Segal [15,7] and 

pushing down to N,, . 

Theorem 3.2. Suppose O(K) = K ++ + 1. Then the following holds in a generic exten- 

sim: 

(1) jbreverg(k<worcr>~2~” =N,,+I; 

(2) 2*4 = Nd+Z; 

C.3) d<N, Q-L) = R‘J+1. 
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Theorem 3.3. Suppose O(K) = K++ + w 1. Then the following holds in a generic exten- 

sion: 

(1) for every cy 2Nm+1 = k&+2; 

(2) GCH above N,,+t; 

(3) 2Nwl = Nw,+2; 

(4) d<t%OL,) = k,+1. 

For Theorem 3.3 we need also to replace No-box products by Hi-base products. Notice 

that all the considerations of Section 2 are going smoothly if we replace No-box product 

by O-box product for any 0 < K. Also instead of the space n2 we can work with &x for 

any fixed x < K. So the following holds: 

Theorem 3.4. Suppose O(K) = K++ + 1, 8, x < K. Then the following holds in a generic 

cardinal preserving extension: 

(1) for every cz < K or ck > n 2” = cu+; 

(2) CfK.N& 

(3) 2” = ,++; 

(4) the density of the topological space “x with the topology generated by &products 

is K.+. 

The analogs of Theorems 3.2 and 3.3 hold as well. 

4. Reaching the maximal density and wider gaps 

In previous sections, we constructed models with density less that the maximal possible 

value 2n. Let us show now how to construct a model with the density 2% assuming 

singularity of K. and 2n > K+. 

Theorem 4.1. Suppose O(K) = K+~ + 1, then there is a generic extension V[G] satisfying 

the following: 

(1) for every ff < K or & > Ic 2a = (Y+; 

(2) cf K. = No; 

(3) 2” = ,++; 

(4) d<&(K) = 2”. 

Proof. Let VI be a model of Theorem 3.1 with X = r;++. Collapse IC+++ to K++ 

using the Levy collapse. Let V2 be such generic extension. Then, in V2, 2” = K++. 

However, it is still true that d<H, (K) = 6 ++. Thus, no new subsets of K are added. 

Hence (“2)K = (“2)&. But also no new subsets of cardinality IF+ are added to sets of 

VI. So there is no dense set in “2 of cardinality < ri+. q 

As in Section 3 it is possible to push this result down to NU and N,, . 

Suppose now that one likes to have 2” big but still keep the density ri+. A slight 

modification of the construction of Section 2 will give the following: 
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Theorem 4.2. Suppose that X > n is a regular cardinal O(K) = X + 1. Then there is u 

generic cardinul preserving extension sati;jjing the following: 

(1) K is a strong limit; 

(2) cf K = No; 

(3) 2” = A; 

(4) d<&)(K) = fC+. 

Proof. Let V k GCH. E an extender of the length A, j : V + M % Ult(V, E). Using 

Backward Easton forcing we blow up 2”’ to A. By standard arguments E extends to an 

extender E” in such generic extension V[G] as well as j 2 j* : V[G] 4 M[G*]. Now 

we proceed with V[G], M[G*] and j* as in Section 1. X generic functions from K+ to 

K+ are used also to show that the analog of Claim 2.8 is valid. 0 
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