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Introduction

No knowledge of the first part is assumed; we rather start to redo it, eliminating or weaken-
ing set theoretic assumptions, and generalizing the context. In [Shl], proving a conjecture of

Baldwin, we show that

(*)1 no y e Ly o(Q)) has a unique uncountable model up fo isomorphism,

by showing that

(*)2 categoricity (of Y e L, (@) in X, implies the existence of a model of y of

power ¥,.

Unfortunately this was not proved (i.e. in ZFC), diamond of X was assumed. In [Sh2]
this was weakened to 2% < 2R1; here we shall prove it in ZFC (see §3). (However, for getting

the conclusion from the weaker assumption / (¥,y) < 2™1 as there we still need 2%° < 2™ ).

This research was partially supported by the United States Israel Binational Science
Foundation (BSF) and the NSF.
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The main result of [Sh2] was:

()3 ifn>0,2% <2 < < 2% e Ly o 1 ST(Ry,0) < W(Ry) for £<m, £21
{where (W(R,) is usually 2% and always > ZKH)

then y has a model of cardinality K, .

()4 if n>0,2% <2< ye Ly o 1 SI(XpY) < W(Ry) fort <o
then y has a model in every infinite cardinal (and satisfies Los Conjecture), (note that (*)s

for n =1, assuming Ox was proved in [Shl].)
1

Why in [Sh2] y was assumed to be just in L,  and not more generally in L, (Q)?
Mainly because we feel that in [Shl], the logic Lo o(Q) was incidental, We delay the search
for the right context to this sequel. So here we are working in "abstract elementarily class”
(so no logic is present in the context) whose main feature is the absence of amalgamation. So
if £is a fragment of L., (for a fixed vocabulary), T ¢ £ a theory, K = {M :M ET},
M <g N if and only if M </N, we get such a class. So ye La, o(@) is not represented
directly, but can be with minor adaptation; see 3.9(2) and for other applications Makowsky
and Shelah [MSh]. Surprising (and easily), every such K can be represented as a pseudo ele-
mentary class if we allow omitting types, (see 1.8). We introduce a replacement for saturated
models (for first order T) and full models ( for excellent classes, see [Sh2]): limit models;
really some variants of it. See Definition 3.1. The strongest is M  superlimit:
GBNYM <N AM=N)and if M; =M fori <3< MU theny M; =M. Such M exists for a

i<8
first order T for some pairs A,8; and it exists for every A 2 2'TV if and only if T is superstable.
But we can prove something under those circumstances: if K is categorical in A (or just
have a superlimit model M~ in A), but the A-amalgamation property fail for M * and 2% <2V
then T(A", K) =2 (see 3.5). With some restriction on A and K, we can prove e.g.
IO K)=IAYK)=1=IA""K)21, (see 3.7, 3.8).

However our main aim was to do the parallel of [Sh2] in our context, and it is natural to

assume K is PC g, .

Sections 4,5 present work toward this goal (§5 assuming 2% < 2%1. §4 without it). We
should note that dealing with superlimit models rather than full ones make problems, as well

as the fact that the class is not necessarily elementary in some reasonable logics. Because of
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the second we were driven to use the forcing, and "the type a materialize”: gtp(a, N, M).
We also (necessarily) encounter the case 1D (Rg)| = Xy. Because of the first, the scenario for
getting a full model in Ry (which can be adapted to (¥,,/X})-superlimit - see 5.9) does not

seem to be enough for getting superlimit models in R (see 5.24).

We had felt that arriving at enough conclusions on the models of cardinality ¥, to start
dealing with models of cardinality X,, will be a strong indication that we can complete the gen-
eralization of [Sh2], so getting superlimits in X, is the culmination of this paper and a natural
stopping point. The rest (of the parallel to [Sh2]) was delayed, and Grossberg had taken it on
himself.

Grossberg and Shelah [GSh2] will do parallel work replacing Ry by any cardinal.

Much remains to be done.
1. Proving (*)3, (*)4 in our context.

2. Parallel results in ZFC; e.g. prove (*); forn = 1, 2% = 2%,

Note that if 2% =2, assuming 1 <J(X,K) < 2% give really less-new phenomena
arise (see $6). See §4 (and its concluding remarks).

3. Construct examples; e.g. K (or y & L, .»), categorical in Rg,Ry,..., X, butnotin

1
Koy

4. IfKis PC;, categorical in A,L*, does it necessarily have a model in A**?

The work was done in 1977, and a preprint was circulated. Meanwhile an exposi-
tory article of Makowsky [Ma] represent, give background and explain the easy parts of

the paper. The author have corrected and replaced some proofs and added mainly §6.

