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Introduction 

No knowledge of  the first part is assumed; we rather start to redo it, eliminating or weaken- 

ing set theoretic assumptions, and generalizing the context. In [Shl], proving a conjecture of  

Baldwin, we show that 

(*)1 n o  ~/E L~,co(Q)) has a unique uncountable model up to isomorphism, 

by showing that 

(*)z categoricity (of V ~ L~,,o(Q)) in R 1 implies the existence of a model of ~ of 

power R 2. 

Unfortunately this was not proved (i.e. in ZFC), diamond of  1~ 1 was assumed. In [Sh2] 

this was weakened to 2 g° < 2 ~ ;  here we shall prove it in ZFC (see §3). (However, for getting 

the conclusion from the weaker assumption I ( ~  1 ,~) < 2g'  as there we still need 2 g° < 2 g~ ). 

This research was partially supported by the United States Israel Binational Science 

Foundation (BSF) and the NSF. 
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The main result of [Sh2] was: 

(*)3 if n > O, 2 ~° < 2 ~ < -" " < 2 ~", ~JE Lco~,o~, 1 _<l(Rt,co) < p.(Rt) for e < n, e >- 1 

(where ~t(~t) is usually 2 ~' and always > 2 ~ ~) 

then ~t has a model of cardinality 1~ n +1. 

(*)4 i f  n > 0 , 2 e °  < 2 < .... ~ e Lo~,o~, 1 < l ( ~ t , ~ t )  < t.t(Nt) for t < o~ 

then ~ has a model in every infinite cardinal (and satisfies Los Conjecture), (note 

for n = 1, assuming 0 was proved in [Shl].) 

that (*)3 

Why in [Sh2] ~t was assumed to be just in L0~,.o and not more generally in Lo~,~(Q)? 

Mainly because we feel that in [Shl], the logic Le~I.o(Q) was incidental. We delay the search 

for the right context to this sequel. So here we are working in "abstract elementarily class" 

(so no logic is present in the context) whose main feature is the absence of amalgamation. So 

if £ i s  a fragment of L~co, (for a fixed vocabulary), T c _ L  a theory, K = { M : M  NT} ,  

M <KN if and only if M <LN, we get such a class. So N ~  Lo~,o~(Q) is not represented 

directly, but can be with minor adaptation; see 3.9(2)and for other applications Makowsky 

and Shelah [MSh]. Surprising (and easily), every such K can be represented as a pseudo ele- 

mentary class if  we allow omitting ty~es, (see 1.8). We introduce a replacement for saturated 

models (for first order 7) and full models ( for excellent classes, see [Sh2]): limit models; 

really some variants of it. See Definition 3.1. The strongest is M superlimit: 

(3N)(M < N ^ M ~ N) and if Mi = M for i < 8 -< IIIM Ili then k.) Mi = M. Such M exists for a 
i<3 

first order T for some pairs ~.,8; and it exists for every )~ > 2 IT1 if and only if T is superstable. 

But we can prove something under those circumstances: if K is categorical in X (or just 

have a superlimit model M* in •), but the )~-amalgamation property fail for M* and 2 ~" < 2 ~'~ 

then I(9~ +, K ) =  2 t+ (see 3.5). With some restriction on 9~ and K, we can prove e.g. 

I 0~, K) = I (~.+,K) = 1 ~ I O~ ++,K) > 1, (see 3.7, 3.8). 

However our main aim was to do the parallel of [Sh2] in our context, and it is natural to 

assume K is PC so. 

Sections 4,5 present work toward this goal (§5 assuming 2 ~° < 2 e ' ;  §4 without it). We 

should note that dealing with superlimit models rather than full ones make problems, as well 

as the fact that the class is not necessarily elementary in some reasonable logics. Because of 
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the second we were driven to use the forcing, and "the type ~materialize": gtp(~, N, M). 

We also (necessarily) encounter the case I D (R 0)1 = R 1. Because of the first, the scenario for 

getting a full model in 1~ (which can be adapted to (Rl,{~l})-superlimit - see 5.9) does not 

seem to be enough for getting superlimit models in R 1 (see 5.24). 

We had felt that arriving at enough conclusions on the models of cardinality ~1 to start 

dealing with models of  cardinality ~2, will be a strong indication that we can complete the gen- 

eralization of [Sh2], so getting superlimits in R 2 is the culmination of this paper and a natural 

stopping point. The rest (of the parallel to [Sh2]) was delayed, and Grossberg had taken it on 

himself. 

Grossberg and Shelah [GSh2] will do parallel work replacing R 0 by any cardinal. 

Much remains to be done. 

1. Proving (*)3, (*)4  in our context. 

2. Parallel results in ZFC; e.g. prove (*)3 for n = 1, 2 g° = 2 g~ . 

Note that if 2 g° = 2 ~ , assuming 1 < I ( ~ I , K )  < 2 g~ give really less-new phenomena 

arise (see §6). See §4 (and its concluding remarks). 

3. Construct examples; e.g. K (or ~g e Lo~.o), categorical in ~0, R 1 . . . . .  Rn but not in 

N n + 1 . 1  

4. If  K is PC~., categorical in ~.,~.+, does it necessarily have a model in ~+÷? 

The work was done in 1977, and a preprint was circulated. Meanwhile an exposi- 

tory article of  Makowsky [Ma] represent, give background and explain the easy parts of 

the paper. The author have corrected and replaced some proofs and added mainly §6. 

We thank Rami Grossberg for lots of work on previous versions, which improved the 

paper, and the writing up of Section 6. 

In late 85 much was done on this [Sh 10] 
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§1. Axioms and Simple Proper t ies  for Classes of Models 

1.1 Conventions. 

Here K will be a class of L-models and <K a two-place relation on the models in K (we 

usually omit K). We do not distinguish between K and (K,<K). We shall assume that K, <K are 

fixed, and M <K N ~ N, N e K; and we assume that the following axioms hold. When we 

use < in the usual sense we write <L,.,. 

1.2 Definition: Ax 0: The holding of  M e K, N < M depend on N, M only up iso- 

morphism i.e. [M e K,M = N ~ K], and [if N < M and f is an isomorphism from M onto the 

L-model M" mapping N" onto N" then N" < Mq. 

Ax I: If M < N then M c N (i.e. M is a submodel of N). 

A x I I :  M 0 < M  l < M z i m p l i e s M  0 < M 2 , a n d M < M f o r M e  K. 

Ax HI:  If X is a regular cardinal, M i ( i < ~ . )  is a <-increasing (i.e. i < j < ) ~  

implies M i < Mj) and continuous (i.e. for 5 < )~, M8 = k..) Mi) then Mo < k.) Mi. 
i<5 i<~ 

Ax IV: If  k is a regular cardinal M i 

k..) Mi <N. 
i< 

(i < 9~) is <-increasing continuous, M i < N then 

A x V :  I f N  0 c N 1 < M , N  o < M t h e n N  o < N  1, 

Ax VI:  I f A  c_N; IAI < ~.(K) then for some M < N, A ~ IMI < ~.(K) (we assume for 

simplicity I L t < ~(K)). 

Notation: Kx = {M ~ K : IIIM III = ~.}, K<~. = k.) K~t. 

1.3 Definition: The embedding f : N - - +  M is a K-embedding if  its range is the 

universe of  a model N '  < M, 

(so f : N -~ N" is an isomorphism onto). 
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1.4 Definition: Let T 1 be a theory in L I, L _c L 1, F a set of types in L 1. 

(1) EC(T 1 ,F) = {M : M an L 1-model of T 1 which omits every p ~ F}. (so L I is recon- 

structible from T 1,F) 

PC(T1,F,L) = { M : M i s  an L-reduct of someM1 e EC(T1,F)}. 

(3) We say K is PC~ if for some T1,T2,F1,F2,  L: K =PC(T1,F1,L), and 

{ ( M , N ) : M < N ,  M, N e K }  =PC(T2,['2, L') where L ' = L u { P }  (P a new one place 

predicate), I T t I < ~., I F t I < g for ~ = 1,2. If  g = 9~ we omit it. 

1.5 Example:  If L1 = L, T1,F as above, then K~=IEC(T1,F), •g  =a'f<L~.. satisfy the 

Axioms from 1.2 (for)~(K)~J'IT11 + R0). 

1.6 Lemma:  Let I be a directed set (i.e. partially ordered by -<, such that any two 

elements have a common upper bounded). 

(1) If  Mt is defined for t e l ,  and t < s ~ l i m p l i e s  M r • M s  then for every t e l ,  

Mt < u Ms. 
s c I  

(2) If in addition t ~ I implies M t • N then g Ms • N. 
sE[ 

Proof:  By induction on t l i  (simultaneously for (1) and (2)). 

I f / i s  finite, then I has a maximal element t(0), hence g Ms = Mr(0), so there is nothing 
t e l  

to prove. 

So suppose II1 = g and we have proved the assertion when III < It. Let ~. = cf la so ~. 

is a regular cardinal. We can find lc~ (~ < )~) such that I l a l  < I / I ,  ct < [3 < )~ implies 

I a  ~_I[~ __I, g I s  = I ,  for limit ~ < )% I s  = g I a  and Ic~ is directed and non-empty. Let 
s<~. s<~ 

Ma = U Mr; so by the induction hypothesis on (1), t ~ I s implies Mt • MS; [ and if we are 
t~l~ 

proving (2) by the induction hypothesis on (2), M s • N]. If  ~ < ~ then t ~ I s  implies 

Mt < M ~ ;  hence by the induction hypothesis on (2) M s =  k.) Mt • M  ~. So by Ax III 
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MC~ < k.) MI~ = k.) Mr, and as t E I a  implies Mt < M cL, by Ax I I t  ~ I implies Mt "< k J  Ms. 
~<~. tel  sEI 

[If we are proving (2)by Ax IV, k.)Ms = k.) M a  < N]. 
s~l cx<% 

1.7 Lemma:  Let L1 = L  u { F ~  : i  < ~.(K),n < co}, F~ an n-place function symbol 

(assuming, of  course, F~ ~ L). 

Every model M (in K) can be expanded to an L 1-model M 1 such that: 

(1) M ~ < M  when WE nlMI and where M~ is the submodel of  M with universe 

{F~(a) : i < X(K)}, 

(2) i f ~  E n I M~I then IIIMa III _< ~.(K), 

(3) if b is a subsequence of ~, then Mg < Ma, 

(4) for every N 1 c_M1,N 1 t L  <M.  

Proof:  We define by induction on n, the values of F~(~) for every i < ~(K), 

~ E n l M I .  By Ax VI there is an M a < M ,  IIIM~III<X(K), IM~t include k . ) {Mg: -ba  

subsequence of a of  length < n} k.) d and M~ does not depend on the order of a. Let 

I Ma I = {ci : i < i o < ~.(K)}, and define F~(~) = ci for i < i 0 and c 0 for i0 < i < ~.(K). 

Clearly our conditions are satisfied if b is a subsequence of ~, Mg < Ma by Ax V. 

Remark :  This is the only place we use Ax V, VI (except in 2.7 which is not used 

later); and it is clear that we can omit Ax V if we strengthen somewhat Ax VI. 

1.8 Lemma:  1) There is a set F of  types in L z (from Lemma 1.7) such that 

K = PC(O,F,  L). Moreover i f M  1 "eL,., N1 ~ EC(O,F) ,  M, N the L-reducts of  M 1, N1 resp. 

then M <tc N. 

2) Similar results hold for {(M, N) : N < M ; N, M ~ K}. 

Proof:  1) Let F n be the set of  complete quantifier free n-types in L 1, P (xo . . . . .  Xn-1), 
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such that: if M 1 is an L 1-model, d realizes p in M 1 and M is the L-reduct of M 1, then 

M~ <g M~ for any subsequence b of E; where MzfE e m IM 1 I ) is the submodel of M whose 

universe is {Fr~(-E) : i < X(K)} (and there are such submodels). 

Let F be the set of p which are complete quantifier free n-types (in L 1) which do not 

belong to I',, for some n < co. 

By 1.6 PCt (O,F ,L)  __. K and by 1.7 K c_ PC(O,P,L)  

2) Applying 1.7 to M, when N < M w.l.o.g. ~ e nN =~ M a ~ N. 

We let F'n be the set of complete quantifier free n-types in L'i  ~IL1 k..) {P} (P a monadic 

predicate), p (xo . . . . .  xn-1) such that: 

(*) ((~) if M 1 is an L 1-model, ~ realizes p in M 1, M the L-reduct of M 1, then Mg <K M~ 

for any subsequence b of ~ where Mr (g e I M 1 I ) is the submodel of M whose universe is 

{Fro(g) : i < ~(K)}, (and there are such models), 

(~) b G P  M~ ~ M g  G P  for b c a. 

We leave the rest to the reader. 

1.9 Conclusion: There is L1, L c L 1 ,  ILl  l < ~.(K) such that: for any M e K and any 

L 1-expansion M 1 of M which is in PCt(O,F), 

N1 <L,~,,~M1 ~ N 1  rL <KM 

N1 <L~. N2 <L~..M1 ~ N 1  r L ":KN2 t L. 

1.10 Conclusion: If for every o~ < (2z(K)) + K has a model of cardinality > "~a then K 

has a model in every cardinality > ~.(K). 

Proof. Use 1.8 and the value of the Hanf number for: first order theory and omitting 

any set of types, for languages of cardinality %(K). 
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§2 Amalgamation Properties and Homogeneity 

2.1 Definition: D(N) = {N/= :N < M, IIINIIt < X(K)}. 

D(K) = {N/= : N e K, IIIN III _< X(K)}. 

2.2 Definition: Let X > X(K) 

(1) A model M is X-model homogeneous i f  whenever N O < N 1 < M, IIIN 1 III < X, f an 
<-embedding of  No into M, then some <-embedding f" : N 1 ~ M extend f. 

(2) M is X-strongly model homogeneous if: for every N e K<x such that N < M and 
f : N--> M is a K-embedding there exist a K-automorphism g : M ---> M extending f. 

(3) M is X-saturated homogeneous if for every N t e K<~.(~ = 0,1) such that N O < N 1 if 
there exists an K-embedding f : No --~ M then there exists an K-embedding g : N1 --> M extend- 
ing f. 

4) For each of the above three properties, if  M has power X and has the X-property then 
we say for short that M has the property (i.e. omitting X). (saturated homogeneous is usually 
called universal homogeneous). 

5) M is (D,X)-sequence-homogeneous if: D = {tp(~,O, M): ~ e IMI} and i f a i  e M for 
i < ~ < X, bj e M for j < o~ and tp((a i : i < ~ ) , O , M )  = tp((b i : i < o~),0, M),  then for some 
ba  e M, tp((a i : i < ¢x),0, M)  = tp((b i : i < ~ ) , O , M ) .  We omit the "sequence" sometimes. 

2.3 Theorem:  Assume N is X-model-homogeneous, ~(M) ~ ~(N), (X(K)< X of 
course). Then 

(1) If  M o < M 1 < M, IllM0 I11 < ~., IIIM 1 I11 < X, f a K-embedding of M 0 into N, then we 
can extend f t o  a K-embedding of M 1 into N. 

(2) If  M 1 < M, IIIM 1 III < X then there is a K-embedding of M 1 into N. 

Proof: We prove by induction ~t < X that 

(i)x for every M 1 < M, IIIM 1 I11 < t.t there is a K- embedding into N. 

(ii)x i f  Mo <MÂ < M ,  IIIM 1 Ill <I t ,  IIIM0111 < 1.t then any K-embedding of  M0 into N 
can be extended to a K-embedding of  M into N. 

Then clearly (i);~ is (2) and (ii)k is (1). 

Proof of  (i)~: 

If  g < )~(K), this follows by ~(M) ~ ~ N ) .  
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If g > ~.(K) then by 1.9 M 1 : ~,/ M~, M~ t < M 1, M~ t is <-increasing and continuous, and 
or<Ix 

IIIM~ III < It. We define by induction on oq a K-embedding f a  : M~ ---> N, such that for [3 < t~, 

f a  extend f[~. We can define f0 by (i)z([~) where Z([3) = IIIM~ III. We then define f a  for 

ct = y+ l :  by (i)z(a) there is an K-embedding ga  of M~) is a K-embedding of a Ml,b) is a K- 

embedding of MC~,b into N; Now let Me~,a = ga(MC¢), Mla, b = gct(M~), so ( f ro  g~l into N, so 

there is a K- embedding ha  of M~,a into N extending (f,~ o g~Â ). Now (ha o ga) is a K- 

embedding of M] ~ into N extending f./, as required, and for limit or, f a  = k..) ff~ , f a  is a K- 
[~<a 

embedding into N by 1.6. So we finish the induction and k_) fct is as required. 
a<~t 

Proof  of (ii)~: 

Let g be a K-embedding of M 1 into N, it exists by (i)g which we have just proved. Let g be 

onto N ' I < N ,  and let g rM0 be onto N ' 0 < N ' I ,  and let f be onto No <N.  So clearly 

h : N'0 ----> No define by hg(a) = f ( a )  for a ~ IM01 is an isomorphism from N'o onto No. As 

No,N'o,N" 1 < N, i f  IIIN'I III < %, we can extend h to an isomorphism h" from N '  1 onto N 1 < N, 

so hg : M1 ---> N, where h0 = h; and let h '  = h~. 

2.4 Conclusion: (1) If M, N are model-homogeneous, of the same cardinality and 

D(M) = D(N) then M, N are isomorphic. Moreover if M 0 < M, IIIM 0 III < IIIM III, then any K- 

embedding of M0 into N can be extended to an isomorphism fi:om M onto N. 

2xor) 
(2) The number of model homogeneous models of cardinality )~ is _< 2 . 

(3) If  M is ~.-model-homogeneous, D(M) = D(K) then M is ~.-universal, i.e., every 

model M (in K) of cardinality < ~., has a K-embedding into M. 

(4) If M is )~-model-homogeneous then it is ~.-saturated homogeneous for 

{M ~ K<_~ : D(N) c_ D(M)}. 

(5) If  M is ~.-model homogeneous, D(M) = D(K) then M is )~-saturated homogeneous 

for K. 

Proof: (1) Immediate by 2.3(2), using the standard hence-and-forth argument. 
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(2) The number of models (in K) of power < )v(K) is, up to isomorphism, -< 2 ;~(K). 

Hence the number of possible ~(M) is < 2 2x*K~. So by 2.4(I) we finish. 

(3),(4),(5) Immediate. 

2.5 Definition: (1) A model M has the (;L,~t)- amalgamation property (= am. p.) if: for  

every M1, M2 such that IIIM 1 III = ~, IIIM2 fit = ~t, M < M1, M < M2, there is a model N, and 

K-embedding f l  : M 1 --~ N and f2 : M2 "-) N, such that f l  t I MI = f2 t 1MI. Now the mean- 

ing of e.g. the (<9~, <g)- amalgamation property is clear. Always ~,g  > ~(K). 

(2) K has the (~:,)v,l.t)-amalgamation property i f  every model M (in K) of cardinality K 

has the ()v,f.t)- amalgamation property. The (~,~.)-amalgamation property is just the (~:,~:,L)- 

amalgamation property. The K- amalgamation property is just the (~,~:,~;)-amalgamation pro- 

perty. 

(3) K the 0% bt)-JEP (joint embedding property) i f  for any M 1 e K, M 2 ~ K of cardinal- 

ity ~g, bt respectively there is N ~ K into which M 1 and M 2 are K-embeddable. 

4) ~L-JEP is the (TL,)v)-JEP. 

5) The amalgamation property means the (~:,)v, bt)-amalgamation property for every 

k, ~ > ~ (>)~(K)). 

6) The JEP means the 0~,g)-JEP for every )v, bt. 

Remark :  Clearly in all cases, the roles of ~,l.t are symmetric. 

2.6 Theorem:  1) If )~(K)< ~¢<_~, )~=)L <~, K ~ * O ,  and K has the (<~,)Q- 

amalgamation property then for every model M of cardinality ~, there is a ~:-model homogene- 

ous model N of cardinality ~, M < N. 

2) So in (1) if ~ = ~, there is a universal, homogeneous model of cardinality )v, provided 

that for some M e K<X, ~(M) = ~(K). 

2.6A Remark :  1) The last assumption of 2.6(2) holds e.g. if (<)v(K), < 2~'(K))-JEP holds 

and ID(K)I  _<~L 
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2) If  for some M ~ K, D(M) = D(K) then we can have such M of power < 2 ~(K). 

3) We can 2.6 replace the assumption "(<~:,~)-amalgamation property" by "(<~:,<~,)- 

amalgamation property" i f  e.g. no M ~ K<~. is maximal. 

Proof: Immediate. 

2.6B Remark:  Also the corresponding converses holds. 

2,7 Lemma:  (1) If  K has the ~-amalgamation property then K has the (~,~÷)- 

amalgamation property and even the (~:, ~÷, ~:+)-amalgamation p~roperty. 

(2) If ~,i (i < t~) is increasing and continuous, X(K) -< ~ ,  and for every i < ct, K has the 

(~'i,13" + ~'i, ~'i +1 ) -amalgamat ion property then K has the 0~0,g+)~,~)-amalgamation property. 

(3) If  ~ < kt < ~,, K has the (~:,g,t.t)- amalgamation property and the (l.t,~.)-amalgamation 

property then K has the (~,~., kt)-amalgamation property. 

(4) If  ~: -< I-q < It, and for every M, IIIM III = ~1.1, there is N, M "~ N, IIIN III = kt, then the 

0c, kt,~,)-amalgamation property (for K) implies the 0¢,l.q, ~.)-amalgamation property of M. 

Proof:  Straightforward. 

2.8 Conclusion: If  K has the K-amalgamation property for every Zt -< r < •2 then K has 

the (~:,~,,~t)-amalgamation property whenever X1 < ~ <- ~ < Z2, ~: < k t < Z2- 

It may be interesting to note that even waiving AX IV we can say something. 

2.9 Context: For the remainder of this section, Ax IV is not assumed. 

2.10 Definition: Let M e K have power X, a regular uncountable cardinal. We say M is 

smooth if there are (Mi : i < ~,), M i is increasing continuous Mi < M, lIlM i I11 < ~., M = k.,) Mi. 
i<~, 

2.10A Remark:  We can define S/D-smooth, for S a subset P(~,), D a filter on p(~,) 
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(naturally such that for every one- to-one function from 9~ to )~, {a ~ P@):  a closed under 

j~ e D, and usually a normal ~.(K) +- complete filter) 

2.11 Lemma : If M, N ~ K)~ (X > )~(K)) are smooth, model homogeneous, and 

D(M) = D(N) then M = N. 

2.11A Remark:  It is reasonable to consider 

(*) If  M ~ K~., ()~ > ~(K)) is smooth and model homogeneous, and N e KZ is smooth, 

~(N) c_ ~(M) then N can be K-embedded into M. 

This can be proved in the context of "universal classes (e.g AxFrl). 

Proof: Left to the reader. 

2.12 Fact: If  (K/,<i) satisfies the axioms with )~i = ~*i(gi,<i)( >- l '~0) for i < o~, 

K = ('7 Ki and < is defined by M < N if and only i f  for i < o~, M <i N, then (K, <) satisfies the 
i < ~  

axioms with )~(K, <) <- ]~ Xi- We can add Ax IV (to assumption and conclusion). 
i<ot 

Proof: Easy. 
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§3 Limit  Models  and  Other  Results 

In this section we introduce various variants of limit models. We prove that if K has a 

superlimit model M* of power ;L for which the )~-amalgamat!ion property fails, 2 x < 2 ~'÷ then 

I(~,,K) = 2 ~" (see 3.5). We then prove a generalization of: if ~t ¢ L o ,  o~(Q) is categorical in 

R1 then it has model in 1I 2. (see 3.7, 3.8). Now that. 

The reader can read 3.1(1), ignore the other definitions, and continue with 3.4(2),(5), and 

everything from 3.5, (interpretating all variants as superlimits). 

Example:  Let ~, have cofinality > R 1, then 

K = {(A, <) : (A,<) a well order of  order type < X+} 

<K = {(M, N) : M, N ~ K, N an end extension of M} 

is an abstract elementary class, categorical in )~+. 

Note that if we are dealing with classes which are categorical or simple in some sense, we 

have a good chance to find limit models, and they are useful in constructions. 

3.1 Definition: Let X be a cardinal _> ~.(K). 

1) M ~ KX is superlimit if  

(a)for every N ~ K~. such that M < N there is M '  ~ Kk, N < M" and N ~ M'.  

(b) if 5 < ~L + is limit (M i : i < 5) is <-increasing, and (for i < 5) M i = M then 

k..) Mi =-M. 
i<5 

2) For S c {~t : R 0 < g _< )~,lx regular}, M e KX in (X,S)-superlimit if: 

(a) from above holds and 

(b) Mi --- M is (<- )  increasing for i < tl ~ S then k.) Mi = M. 

3) Let S c_ ~.+ be stationary. We call M ( ~ K t )  S-strongly limit if  for some function 

F : K~ ~ K~: 
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(a) for N e Kx, N < F ( N ) , N ¢ F ( N )  

(b) if 8 • S, (M i : i < 5) is an increasing continuous sequence of  members of 

KL, Mo --- M, F (M i +1 ) < Mi +2 then M =__ k.) Mi 
i<~ 

4) Let S ~ +  be stationary. We call M (eKn)  S-limit if for some function 

F : K;~ ---) K;~: 

(a) fo rN e K~., N < F ( N ) , N  ¢ F ( N )  

(b) if (M i : i < ~,+) is an increasing continuous sequence of members of K~., 

M 0 = M, F (M i +1 ) "< Mi +2 then for a closed unbounded subset C of  ~.+, 

[8~ S('~ C =~ M~ =-M] 

5) We define "S-weakly limit", "S-medium limit" like "S-limit", "S-strongly limit" reps. 

replacing "F (Mi +l ) "< Mi +2" by "Mi+ 1 ¢ F ((Mj : j <_ i+ 1)) < Mi +2". 

6) If  S = ~.+ then we omit S (in parts (3),(4),(5)). We call M weakly limit if it is S- 

weakly limit for a dense family of stationary S ~ IIIM III +. 

7) For S ~{IX: R0 < g  <~-, tx regular}, M is (X,S)-strongly-limit i f  M is 

{5 < ~+ : c f  8 ~ S}-strongly-limit. Similarly for the other motions. 
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Obvious Implication Diagram 

(where S ___ {It : It regular <)~} $1 ~ {8 < ~,+ : c f  8 ~ S} is a stationary subset of 

superlimit = @,{it : l.t<~, regular})-superlimit 

@,S)-superlimit 

S 1 -strongly l imit 

S 1 -medium limit S 1 -limit 

S 1-weaklY limit 

{g:g<_)~ regular}-strongly limit 

weakly limit 

3.2 Lemma:  1) If  Si c_ )~+, for i < ~,+, S = {or < )~+ : (3i < c0a  • Si}, Si ('7 i = O for 

i < ~, then: M is Si-strongly limit for each i< )~ i f  and only i f M  is S-strongly limit. 

2) Suppose ~ < 9~ is regular and S c_ {8 < ~.+: c f  8 = K;] is a stationary set and M e K)~ 

then the following are equivalent: 

a) M is S-strongly limit 

b) M is (~,,{~:})-strongly limit 

c) there is a function F : K~. --) K~., (VN • K~.) [N <K F ( N )  ^ N ~ F (N)] such that if 

M i • K~. for i < ~:, [i < j ~ M i < Mj] ,  F ( M  i +1 ) ~: M i  +2, M o  = M then k.) Mi = M. 
i<K 

3) In part (1) we can replace "strongly limit" by "limit", "medium limit" and "weakly 

limit". 

4) Suppose ~c < ~. is regular, S ~ {8 < ~.+ : c f  8 = K} is a stationary set which is good 

(see below in the appendix and [Sh6]), and M • K~. 
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The following are equivalent: 

a) M is S-medium limit 

b) there is a function from k_)a(Kx) to K such that 
~<K 

(ot) for any (Mi :i Not}, M 0 = M, if ot < ~;, M i is <-increasing, 

Mi e KX, then Mc( < F ( ( M  i : i Not)) 

(~) if (M i : i < K} is <- increasing, Mo = M, M i e KL, and for i < ~, 

Mi +1 < F ((Mj : j < i + 1}) < M i +2 then k.) Mi =- M. 
i<K 

3.3 Lemma:  Let T be a first order complete theory, K its class of models, <K = <L,,,,~. 

1) If  ~, is regular, M a saturated model of T of power k, then M is (k, {'L})-super limit. 

2) If  ~. is singular, M a special model of T of power ~. (i.e. M = k_) Mi, Mi is ~i- 
i<cf ~, 

saturated, (Mi : i < cf ~) increasing, ~ = ~ ~,i) then M is (~,,{cf L})-strongly limit. 
i<cf X 

3) If  T is stable, and M a saturated model of T of cardinality ~. then M is 

(~.,{l-t : K(T) < f-t < ~,,g regular})-superlimit (on K(T)-see [Sh3, III §3]). (note that by [Sh3] if ~. 

is singular and T has a saturated model of  cardinality ~. then T is stable, cf  k > K(T)). 

4) If  T stable, ~. singular > ~(T), M a special model of  T of power ~., 

S c {8 < ~.+ : c f 8  >_ ~(T)} is good (see [Sh6] or appendix) then M is (~.,S)-strongly limit. 

Proof: 1) I f M  i is a ~-saturated model of  T for i < 8, c f 8  >- ~ then k_)Mi is ~.-saturated. 
i<8 

Remembering the uniqueness of a X-saturated model of T of power % we finish. 

2) We use the (well known) uniqueness of the special model. Note that an increasing 

union of special models of length cf )~ seem not to be necessary special, however if: for i < cf )~, 

M i is a model of  T of power k, Mi = t..) Mi,~, Mi,~ increasing in ~, Mi,~ ~.i-saturated and 
~<cf~, 

)~= • )~i, and (Vi<j<cf)~) ( 3 { < c f ) ~ ) ( V ~ ) [ ~ < _ ~ < c f ) ~ M i ,  g~Mj ,~]  then k.) Mi is 
i<cf ~ i<cf )~ 

special. 

3) Use [Sh3 , I I I  3.11]: if M i is a ~,-saturated model of  T,, (Mi : i < 8) increasing 
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cf  8 >- ~:(T) then k.) Mi is X-saturated. 
i<~ 

4) Left to the reader. 

3.4 Cla im:  1) If  M t e Kx are S t- weakly limit, S o ("h S 1 ~ (~ mod D ~ then M 0 = M 1, 

or M o , M  1 cannot be embedded into one model. 

2) K has at most one weakly limit model of cardinality X provided K has (~.,~.)-JEP. 

3) If M e K~., then {S c_ ~.+ : M is S-weakly limit o:r S not stationary} is a normal ideal 

over X +. 

Instead "S-weakly" limit "S-medium limit", "S-limit" "S-strongly limit" can be used. 

4) In Definition 3.1 w.l.o.g. F (M) ---M or F (M) = M). 

5) If  K is categorical in ~,, then the M e KX is superlimit limit provided that K~. e O 

(or, what is equivalent, M has a proper K-extension), 

Theorem 3.5: If M e Kx is S-weakly limit, S is not small (see [DSh]) and M does not 

have the X- amalgamation property then I (~+,K) = 2 x* , and there is no universal member in 

K~+. Also there are 2 ~÷ models M e KL. no one K-embeddable into another. 

Remark :  1) By [DSh], and see more [Sh 7 ,Ch XIV §1] if  2 x < 2 ;~÷ then S = X+ is not 

small. 

2) We can define a limit family of models (i.e, the result should be in the family). But 

then the family should satisfy that any member does not have the amalgamation property. But 

this complicated the situation, and the gain is not clear, so we abandon this. 

Remark :  A subsequent work is Grossberg and Shelah [GShl].  Now we work in a cer- 

tain framework. There the framework is changed and a full proof appears. 

Proof:  Similar to [Sh2] 2.7, 6.3. 

We can define by induction on o~ < X +, models M~ for ~l e c~2 such that: 
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(i) M.q • K~., M<> = M, 

(ii) for 13 < a ,  17 • a2,  M.qr ~ < M.q. 

(iii) for i +2 < ix, (F I(M ntj : J -< i + 1 )) < M i +2 (F from Definition 3.1 (5)). 

(iv) i f ~  = 13+1, [~ non limit, 11 e a2, then Mnr ~ c M  n. 

(v) if  c~ is limit r I e a2  then: if  M n fail the L-amalgamation property then 

M.q^<0>,M<,q^<I> cannot be amalgamated over M n, i.e. for no N, M n < N • K, and Mn^<0>, 

M~^<I > can be K-embedded into N over M n. 

For c~ = 0, (x limit, we have no problem, for ct+ 1, a-l imit:  if M n fail the L-amalgamation 

property - use its definition, otherwise let M n^<~> = M n; for ~z+ 1, ot non limit- use F, 

Let for r 1 • x*2, M~ = k.) Mrlra. By changing names we can assume that for 
¢x<~. ÷ 

17 e ~2(a  < %) the universe of M n is an ordinal < %+ (or even c_ %x(l+e(rl)) and we could 

even demand equality). So (by (iv), for rl • 2, M n has universe %+. 

First why is there no universal member in K~? if N • K~. is universal, w.l.o.g, its universe 

is %+. For "q • ~'+ 2 as M.q • K~+, there is a K-embedding fn  of  Mn into N. So fn  is a function 
k ÷ 

from ~,+ to ;L +. Let 1"1 • 2, by the choice of F and of  (M~ra : a < %+) there is a closed 

unbounded Cn c %+ such that for a • Cn Mnr~ - M, hence Mnrct fail the %-amalgamation pro- 

petty. W.l.o.g. for ~ •  Cn, Mnr a has universe 5. Now by [DSh], if for 11 • 2, 
~+ 

fT1 : %+ ~ %+, Cn c_ %+ closed unbounded then for some r l ¢  v • 2, and 8 e C n ('7 S, 

~1 r 6= v r ~, rl(~) # v(5) andAa r ~ = fv  r 8. 

Now as 6 e  S ~ C n, Mnt 5 _=_M hence fail %-amalgamation property. Also Malta has 

universe 5 as 6 e C n. 

So fn  r M~qr ~ = fn  r 6 = fv r 6 = fv  r Mvrs. So f~ r Mnr(~+l), fv  r Mvt(a+l) show that 

M~lr(5+l ), Mvr(~+l), can be amalgamated over Mnra contradicting (v) of the construction. 

It takes some more effort to get 2 ~" pairwise non isomorphic model. 
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Case A: There is M* < N • K~ there are • K~., M < M *  such that for every N, M* 

M* N 1, N 2 • K~.,N -< N I , N  < N  2 a n d N  2, N 2 cannot be amalgamated over (not just N). 

In this case we do not need "M is S-weakly limit". 

We redefine M~, r l • a 2 ,  c~<)~+: if  o : = 0  M < > = M * ;  if ~ limit 

rl e c~2 : M n = k..) Mnr~; i f~ • 132, a =  ~ + 1, use the assumption f o r N  = M n, now obviously 
[~<ot 

N t ~ N, and N 2 ¢ N, so we can define M n < M~I^<I > • K~., M~I^<I > ~ M n, Mn^<0 > ;e Mn ' such 

that Mn^<0 > Mn^<l > cannot be amalgamated over M*. 

Now 2 x <  2 )c (this is equivalent to "there is a non small S c_ )~+"). Obviously, the 

Mn k_) Mnra,  for 11 • 2 are pairwise non isomorphic over M*, and by [Sh3, VIII 1.3] we 
0~<~, + 

finish. 

Note also that for each rl • ~"2 the set { v •  ~'÷2: My can be K- embedded into Mn} has 

power < I{f : f a  K- embedding of M* into Mn} I <- 2 ~. So if (2~') + < 2 ~'* , then by Hajnal free 

subset theorem, there are 2 x* models M n • K~+ (rl • ;~÷ 2) no one K-embeddable into another. 

If (2~') + = 2 ~'÷ - then repeat the proof in case B below with the M n ' s  we have constructed here. 

Case B: Not case A. 

Now we return to the first construction, but we can add 

(vi) if  1] • (c~+1)2, then if M~ < N 1 , N 2 both in KX, then N 1 , N 2 can be amalgamated over 

M~roL. 

As {W c ~+ : W is small} is a normal ideal (see [ DSh]) (and it is on a successor cardinal) 

it is well known that we can find 9~+ pairwise disjoint non small S t ~ S for ~ < )~+. We define a 

flmction F:  

F (rl,V,13) is one if  for some limit 5 < $.+, 1] • ~2, v e ~i 2, Mn,Mv has universe 5, f i s  a 

K-embedding of M~ into My,  and for some p, v^<0> ,~ P ~- ~'*->2, f c a n  be extended to a K- 

embedding of  Mrl^<0> into Mp 
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For each ~, as S ;  is not small, by simple coding, for every ~ < ~+ there is h;  : S ;  ~ {0,1} 

such that: 

(*) for every rl e ~'* 2, v ~ ~'+ 2, f : 9~+ --* ~,+, for a stationary set of  ~ E Sg, 

F(TlrS, vrg,fr6)  = h~(8). 

Now for every W c_ )~+ we define rlw E ~* 2: 

rlw(a) is h~(ot), i f~ E W (note that there is at most one ~) ifo~ ~ S ;  

~w(a) is zero if there is no such ~. 

Now we can show (chasing the definitions) that for W(1),W(2)c_~, +, W(1 )~W(2) ,  

Mnw(x ~ cannot be K-embedded into M~/wCz~. This clearly suffices. 

Remark :  We can many times (and in paraticular in 3.5) strengthen "there is not univer- 

sal M ~ Kx" to "there is no M E Krt into which every M e KX. can be K-embedded". We need 

--,Unif(X+,S,2,g) (see [Sh 7, Ch XIV §1]). 

Theorem 3.6: (1) Suppose K is P Co  or has models of arbitrarily large cardinals and 

I ( R 1 , K  ) < 2 ~1 . Then there is K1 such that 

A ) M  e K1 ~ M e K, and M "<K1N a M  "<K N and ~,(K1) = ~.(K). 

B) I f K  has models of  arbitrarily large cardinality then so does K I . 

C) K 1 is PC t%. 

D) If K is PC o~, then K ~1 ~ ~ (KI)I% ¢ O ,  AlsoK~o ~ O :=~ (K1)~t o 4 0 .  

E) All models of  K 1 are L~, ~-equivalent, and M <KIN ~ M "<-,o~ N and if Kgo ¢ ~ ,  

K1 is categorical in l%. 

2) If  in (1) we added X(K) names to formulas in L~,o~, we can assume each member of 

Kis  l%-homogeneous. 
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Proof: Like [Shl] 1.1 (using 1.12 for cz = 2) 

3.7 Theorem:  Suppose 

A) K has a super hmlt member M of cardinality %, (% _-'_" ~.(K)) (if K is categorical in ~. 

then by assumption B) there is such M; really k+-strong limit suffine). 

B) K is categorical in ~+. 

C)KisPCx,~.= No orDs,  c f S =  o3o rk  = R1,KisPCgo. 

Then K has a model cardinality ~.÷÷. 

Remark :  1) If ~. = N0 we can wave hypothesis (A) by the previous theorem. 