We thank Rami Grossberg for lots of work on previous versions, which improved the
paper, and the writing up of Section 6.

! In late 85 much was done on this [Sh 10]
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§1. Axioms and Simple Properties for Classes of Models

1.1 Conventions.

Here K will be a class of L-models and <g a two-place relation on the models in K (we
usually omit X). We do not distinguish between K and (K,<g). We shall assume that X, <y are
fixed, and M <x N = N, N € K, and we assume that the following axioms hold. When we

use < in the usual sense we write < _ .

1.2 Definition: Ax 0: The holding of M € K, N <M depend on N, M only up iso-
morphismie. [M € KM =N =K], and [if N <M and f is an isomorphism from M onto the
L-model M’ mapping N” onto N” then N’ < M.

Ax I: If M < Nthen M < N (i.e. M is a submodel of N).
AxIl: My <M <M, impliesMy <My, and M <M forM e K.

Ax II: If A is a regular cardinal, M; (i <A) is a <-increasing (ie. i <j <A

implies M; < M;) and continuous (i.e. for & < A, M5 =\ ) M;) then My < M;.
i<d i<A

Ax IV: If A is a regular cardinal M; (i < A) is <-increasing continuous, M; < N then

U M;<N.
i<A

AXV:IfNg CN; <M,Ng <M thenNg <Nj.

Ax VL IfA CN; 1Al SMK) then for some M <N, A < IM] < X(K) (we assume for
simplicity L1 < AK)).

Notation: K =M e K: lIMIl =}, K, = K.
<

1.3 Definition: The embedding f: N — M is a K-embedding if its range is the

universe of a model N’ < M,

(so f: N — N’ is an isomorphism onto).
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1.4 Definition: Let T beatheoryinLy,L c L, Tasetof typesinL;.

(1) EC(T+,T) = {M : M an Lj-model of Ty which omits every p € I'}. (so L is recon-
structible from 7',I')

PC(T{,F,L)={M :Mis an L-reduct of some M, € EC(T{,])}.

(3) We say K is PCY if for some T,,T,,[1,I,L: K=PC(T{,I,L), and
{(M, Ny:M <N, M, Ne K} =PC(T,T,L") where L’=L{P} (P a new one place
predicate), 17,1 <A, IT I sy foré=12. Ifu =2 weomitit

1.5 Example: If L, = L, T{,T as above, then K ZEC(T|,ID, <g i_ef<LM satisfy the
Axioms from 1.2 (for MK) 1T, 1 + Rg).

1.6 Lemma: Let! be a directed set (i.e. partially ordered by <, such that any two

elements have a common upper bounded).

(1) If M, is defined for re I, and 1 £5 € [ implies M, < M, then for every te I,
M, <M,

sel

(2) If in addition ¢ € [ implies M, < N then () My <N.

sel

Proof: By induction on 171 (simultaneously for (1) and (2)).

If I is finite, then / has a maximal element £ (0), hence \_j M, = M,(g), so there is nothing
tel

to prove.

So suppose |11 = p and we have proved the assertion when I/l <p. LetA=cfusod
is a regular cardinal. We can find I, (ot <X) such that /ol < U1, <P <A implies
Ioclgcl, \ylg =1, for limit d<A Is=1ylyand I is directed and non-empty. Let

o<A o<d
M® =\ Mj;; so by the induction hypothesis on (1), 1 € I implies M, < M%; [ and if we are
tel,

proving (2) by the induction hypothesis on (2), M* <N]. If <P then re I, implies
M, <M ﬁ; hence by the induction hypothesis on (2) M% =y M, <M B So by Ax I

tely
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M%<y MP = UM, and aste I, implies M; <M%, by Ax Il t € I implies M; <\ M;.
< tel sel

[(ff we are proving (2) by Ax IV, yM; = M*<N]L

sel o<h

1.7 Lemma: Let Ly =L {F} :i < MK),n < 0}, F} an n-place function symbol

(assuming, of course, F} € L).