2) Hypothesis C) can be weakened to: 

(*) K is PCg, and any ~ ~ L~t÷,co which has a model M of order-type ~.+, IPMI = ~., has a 

non-well-ordered model of N cardinality ~., IpM1 = ~,, and {M E K~ :M superlimit} is PC~t 

(among models in K~.) and similarly {(M,F(M)) : M ~ K~}. 

It is well known, see e.g. [Sh3] VII  §5 why hypothesis (2) implies this. 

Proof: It is well known that the instances of (*) needed for (C) are true (see e.g. [Sh3, 

VII §5]. 

Stage a: If  suffices to find No < N1, IIIN0 III = ~k +, N0 ~ N1. 

We define by induction on o~ < ~,++ a model Nc~ e K~+ such that 13 < ct implies N~ < Na 

and N[~ ~Net,  No, N1 are defined [w.l.o.g. IIIN 1111 = ~.+ as ~._> ~.(K)], for limit 8 < ~.++, 

U N a  is as required. For c¢ = ~ + 1, by the ~.+-categoficity, N o is isomorphic to NI~, say by f, 
Ct<~ 

and we define N[~+I such that f can be extended to an isomorphism from N1 onto N[~+I, so 

clearly N~+I is as required. Now U N a  ~ K~, , .  
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Hence the following theorem completes the proof of  3.7 (use F = the identiy). 

3.8 Theorem: Suppose 

(A) K has a 7L+-strongly limit member M* cardinality ~L, as exemplified by 

F :Kx  -~K~.  

(B) (/(~v +, KX* ) < 2 x* , or even just I (TV +, K~, ) < 2 x÷ (see below). 

(C) K and { F ( M ) , M ) : M ~  KL} (and { ( M , N ) : N < N }  of 

p.=;L= Ro, o r p . = ~ = l l s ,  c f S =  R o o r g =  R o , ~ =  RI. 

course) are PC~t, 

(D) If  I.t = Ro, ~. = R 1 then F and the superlimits in K ~  are PC so. 

Then we can find No < Nt ,  N O ~:N 1 such that No, N1 ~ K~., where 

KF* = {L.) Mi : Mi ~ K~., (M i : i < ;L +) increasing continuous M* =_ M i +1 ~: Mi, 

F(Mi+I) < Mi+2}. 

Remark:  Theorem 3.8 is good for classes which are not exactly as required, see e.g. 

3.9. 

Proof  of 3.8: (hence of 3.7). The reader may do well to read it with F = the identity in 

mind. 

Stage b: We now try to find No, N1 as mentioned above by approximations of cardinal- 

ity ~. A triple will denote here (M, N,a), M, N = M  * (see hypothesis A), N < M ,  and 

a e M-N .  Let < be the following order among triples: (M, N,a)< (M',N',a') if a = a' ,  

N < N', M < M" , N C N" and even (3N*)[N < N* ^ F (N*) < N'] 

(3M*)[M < M* ^ F(M*) < N']. (It is tempting to omit a and require N = M (-~ N', but this 

apparently does not work). 

We first note there is at least one triple (as M* has a proper elementary extension which is 

isomorphic to it, because it is a limit model). 

Stage e: We show that if there is no maximal triple, our conclusion follows. First we 

omit F. We define by induction on (z a triple (Met, Na,a)  increasing by <. For (z = 0 see the end 
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of 1st stage, for cc = [3 + 1, we can define (Ma,  Nc~,a) by the hypothesis  of  this stage. For  limit 

8 < X+, (M~, N s , a )  will  be ( U  Met, k.) Net, a )  (notice Na  < M8 by AX IV). Now similarly 
ct<~ et<5 

N = k.) Nee < M = t .J M ~ ,  and the element a exemplif iers  M ~ N, so by stage a we finish. 
ff,<~,+ c~<~. ÷ 

This suffice, and there is no problem to do this. 

Stage d: There are Mi = M* for i < co such that [i < j .~" o) :=~ M j  < M i ], F ( M i )  < Mi+ 1 

and t M co I = ~ I M n I and each M i is superlmit. 
n <  co 

R e m a r k :  See [Shl ,  2.3A]. 

Proof :  As M* as superlimit,  there is an <K- increasing continuous sequence 

(M i : i  < ~+), M i _~M*, M i ~ M *  and F ( M i + l )  < M i +  2. So w . l . o . g . k . )  Mi has universe L +, 
i< L + 

M0 has universe X. 

Define a model  A: its universe is ~,+. 

Relations and Functions: a) those of  U Mi. 
i< x ÷ 

b) R. two place: a R i i f  and only i f  a • M i. 

c) P (monadic relation) P = ). 

c) g two place function such that for each i, g (i, - )  is an i somorphism from M0 onto M i. 

d) < (two place relation - the usual ordering. 

e) relations with parameter  i witnessing M i < ~ Mj .  
j < ~  

f) relat ions with parameters  i witnessing each M ~ is superlimit ,  F (Mi +1) < Mi +2, 

* a" 
Let gt • Lg÷o~ describe this. So W has a non-well  ordered model  A , I P t = X. So let 

A* ~ "an+l < a n "  for n <c0.  

* A* A* Let for a • A , Aa = {X • : ~ xRan} 

Ma = ( A* r L ( K ) )  r A a. 

Easily M a "< A* [ L (K) (use (e)), IllMa Ill = X. In fact M a is superlimit.  
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So Ma. < A* t L (K), Ma, ÷ ~ c_ M a. hence Ma,÷ ~ "<K Ma,. Let Mn =a'/Ma,. 

A* A* L e t l = { b •  : A [ ~ b < an]}. 
.rt< O~ 

Also as for b • l ,  M b < R * t L ( K ) ,  and Mb~'<Mb2 for b l < a ' b 2 ,  clearly 

8~f A* A* M o  = ( t (L (K)) t k..) Ab satisfies Moo < t L (K) hence M co < Mn for n < co. Obviously 
bE1 

M o~ c ('7 Mn, and equality holds as ~ guarantee 
rt<o) 

A* A* (*) for every y • there is a minimal x • such that y • Mx. 

As each Mb is superlimit of cardinality ~., also M ~ is. 

Stage e: Suppose there is a maximal triple, then we shall show I @+,K) = 2 ;~÷ , and even 

I ()~+,K{.) = 2 :~+ , and so we shall get a contradiction. 

So there is a maximal triple (M °, N °, a). So for each super limit M • K~., there are 

M' ,a ,M < M',  a • M '  - M, such that if  M" • Kx ,M"  "~ M",  and N • K~., 

(3N +)(M < N + ^ F (N +) < M e N ^ N "~ M ") then a • N. (That is, in some sense a is algebraic 

over M). On the other hand by stage d for each super limit M • K~., there are M~ (n < co) such 

tha tM <M'n+l  <M'n  ~ K~., and ('7 M'~ = M. 
n<co 

Now for each S c )~+ we define by induction on ~x _< )~+, M s ,  increasing (by <x) and con- 

tinuous with universe an ordinal < ~.+. Let M s = M* and for limit 8 < )~+, M~ = k_) Ms;  by 

the induction assumption Mg is limit, hence isomorphic to M*. For c~ = 13 + 1, [~ successor 

M s = F (M~). So we are left with the case a = 8 + 1, ~ limit (or zero). 

Now if  8 • S, choose MS+l, a~ such that (M~+I ,M~,a~) is a maximal pair (possible as by 

the hypothesis of  this case there is a maximal triple, and there is a unique limit model). If 8 ~ S 

we choose M ~ ' n •  K~., M~ <M~ 'n+l <M~ "n for n < co and M~ = f'7 Ms,n; and let 
n<o~ 

= , M *  M~+I M~ '° (again possible as M~ -- and an assertion above). 
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Now clearly it suffices to prove that if S°,S 1 c ~L +, S 1 _ S 0, is stationary then M s~ ¢~ M s°. 
1 2 

Now suppose f is a K-embedding from M s' into M s°. Then S 2 = {3 < ~.+ : MS~,M s8 has 

universe 5, and for i < )~+[i < 5 ¢=> f (i) < 5]} is a closed unbounded subset of )L +, hence there 

is a limit 5 e  ($1-S°)¢ '-5S 2. Let us look at f ( a ~ ' ) ,  as f ie S 1, a~' e M~'+I - M ~ ' ,  f ( a ~ ' )  
s O 

belongs to M s° - M s  , but M~ ° = O M~ °'~ (as 5~  sO). Hence for some n f ( a ~  ~ ) ~ M~ °'n. 
n < 0 ~  

But then M~ ~ < f-1 (M~°.,,) < M~ ~ (for some large enough [~), and a~ ~ ~ f-1 (M~%); contrad- 
S 1 t~l 1 

icting the choice of  (Ms+ 1 ,M~ ,a~ ). I f F  is trivial, we finish. Otherwise 

3.8A Observation: We have , been innaccttrate: we should consider 

{(M, N) : F (M) = N} as a relation, closed under isomorphism and assume f i s  onto M s°. 

3.9 Conclusion: 1) If k(K) = ~ 0, K is PC go and I (g  1, K) = 1 then K has a model of 

cardinality R2. 

2) If ~ ~ LoI,o~(Q) (Q is the quantifier "there are uncountably many") has one and only 

one model of  power N t up to isomorphism then ~ has a model in ~ 2- 

Proof:  1) By 3.6 we get suitable K1 (as in the conclusion) and by 3.7 K 1 has a model in 

t~2, hence K has a model in R 1- 

2) We can replace gt by a countable theory T ~ Loh,o~(Q). 

Let L be a fragment of  Lo~1.o(Q) in which T is included. W.l.o.g. T "says" that every for- 

mula of  £ is equivalent to a relation, and T is complete 

K = {M : M an atomic L (T)-model of T O Lo, J .  

M < K N i f M ~  K , N ~  K a n d i f ~  M , b ¢ N - M N  ~R[b ,a ] ,  then for someP ,  N ~ P [ a ]  

and (Vx-)[P (2.) -- QyR (y, 2.)] ~ 7". By [Shl] w.l.o.g. K is categorical in Ro- 

Let F be such that for M ~  Kgo, N = F ( M )  means: i f  - a e M ,  M NP[a] ,  

V2.[P (2-) - QyR (y, 2.)] e T then for some b e N - M ,  N ~ R [b,~]. 
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F 
K is a model of V. 

F F 
K has a proper extension in K . 
R: R I 

The rest should be easy. 

Remark :  Proving 3.9(2), we can get M E Kg2, such 

Vx[P(2)  = QyR(y,x-)] E T then {b ~ M : M ~ R[b,d]} has cardinality 1I 2. 

the proof of  3.8 we show that no triple is maximal. 

that M ~P[a - ] ,  

This is because in 

Prob lem:  If  K is PC~., K categorical in X, and X ÷, does it necessarily have a model in 
~÷÷? 

Remark :  The problem is proving (*). 

Sh:88



§4 Forcing and Categoricity 

445 

The main aim in this section is, for K as in §1, what we can deduce from I(I~I,K ) < 2 e~ , 

first without assuming 2 e° < 2 g~ . 

We can build a model of power ~ 1 by an o) 1 sequence of countable approximations. There 

are models which are the union of  quite generic sequence (N,i : i < (D 1 ) ('<- increasing) of count- 

able models, so it is natural to look at them (e.g. if K is cateogorical in 1~ 1, every model in K ~1 

is like that). More exactly, we look at countable models and figure out properties of  the quite 

generic models in K ~ .  The main results are 4.8(a), (f). 

4.1 Definition: For ~. and No ~ K<k let 

1) L°m be first order logic enriched by conjunctions (and disjunctions) of length < Ix, 

homogeneous strings of existential quantifiers or of universal quantifiers of  length < •, and the 

cardinality quantifiers 3 e~" (denoted also by Q). But we apply those operations such that any for- 

mula has < ~: free variables, and the non logical symbols are from L (K). 

2) L(N0, Ai; A)i<a is the language, with the logic L, and with the non-logical symbols of 

L (K), the predicates x E No, x ~ A i ,  and the individual constants, a, a e A. (If we omit No, or 

A, or A i it is omitted here, so Lo, o( ) has the language L (K). 

3) L 1 is as in 1), but we have also variables (and quantification) over relations of  cardi- 

nality < ~.~'~ 

4) (N, No, Ai; A)i<et is the model N expanded by monadic predicates for No, Ai(i < 00 

and individual constants for every c e A. For No we use the predicate P, so we may write L(P) 

instead L(No), but writing L(No) we fix the interpretation of  P. 

4.2 Definition: 

1) For N e K<X, (p(xo,...)eLl,~:(N) we define by induction on q) when 

No IH-~ (P[ao,...] (where N "< No e K<X, ao .... are elements of  No, or appropriate relations over 

it, depending on the kind of  xi) (thus clearly the forcing is define for weaker languages such as 
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For ¢p atomic this means No ~ ¢P[ao,...]. 

For ¢p = A tpi this means 
L 

No IP,-~K cPi[ao,...] for each i. 

For cp=EL~(Y, ao,...) this means for every N1, No <N1 e K<?~ there is N2, 

N 1 < N2 e K<;~ and b- from N2 of the appropriate kind such that N2 Ig}v[b-,a]. 

For ¢p = ~ this means for no N1, No < N1 ~ K<?~ and N 1 I~K ~[ao,...].  

For ~P(Xo .... ) = (Qy)~(y,xo,...) this means for every N1,No < N1 ~ K<?~ there is N2, 

No "< N2 ~ K<Z and a ~ N 2 - N  1 such that N 2 Ig~K~J[a, ao,...]. 

2) The L-generic-type of  a in N is {¢p(x) ~ L : N I~Kcp[a]}, where L is a language for N 

(or some expansion of  it). We say "a" materialize p (or q~) if p (or {¢p}) is a subset of the L- 

generic type of  8 in N. 

4.3 Definition: Let Ni(i <k) be an increasing (by <) continuous sequence, N = k..) Ni, 
i<k 

IIINi III < %, L* a fragment of  the logic LI,~.  

I ) N l s L  -genenc, if for any ¢P(Xo,_.) ~ ao,...~ N: 

N ~ ¢p[ao,..3 ¢* for some t~ < ~, Nct IPr~K v[a0,..-].  

2) The presentation (N i : i < ~) of N is L*-generic if for any cx < X with cofinality > 1¢, 

V(xo,. . . )~ L (Net ,Ni) i~l , I~ct ,  III < lcandao,. . .E N 

N ~ tP[a0, ...] ¢~ for some et < ~,, Nct I~g ~[ao,. . .]  
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and for each ~ _> co, with cofinality ~ ~:, N~ is almost L*(Na,Ni; INa I)iel-generic (see part 4). 

3) N is strongly L*-generic if it has an L*- generic presentation (in this case, if ~. is regu- 

lar, then for any presentation (Ni : i < ~.) of N there is a closed unbounded S c ~. such that 

L* (Ni : i ~ S) is an -generic presentation). 

4) We add "almost" to all the above defined notions if for IN, the inductive definitions of 

truth works except possibly for Q (e.g. N IH-~K 3xcp(x,...) iff for some a ~ N, N I~-i¢ ¢p(a, ... )). 

4.3A Remark:  1) Notice we can choose N i = No = N, so IIIN III < ~.. In particular 

almost L*-generic models of cardinality < ~ may well exist. 

2) So we concentrate on k R 1, and fragments 0 o of L~,co (mainly and its countable = Lo~,~o 

fragments). 

3) There are obvious implications, and forcing is preserved by isomorphism, 

There are obvious theorems no the existence of generic models, e.g. 

4.4 Theorem: 

1)IfNo~ K<~.,~=I.t+,g<K=g, L c L  , ILI  <~.. ThenthereareNi(i <~.)suchthat 

{Ni : i < ;~) is an L-genetic representation o f N =  t J  Ni, (hence N is L-generic). 

4.4A Remark:  I f L  = k.) L ,  IL I < ~, that we can get "(Ni : j < i < ~) is an L -generic 
~ i<X ~i  ~ i  ~ j  

representation of  N for each j. 

From time to time we add some hypothesis and prove a series of claims; such that the 

hypothesis holds, at least w.l.o.g., in the case we are interested in. We are interested in the case 

I (R 1,~:) < 2 ~1, so by 3.6 it is reasonable to make: 

4.5 Hypothesis: K is PCo, < refine <~.co, and K is categorical in R0 and 

1 _<I(R1,K) < 2 ~1. 
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Claim 4.6: For each ~ e N e K ~ ,  and ¢p(Y) e L°,~ (P) (~ finite), (No, No) lg~ ~ tp[a-] 

or (No, No) I~¢ ~ ~¢p[a] (i.e P is interpreted as No). 

Proof:  Suppose not, and for each S ~¢ol ,  we define by induction on a,  

N s e K ~o (c¢ <¢ol),  increasing (by • )  and continuous. N s = N, and for limit ix, NSa = L) N~. 
13<a 

For a = I~ + 1, 13 limit remember (N[~,~) ~ (N,~) as N = No • NI3 hence No • ~  NI~. So 

(Nt~, N[~) does not force ( 1 ~  1) cp[~] nor ~<p[a--]. So there are Mt(~ = 0,1), N~ • M e e KNo, 

(Mo ,N[~)IH-~<p[~], M1 I ~  ~ ~ ¢p[a-]. Now if 13 e S letNSa = Mo, and if 13 e S, NSa = Mt .  For 

tx = 13+1, 13 non limit we take care to guarantee that (NSa : a < c01) will be an L-generic presen- 
~ 

ration. Let N s =  q.) NSa • Now if S ( 0 ) - S ( 1 )  is stationary, (MS(°),-d)~(MS(1),-d),, for if 
( 1 <  (,01 

f :  M S(O) -->M S(1) is an isomorphism, for a closed unbounded set of o ' s  f m a p s  M s(°) onto 

M s(1), so this holds for some c¢ e S (0) - S  (1), and we get a contradiction. By [Sh3], VIII 1.3, 

we get I ( R 1, K) = 2 ~ , contradiction. 

4.7 Claim: For each countable L = L(P) ~ L ° (P), and N e K ~o the number of com- 
~ ~ t x ~ t , t o  

plete L(N)-types p (with no parameters) such that N IH-~¢ 1 (3x-)Ap, is countable. 

Proof:  At first glance it seemed that Keisler [K1] will implies this. However, here we 

need the parameter N, so we need to work a little. Suppose the conclusion fails. First we define 

by induction Na, (ix < ¢o 1) increasing by • ,  I Na I = coa, such that 

(i) (Na : tx < co 1 ) is L- generic, 

(ii) for each 13 < a ,  there is a~a e Na+I - Na materializing an L(Nl~)-type not realized in 

Na ,  (i.e. in (Na, NI~)) (possible by 4.6). 

Now we expand N by all relevant information: the order % c(c e No), enough "set 

theory", "witness" for NI~ • g  Na  for 13 < ct, and F, F ([3,ct) = a~a, and names for all formulas in 

L(Na) (with tx as a parameter). We get a model B. By Keisler [K1] we get models 

B i(i < 2~1), of  power R 1, so that the set of L(N0)-types realizes in N i (the L(K)-reduct of 

B i) are distinct for distinct i's. So (Ni,c)c~No are pairwise non- isomorphic. If  2 ~° < 2 ~1 we 
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So we can assume 2 g ° =  2 gl. We can define Ni ~ Kg  o <-increasing continuous, 

(Ni : j  < i < Rt)  is L(Nj)-generic for every j and for j < i, aj, i ~ Ni+l materializing in Ni÷t a 

complete L(N/)-type Pj, i not materializing in Ni. W.l.o.g. Nj has universe 60x(j + 1). So k.)Ni 
i<  co 1 

realize the types {Pj, i:J < i <601} which are distinct complete L(Nj)-type. Let a be an expansion 

of  k.) Ni, coding enough set theory. We define by induction on ~ < 2 ~°, Net = k.) Nc~,i, Nct,i 
i <  ¢o 1 i <  to~ 

countable and increasing continuous in i. For tx, we define by induction on i < 601, a countable 

model gad- For i = 0, it is some countable elementary submodel of  A. For i = limit 

gad = k_3 ~ , j .  for i = 5+1,5 limit - it is an end extension of aa, S, with a first new element ( 
j<i 

used extensively in [Shl], see [Sh4]). For i = 8 + n, n < 60, ~ limit or zero: there is ai,8 ~ gad 

which aa, i say it realizes an L( aa, S r L (5))- type p, and this type is not realized in N B interpret- 

ing P a s  Nfl,i for any 13 < tx. 