Every model M (in K) can be expanded to an L ;-model M| such that:

(1) M3 <M when ade "IM! and where M; is the submodel of M with universe
{Fi(a):i <MK)},

(2)if @ e "IMz1 then Mzl < A(K),
@3)if bis a subsequence of @, then My < M,
) foreveryNycM{,Ny L <M.
Proof: We define by induction on n, the values of F}(a) for every i <A(K),
de™IMl. By Ax VI there is an Mz <M, WMz SAK), IMz] include U{M;:I;a

subsequence of @ of length < n} @ and Mz does not depend on the order of a. Let

IMzl = {c; 1i <ig < MK)}, and define F(@) = ¢; fori < ig and ¢ forip <i < MK).

Clearly our conditions are satisfied if b is a subsequence of @, Mz < Mz by Ax V.

Remark: This is the only place we use Ax V, VI (except in 2.7 which is not used
later); and it is clear that we can omit Ax V if we strengthen somewhat Ax VL

1.8 Lemma: 1) There is a set I of types in L; (from Lemma 1.7) such that
K = PC(@,T, L). Moreover if M| <, Ny € EC (D,1), M, N the L-reducts of M, N resp.
then M <g N.

2) Similar results hold for {(M, N) :N <M ; N, M € K}.

Proof: 1) Let T, be the set of complete quantifier free n-types in Ly, p (xo, . . . , Xz-1),
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such that: if My is an L-model, g realizes p in M and M is the L-reduct of M, then
My <x Mz for any subsequence b of @ where Mz(C € ™M) is the submodel of M whose

universe is {F7(c) : i < MK)} (and there are such submodels).

Let T be the set of p which are complete quantifier free n-types (in L) which do not

belong to I, for some n < .

By 1.6 PC,(@,I,L)y c K and by 1.7 K < PC(J,P,L)
2) Applying 1.7 to M, when N < M w.lo.g. a € "N = M, CN.

We let T, be the set of complete quantifier free n-types in L' “L, U {P} (P a monadic

predicate), p (xg, . . . ,X,-1) such that:

(*) (o) if My is an L -model, a realizes p in M 1, M the L-reduct of M|, then My <x¢ M3
for any subsequence b of @ where Mz (C € IM 1) is the submodel of M whose universe is
{F7(c) . i < MK)}, (and there are such models),

(B)I;gPM‘ = Mj cPforb Ca.

We leave the rest to the reader.

1.9 Conclusion: Thereis L1, L < L1, |L{! £AK) such that: for any M € K and any
L1-expansion M | of M which is in PC(J,I),

Ny <Lm,mM1 SNy ITL<xgM

N “Low N,y <Lm,mM1 =N; I L<gN,IL.

1.10 Conclusion: If for every a < (2MK))+ K has a model of cardinality 2> 3, then K

has a model in every cardinality = A(K).

Proof. Use 1.8 and the value of the Hanf number for: first order theory and omitting

any set of types, for languages of cardinality A(K).
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§2 Amalgamation Properties and Homogeneity

2.1 Definition: o(N) = {N/=:N <M, IINIIl £ LK)}
oK)= {N/=:Ne K, INIlI £ AK)}.
2.2 Definition: Let A > A(K)

(1) A model M is A-model homogeneous if whenever Ng <N; <M, Nl <, fan
<-embedding of Ny into M, then some <-embedding f : N{ — M extend f.

(2) M is h-strongly model homogeneous if: for every N € K3 such that N <M and
f:N-» M is a K-embedding there exist a K-automorphism g : M — M extending f.

(3) M is A-saturated homogeneous if for every N, € K .2 (2 = 0,1) such that Ng < Ny if
there exists an K-embedding f : No — M then there exists an K-embedding g : Ny — M extend-
ing f.

4) For each of the above three properties, if M has power A and has the A-property then

we say for short that M has the property (i.e. omitting A). (saturated homogeneous is usually
called universal homogeneous).

5) M is (D,\)-sequence-homogeneous if: D = {ip(@,, M):a € IM1} and if a; € M for
i<a<, bjeMfor j<aand tp({a; i <o), M) =wp(b;:i < a),B, M), then for some
boe M, ip(a; i €a),D, M) = tp((b; : i <), D,M). We omit the "sequence” sometimes.

2.3 Theorem: Assume N is A-model-homogeneous, (M) < oN), (MK) <A of
course). Then

(DM <M <M, WMol <A, WMl <A, fa K-embedding of Mg into N, then we
can extend fto a K-embedding of M into N.

()M, <M, IM Il £A then there is a K-embedding of M into N.

Proof: We prove by induction p <A that

(i) forevery M <M, WM 1l < p there is a K- embedding into N.

Gy if Mg <M <M, UMl <pu, NIMgH < then any K-embedding of My into N
can be extended to a K-embedding of M into .

Then clearly (i), is (2) and (ii)3 is (1).

Proof of (i), :

If L £ XK, this follows by (M) < oN).
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If u > A(K) then by 1.9 M =\ MY, MY <M, M? is <-increasing and continuous, and
a<p

NIME Il < . We define by induction on o, a K-embedding f, : M — N, such that for B < a,
fo extend fg. We can define fo by (i)yp) where x(B) = IlIM? ll. We then define f, for
o = y+1: by (i)y(a there is an K-embedding g, of MY) is a K-embedding of M) is a K-
embedding of M{, into N; Now let MY, = go(MS), M), = go(MY), so (fyo ¢3! into N, so
there is a K- embedding h, of M{, into N extending (fyogal). Now (hg°gq) is a K-

embedding of M{ into N extending Sy as required, and for limit o, fo =\ f3 » fo 15 2 K-
B<a

embedding into N by 1.6. So we finish the induction and ) f¢, is as required.
a<p

Proof of (ii)u:

Let g be a K-embedding of M into N, it exists by (i), which we have just proved. Let g be
onto N’y <N, and let g I My be onto Ny <N’y, and let f be onto Ng <N. So clearly
h :N'g = Ny define by hg(a) = f (@) for a € IMg! is an isomorphism from N’y onto Ny. As
No,N'o,N'y <N, if lIN“{ Il < A, we can extend A to an isomorphism A’ from N’} onto Nj <N,
sohg : M > N, where hg = h; and let B = hy,.

2.4 Conclusion: (1) If M, N are model-homogeneous, of the same cardinality and
(M) = o(N) then M, N are isomorphic. Moreover if Mg <M, Mgyl < WM I, then any K-
embedding of My into N can be extended to an isomorphism from M onto N.

(2) The number of model homogeneous models of cardinality A is < 22

(3) If M is A-model-homogeneous, (M) = o(K) then M is A-universal, i.e., every
model M (in K) of cardinality <A, has a K-embedding into M.

(4 If M is A-model-homogeneous then it is A-saturated homogeneous for
{MeKg: olN)c M)}

(5) If M is A-model homogeneous, o(M) = (K) then M is A-saturated homogeneous
for K.

Proof: (1) Immediate by 2.3(2), using the standard hence-and-forth argument.
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(2) The number of models (in K) of power <A(K) is, up to isomorphism, <2},
p p
Hence the number of possible (M) is < 223& . So by 2.4(1) we finish.

(3),(4),(5) Immediate.

2.5 Definition: (1) A model M has the (A,[)- amalgamation property (= am. p.) if: for
every M1, M, such that WM W =&, WMol =, M <M, M <Mj,, there is a model N, and
K-embedding f{ : M —> N and f, : Mo — N, such that f; I IM] = fp [ IM|. Now the mean-
ing of e.g. the (<A, <u)- amalgamation property is clear. Always A, = A(K).

(2) K has the (k,A,p)-amalgamation property if every model M (in K) of cardinality x
has the (A,j)- amalgamation property. The (k,A)-amalgamation property is just the (X, x,A)-
amalgamation property. The k- amalgamation property is just the (x,K,x)-amalgamation pro-

perty.

(3) K the (A, w)-JEP (joint embedding property) if for any M| € K, M, € K of cardinal-
ity A, L respectively there is N € K into which M| and M, are K-embeddable.

4) A-JEP is the (A, A)-JEP.

5) The amalgamation property means the (x,A,l)-amalgamation property for every
AL =K (2 MK)).

6) The JEP means the (A,l1)-JEP for every A, L.

Remark: Clearly in all cases, the roles of A, are symmetric.

2.6 Theorem: 1) If ME)<k<A, A=A, K3 #@, and K has the (<xA)-
amalgamation property then for every model M of cardinality A, there is a x-model homogene-

ous model N of cardinality A, M < N.

2) Soin (1) if k = A, there is a universal, homogeneous model of cardinality A, provided
that for some M € K, M) = oK).

2.6A Remark: 1) The Iast assumption of 2.6(2) holds e.g. if (A(K), < 2M%)-JEP holds
and 1D (K)l €A
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2) If for some M € K, o{M) = o(K) then we can have such M of power < MK

3) We can 2.6 replace the assumption "(<k,A)-amalgamation property" by "(<x,<A)-

amalgamation property” ife.g. no M € K is maximal.
Proof: Immediate.
2.6B Remark: Also the corresponding converses holds.