Remark :  An alternative way is to note that choosing pairwise disjoint stationary 

Si ~ 601 for i < 601 we can build /V = (Ni : i < 6ol) (<-increasing continuous sequence of 

members of  K~ o, Ni ~Ni+l)  such that: if i < 8 ~ Si then (N~+I, N~) = (N~, Ni). So for a 

complete L(P)-type p, for every i, (N, Ni) realize p if and only if {5 < 601 : (N, Ns)-realize p} is 

stationary. 

The rest should be clear. 

4,8 Lemma:  There are countable L (P) ~ L ° (P) increasing continuous in ct, closed 
~Ct ~ t.Ol, (0 

under finitary operations, such that: 

a) For each N ~ K0 and every complete L (N)-type p, 
~Og 

N II-I-~¢ ~ (~L~) A p =~ A p e  L (P). Hence for every L ° (P)-formula ~(E) there are formulas 
- o . + 1  - t ~ , ¢ o  

t~n(x) ~ U LO (P) such that (N, N) IH-~' (Vx--)[~(~---V ~o.(E)]. 
OKOI ~~ n 
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b) For every N O < N 1 ~ Kg0 there is N2, N1 "< N2 ~ Kg 0, such that for every d ~ N2, 

q~(2) e L ° (No),N 1 Itt-~ ~ qo[~] o r N  I I!t-~;'--,qg[~]. 
~ f,01, (D 

c) I f N  < N  t ~ Kg0(e = 1,2), a t  E N t, and the L..)L (N)-generic types of  a t  i n N t  are 
Ct ~ 0 [  

equal, then so are the L ° (N)-generic types. In fact there is M, N "< M, and K-embeddings 

f t  : N t ---) M such that f t  maps N onto itself, and f l  (a 1 ) = f2 (a2)- 

d) For each N E Kg0, complete L°;,~(N)-type p, the class {(M, N,~'): M e Kgo, 

N < M, ~ materialize p in (M, N)} is aPC~o class. 

e) Let L2(N) be the set of formulas in L ° o ( N )  in which the quantifier (Qx) does not 

appear. 

If  N < M ~ K eo, g ~ M, and for some complete L2(N)-type p, a materialize p in (M, N) 

then for some complete L°I,~ (N)-type qp, d materialize qp in (M, N). 

f) The number of  complete L °  o~(N)-types p which for some a e M ~ K~to, N "< M, a" 

materialize in (M, N) is < N 1. 

g) If  in f) we get there are N 1 such types then I (1~ 1,K) > II 1. 

4.8A Remark:  We cannot get rid of the case of R 1 types (but see 5.16, 5.17). For let 

K = {(A,E,<):E an equivalence relation on A, each E-equivalence class is countable, 

x < y ~ x E y ,  and on each E-equivalence cIass < is a 1-transitive linear order, and 

xEy ~ (x/ E, <, x)  = (y/ E, <,y)} and M "< N if M c N, and Ix ~ M ^ y ~ N ^ xEy ~ y ~ M ]. 

Proof:  a) We define L (P) by induction on a using 4.7. The second phrase is proved by 
~ l : l  

induction on the depth of  the formula. 

b) By iterating co times, it suffices to prove this for each ~ e N1, so again by iterating co 

times it suffices to prove this for a fix ~ e N I- 
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If the conclusion fail we can define by induction on n < o) for every r] ~ n2, model M,q and 

(p,~(E) e L ° (N) such that: 
~ ¢.DI, (.9 

(i) M<> = N1 

(ii) M n < Mn^<t > ~ Kgo for e = 0,1 

(iii) (M.q,N) Itt-~ ~ (Pn("fi) 

(iv) q~rl^<l> (X) = -a q)rl̂ <O> ( ~  

Now for 11 e °~2, let Mrl = k.) Mntn- Clearly for 1"1 ~ °~2, M n 11t-~-(3E)[ A gNltn(x)], and, after 
n < ( o  n < f D  

slight work, we get contradiction to 4.7. 

c) By a) we can find M e ~ K ~ ,  N t < M e, M t are L (No)-equivalent for each cx, hence 

by (a), L ° (No)-equivalent. As in [Shl], extend M 1 k.3 M2 by enough set theory, (and names 
~ ¢_01 ,0)  

to c e N1 k . ) N 2 ) a n d  find a non-well ordered countable model satisfying enough of  the 

properties of  the previous model. We find countable M t, N t < M t, (M 1 , No) = (M 2, No) as 

required there. 

d) L e t N 0 < M o ~ K ~ o  a n d a o e M 0 b e s u c h t h a t ( M o ,  No) IgK ~1 A q~[a0], clearly 
~(x-)Ep 

{(M, N, a) : M  ~ K ~ o , N E  K~,o,N <M,  and there are M" ~ K~o, M < M "  and K-embedding 

f :  Mo --9 M", such that f (No) = N, g (ao) = a} is a PC v,o class. But by 4.8(b) (and trivialities) 

it is the required class. 

e) If this fails, then (by (b)) for some N t < M t ~ K ~o, fit ~ M t, and p t ,q  t for t = 1,2: 

(i) p t is a complete L2(p)-type. 

(ii) q t  is a complete L °  ~(P)-type. 

(iii) a t  materialize q t  in (Mr, N t ) .  

( iv)pt  c - q t , P q  = P l ,  q l  ~ q 2 .  

So there are M'~ ~ K ~ ,  M t  < M~[ such that a t  realize qt  in M[ .  W.l.o.g. the universe of 

M t  is a set of  countable ordinals, I M 1 I (-5 I M z  I = 0 .  We can define a model A with universe 

0)1, with relation < (the well ordering of  co I), individual constants for the elements of  M1 and 
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M2, the relations of M1 and of M2 etc. So as in [Shl,] using P l  = P2, (using non well ordered 

models) we can find M t,  M t "< M~ ~ K, and (M1, N 1, a l )  =- (M2, N2, 'at ) .  But this easily con- 

tradict q i ~ q2- 

f) Suppose this fails. 

The proof split to two cases. 

Case A: 2 a° = 2 a' .  

We shall p r o v e / ( l l l , K  ) > 2 ~°, thus, (as 2 e° = 2 ~ )  contradicting Hypothesis 4.5 (this 

will be the only use of the hypothesis). 

Let pi( i  < 0 2 )  be distinct complete L°co(P) - types  materialized in some (M, N) 

(N "< M ~ K ~ o) (they exist by the assumption that (f) fail). For each i define Ni, ~, ~i. ~ (a  < o)l ) 

and ai such that: 

(i) N i , .  ~ K g  o has universe ¢0(l+e0 

(ii) (Ni, ct : cx < o)l) is "<-increasing continuous. 

type. 

(iii) ai, a ~ Ni, a+l, a-),a materialize pi in (Ni, ct+l, Ni, cL ). 

0 p (iv) for every ~ < 13 < 0)t, a e Ni, f~, a materialize in (Ni.f~,Ni, a)  a complete L~,co( )- 

(v) ~i,a < o)1 is strictly increasing continuous in a .  

(vi) for cx < 13, N~ is almost L (Na)-generic. 
-8 

0 N (vii) if o~ < [3, d ,b  ~ N~ materialize different Lco,,o~( a)- types in Nf~, then -d,-b realize 

different (Lob,co ("1L )(Na)-types in N~. 
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Let a~ be (H(R2) ,e )  expanded by predicates forK, <, {(Ni. a : o~ < o.}1) },  {-a d ,  Ni and {/}. 

Let a / b e  a countable elementary submodel of a~ so I a/I ('~ o)1 is an ordinal ~5(i) < {D 1 . 

It is also clear that N/~ is Ni,~(i). As a/ is defined for i < o)2, w.l.o.g, for some 8 < o~i, for 

every i < a.~, 8(i) = & Note that (Ni, s, No)  is (Di, R0)-homogeneous for some Di, and D i is a 

set of  complete L (P)-types. Note that (Ni,6,Ni,o,'di, o)g~(Ni, r~,Nj, o,dj, o) for i ¢ j ,  hence 
-8 

I {j : Dj  = Dj} I _< 1~ 0, hence w.l.o.g, i ~ j ~ D i ¢. D j .  

Let F = {D : D  a set of complete L (P)- types, such that for some model ~9 of (-~ 
-8 i<0.~ 

ThL,,.~,(ai), with { a :  aD ~ "a countable ordinal } = 8  (and the usual order) 

D = {{q~(~) : ¢p(-x-) e L (P),  and ..q,D ~ "(Ni, a ,No)  IP,- (p[a--]"} : -d e k.) N~,a} • 
-8 i<5 

So D i e I" for i < OZ, hence F is uncountable. 

By standard descriptive set theory F has power continuoum. So let D(~) e F be distinct for 

< 2 ~° . For each ~, let a°( ; )  be as in the definition of F. We define by induction on (z < co 1, 

a~ (; such that 

(a) a~ (;) is countable. 

(b) a < 13 ~ A~(;) <L... A ~ ) .  

(c) for limit 13, a~ (;) = t..) a~ @. 
I]<a 

a+ a+l "d (d) if d e  aD(~)-- a -~O (~), aD (~) 1:= a countable ordinal" then for a e a~ (~), 

a ~ )  ~ "if a is a countable ordinal then a < a' .  

(e) for a = 0 in (d) there is no minimal such d. 

(f) for every c¢ there is d; ,a  e Ao(~)a+l _ a~(;),  aDf~)a+ ~ "d;,a a countable ordinal and 

for a ~ 0 it is minimal". 
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Let Mg, c~ be the d;,ccth member of the c01-sequence of  models in Ag(;) /13 > 

(remember {(Ni,~:(x < co1}] is a relation of  Ai, with name not depending on i). Let 

M ~ =  k . )M~,a .  It is easy to check that for 0 < c ~ < ] 3 ,  (M~,~,M~,a) is (D(~),N0)- 
~ < 0 )  1 

homogeneous. 

So from the isomorphism type of Mg we can compute D (4)- So ~ ~ ~ ~ M; ~M{. As 

M ;  E K~t~ we finish. 

Case B: 2 e° < 2 e~, 

By 3.5, K has the N0-amaigamation property. So clearly if N < M ~ Kgo, ~ e M, then d 

materialize in (M, N) a complete L °  ,~ (P)-type. We want to use descriptive set theory. 

We represent a complete L ° c 0  (P)-type materialize in some (M, N) by a real, by represent- 

ing the isomorphism type of  some (M, N,~), N < M e K s0, 8 ~ M. The set of representatives 

is Borel, and the equivalence relation is El. [as (MI, N1, a i ) ,  (M2, N2,a2) represent the same 

type if and only if for some (M, N), N < M  ~ K~o, there are K- embeddings f l  :M1 ---~M , 

f2 : m 2 --) M such that f l  (N 1 ) = f2 (N2) = N, f l  (a) = f2 (a)]. 

By Burgess [B], (or see [Sh 8]) as there are > N 1 equivalence classes, there is a perfect set 

of  representation, pairwise representing different types. 

From this we  easily get that w.l.o.g, their restriction to some L (P) are distinct, contradict- 
NIX 

ing part (a). 

Remark :  Note that in case (A) we get many types too but it was not clear whether we 

can make the N~ to be generic enough, to get the contradiction we got in case B. 

(g) Easy. 

1 Next we prove 4.8(e). As qp does not exist there is a formula q0(2)~ Le~,.o~(P) and 

Nt < Mt ~ K0, a t  ~ ~> IMe I such that neither (M1, N1) 114-L (P[a-1] nor 

(M2, N2) N-} ~ (p(al) holds, 
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So by the definition of the forcing, w.l.o.g. (possibly increasing M 1, M2) 

(M1, N1) I[4"~K ~ q)[al] 

(M2, N2) I~K q0[a2] 

We continue with M~- as there (forgetting the "realizing") and get the contradiction. 

It now follows that using Lo~,o(P) would make little difference. 

4.8B Remark :  We may want to replace Lcol,~° by Llo)~.~o in 4.6,4.7,4.8 (except that, for 

our benefit, in 4.8(e); we may retain the definition of LZ(N)). \Ve lose the ability to build L- 
N 

generic models in Ks~ (as the number of  (even unary) relations on N e K~o is 2 ¢°, which may 

be > 1~1). However we can say "~ materialize in N e  K~o the formula 

q~(x~ ~ L~,co(Nn, Nn-1 . . . . .  No;) where NO <" " " < Nn < N, N t  countable) if  for every large 

enough countable M < K e0, ~ materialize q0(2) in M. 

This suffcies for 4.6. 

4.9 Concluding Remarks for Section 4. 

We can get more information on the case 1 < I (R t ,K) < 2 el .  

1) As in 3.5,there is no difficulty in getting the results for the class of models of 

~t ~ Lcol,co(Q) as (using (K, <) from the proof of 3.9(2)) in all constructions we get many non 

F 
isomorphic models, we can make then to be in K . 

2) We can continue the analysis, e.g. deal with sequences No < N1 < " ' "  < Nt e Keo 

such that Nt+ 1 is almost L (Nt ,Nt_  1 . . . . .  N0)-generic. We can get that for any countable 
~ O t  

L c_ Load,co(a) for some c~, any strong L- generic N ~ K el is L-determined. 

3) We can do the same for stronger logic. 

Let us define a logic L . It has as variable 

variables for elements x 1 ,x2 . . . .  and 
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variables for filters E 1 ,E2 ..... 

The atomic formula are: 

(i) the usual ones 

(ii) x ~ Dom E. 

The logical operations are: 

(a) ^ conjunction, ~ negation 

(b) (3x) existential quantification x individual variable. 

(c) (Bfx)[cp,D ]. 

(d) (aaD)q) 

Now in 3fx[%D ], x is bounded but not D and in aaD D is bounded. 

The satisfaction relation is defined as usual and 

M ~ 3fx, D [cp(x, D), D ] if and only if {x ~ Dom D : ~ cp(x, D)} ~ D 

that: 

M N aaDcp(D) if and only if there is a function F from k.) n(S<g~ (M)) ~ S<g I (M) such 

i f  A n ~ M ,  IAnt < R 0, An ~An+l  and F(A  o . . . . .  An+l) ~An+2 then M ~ 9[D(A,:n<co>] 

where D (A.:n<e~ ) is the filter on k.) An, generated by { k_) An - A t : e < co}. 
n<Ct~ n<O~ 
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§5 There  is a super l imi t  model  in t~ 1. 

Here we make 

5.1 Hypothesis  : Like 4.5, but also 2 g° < 2 ~ . 

This section is the deepest. The main difficulties are proving the facts which are obvious 

in the context of  [Sh 1]. So while it was easy to show that every p ~ D*(N) is definable over a 

finite set, it was not clear to me how to prove that if you extend the p to q ~ D*(M), 

(N • M ~ Kg0 ) by the same definition, then q I -p  (remember p,q are types materialize not 

realize, and at this point in the paper we still do not have the tools to replace the models by 

uncountable generic enough models). So we rather have to show that failure is a non- 

structure property i.e. implies existence of many models. 

Also in stable amalgamation symmetry becomes much more complicated. We prove 

existence of  stable amalgamation by four stages (5.15, 5.17(3), 5.20, 5.22). The symmetry is 

proved as a consequence of  uniqueness of one sided amalgamation, (so it cannot be used in its 

proof). The culmination of the section is the existence of a superlimit models in ~ 1 (5.24). 

This seems a natural stopping point as the next step should be phrasing the induction on n 

i.e. dealing with l~n and p ( n - L ) -  diagrams of models of power ~ t .  

5.1 Definition: 1) F o r N  ~ Kg0 let 

D (N) = {p : a complete L ° o  (N)- type over N such that for some ~ ~ M ~ K g0, 

N • M and ~ materialize p in (M, N)}, (i.e. the members of  p have the form cp(~,g), (~ finite 

and fix for p)  ~ a finite sequence from N and q~ e L O,co (N)). 

2) For N ~ K ~o let 

D*(N) = {p : p  a complete L°~,c0 (N; N)-type such that for some g ~ M e K e0, N • M 

and E materialize p in (M, N;  N)}. 

Explanation: (so for every b" ~ N and cp(~,y-) ~ 0 L~.co(N',N) if  p(x-) E D*(N) then 

cp(~,b) ~ p or ~¢p(~,b) E p and i f p  ~ D(N),  bfini te  then cp(~,b) ~ p or ~ ¢p(~,b-) E p. 
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[so a formula fromp • D*(N) may have all c • N as parameters] 

5.2 Lemma: 1) K has the ~0-amalgamation property. 

2) If No < NO • K ~o, A i c N O 

1 e Lco~,~(No,A n . . . . .  A 1;A0), 

for i < n then for every sentence 

N IPr~' v or N IPr~ ~ " V  

3) I fN  < M • Kso, every d • M materialize is (M, N) one and only one type in D*(N) 

(and also in D(N)) .  Also for every q • D*(N) for some M', M < M ' •  Ke0 some b •  M'  

materialize q in (M, N). 

4) For every countable L c_L(P)c_ L °co.co, and N • K s0, the number of complete 

L(N ;N)-types p such that N I ~  1 (3x-)Ap is countable. 
~ 

5) There are countable L (P) o c_ Lco.co(P) for cc < ml, increasing continuous in et,.closed 
~ 0 t  

under finitary operations (and subformulas) such that: 

(a) for each N • K so and complete L (N ;N) type p, 

[N 1 ~ 2 1 3 2 A p ~ ^ p e L  (P)] 
~a+l 

Hence for every L°~l,co (N) formula xF(k-) for some q)n(x') e t..) L 0 (N) for every N e K So 
0 ~ < c o  ~ 0~ 

(N, N) ]H-~ ~ (Vx--)[V(x-)= ',/ ~on(x)] 
n < c o  

6) F o r N e  Ks0, ID*(N)I < N 1. 

Proof: I) By 3.5. 

2) By I) 

3) By 2), (and (1)). 

4) Like the proof of 4.7 (just easier) 
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5) Like 4.8(b) 

6) Like 4.8(f). 

5.4 Claim: 1) Eachp  e D(N) does not split (see [Sh 3] Ch I Definition 2.6, p. 11 or [Sh 

1]) over a finite subset of N, hence is definable over it (that is: there is a function gp, such that 

gp(Cp(Y,y)) is Vp ,~ , z - - ) eL  ° (P) such that for each tp(2,y-)eL ° (N), ~ e N ,  
~ 0 )1 ,021  ~ ( 0 1 , 0 )  

[~p(2,d) e p ¢ ~ N  ~ Xgp,~(d,?)] wherep does not split over?) .  

2) Every automorphism of N maps D (N) onto itself, and each p e D (N) has at most 1% 

possible images. If  g is an isomorphism from No e Kg 0 onto N1 e K g  o then 

g(D(No) ) = D(N1). 

Proof: Easy. 

5.5 Claim: Suppose No <N1 e Kgo, and N1 force that ~,b-(e N 1) materialize the 

same L ° , ~  (No)-type over No, then N1 force they have the same L°~,o~ (No;No)-type. 

So there is no essential difference between D (N) and D *(N). 

o Remark :  Note that in a formula of Lc01,0~ (No,No) all c e No may appear as individual 

constants. 