2.7 Lemma: (1) If K has the x-amalgamation property then K has the (k,x*)-

amalgamation property and even the (k,kx™,x*)-amalgamation property.

(2) If &; (i € ) is increasing and continuous, A(K) < Ag, and for every i < o, K has the
(i1 + Ay, A 4 )-amalgamation property then K has the (Ag, L+, Aq )-amalgamation property.

(3) f x S <A, K has the (x, 1, )t)- amalgamation property and the (i, A)-amalgamation
property then K has the (x, A, [1)-amalgamation property.

@) If x Sy <4, and for every M, IM Wi = 1uq, there is N, M <N, NIl = Y, then the
(1, 1, A)-amalgamation property (for K) implies the (x,|1;,A)-amalgamation property of M.

Proof: Straightforward.

2.8 Conclusion: If K has the x-amalgamation property for every %; < X <% then K has
the (k,A,)-amalgamation property whenever¥; SKSA <y, KS P < Xo.

* %k ok

It may be interesting to note that even waiving AX IV we can say something.
2.9 Context: For the remainder of this section, Ax IV is not assumed.

2.10 Definition: Let M € K have power A, a regular uncountable cardinal. We say M is

smooth if there are {(M; : i < A), M; is increasing continuous M; <M, HM;ll <A, M = M,
i<h

2.10A Remark: We can define S/ D-smooth, for § a subset P(A), D a filter on P()
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(naturally such that for every one- to-one function from A to A, {a € P(L): a closed under

f} € D, and usually a normal A(K)* - complete filter)

211 Lemma : If M, Ne K; (L >XMK)) are smooth, model homogeneous, and
M) = o(N)thenM =N,

2.11A Remark: It is reasonable to consider
(*) If M e Ky, (A>MK)) is smooth and model homogeneous, and N € Ky is smooth,
o(N) ¢ (M) then N can be K-embedded into M.

This can be proved in the context of "universal classes (e.g AxFry).

Proof: Left to the reader.

2.12 Fact: If (K;,<;) satisfies the axioms with A; = A(K;,<)}(2 ¥g) for i<q,
K = ~ K; and < is defined by M <N if and only if for i <o, M <; N, then (K, <) satisfies the

<o
axioms with MK, <) £ 3" A;. We can add Ax IV (to assumption and conclusion).
<ol

Proof: Easy.
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§3 Limit Models and Other Results

In this section we introduce various variants of limit models. We prove that if X has a
superlimit model M* of power A for which the A-amalgamation property fails, 2% < 2¥ then
I(ALK) = 2% (see 3.5). We then prove a generalization of: if ye L, (Q) is categorical in

R then it has model in R5. (see 3.7, 3.8). Now that.

The reader can read 3.1(1), ignore the other definitions, and continue with 3.4(2),(5), and

everything from 3.5, (interpretating all variants as superlimits).

Example: Let A have cofinality 2 R, then

K = {(A, <) : (A,<) a well order of order type £A*Y)
<x ={(M, N): M, N € K, N an end extension of M}

is an abstract elementary class, categorical in A ¥,

Note that if we are dealing with classes which are categorical or simple in some sense, we

have a good chance to find limit models, and they are useful in constructions.
3.1 Definition: Let A be a cardinal = A(K).

)M € K5 is superlimit if
(a) for every N € K3 suchthat M < N thereis M’ e Ky, N <M and N =M’
(b) if & < A™ is limit {M; : i < 8) is <-increasing, and (for i < 8) M; =M then
UM M.

i<d

2)For§ c {i: Ry Su A, uregular), M € Ky in (A,S)-superlimit if:

(a) from above holds and
(b) M; =M is (<-) increasing fori < p e Sthen yM; =M.

3) Let S cA* be stationary. We call M(eK) S-strongly limit if for some function
F:Ky —=Kjy:
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(@forNe Ky, N<F(N),N#F(©N)
(b)if € S, (M; :i < 8) is an increasing continuous sequence of members of

Ky, Mog=M,F(M; 1) <M;,y,then M =y M;
i<d
4) Let S ¢A* be stationary. We call M (€K3) S-limit if for some function
F:K) =Ky

(@forNe Ky,N<FN),N#F(N)
(b) if (M; :i < L") is an increasing continuous sequence of members of K3,

Mo=M,F(M;.1) < M;,, then for a closed unbounded subset C of A%,
Be S~NC=>Ms=M]

5) We define "S-weakly limit", "S-medium limit" like "S-limit”, "S-strongly limit" reps.
replacing "F (M; ;1) <M 2" by "My # F(M; : j i+ 1)) <M; 0"

6) If $ = A* then we omit S (in parts (3),(4),(5)). We call M weakly limit if it is S-
weakly limit for a dense family of stationary § ¢ MM HIF.