Proof: We can assume N1 is (Da(N0), R0)-homogeneous for some ~, (see 5.6 below) 

such that c~ is "big enough" (see the demand in the proof). 

Now we shall prove there is an automorphism o f N  1 over No taking ~ to b, and we do it, of  

course, by hence and forth argument. So by renaming and symmetry, it suffices to prove that for 

every c e N1, there is d e N1 such that ~A<c>, b'A<C> have the same L °  ~(No)-generic-type 

over No. By the choice of  cc it suffices to find d in any N2, Nt  < N2. However by the previous 

claim this is easy. [as w.l.o.g, the L°l,o~(No) - type over No that ~ A<C > materialize in (N 1 ,No) 

0 (No)- type over does not split over ~ f'5 No; so if dA<C >, b'A<a > materialize the same Loh,~ 

No then they materialize the same L°I,~ (N0)-type over No]. 

5.6 Fact: There are Da,Da (o~ < o31) such that 
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for N ~ K s0, D a(N)[D~ (N)] is a countable subset of D (N)[D~ (a) (N)]. 

(b) for each N ~K~0, (Da(N) : O~<to01 > as well as (D~(N) : o~ < 601> are increasing con- 

tinuous. 

( c ) D * ( N ) =  k..) D*(N) ,D(N)= k.) Dot(N). 
Ot < ~ 1 (~ < o~ 1 

(d) i f N  1, N 2 ~ K~o, fan  isomorphic from N 1 to N 2 thenfmaps Da(N1)  onto Dc~(N2), 

and D~ (N 1) onto Dot (N2). 

(e) for every ot and N ~ K~0 there is a (Da(N), Ro)-*homogeneous model (see below 

5.7) (obviously it is unique up to isomorphism over N.) 

(f) if N0 < Nt < No ~ Kg 0, N2 is (D~(NI), R 0)-*homogeneous (see 5.7 below) and N 1 

is (D a(No), ~ o)-*homogeneous or just every d ~ N 1 materialize in N 1 some p~ ~ D a(No) then 

N2 is (Dc~(No), ~0)-*homogeneous. 

(g) N1 is (DeL(No), Ro)-*homogeneous, if and only if N 1 is (D*(No)-homogeneous 

whereN0 < N  1 ~ K~0. 

Proof: Easy. 

5.7 Definition: 1) We say that (N 1, No), or just N 1 is (Dc~(No), No)-*homogeneous if: 

a) every ~ N 1 materialize in (N1, No) over No some p ~ D~(No) and every 

q ~ Da(No) is materialized by some b- ~ N1. 

b) If  ~,b ~ N 1, d,b-materialize in (N1, No) the same type over No and c ~ N 1 then for 

some d e N1, ~^<c >,bA<d > materialize in (N1, No) the same type over No. 

2) Similarly for (Dcc (No), Ro)-*homogeneity 

5.7A Remark  : 1) Now this is meaningful only for N < M E K~o, but later it becomes 

meaningful any N < M ~ K. 
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2) Uniqueness for countable models hold in this context too. The two notions 

Now by 5.5, 5.6 

5.8 Conclusion: 1)If  N0 <NI  "<N2 ~ K~to, and ~,b~ N2, (remember N2 determines 

the complete L °,co (N 1 )-generic type of ~,b-) then from the L ° , o  (N 1)-forcing-type of ~ over N: 

we can compute the L ° , o  (No)-forcing type of ~ over No (hence if the L°,co (N1)-forcing-types 

of ~, b over N 1 are equal, then so are the L O,~ (N0)-forcing types of ~, b- over No. 

2) If (N1, No) is (Da(No), R0)-*homogeneous then (N1, No,c)ceNo is (D*a(No), Ro)- 

homogeneous. 

5.9 Lemma: There is N* ~ Kal such that N* = k.) No, Na ~ Kao is increasing con- 
~<f.o 1 

tinuous and Na+ 1 is (D a+l (Na), N o)-*homogeneous. 

5.10 Theorem: The N* ~ Ka: from 5.9, is unique, (even not depending on the choice 

of Da(N)'s) universal and model-homogeneous. 

Proof: 

Uniqueness: For t = 0,1 let Nta, Dta (a < c01) be as in 5.6, 5.9, and we should prove 

k.) N o =  L)Nla  • As Dta(0t<C01) is increasing and continuous, IDtal ~l~ 0 and 
ct<c01 ct<ah 

k.) Dta = D, clearly there is a closed unbounded S ~ c01, such that cz a S ~ D O = Dla. Let 
ct<o h 

S = {cx(i) : i < o31}, o~(i) increasing and continuous. Now we define by induction on i < c01, an 

isomorphism jfi. from N°a(i) on Nla(i), increasing with i. For i = 0 use the Ro-categoricity of K, 

and for limit i, j~ = k.) J~- Suppose j~ is defined, then by 5.4(2) ~ maps D°(i+ 1) =Da(iO +1) (Na(i)O) 
j<i 

onto DOa(i +1)(Nla(i)) and by the choice of S, 0 1 Da(i+l) = Da(i+l) . By the assumption on the Nta, 

Nta(i +1) is t t (Oa(i +1)(Nct(i)), R0-*homogeneous. Summing up those facts and 5.6(e) we see that 

we can extend.~ to an isomorphism from N°(i +1) onto Nla(i +1). 

Now k.) .~ is the required isomorphism. 
i < o h  
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Universal i ty.  Let M e Ke~, so M = L.)Mc~, Mc~ increasing, continuous and 
Ot < ¢.01 

IIIMalll < R0. We now define by induction Nc~(O~<0)l) increasing and continuous, 

IIINctlll = ~0, and for 13 < or, N a is (D cdN [~ ), l, t0)-*homogeneous, and Mc~ < N a .  The only 

novelity over 5.9 is the use of the Ro-arnalgamation property (which holds by 3.5, 0.2, 4.5). So 

the universality follows from the uniqueness. 

Model-Homogenei ty .  So let Nc~, Dc~, N* be as in 5.6, 5.9, and Mt < N* (t  = 0,1) are 

countable, f a n  isomorphism from Mo onto M I- For some 7 < o)1, Mo,M 1 < N~. Every type in 

D(N.t) is realized in N* and N~ is D~(N~,)-*homogeneous for [3 > 7. For some o~ > 7, every 

type from D ( M t )  realized in No t is from D a  (for e = 0,1) so by 5.6(f), Nc~ is (Da(Mt) ,Ro) -  

*homogeneous for e = 1,2, so f can be extended to an automorphism of  Nc~, hence, as is the 

uniqueness part, to an automorphism of N*. 

5.11 Definition: 1) 1) If No < N I  ~ K~ 0, for t = 1,2, Pt ~ D(Nt ) ,  and they are 

definable in the same way (see 5.4, so both does not split over the same finite subset of No). 

Then we call p i the stafionarization of p0 over N 1 . 

2) If N o < N I ~ K ~ o ,  ~ N I ,  gtp*(~,No, N1) is the p ~ D * ( N o )  such that 

N1 N-/~ 1 ^ p [ a ] .  So d materialize (but not necessarily realize) gtp(-a, N o, N1). We omit N 1 

when clear from context. 

3) We say p = gtp * (b, N o, N 1 ) is definable over E ~ N O if 

gtp(b, No, N1) = p -  ~Ip (..) L (No) is definable over ~ (note that p ---~p- is a one-to-one 
~ (01 , f l )  

mapping f romD*(N0)  onto D (No) by 5.5). So stafionafization is defined fo rp  =- D*(No) too. 

5.11A Remark :  1) It is easy to justify the uniqueness implied by "the stationafization". 

2) Note: if No < N 1 < N2 ~ K so, d ~ N 1 then gtp (-d, N 0, N 1 ) = gtp (a, N 0, N2). 

5.12 Lemma:  Suppose N O < N 1 ~ Keo,  Pt  ~ D * (Nt), and P l  is a stafionarization of 

P o over N 1, then p I I-- p o i.e. every sequences materializing p 1 materialize p 0- 

Remark :  1) In [Shl],  [Sh2], [Sh3] the parallel proof of the claims were totally trivial, 

but here we need to invoke I ( N 1 ,K) < 2 ~1 . 
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2) A particular case can be proved in the context of §4. 

Proof:  So suppose N o , N I , P o , P l  contradict the claim. By 5.6(0 there is N 2 c Ks0,  

and 8, N1 < N2 such that N2 is (D~ (N0), l~0)-*homogeneous. We can f indp2 ~ D*(N2)  which 

is the stationarization of p0 ,p  1- So w.l.o.g, for some 8, N 1 is (D;(N0) ,  l~0)-*homogeneous 8, 

and w.l.o.g, p does not split over ~ (by [Sh 3, VIII 1.3]). So for N ~ K s0, No < N, let PN be the 

stationarization of p over N and it can be defined really for any N ~ K s0. Now we define by 

induction on ot a model Nc~ ~ K so (o~ < col), I Net I = co(l+o0, [[~ < ot ~ N~ < Net]; w.l.o.g. 

No, N1 are the ones mentioned in the claim, and Wet e Nct+l materialize the stationarization 

Pet ~ D*6(Nc~) of p0 over Nc~, and for t~ <9, N[~ is (D ; (Na) ,  ~0)-homogeneous (see 5.6(0). As 

for ct > [3 (Net, N[~)--(N1,  No) clearly Wet do not materialize p[~. Let B be (H(I I1) ,~)  

expanded by N, K (--5 H ( N 1 ) < K  r H ( l f l )  and anything else which is necessary. For any 

S _c COl, let BS be a model, satisfying some ~ e Lcol,o(Q) which B satisfies and which "say" 

everything necessary, such that "the set of ordinals" of Bs is I, I = k_) Iet, even I 0 not well 
e t < ( O  1 

ordered, each Iet a countable initial segment of I, tx < ~ ~ I a c_ I[~ ^ Iet :# If~, and I - I a has a 

first element if and only if (z e S, and then it is s (c~). In particular (9 and finite sets are standard 

in Bs. For s e I, N s = Nff ~ is defined naturally, and so is N s = N Bs. Let NSa = t..) N s (see 
s~l~ 

[Sh4], [ Shl]) .  Let s +1 be the successor o f s  in I. 

W.l.o.g. there is a countable B- < Bsuch that B- < BS, and there is no first s, BS ~ "S is a 

countable ordinal, cz < s" for every cz ~ col ('~ I BS I. Let 5 = col ~ I sB'  s I. So if BS ~ "S < t 

are countable ordinals > cz" for ot < o~(*), then (Nt s, Ns 8) is * s , D8 (Ns )- homogeneous. 

So w.l.o.g. N 1 is D~ (N0)-*homogeneous. 

If  tz e S then clearly the type p = pNs satisfies 

(a) p is materialized in N s (i.e. in N~ for a club of [3's,) 

but 

(b) for a closed unbounded C c_ co 1 for no ~ ~ C, ~ > c~ does a sequence from N s 

materialize both p and its stationarization over N~ [remember NSa = N s  because ct e S ]), 

[Proof: As below or weaken (B) by restircting ~ to ~ ~ C U3 S ] 
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* s and (c) for a closed unbound set of ~ > a ,  N~ is (D~ (Na), l~o)-*homogeneous. 

We shall prove that every a < 0)1, if (z ¢ S then a cannot satisfy the statements (a)-(c) 

above. 

This is sufficient for if f : N s (1) ~ N s (2) (for S (1), S (2) c_ col) is an isomorphism, then for 

a closed unbounded set S* of c~ < fOl f m a p s  NSct (1) onto N s(2), hence the property above is 

preserved, hence S(1) f'3 S* = S(2) t"3 S*. But there are 2 ~ , Si ~ col such that for i # j ,  Si-Sj 

is stationary. 

So suppose a ~ S, p are such that for even an unbounded set of l$'s N~ is (D*~(N~), g'o)- 
* s homogeneous, p e DS (Na) is materialized by a e N s in N~, and we shall get a contradiciton. 

There are elements 0 = t(1) < t(1)< "--  < t(k) of / ,  and at+l e (NtS(t)+l-NSt(t)) k.) NS(t-1) 

[stipulating NSt(a) as N s. such that d c_ ak, at ~ at+l, and gtp(ae+1, Nt(t), Nt(t+l)) is definable 

over ~t [why they exist? because of the sentence saying that for every a we can find such 

k,t(~)(~ < k) "dt(~ < k) as above is satisfied by B so we could have made Bs to inherit it by the 

choice of  ~g above ] It follows that gtp (a, Nt(t),s N1(k) ) is definable over a t .  

For some ~, t(~) a l a ,  t (~+l)  ~ I a .  As (z ~ S we can choose t (*)  e I - Ia ,  t (*)  < s(~+t) .  

As c~,p satisfies (c), for some [3 e S, s[~ > t(k) and N~ is (D[(NSa), l~0)-*homogeneous. Now 

N~, s Nt (l+ 1) are isomorphic over Nt (*) (being (D ~ (NtS(.)), R 0)-*homogeneous by the choice of 

Bs as in proving (c). So s Nz(t+l) is (D[ (NSa), Ro)-*homogeneous too hence 

(NtS(~+l), NSa) _= (N1, NO). 

* s As clearly N s ,  NtS(.) are (D~(Nt(t)+l)), R0)-*homogeneous there is an isomorphism f0 
S * S , from NSa onto NtS(,) over Nt(t)+l. As Nt(t+l) is (Ds(Nt(,)),I~o)-homogeneous and 

* s (Ds (N=), g 0)-*homogeneous we can extend f0  to an automorphism f l  of  NS(t+I). Let 7 satisfy 

s(7)>t(k)+l .  As gtp(ak, NS(t+l)) is definable over a t ,  and a t = f o ( d t ) = f l ( - d  t) (as 

at ~ Nt(t)+lS ), and NS+l is (D~* (Nt(t+l)S), R0)-*homogeneous, we can extend f l  to an automor- 

ph i smf2  ofNS+l, f2(ak) = ak. 

So there is in N s a sequence materializing both gtp(~, N s )  = pus and its stationarization 

over NtS(t+l): just ~ ( ~  ak) (so use f2). 
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This contradicts the assumption, as (N1, No) = (Nt(t+l),S N s). 

Remark :  1) In (a),(b), (c) instead PN, we could use: forp  e D (NS). 

2) Imitating the proof, we can show that (c) holds for any ct < c0a ; and we can waive (b). 

5.13 Claim: 1) If ~ e No < N1 < N2 ~ K go, ~ e N2, P 1 = gtp(b-, N1, N2) is definable 

over d, then Po = gtp (b', No, N2) is definable in the same way over d, hence gtp(b, N1, N2) is 

its stationarization. 

2) For a fixed countable M ~ K~0, to have a common stationarization is an equivalence 

relation over {p : for some N "< M, p ~ D*(N)}, (and we can choose the common stationariza- 

fion in D* (M)). 

3) I f N a  ~ K~0 (o~ < co + 1) is "<-increasing and continuous and d ~ No+ 1 then for some 

n < c o ,  for every k, n<k<c~<o~ implies gtp(a, Na, No+l) is the stafionarization of 

gtp(~, Nk, No+l)- 

4) If  N - ~ M a  K, N ~  Kgo, ~ ~ M, then for all M ' ~  K~o, satisfying ~ M', 

N "< M" "~ M, gtp(-d,N,M') is the same, we call it gtp(-d,N,M) (the new point is that M is not 

necessarily countable). 

5) Suppose N o < N 1 (in K), ~ ~ N1, then there is a countable M "< No , such that for 

every countable M', M "< M" < No, gtp (a, M', N 1 ) is the stationarization of gtp (a, M, N 1). 

6) Part 3) holds for Na e K too and any limit ordinal instead of co. 

* , 
Proof:  1) W.l.o.g. for some a,  N2 is (Da(No), l%)- homogeneous, and (D~(N1), 80)- 

*homogeneous. Let p 2 e D* (N2) be the stationarization o f p  1 for N2. 

By 5.5 we can use 5.10 forp  1,P2. 

So by 5.12 P2 I"Pl .  On the other hand, clearly there is an isomorphism fo  from No onto 

N1, f0(a)  = a; and by the assumption above on N2, fo  can be extended to an automorphism f l  

of  N2. 
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Note that f l  maps gtp(b, No) to g tp f f l (b ) , f l (N0) )  but gtp(b, No) =p0 ,  

gtp(f1(-b) , f l (No) ) = gtp(-b, N1) = P l .  SOfl  mapsp0 top1 andp2 to itself. So asp2 is the sta- 

tionarization o fp  a, P2 is a stationarization of p0, so by 2) we shall finish. 

2) Trivial 

3) By 1) 

4) Easy 

5) By 3) and 4) 

6) Easy by now. 

534  Definition: By 5.13 we can define D (N),  gtp(~, N, M) and stationarization for not 

necessarily countable N ~ K. Everything still holds, except that maybe some p ' s  are not materi- 

alized. 

More formally, 

a) if N E K eo, M e K, N < M, p e D * (N) then the stationarization of  p over M is 

defined as in 5.11. 

b) D*(N)) = {q : for someN < M, N e K~o andp E D*(N),  q is the stationarization of 

p over N}. 

c) gtp(a, N, M)  (where a E M, N < M both is K) is the stationarizafion over N of 

gtp(d, N',  M) for every large enough countable N" < N. 

5.15 Claim: Suppose No < N1, N2, N1 E K~0, N2 ~ K~ o, E ~ N1. Then we can 

find M; No ~M,  and K-embeddings f t  of N t into M over No (~ = 1,2) such that 

gtp(fl  (d), f2 (N2) ,  M) is a stationarization o f p o  = gtp(~, N 0, N 1) (so f l  (a) ~ N2). 

Remark :  This strengthens 3.5. 

Proof:  Le tp2  E D ( N 2 )  be the stationarization o fpo .  Clearly we can find an cc < col (in 

fact, a closed unbounded set of ~'s)  and N' I ,  N'2 from Kgo which are (De,(No), R0)- homo- 

geneous N¢ < N't(e = 1,2) and some b E N'2 materialize P2- But by 5.10 b- materialize Po 

hence there is an isomorphism f from N'I  onto N'2 over No, f(E) = b. Now let M = N'2, 
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5 .16  C l a i m  : Suppose No < N1 < N 2 •  K ~  o, ai• Ni, ( i = 0 , 1 , 2 )  a - o ~ d l ~ a 2 ,  

gtp(a t ,  No, N2) is definable over a0,  and gtp(~ 2, N] ,  N2) is definable over a l .  Then 

gtp(a2, No, N2) is definable over ao, -Moreover  the definition depends only on the definitions 

mentioned previously. 

Proof." Suppose for t = 0,1, N~,~( i  = 0,1,2) are as above, and the corresponding 

definitions are the same and f0 is an isomorphism from N O onto No 1 , f0(~ °) = ~ .  We shall 

show that for some Nt,, N~ < Nt., f0 can be extended to an isomorphism f ,  from No. onto NI., 

f .  (~o) = El. It is easy to check that this is sufficient. 

We can find an o¢ < ~, and for t = 0,1, N~, Nt4 • K~o, such that N~ < N~ < Nt4 and N~ 

is (Da(Ni),Ro)-*homogeneous for i = 0,1,2 and Nta is (D[3(N!),Ro)-*homogeneous for 

_t _t t N3 e. i = 0,1,2,3. Now there is a4 • N t materializing the stationafization of gtp(a2,N1 ) over 
_t 

So by 5.12, a t materialize gtp(a2, N~ ) hence there is an automorphism f t  of Nt4, f t r  Ni = id 

and f t  (J2) J - T h e r e  is also an isomorphism f l  extending f0 from N o onto N 1 f]  (a~) _1 = = a l ,  

and then there is an isomorphism f2 extending f l  from N o onto N 1, _0 f2(a4) = a~. Now 
_1 

f ,  ~Y(fl)- l f2f°  is an isomorphism from N O onto N ] extending f0 and f . (E~) = a2, so we 

finish. 

5.17 Conclus ion:  1)For any No < N1 • K ~ , ,  there is N2, N1 "< N2 • Kg~ and N 2 

is (D (No) ,  Ro)-*homogeneous. 

2) Also 5.15 holds for N2 ~ Kg~ (but still N1 • Kgo). 

3) In fact we can demand (in 5.17(2) hence in 5.15 too) gtpQfl (c), f 2 (N2) ,M)  is a sta- 

tionarization of gtp (c, No, N I) for every ~" • N 1. 

4) Kg~ e O .  

Proof: 1) It is enough to prove that: i f p  (E,y-) • D(No) ,  a • N1 materialize p(E,y) r Y 

in (N1,  No) then for some N 2 • K~I ,  N1 < N2 and for some b •  Nz, a ^ b  materialize 

p (2,y) in ( N2, No). Let Mo < No be countable and q • D (Mo)  be such that p (x,y) is a sta- 

tionarization o fq .  Define Mi(O < i < 0)1) such that M i < N 1, N 1 = k...) Mi, (Mi  : i < 0)1) is 
i< o~1 
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increasing continuous sequence of countable models, -b • M1. Mi ('1 No "< No, Mi and 

(*) for every E • Mi, gtp~d, No, N1) is a stationarization of gtp(-d, No ('~ Mi, Mi). 

, , , ~t 

Wecan find M] e K g o ,  M I < M 1 ,  (and I M l l  f'5 INII = I M ~ l ) , a n d ~ e  M1 such 

that q = gtp (-dAb, M o, M *l ) -doe M l f"3 N o, "die  M1, "d 2 e M *I , -b ~ -d 2, a c_ a l , 

gtp(a2, M1, M*I), gtp(al, M1 (-3 No, M1) are definable over a l ,ao  respectively. Now we 

define M~, 1 < i < ¢01 by induction on i such that: 

(i) ( M j : 1 <_ j <_ i) is <- increasing continuous. 

(ii) Mj is countable. 

(iii) I Mj I ('3 I N] = I Mj l .  

(v) gtp(~ 2, Mj, My)xs a stationarization of gtp (b, M1, M~ ). 

For j = 1 we have it. 

For j  > 1 successor: use 5.15. 

For j  limit: let Mj = k..J Mi ,  condinon (v) holds by 5,13(3). 
l<-i<j 

By 5.16 (and (*)) for every j, 

gtp(a2, No ('3 M1, M~). Hence easily 

gtp(~'~, No f'3 M1, M~). 

gtp('d2, N 0 f'~ Mj, M~) is a stationarization of 
~t 

gtp('d^'b, No ('3 Mj ,Mj )  is a stationarization of 

So by 5.14 and the first sentence in the proof, we finish. 

2) Similar proof (or use the proof of part (3)). 

3) W.l.o.g. N2 _=_N* from 5.9 (as we can replace N1 by an extension so use 5.10). 
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Also (by 5.17(1)) there is M, N2 < M • K K1, such that M is (D(N2),  R0)-*homogeneous. 

Let a < o l  be such that for every ~ • N1, gtp(~, N0,N1) e D a ( N o ) .  Let M = k..) Mi, Mi 
i< 01 

<-increasing continuous, countable. So for some i, a < i < o h ,  M i ('~ N2 < M and for every 

-c ~ M i, gtp~, N2, M) is stationarization of  gtp~, N2 ('~ Mi, Mi) and M i is 

(Di(N 2 ('~ Mi), l~o)-*homogeneous. Now we can find an isomorphism fo  from No onto 

N2 (~ Mi ( as K is b~0-categoricaI ) and extend is to an automorphism f2  of  N2 (by 5.10- 

model homogeneity). Also w.Lo.g, there is N ' I ,  N1 < N'I • K~ o, N'I is (Di(N1),F,o)- 

*homogeneous, hence is (Di(No), l%)-*homogeneous (see 5.6(f)), hence there is an isomor- 

phism ]'1 from N' I  onto Mi extending f0- Now f0 , f ' l  r N1, ]'2, M show that amalgamation as 

required exists (we just change names). 

4) Immediate - use 1) or 2) or 3) 0)2 times. 

Definition 5.18: For any D, = Da, ct < o~ 1 (or just any reasonable such D, )  we define: 

1)M <o. N i f M  <K N and for every a- e N, 

gtp(-d, M, N) e D.(M) 

2) KD° is the class of  M e K which are the union of  a family of  countable submodels, 

which is directed by <D.. 

5.19 Claim : 1) KD., <D. satisfies all the axioms from section 1 if the transitivity axiom 

(Ax II) is satisfied. Which means that D,  is closed under the operation implicit in 5.16. In this 

case KD. satisfies the conclusion of part 1 and KD~ is PC ~o" 

Proof:  1) By checking. 

2) Easy, as in the proof of 5.12. 

5.20 Claim : Suppose No < Nt e K so (t = 1,2), ~" e N2, then there is M, No < M, 

and K-embeddings f t  of N t into M, such that 

(i) for every d e N1, gtp ffl (a),f2 (N2),M) is a stationarization of g tp (E, No, N1). 
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(ii) gtp( f z (c) , f l  (N1 ) ,M)  is a stationarization of  gtp(-C, NO, N2). 

Remark:  This is one more step toward stable amalgamation: in 5.15 we get it for one 

~ N1, in 5.17(3) for every ~ ~ N1. 

Proof:  W.l.o.g. gtp(~-, No, N2) is definable over (~. Clearly we can replace N t by any 

N'  t, N¢ "~ N" t ~ Keo,  and w.l.o.g. N 0 =  N 1 ( ~  N2. S o w e a n a s s u m e t h a t f o r s o m e D  a a s  

in 5.19; N t is (D~(N0),  R0)-homogeneous. Like the proof of 5.12, we can find a countable 

order I, such that every element s e I has an immediate successor s+ 1, 0 is first element, and 

Q c I (Q-the rational order), and models M s ~ K~o , (s ~ t)  such that s < t ~ Ms < Mt etc. 

So by 5.13(6) for every initial segment J of I, and t e I such that J < t, if J has no last element, 

and I - J  has no first element then Mt is (Da(Mj),R0)-*homogeneous,  where 

M j = t . . )  M s =  ('h Mr. We let N ~ - - M j ,  N~ = M1, and N~ be a (Dc~(NJ0),R0) - 
sEJ t ~ l - J  

homogeneous model, N~ < N~ and w.l.o.g. N~ (--~N~ = N~. Clearly the triples 

(No,  Nt , ,  N2), (N~, N~, N~) are isomorphic, and let f o , f l , f 2  be appropriate isomorphisms 

such that f0 c f l , f 2 .  Now by 5.17(3), by a proper choice of N~, there is M J ~ Kgo, N:t < M J 

(e = 0,1,2) such that for every ~ ~ N~, gtp (~, N~,M J) is the stationarization of gtp (~, Nl0, N~). 

Suppose our conclusion fails, then gtp(f2(~-), N{, M J), is not the stationarization of 

gtp(f2(-d),Nlo, MJ), moreover we can replace N~ by Nt for any t e l - J .  Let 

p j  = gtp (-d, NJll, M J) = gtp (-d, M 1, M J), then it is easy to check that J 1 ¢ J2 ~ P J1 ~ P J2, but as 

Q c_ I, we have continuoum such Pl. Moreover, we can ensure that for J1 ~: J2 as above there is 

an automorphism of M1 taking Pll to P J2, contradiction (altematively, repeat the proof of  5.12). 

5.21 Definition : 1) K has the symmetry property, when the following holds. If  

N O "< N t < N 3 (e = 1,2) and for every ~ ~ N1, gtp(~, N 2, N3) is a stationarizafion of 

gtp(a, No, N3), then for every b ~ N2, gtp(~, N1, N3) is a stationarization ofgtp(b,  No). 

2) If  No, N1, N2 "< N 3 satisfies the assumption and conclusion of (1) we say N1,N2 

are in stable amalgamation over No. If only the hypothesis of (1) hold we say they are in a one 

sided stable amalgamation (then the order of N1, N2) is important. 

3) We say N1, N2 can be uniquely [one sidedly] amalgamated stably over No provided 

that: i f  No < M  i, Jil,f2 are K- embeddings of N I , N  2 (resp.) into M i over No, 
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filM i III < Ill N 1 Ill + I[I N 2 I11 + X(K) 

such that 3'4 (N1),Ji2(N2) are in [ one side] stable amalgamation over No, for i = 1,2, then 
there is Mr ,  No "< M1 and K-embeddings gl,g2 of M 1, M 2 resp. into M over No, such that 

glfl  = g2f2, glf~ = g2f2. 

We note 

5.22 Claim: For any N O < N1, N2, all 'from K~o, we can find M, N O < M • K~ o, and 

K-embeddings f l , f2 of N 1, N 2 resp. over N O into N such that No,fl(N1), f 2 ( N 1 )  are in 

stable amalgamation. 

Proof: We define by induction on 4 < 031 (M~ : (z < 0)I) and c-( such that: 

(i) < M~ :0~ < 0)1) is <-increasing continuous and M~ • K. 

(ii) for o~ < 4, M~ = M~ and for ~ < 4, o~ < 0)1, M~ < M~. 

(iii) for 4 limit, M~ = U M~. 
~<; 

(iv) for 4 < o)1, M~+I is (Dct+l (M&), llo)-*homogeneous. 

(v) For every ~ •  M~+I, gtp(-d,M~+l,M~++lt) is a stationarization of 

gtp(c, M~, M~+I ). 

(iv) ~;  • M~++I 1, and for 4+1 < c~< COl, g tp(?; ,  M~, M~ +1 ) is a stationarization of 

gtp(g;, M~+l, M~-} ). 

(v) for every p • D(M~) for some 4 , a  < 4 < 0)1, and g t p ~ ,  M~+I, M~++I) is a sta- 

tionariation of p. 

There is no problem doing this (by 5.20). 
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Now easily, for a closed unbounded set of ~ < col, 

(*); (a) M~ is (D~(M~),  R0)-*homogeneous. 

(b) for every ~ e  M~, 

gtp ~ ,  M~, M~). 

g tp~ ,  LJ M°,  t..) M~) is a stationarization of 

So as in the proof of  5.17(3) we can finish. 

Theorem 5.23: 1) Suppose in addition to the hypothesis of  this section that 2 gl < 2 g2 

and I ( I f2 ,K)  < g0(l~2) (usually this is 2 g2, always > 2 gl , see [Sh2] 6.3). 

Then K has the symmetry property, and stable amalgamation in K g0 is unique and always 

exists (and really one sided amalgamation is unique). 

Proof: The main point will be to prove that if one sided stable amalgamation in K g0 is 

not unique (with the stable side fixed, of course) then I (R2,K) is big, as then 5.22 stable amal- 

gamation exists, hence by the uniqueness, also the symmetry property follows. 

The proof of the main point is by imitating [Sh 2] 6.3. The problem is that we still have not 

proven the existence of a superlimit model of K of cardinality R 1 though we have a candidate 

N* from 5.9. So we use N*, but to ensure we get it at limit ordinals, we have to take a stationary 

So c_ COl, with o)1 - So not small, and devote it to ensure this, using 5.22. 

The point of  using So is as follows: 

5.23A Definition : On h'<gl = {h / :N  = (Na : a < 01) is <-increasing continuous, 

N a  ~ K g  0, Na+l is Da(Na)-*homogeneous} we define a two place relation < I  (for S ~ COl), 

~1 <I , ( /2  if and only if for some closed unbounded C ~COl for every t~e S (")C, 

N~+I ~ k.) N1 NI+I  a n d N  1, 1 N 2 are = Na+l ,  in (one sided) stable amalgamation inside 
c t < t t  h 

N2+l . 
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Now ]~1 <b/~2 is defined similarly except that we ask N~, 2 1 N~, N~+I, axe in (one sided) 

stable amalgamation. 

Now in the construction we define ]~rl (1] ~ ~ >  2) such that for v ~ rl ~ v  <soa N'q, 
~/v < bco~ N ~ and we use: 

5.23B Fact: 1) If  ff/n <~o K/n +1 and let Cn exemplify this (as in the definition) and let 

Co~ = ('~ Cn, C'm = {o~,~+1 : (x ~ Co~}, and let N~ = U N~ when 13 = Min[C'o~ - (z]. Then 
n < ( . o  n < o )  

u N ~  = U ( U N m ) ,  u N ~  < u N ~  , and~/n <s~ (N~ : e~ < (01). 
O~ n Ct a Ct 

2) The similar statement for <s b. 

[Proof: Like 5.24.] 

5.24 Theorem:  Suppose the conclusions of 5.23 hold. Then K has a superlimit model in 

Proof." We have a candidate N* from 5.9. So let ( Ni : i < 5) be <-increasing, Ni -- N*. 

I f  8 = (ot this is very easy. I f  5 = (0, let No~ = U Ni, and we can find N~(i < (0,(z < (01) 
i <  o~ 

increasing (by <) countable and continuous, for i < j < (0, N~ = Ni C'~ NT, and for any 

~ N~, i < (0, gtp(E, N1, Nco) is a stationarization of gtp(E, N~, Nco). Hence by 5.22 for 

"b ~ Ni, gtp(b, Nt~, Nt9) is a stationarization of gtp(b, N~, Nco), The rest is easy as Ni = N* for 

i < 5, w.l.o.g, if ct < ~ < (01, i < (0, Np is Dj(N~)-*homogeneous). 
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§6 Counterexamples. 

In [Shl] the statement of  Conclusion 3.5 was proved for the first time where K is the 

ciass of  atomic models of  a first order theory assuming Jensen's diamond Os: (taking ~. = No). 

2 
In [Sh2] the same theorem was proved using 2 ~° < 2 s~ only (in its form q5 see [DSh]). 

R: 

Let us now concentrate on the case ~.= 1%. We asked whether the assumption 

2 a° < 2 ~: necessary to get Conclusion 3.5. In this section we construct three classes of  models 

K : , K Z , K  3 such that K 1 satisfy all the axioms needed in the proof of Conclusion 3.5 (but it is 

not an abstract elementary class - fails to satisfy Ax.IV). 

K 2 is PC s0 and is axiomatizable in Lc%co(Q). 

K 3 is PC so and is axiomatizable in L (Q). 

Now the common phenomena to K 1 , K 2, K 3 is that all of them satisfy the hypothesis of Con- 

clusion 3.5, i.e. for e = 1,2,3, I ( ~ 0 ,  K t) = 1 and the R0-A.P. fails in K t, but assuming 

~1 < 2s° a n d M A s :  fo re  = 1,2,3, I(1~:,  K ¢) = 1. 

Definition 6.1. Let P an infinite set. A family F of  infinite subsets of  P is called sto- 

chastically independent (s.i.) if  for every tl e ~>2 ( notation: for X ~ F denote X ° = X and 

X 1 = P - X )  the following set ( ~  X~ [kl is infinite. 
k< t(~) 

Definition 6.2. (1) The class of  models K 1 is defined by 

K: = { M  : M = ( I M I , P , Q ,  ~),  IMI =Pk.)Q,~ ~ P x Q ,  IPt = l~o,P ( ' .~Q=O.  

(Notation let Ay = {x E P ~ y} for every y ¢ Q). 

the family {Ay:y ~ Q} is s.i. and for 

IIIM III = I {y ~ Q : (Vq ~ a)[q ~ y] ^ (Vq~ b)[q~ b]} 1} 

every disjoint a,b ~ S<so(P)),  
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(2) The notation of  substructure <Kt is defined by: For  

M1 "~KIM2 ~ a f  IM 1 I c_ IM 21, pM~ = pM2, and for all disjoint  

I{y ~ QM2 _QMt : (Vpea)[pey] ^ (Vqeb)[q~y} I > Ro. 

M1,M2 ~ K 1, 

a,b ~ S<go(P) ,  

L e m m a  6.3: The class ( K 1 , "< K' ) satisfy 

(0) Ax 0. 

(1) Ax. I. 

(2) Ax. II. 

(3) Ax. Ilr.  

(4) Ax. IV fails even for ~. = ~ 0. 

(5) Ax. V fails for countable models.  

(6) Ax. VI holds with X ( K  1) = No. 

(7) for every M ~ K 1 , [IIM I11 < 2 g°. 

P r o o f :  (0), (1), (2), fol lows trivially from the definition. 

(3) To prove that M = k.) Mi ~ K1, 
i<k 

it is enough to verify that for every disjoint  a ,b  e S s0 (P M) that 

I[y ~ QM : (Vp~a)(Vq~b)[peyAq~y) l  = IIIMIII. By the assumption that [Mi : i < )~} is 

increasing f rom the definition of  <K 1 it fol lows that Mi+ 1 has a new y as above, i.e. 

y ~ Mi+l-Mi at least k many; Also for each i there are at least IIIMi Ill many y 's .  Together 

there are at least  IIIM Ill, y ' s .  

1 1 
(4) Let  {Mn:n<o3}c  K be an increasing chain, let M =  g Mn by (3) M e  K 

- -  No n<CO R°" 

Since IQMI = R0 by Claim 6.5(a) below there exists A ~ P  M infinite such that 

{ A y : y ~  Q M } u { A }  is s.i. Now define N ~  K 1 by p N = p M ,  let Yo~t QM, 

QN = QM g {Yo}, and finally let ~ = ~ U {(p,yo) : p e pN ^ p e A} , QN = QM u {Yo}. 
~N -M 

Clearly for every n < o), M n < K 1 M but N is not an <K 1- extension of  M = g Mn because 
n<o)  
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the second part in Definition 6.2(2) is violated. 

(5) L e t N  0 <K ~ M • K 1 be given, assume IIIM III = N0; as in (4) define N0 c_N, IN01 ~ INI 

by adding a single element to QN0 (from the elements of QM) it is obvious that 

No </c I N, Mo < K  1 N b u t M o  gK ~ N1. 

(6) By closing the set under the second requirement in Definition 6.2(1). 

(7) L e t y  ~Y2 ~ QM we show that Ay~ ~ Ay2; if Ayl ~ Ay 2 then Ay~ ('7 (pM _ Ayl ) = O con- 

tradiction to the requirement that {Ay : y ~ Q} is s.i. hence I QM I < 2 levi = 2 e°. 

Theorem 6.4. 

( 1 ) I (R0 ,  K 1) = 1. 

1 
(2) Every M a K has a proper < K 1-extensiOn in 

R0 

(3) K 1 is closed under chains of  length < 031. 

(4) K 1 violates the R 0-A.P. 

(K 1 , < K1 ) satisfy the hypothesis of Conclusion 3.5. Namely 

1 
K . 

I 
Proof:  (1) Let M1,M2 ~ K , pick the following enumerations 

I M l l  = {an : n < 60}, and IM21 = {bn : n < 03}. It is enough to define an increasing chain of  

finite partial isomorphisms from M1 to M2{fn : n < o3} such that for every k < co let n(k) < o3 

satisfy ak a Dom fn(k) and bk e Rang fn(k) ( finally take f = L.J fn and this will be an iso- 
n < o )  

morphism from M 1 onto ME). 

Define the sequence {fn : n < 03} by induction on n < 03: let fo  = 0 ,  if  n = 2m denote 

k = rrfin{k < o3 : ak ~ Dom f ~ .  Distinguish between the following two alternatives: 

If  ak ~ pM1 let {ao . . . . .  aj-1} = QMI ('7 Dom fn. W.l.o.g. there exists i < j  - 1 such that 

for all e < i ak a M1 a t  and for all i < ! < j - 1, ak ~ a t .  By the first requirement in Definition 
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6.2(1) there exists y e p n 2  such that y e M~fn(a't) for 

i < e < j - l y e  M2 fr,(at). Final lyfn+l  = f n  k..) {(ak,y)}. 

all l < i  and for all 

If ak e QM1 let {ao . . . . .  aj-1} = pM1 ~ Dom fn and as before we may assume that there 

exists i<_j -1  such that for all t < i  ate  MI ak and for all i < _ t < j - l ( a t ) e  M! at,. By the 

second requirement in Definition 6.2(2) there exists y e QM2 such that (V~ < i)[fn(a't) eM2y] 

and (V¢,i < ~ < j -1)[ fn(at)~n2y] .  Now define fn+l = fn k.) {(ak,y)}. 

When n = 2m+1 act similarly o n  bmin{k<o~:b~Rangf,,}. 

(2) First we prove the following: 

Cla im 6.5. (a) Let P be countable. For every countable family F of  infinite subsets of P 

i fF  is s.i. then there exists A ~ P infinite such that F k.) {A} s.i. 

(b) I f  A , F  are as in (a) then for every i n f i n i t e B ~ P s a t i s f y i n g  I A A B I  < ~0 

also F k.) {B} is s.i. 

(c) Moreover in ( a )we  can require in addition that: for every a,b e S go(P)disjoint 

there exists A ~ P as in (a) satisfying a ~ A and A O b = O. 

Proof of  Claim 6.5. 

= = x}fi<kl} (a) Let F* {X ~ P : Cqn < 03)(3x 0 e F ) . . .  (3Xn_ 1 e F)(3k < n)[X ('5 " . 
i < n  

Clearly IF* I = R0 hence we may assume {Sn : n < 03} = F* such that for every k < co there 

exists n > k such that Sn = Sk. Denote P = {Pn : n < 03}. 

Sh:88



478 

Now define by induction i : 03 --~ 03: 

Let i(0) = 0. 

I f n  = 2k+ 1, let i (n) = Min{ e < co: (3j  < 03)[i(n-1)<j ^ j< e^ 

P t e  (Sk-{Pi(o) . . . . .  Pi(n-1)}) A pj e Sk (~  (P-{Pi(O) . . . . .  Pi(n-1)})]}. 

If n = 2k+ 2, let i(n) = Min} e < c0:(3j < co)[/(n-1)<j  ̂ j<  e^ 

p t  ~ ((P-Sk)-{Pi(o) . . . . .  pi(n_l)})^pj e (P-Sk)(-7(P-{PI(O) . . . . .  Pi(n-1)})]}. 

It is easy to verify that the construction is possible (use of Definition 62(1)). Directly from the 

construction it follows that A = {pi(n) : n < co} is a set as required. 

(b) Easy. 

(c) Let a,b e S go(P) disjoint, and F a countable family of s.i. sets. 

Let A" c_ P as proved by (A). According to (b) also A = (A' k.) a) - b satisfies: the family 

F k_) {A} is s.i. 

Re turn  to the proof of Theorem 6.4(2): Let F = {Ay ~ P M  :y  e QM}. Let 

{sn :n  <03} an enumeration of Sgo(P M) with repetitions such that for ever disjoint 

a , b e S ~ o ( P  M) there exists n < 0 3  such that s 2 n = a ,  s2n+l = b  and for all 

k < CO, S2k ("7 S2k+l = Q~" 

It is enough to define {Fn : n < o)} increasing chain of s.i. families such that F0 = F and for 

all k < co and every disjoint a,b e Sgo(P) (3n<co) (3A e Fn-Fk)[a c A,',Af'Tb = 0],  k_)Fn 
n < 0 )  

1 
enables us to define N ~ K satisfying N > M as required. Assume Fn define; Define 

S o ¢ K 1 

Fn+l ;  apply Claim 6.5(c) on Fn when substituting a = s2•,b = s2n+l let A ~ P  be supplied 

by the Claim and define Fn+ 1 = F n k..) {A}. It is easy to check that {F n : n < 03} satisfies 

our requirements. 
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(3) This is Ax III which we checked in Lemma 6.3(3). 

1 1 

(4) Let M ~  K we shall f i n d M  t ~  K ( t = 0 , 1 ) ,  M t>K ~M, which cannot be areal- 
go R0 

gamated over M. Choose by Claim 6.5(1) A _c P infinite such that [Ay c pM : y • Q} U [A} 

is s.i.; define M0 > M as the definition of N in part (2) choosing F0  = F u [ A }  and M 1 define 

as N and was constructed in (2) choosing FO = F k.) [P- '4}.  Clearly Mo,M 1 cannot be amal- 

gamated over M (since the amalgam must contain a set and its complement.) 

Theorem 6.6. Assume MA ~ A2 g° > N 1. The class ( K I, < K 1 ) is categorical in R 1. 

1 
Proof: Let M, N • K . By repeated use of the idea in the proof of Lemma 6.3(6) 

l% 

1 

for Ax. VI we get increasingly continuous chains [Ma : o~ < COl}, [Na : cx < ~1} ~ K 
l% 

such that M = k.) Ma  and N = k.) Na such that for c~ < ~, Ma "< i¢~ M ~, Na  <K 1 N~. 
~<0) 1 ~<(01 

Now define a forcing notion which supplies an isomorphism g : M ~ N. 

R = [f I f  is a partial finite isomorphism from M into N satisfying 

(Vo~ < c01)(Vo~eDom f ) [ a ~ M  a #:> f(00 e Na}, 

the order is inclusion. It is easy to check that if G ~ R is a generic then g = U G is a par- 

tial isomorphisms from M to N, we show that Dom g = I MI: For every c~ e I MJ define 

D a = { f e P : c ~ e  D o m s 0 ,  i t i s  easy to show that for a l l a e  IMI the set D a  is dense. 

For a • IMI let or(a) = Min{o~ < o l  : cc e M~}. Let f e  P be a given condition, it is enough 

to find h • D a such that f c h and a e Dom b. Let A = Dom f, assume B,C ~ A disjoint 

such that B U C = A  and B = Dom f N P M , C  = Dora f N  QM. W.l.o.g. b ~ B U C. If 

a • pM let p(x ,C)  = tp(a,C). From the definition of K 1 there exists b e pN such that 

N %p[b,f(C)].  If a e QM we can find b e QN~o~ _ U N~, realizing f ( tp (a ,  B)), 
~<~(o) 

b ~ f ( C ) .  Finally, let h = f k . )  {(a,b)}. If a ~ QM act as earlier but take the types of a over 

B (see the proof of Theorem 6.4(1)). 
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The proof that Rang ( g ) =  INI is analogous to the proof that Dora g = IMI.  

Namely it suffices to prove existence of a directed subset G (in the universe) of  R which is gen- 

eric enough. This is the place we use MA ~,. In order to use MA we just have to show thatR 

has the c.c.c. Let { fa :~  < 0~1} ~ R  be given, it is enough to find et,[3 < co 1 such thatfa,ff~ 

has common extension. Without loss of generality we may assume I MI O I NI = O. By 

the finitary A-system lemma there exists S ~ co 1, I S I = R 1 such that 

{Dom f =  k..) Range fox : ~ ~ S} is a A-system with kernel A. Let B ~ IMI,  C ~ INI such 

that A = B k.) C, namely for all o t e  S f a  rB ~ C but the number of  possible functions from 

B to C is tCI IBI < Ro. Hence there exists T ~ S ,  ITI = R1 such that for all e c , [~  T, 

f ~ r B  = f~  r B but we by the choice of  A-system for every ~x ~ T we have pM ~ Dom f a  ~ B, 

p N  0 Rang fa ~ C, therefore for all e~,[~ e T, f a  k.) f[~ ~ R and in particular then there 

exists ~ ~ ~ < co 1 such that f ~  k.) fl~ e R. 

In the terminology of  [GShl]  Theorems 6.4 and 6.6 gives us together. 

Conclusion 6.7. Assuming 2 a° > R1 and MA al there exists a nice category which 

has a universal object in 1~ 1, moreover it is categorical in R 1. 

Definition 6.8. 

(1) K 2 = {M:M = ( I M I , P , Q  ,~) ,  IPI = t~o, IMI = Pk.)Q,e_c_P×Q, P f ' )  Q = 0 

( V x ~ Q ) V a  ~S<go(P)(3y~Q)[A x AAy = a] and 

(Vk < o))(Vy 0 . . . . .  Yk-! ~ Q)[ A lAy r AAy ,  I > Ro-* 
~<m<k 

the set {Ay, :t < k} is s.i.] and 

Q (y)AQ (Z)A(VX~ P)[xa y<--4x~ z] ---) y = z, 

a n d f o r k < c 0 f o r s o m e y 0 " - ' y k ~  G, A IAy~ AAy, I > NO}. 
l<m~k 
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M1 <K 2 M2 ¢¢'df M1 ~ M 2 , P  M~ = pM2. 

Theorem 6.9. (K 2, -<g2)is an abstract elementary class which is categorical in t% 

and the ~ o-A.P, fails. Assuming 2 ~ o > ~ 1 + MA ~ we have I (R  1, K2) = t.  

It is defined by a sentence of L o~,~, < is LL... and <L whenever L ~,¢~ c_ L ~ Load,co. 

Proof:  Similar to Theorem 6.4 and 6.5• 

Definition 6.10. 

( 1 ) K 2 = { M : M = ( I M I , P ,  Q , ~ , E ) , ( I M I , P ,  Q , e ) e  K 1 , E i s  

an equivalence relation on Q, every equivalence class countable and 

(Vx~ Q )(Va, b~ S < ~o (e ) )[af'~b = O---~(3z)[zExAa ~ AzAb ('V4z = 0]}. 

(2)M1 <K 3 M2 ¢~dfM1 ~?*f2 and VxVy[xEymxeM 1 - ~ y  ~ M2]. 

1 
Theorem 6.11. (1) K has an axiomatization in L(Q) and ~K 1 is "<** from [Sh2]. 

, ' , ~ *  , (2) K 2 has an axiomatization in L~1 co and -< g 2 is to1 co from [Sh2]. 

(3) K 3 has an axiomatization i n L ( Q )  and<K 3 is "< from [Sh2]. 

(4) (Ve~ {1,2, 3})[ K t is PC ~o]" 

(5) I fMA ~1 then K t is categorical in 1~ 1. 
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6.12 Conclusion: Assuming MA ~1 there exists an abstract elementary class, which is 

PC ~o, categorical in 1~ 0, l~ 1 but without the R0-amalgamated property. 
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Appendix: On stationary set 

We represent the relevant facts from [Sh 6] (hopefully in a better way) and add slightly. 

This was written essentially by accident. 

1. Definition: 1) For ~. regular, a set S c ~. is called good if there is a sequence 

6 = {a i : i < 9~), ai a subset ot' ~, such that for some closed unbounded C c )~: 

C ("1S ~ S[  q [6] = {~t : (3a c-z-Z ~/)[~t=sup a ^ otp(a)<"/^ (V~<~/)(3i<~')a('-7ot = ai] or ~ = cfT} 

We say (ai : i < ).) witness the goodness of S, and C exemplify this (p stands for positive, q for 

a variant n for negative.) 

2) I [)q is the family of  good subsets of  o~. 

2. Lemma:  1) We can in 1.1 replace ai by Pi ,  P i  I < 9~, P i  ~ {a : a c_ )~ is bounded, 

and "acTo~ = ai" by "a ("1 o; E Pi"  (and get an equivalent definition). [see 4) and 5) below] 

2) we can demand in 1(1) that a has order type cf ('y)and ai ~ i. 

I.e. if for )~, 6 as in Detinition 1 (1) we let S~ p [6] = {~' < ;~: there is a ~ 7 of  order type c f ' f  

such that otp(a)  = cf(7), sup a = ~t and (Vo~ < 7)(3i < "y)[a O o~ = ai]} we can use S[  q [6] 

instead of  S~ p[E] in defining "a good set" (and hence I[M). 

3) if (ai : i < ~.) witness the goodness of S c_ )~ and {ai : i < )~} c_ {bi : i < 9~} c_ p (~.) 

then (bi : i < )~) witness the goodness of S. In fact S*xP((bi : i < )~)) ~ S[  p ((ai : i < )~)) rood D X. 

4) (ai : i < )~) witness that S ~ ~, is good iff ({ai} : i < 9~) witness that S is good. 

5) If  -~ t  = ( p t  : i < X) are as in 2(1) for e = t,2 and k.) P~ c_ k.) p 2  and --~I witness 
i i 

that S c_ X is good then also -.~,2 witnesses it. 

6) For X uncountable regular, {~ < ~. : 8 a (weakly) inaccessible cardinal} belongs to 

I[~]. 

Proofi Trivial, e.g. 

2) Let (ai : i < ).) witness S ~ k is good. 
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For  every l imit  8 < X choose a closed unbounded subset C8 of  8 of  order type c f  8; let for 

i < )~, 8 < )~, ai,8 = {j e ai : the order type of  ai ( '7 J belongs to C8}.  

Let {ai,  8 : i < ~ ,8  < )~}k.){{i : i < or} : Ct < 9~} = {bi : i < 8}, let C exempl i fy  (ai : i < )~) 

witness the goodness  of  S. 

Let  Co = {o~ e C : for every i < o~ and l imit  8 < a there is ~ < 8 such that b ;  = ai,8 (if 

defined and cc is a l imit  ordinal)}. 

Clearly Co ~ C is closed unbounded in ).. Now for any T e Co ('7 S we know there 'is a 

set a K T  such that sup(a)  = T, o tp (a )  < T, a ('7 a = ai(a) for c¢ e a and i(c¢) is an ordinal  < ~/. 

Let  a* = {i e a : o tp (a ( -5a )  e Cotp(a)}. Now a* is as required. 

3. L e m m a :  1) I[X] is a normal  ideal,  which include all non-stat ionary subsets of  )~. 

2) I f  ~. = )~<~', then for some S~ n ~ X: 

IDa] = {s  c_ ~, : S ('7 s x  is not stationary} = {s  ~ )~ : (ai : i < )Q witness s is good} 

for any (a  i : i < ~ enumerat ing {a ~ ~. : l a I < )~}. 

3) Always  there is S [  n ~ T I  =~/:(8 < )~ : )~<cf8 = ~} 

S e I [~]  A S ~ T~. ¢=> S c_ k A S ( '7 S i  n not stationary. 

such that 

Proo~ Ea~. 

4. L e m m a :  1) I f  )~ is regular,  ,: < ~, ( V a  < ~,) I a l <~ < ~, (e.g.,)~ = It+, It = It<c) then 

{8 < ~, : c f ( 8 )  <K} e I[~L] 

2) Suppose ~. = It +, cf(~t) < ,: < It and (V0 < ~)(V)~ < It)[)C ° < It]. Then there is 

S ~ I [~]  such that: 

(*) i f  8 < X,O < ~:, and c f 8  = (20) + or even just  (Vet < cf  (8)) [ l a l  ° < cf(8)] then for 

some c losed unbounded C8 ~ 8, (Vc~)[c¢ e C8 ^ cf(oQ < 0 ---> c¢ ~ S] .  

Sh:88



485 

3) For ~, Ix, K as in (2), there is a 2-place function c from ~ to cf Ix such that: 

(a) for a < 13 < T, c(¢z,~') <_Max{c (¢x,~J),c(13,y)}. 

(b) I{a < 13:c(o~,~) = ~'}1 < Ix. 

(c) S i  p [c] ~I{8 <L: 8 has cofinality < K: and there is an unbounded a ~ 8 such that 

c r a is bounded in cf  IX (i.e. (3"/< cf  IX)(Va, 13 e a)  [a  < 13 ---> c (c¢, 13) < y]} belongs to I[~.]. 

Proof :  Note that 4(1), is easy, and 4(2) follows from 8(1), 4(3). It is easy to satisfies 

(a), (b) of  (4) and (c) follows [choose an increasing sequence ( Ix i : i  < cfix) such that 

Ix = Z{Ixi : i < cfix}, and then define by induction on 13, (c(~,13) : c~ < 13)such that (a) holds and 

(b) + 1{o~<13:c(a,13)=T}l =l.q,. 

Why (c) follows from (a) + (b)? Clearly for a < ~., i < cf(Ix), P-a,i = {a : a as a subset 

o f { ~ : 1 3  <a and c(13,~z) < i} ofcardinal i ty  <~:} hascardinali ty <Ix, so P a =  k.) Pa,i has 
i<cf ix 

cardinality < Ix. Now S[t' [( P a  : a < ~,)] is a subset o f S [  p [c].  

There are no problems]. 

5. R e m a r k :  1) In 4(2), 4(3) we can replace ~ = It+ by ~. = Ix +a, as a increases we get 

less informatio/~. See [Sh 6] xx. 

2) In (3) really (a) + (b) implies (c) and note (7) below. 

6. Definition: 1) A two place function c from an ordinal ~ to an ordinal ~ is called 

subadditive if: 

for ot < 13 < ~' < ~ c (ct,~') < Max{c (a,~3),c (~,'y)} 

and c(ct,13) = c(13,a), c ( a , a )  = 0 

2)~, --->p(S)~ mean: (for ~,,0 regular cardinals, S ~ ~,.) 

Suppose 
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(*) c is a two place function f rom ~. to O, c subaddifive. 

Then for  some closed unbounded C ~ ~., for every 8 • S ( '7 C of  cofinality > O, 

(**)~ there is A c_ 8, such that sup A = 8, and sup/c(a,[~)  : o~ < ~,o~ • A, ~ ~ A} < O. 

3) W e  say 9~ is 0-sawc (sub-addit ively weakly compact)  if." for  every subaddifive two 

place function d from ~. to 0, there is an unbounded subset A of  9~ such that 

sup{c((z,13) : a < ~, O~ • A, ~3 • A} < O. 

7. Fac t :  In Definition 6(2) the fol lowing demand on 8 • S ( '7 C is equivalent  to (**)~ 

when cf(5) > 0: 

(**)~ there a r e  ~i,~i < 5 for i < cf(5), 5 = k.) c~i = U ~i 
i i 

sup{c(czi,fJj) : i < j < cf(5)} < O. 

and 

Proof :  If  A is as in (**)5 choose o~i,~i • A s.t. 5 = k.){oti : i < c f S } ,  

sup{~3j : j < / }  < ~i < ~3i, they are as required. 

Ifai ,[3i(i  < cf(~)) are as in (**)~, w.l.o.g. [ j  < i ~ etl < [3i < o~j < 13j], so as cf(5) > 0 for 

some T1 < 0 

B ~=I{i : c(~i ,0t i+l)  = ~/1} 

is unbounded below cf(8). Let 

]to = sup[c(ai,[~j) : i < j < cf(5)} < O. 

Now A = {~i : i • B} is as required: for  j < i in B 

C(~j,fJi) <- Max{c(~j ,ot j  +l),C(Otj +l,~i)} <- 

Max {'f1,70} 

2 
8. L e m m a :  1) Suppose ~,l.t,~ are as in 4(2) (so 4(3)) and )~-~p(S)cf(~t), 

S c {8 < )~ : c f  ~ < ~} then S • I [~] .  

2) I f  (V(r)[c~ + < Ix ---> 2 ~ < ~.1, S ~ {5 < )~ : c f 5  < Ix}, S • I[~.1 and ~.,0 are regular  then 
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3) Suppose ~.,Ix,~: are as in 4(2), c as in 4(3) (a),(b). Then for any ~ < ~ and S ~_cfS ,  

there is an increasing continuous function h : cf(5) ~ 5, ~ = sup{h (i) : i < cf(8)}, and a club 

c ~_ 8 such that 

9. Remark:  Particularly assuming G.C.H. 4(3), 8(1), 8(2), 8(3) fits nicely. 

Proof  of  8: 1) Let c be a two place function satisfying 4(3) ( a )  + (b). By Definition 6, 

there is a closed unbounded C c ~. such that for 5 e C C3 S of cofinality > cf(g), (**)~ hold. 

Now {5 < % : c f  5 < cf(g)} c T~. [by 4(2) as I.t<cf~t _< ~ X0 _< ~ %<~ hence 

0<cfg 

X<d~t = (la+)<cf~t = it+ = X] so we can assume c f ( 5 ) >  cf(g).  Now (**)~ implies ~ S~P[c] 

(see 4(3)(c)), so by 4(3) we finish. 

2) Let c be a two place function from 2~ to 0, subadditive. Let )~ be regular large enough, 

and w.l.o.g, let (ai : i < ~,) exemplify S e I[~,] witnessed by Co with otp(ai) < I.t (see 2(2) 

above). Let (Ni : i < ~.) be increasing continuous such that Ni < (H(~),~), (al : i < ~) ~ N o, 

Ni ("3)~ is an ordinal, IIIN i III < )~, and (Nj : j <_ i} ~ N i +1- Let C = {i < ~ : N i ('~ ~. = i and 

i ~ Co} (it is closed unbounded). Suppose 5 ~ C ('3 S, cf(5) > 0, then there is a ~ 5 = sup 5 

such that (Vo~ ~ a)[a ('3 o~ c {aj : j < 5}] hence (Vo~ e a) [a ¢3 ~x ~ N~], and we also know 

otp(a) = cf (5); and let {cxi : i < cf(5)} be an increasing enumeration of a. So there are c¢ i < 5, 

[i < j  ~o~i  < o~/], 8 = q { c c i  : i  < c fS}  and for i < cf(5), {o~j : j  < i} ~ N~, for some 13i < 5. 

As for i < c f  5, I {(xj : j < i} I < c f  5 < Ix, so 2 I{c~ j < i) I < ~. hence {~ : ~ < 2 l{c*j : j < i3 I} ~ Ns,  

so every subset of {o~j : j < / }  belongs to Np,,, < N s .  As c f ( 5 ) > 0  for some 3 '<0 ,  

A = {i < cf(5): c(oci,5) < y} is unbounded below cf(5), so by the previous sentence w.l.o.g. 

A = cf(~). So NS+l N (Bx)(Vy ~ {o~j : j < /} )  [c(y, x) < y ^ oq < x] (as 5 witness the 3x) so 

there is such x in NI~+ 1 call is 13i. So o~i,~i are as required in (**)~ of  Fact 7, so by 7 we finish. 

3) Follows. 

10. Lemma:  1) If  S ~ I[)q is stationary, and (V5 ~ S)[cf(5) < I.t], and P is a g- 

complete forcing notion (g > 1%) then "I~-p"S is a stationary subset of  the ordinal )~" 

Sh:88



488 

2) If  S ~ {5 < ~. : cf(5) < It} is stationary but included in S[n (see 3(3)), It regular and 

~. = ~.<~ then for some It-complete forcing notion P, I~x,"S is not stationary" (in fact P = Levi 

(it ,~.) is O.K.) 

Remark :  As for 10(2), it repeats Theorem 21, p. 366 of  [Sh 6], Donder and Ben David 

note a defect: in the case ~. = ~.<~" (really ~. = ~.<g) in the definition of  the forcing P 

(= {(¢xi : i  < ~ :  cxi increasing continuous B~,+~ = {o~j : j  <i})  we forget to demand ~ < It. 

[Note however that automatically ~ < IX as each B i has cardinality < It, so we should just omit 

the maximal elements of  P which make P totally trivial]. 

For the general case (~, < ~<~t) note that if some weak form of it fails, our definition of  the 

set S [  n make it empty. I.e. by Definition 8, p. 36 of  [Sh 6], S i  n make it empty. I.e. by Definition 

2(i),2(1), p. 359 of  [Sh 6] relaying on Definition 1, p. 358 of  [Sh 6]. This demand 

"S[ n c_ gcf(x)" is reasonable, as otherwise we cannot prove there is such a set. See here later. 

[18,19] 

Proof:  1)Use (Vs)(s ~ I[~.] ~ s e I+[~.])from 16(2)(see Definition 15) 

2) Let (ai : i < ~,) list the subsets of ~, of cardinality < It, each appearing ~. times. If  

P = Levi (it,~.), in V/' ~. has cofinality It, so let (cxi : i < Ix} be increasing, 0~ i < ~L, U Cgi = ~" 
i<lc 

But forcing with P add no sequences of  ordinals of length <It, so we can find inductively 

j ( i )  < ~., j ( i )  > L.){j(~),o~{ : ~ < i}, aj(i) = {0~{ : ~ </} .  Now {8 < L: the set {j( i)  : i < It} f'~ 5 

is unbounded in 5} is a club of ~. in V p, included in a good subset of ~, from V. 

10A Remark: It is 
= 4" Q ( ( a i : i < ~ . ) )  {(i; : ~ < ~*) : < ~:, i ;  < ~,, 

ai; = (i~ : ~ < ~ .  

natural to force with 

[4(1) < 4(2) :=~ i;(1) < i;(2)], and 

In [Sh 6] we define S[  n inside a larger set than {8 < ~, : ~<cf~ = ~.} (see 3(3)). We will 

present this addition, improved, i.e. Gcf  [~.], gcf(~,) are bigger sets here than in [Sh 6, Definition 

2]. 

11 Definition: 1) For a family F of  subsets of 0 let 

Sh:88



489 

t r (F)  = {A f'h cx : A ~ F, ~ < 0 }  

2) For 0 regular uncountable let c lub t r (O)=Min{ l t r (F) l  : F  is a family of closed 

unbounded subsets of  0 such that: every closed unbounded subset of  0 contains some members 

ofF},  

Let clubtr[~O] = R0 and le tF0 exemplify clubtr(O) = IFo l. 

3) Gcf[~] = (0 : 0 is regular > R 0 and, k = )~<o or clubtr(O) < ~.} 

4) gcf[k] = {8 < ~; : c f  8 ~ gcf[~.], cf(8) < 8} k..) {8 < ~. : 8 a (weakly) inaccessible car- 

dinal} t..) {a <~ : o~ = 0,, or (x successor ordinal} 

4) gCfac[)~] = {8 ~ gcf[~.l : c f  8 <8} 

12 Fact:  1) If  GCH, ~. > R 0 regular then Gcf[~.] = {0 : 0 regular < ~}, gcf[)~] = ~.. 

2) For regular uncountable 0, 0 < clubtr(O) < 2 <0 < 2 °. 

3) If  2<0< X, (0,9~ regular) then 0 ~ Gcf(~,) [as this implies either )~ = 2 <o hence 

= ~<0 or X > 2 <0 hence ~, > clubtr(O)]. 

13 Definition: t) We call ~ an enumeration for ~. if -d = (ai : i < ~), each a i a bounded 

subset of ~.. 

2) We call ~ a rich enumeration for ~ if: 

(i) ~ is an enumeration for ~, 

(ii) if ~. = ~0, (hence 0 < ~) then every subset of  ~. of cardinality < 0 appears in a 

(iii) if 0 is an uncountable regular cardinal, and clubtr(O) < 9~ then letting Fo exem- 

plify clubtr(O) <- ~, for every limit ordinal 8 < ~. of  cofinality 0, there is a dosed  unbounded sub- 

set {13/5 : i < 0) of 8 (~/~ increasing continuous) such that 

(*) for every A ~ Fo  and ~ < 0, {13/~ : i E A f h  (.3 appear in ~. 
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3) In (1) (and (2)) we replace "enumeration" by (< It)-enumeration i f  we restrict our- 

selves to subsets of  9~ of  cardinali ty <It  i.e. in (ii) 0 -< It, in (iii) 0 < It. 

4) For  an unbounded subset S of  )~, we say 8 is a rich enumerat ion for (S, O) t if." 

(i) g is an enumeration for X 

(ii) if  ~ = 1, ~. = )~<0 and every b ~ )~, I b I < 0 appear  in a" 

(iii) if  t = 2 clubtr(O) < X, then for every 8 e S of  cofinality 0 the condition in (2) 

(iii) above holds. 

14 Fac t :  1) For  every regular  uncountable ~. there is a rich enumeration;  

2) For  every ~. = cf  )~ > It, X has a rich It-enumeration. 

15 Def ini t ion:  For  X regular uncountable 

I+[~]  = {S c )~: for every cardinal )C > ~. and x • H(Z) ,  for some closed C c )~, for every 

8 • C ( - 7 S  there are a l imit  ? < 8 ,  and Ni<(HOO,e , x , )O ,  for i < ? ,  such that 

(Nj : j < i) ~ N i, Ni ('7)~ is an ordinal o~ i < 8 and 8 = t..) o~i}. 
i<? 

16 Fac t :  1) I+[X] is a normal ideal on X and in its definition w.l.o.g. ? = c fS ,  

2) I [~]  G I + [ L ]  

3) I f S  c_ gcf[)~] then: S • I [k ]  ¢:* S • I+[~]  

4) There is S~ n c_ gcf[)~], such that for every rich enumerat ion d for )~ and S c Gcf[~]: 

S • l [ k ]  i f  and only i f  S • I+[~,] i f  and only if  S uTS~  '~ = O m o d D ~ .  if  and only if  

S c_ S[p [~] rood Dx.  W e  let Sin0 = {8 < ~ : cf(8) = 0, 8 • S[} (this replace 3(3)) and 

Sk,<0 ~/{8 < )~ : cf  8 < O, 8 • S ~. n) 

5) for  every rich enumerat ion ~ for ~, gcd[)q - S[  n [a] - S~ q mod D z.. 

6) for any 0 < 9~, suppose (A) ~. = )~<0, {b c_ X : I b [ < O} c_ {ai : i < )~} (like 11 (2)(ii) or 

(B) clubtr(O) < ~., FO exempli fy  it and d satisfies l l (2 ) ( i i i )  for every 

~n 8 •  S c {8 < ~ : c f  8 >cf O}. Then S ('7 S~,o = S - S~P[-d]. 
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Proof: 1) The normality is easy, the "w.l.o.g, 7 = cf  5" is proved as in 2(2). 

2) Let S e I[~.], so for some enumeration E = (ai : i < X) for ~,, C ( 7  S c S[  q [~] for 

some closed unbounded C c )~. Let X >~., x ~ H(X). We can find (N~ : ~ < )~) increasing con- 

tinuous, N~ < (H(x) ,e ,  x), such that N~ ('7)~ is an ordinal IIIN~ III < 9~, (Nj : j  <- 4) ~ N;+I 

and C ,  ~ ~ No. So C" =~z{~ < 2~ : 5 ~ C and N~ ('7)~ = 5} is a closed unbounded subset of  ;L 

Now for every 5 ~ C" ('7 S, there is ai from ~, otp(ai) < sup(a/) = 5 and for ot ~ ai, 

o~ (-7 ai ~ {aj : j < 5}. As ~ e N O clearly {a) : i < 5} ~ k.) N~. Let ai = {YE : e < otp ai}. Now 

we try to define by induction on e < otp(ai) an ordinal ~e < 5: 

for  a = O: ~a = 0 

for  ~ limit: ~ = t..) ~f~, 

for  a successor." ~E is the first ordinal ~ satisfying ~ is bigger than 7e and (N~ : [3 < ~) belongs 

to N~ .  

The only reason for stopping is: e limit k_) ~[3 = 8; once this occurs at e0, (N~ : e < ~ )  is 
[~<~ 

as required [otherwise for limit and for zero there is no problem, and for e successor, ~e-1 is 

defined and < 5, so for some [3, ~E-~ < 7~ < 5 [where ai = {Tf~ : [3 < otp ai}) now ( ~  : [~ < a} 

is definable inside the model (H(x) ,e)  from the parameters (Nj : j  < y~), (Tj : J  < [3) only; as 

both are in k.) Nj,  is (~[~ : [3 < oc), and similarly so is ~e]. 
j<g 

3) Fix S c gcf[)q; by 16(2) it is enough to assume S E I+[)q and prove S ~ I[~.], we 

prove more in 16A below. 

4) S [  n is gcf[)q - S [  p [a] for any rich enumeration E for )~. 

5), 6) Should be clear. 

16A Subfact: If S c gcf[?~], (~, regular uncountable) S belongs to I+[~.] and 

a = (ai : i < ~.) is a rich enumeration for 9~, then S ~ S[  p [d] mod D ~. 
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Proof  of 16A: Let x = ~, % = (2;~) +, so as S • /+[X] (see Definition 15), there is a 

closed unbounded C G X such that (see 16(1)): 

(*) for every ~ e C ~ 6 there is K/= (Ni : i < cf(8)) as in Definition 15. 

Fix ~ • C (-~ S, and N and let 0 = cf  5, ct i = N i ~ ~.. Remember 
*p  - -  

Ni ("1 {aj : j < X} = {aj : j < o~i}. We shall show that 8 e SX [a], thus finishing. 

Case 1:~<0 = ~ (e.g. c f 8  <<. R0). 

that 

In this case for each i (*)  < 0, {cLi : i  < i(*)} belongs to {aj : j  < X} (as ~ i s  rich) and to 

Ni(,)+ 1 (as (Ni : i < i (*))  • NI(,)+I, and X e Ni(,)+I); hence {e~i : i < i(*)} belongs to their 
* p  - -  

intersection which is {aj : j < e~i}, So (a i : i < i (*))  exemplify 8 • Sz (a), as required. 

Case 2 : c f 5  < 8, clubt~(O) < X where 0 = c f 8  > 1~o). 

Let Fcf8 exemplify ctubtr(O) = I t r (Fo) t ,  and let {13/~ : i < 0} be as in Definition 13(1) (iii). 

So A0 = {i < 0 : 13/~ = c~d is a club of  0, hence for some club A e F0 ,  A c_Ao. By 13(1) (ii]) 

for every i (*)  < 0, {[3/~ : i e A, i < i(*)} belongs to {a i : i < ~,}, but A ~ i (* )  e L.) Ni [as 
i<0 

0 < 8, hence w.l.o.g. Fo ~ k.J Ni hence tr(Fo) e L.J Ni, but I t r (Fo)  I < ~ hence 
i<0 i<0 

tr(Fo) c kJ  Nil. Hence {¢x i : i • A f'~ i(*)} • L.J Ni, so we finish. 
i<0 i<0 

Case 3:6  = c f  8. 

Trivial. 

* n  17 Lemma:  Suppose in V, )~ > Ro is regular, 0 e Gcf[%], so Sx, o is defined. 

Suppose further V 1 is an extension of  the universe V (say same ordinals), V 1 ~ ")~ > R0 is 

regular", and 

(*)1 V 1 k "every subset of X of cardinality < 0 belongs to V", V ~ ")~ = X <° ' ,  or 
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(*)2 V 1 ~ "F v satisfies for every club C of  0, there is A ~ F~, 

V 1 ~ "0 not a cardinal") and V ~ "IF0Vl = clubtr(O) < )C" 

A c_ C" (but maybe 

Then 

(i) V 1 ~ "cfO ~ Gcj~)~] or cfO = i¢0"; and 
st * n  (ii) V 1 k SX.cfO ( ' 3 { 8 : V  k c f S = O } - - ( S ~ o ) V m o d D ~ .  '' or equivalently: in V 1, 

(S~o )V /D x is disjoint to every S /D z, S ~ l[k]. 

Proof: Let E be a rich enumeration for ~. in V. 

By (*), ~ is still a rich enumeration in V 1 for S = {8 < )~ : V ~ c f~  = 0}. By 16(6) we 

finish. 

18 Lemma:  If  ~. > 110 is regular, S ~ I + [)~], S ~ {B < ~ : cf 8 < Ix}, P is a Ix-complete 

forcing notion then 

IH-e"S is a stationary subset of ~. (as an ordinal, ~. may or may not be a cardinal)" 

Complementary to 18 is 

19 Lemma:  Suppose 0 ¢ Gcf(~.), 1¢ o < 0 < ~t = cf~t < ~. so S~0 is well defined. 

1) If  Ix = 0, 7~ = )~<0, IPrLevi(~t,~.) ,,(S~o)v is not stationary (as a subset of  the ordinal )~, 

(remember Levi(O,)~) = {f : f a  function from some (z < 0 to %}, it is e-complete). 

2) If  S~,n0 = ~D, ~ = )~<0, ill.Levi(ix,k) ,,(S~o)V is not stationary". 

3) In (1) and (2) we can replace Levi (0,~.), by any forcir~g notion P which adds to ~, no 

new subset of  power < t.t and I11-/, "cf ~ = Ix". 

4) In (1),(2) we can replace "~. = ~<0. by clubtr(O) < X, if we replace Levi (I.t,)Q by 

Levi(~.,)~ <°) * Levi(Ix,)O. 

Remark:  A more general forcing is as follows: Let 0 <~, I¢ < 0, b = (bi : i < ~.) exem- 

plify that S o ~ I [ 0 ]  and [ ~ < O A S ~ S o ~ c f ~ < l ¢ ]  or just for some o = c f G < l ¢ ,  

S o = { 8 < O : c f S = G } ,  S c _ { 8 < ~ . : c f ~  G) and Qg.O { ( i ; : ~ < ~ * ) :  < 0 ,  i ; < % ,  
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[~(1) < ~(2) ~ i~(1) < i~(2)1, ai; = {i~ : ~ • b~}}. 

20 C l a i m :  Suppose 0 = c fO > N0 for the regular  cardinals  ~, and g,  ~, > It and 

ctubtr (0) < It. 

*n *n 1) Given S~. , S~t , there is a club C ~ ~. such that: for  every 8 • C of cofinality It, there 

is an increasing continuous sequence (t~i : i < It), t..3 cti = 8 and a club c of  It satisfying 
i<~t 

*/'l 
[ i • c ^ c f i = O A i ~ S ~ t  ~ i ~ S [ n ] .  

2) If  ~ is a rich enumeration for ()~,0), then {5 < )~ : c f g  = g implies  that for some 

~i,~i (i < g):  (0~ i : i  < It) is increasing continuous with limit 5, 13i < It and defining for 

i < It, bi = {j : aj ~ af~J, (b i : i < It) is a r i c h  enumeration for (It,0)} • D~.  

21. L e m m a :  1) I f  ~c is supercompact  and e.g. ~. > ~c > cf~,, then I [~÷]  is a proper  ideal: 

;~.+ ~ I[~,+1. 

3) After  suitable collapses,  e.g. cf~,  = N 0 < ~ but still ~,+ ¢ I[9~+]. 

22. P r o b l e m :  1) Is G.C.H. + {5 < ~o+t  : c f 5  > ~,t} ~ l[Nco+x] consistent with ZFC. 

2) Is 

(*)2 e° > R¢o+l + "there is no stationary S ~ I [ ~ o + 1 ] "  

consistent with ZFC? 

3) Is 

(*) 2 e° > ~o+1 + for no ultrafilter D on co, cf(rC(Nn, <)/D ) = t~o+ 1 
n 

consistent with ZFC. 

R e m a r k :  "No+l  is a Jonson cardinal" implies  (*) of  (3) (see [Sh 9] which implies  (*) of  

(2) (see [Sh]). 
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Having F cause slight inconvenience. 

We define by induction on cz < X +, (Mct, Na,a) ,  and N r, N r, Mr,f~,g,l: for suitable ~/'s 

such that 

(A) Ma,N~x,M~,N*~ are isomorphic to M*. 

(B) M~([3 < a)  is <K- increasing continuous and similarly N~,M~, N;. 

(C) F (M~+I) = Mi+2 
$ $ 

(D) F (N i +1 ) = Ni +2 

(E) (Mf~,Nf~,a) < (Ma,Na,a) for ~ < a.  

(F) for ~/limit or zero f~, is an isomorphism from M r onto M r, g'l is an isomorphism 
$ 

from N~ onto N~. 
$ 

(G) for "y limit or zero, n > 0: f~ is an isomorphism from N~,+n onto N~,+2n, g~, is an iso- 
$ 

morphism from My+ n onto M~/+2n_ 1 . 
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