7) For Sg{u:Rog<pusA, p regular), M is (A.S)-strongly-limit if M is
{8 < A" : ¢f 8 e §}-strongly-limit. Similarly for the other motions.
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Obvious Implication Diagram

(where S < {p:p regular A} §; {8 < A" :¢f8e §} is a stationary subset of
A%

superlimit = (A, {1 : <A regular})-superlimit

(A,8)-superlimit

S 1-strongly limit

S 1-medium limit S 1-limit

S 1-weakly limit

{lL:u<A regular}-strongly limit

weakly limit

32 Lemma: DIFS; cAt, fori<A™, S={a<ri":@Gi<wae S}, S ~i=D for

i < Athen: M is S;-strongly limit for each i< A if and only if M is S-strongly limit.

2) Suppose Kk < A is regular and § < {8 < A*: ¢f 6 = kJ is a stationary set and M e K3

then the following are equivalent:
a) M is S-strongly limit
b) M is (h,{x})-strongly limit

¢) there is a function F : Ky — K3, (VN € K3) [N <x¢ F(N) AN # F(N)] such that if

M; e K; fori <k, [i<j=>Mi<Mj],F(M,'+1)<M,'+2, My EMthenuMiEM.

i<k

W

3) In part (1) we can replace "strongly limit" by "limit", "medium limit" and "weakly

limit".

4) Suppose x <X is regular, S < (8 <A* :¢f & = xJ is a stadonary set which is good

(see below in the appendix and [Sh6]), and M € K.
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The following are equivalent:
a) M is S-medium limit

b) there is a function from _*(K3) to K such that
<K

() for any (M;:i<sa), Mo=M, if a<x, M; is <-increasing,
M, e Ky, then My <F(M;: i<

(B) if (M; :i < x) is <- increasing, Mg =M, M; € K, and for i <K,
Mig <F(M;:j<i+1))<M;,.g then yM; =M.

<K
3.3 Lemma: Let T be a first order complete theory, K its class of models, <g = Lo
1) If A is regular, M a saturated model of T of power A, then M is (A, {A})-super limit.

2) If A is singular, M a special model of T of power A (ie. M = y M;, M; is A;-
i<¢f A

saturated, (M; : i < ¢f A) increasing, A = 3 A;) then M is (A, {cf A})-strongly limit.
i<ef A

3) If T is stable, and M a saturated model of T of cardinality A then M is
{1t K(T) € p < A, regular})-superlimit (on k(T)-see [Sh3, 111 §3]). (note that by [Sh3] if &

is singular and T has a saturated model of cardinality A then T is stable, ¢f A 2 x(T)).

4) If T stable, A singular > x(T), M a special model of T of power 2,
S < {6 <A™ :¢f 82 k(T)} is good (see [Sh6] or appendix) then M is (A,S)-strongly limit.

Proof: 1) If M; is a A-saturated model of T for i < 8, ¢f 8 2 A then \_M; is A-saturated.
i<

Remembering the uniqueness of a A-saturated model of T of power A we finish.

2) We use the (well known) uniqueness of the special model. Note that an increasing
union of special models of length ¢f A seem not to be necessary special, however if: for i < ¢f A,

M; is a model of T of power A, M; = \(y M;¢, M;¢ increasing in §, M; ¢ A;-saturated and
E<cf

A= Y XA, and (Vicj<ef &) @E<of V(VDIES<cf A= M SMje] then \( M; is
i<gf A i<cef h

special.

3) Use [Sh3 , II 3.11}: if M; is a A-saturated model of T,, {M; :i < &) increasing
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¢f 82 k(T) then \_y M; is A-saturated.

i<$
4) Left to the reader.

3.4 Claim: 1) If M, € K are S,- weakly limit, S~ S1 # D mod D+ thenMo=M;,
or M y,M cannot be embedded into one model.

2) K has at most one weakly limit model of cardinality A provided K has (A,A)-JEP.

3 IfM e Ky, then {S cA* : M is S-weakly limit or § not stationary} is a normal ideal

over Y.

Instead "S-weakly" limit "S-medium limit”, "S-limit" "5-strongly limit" can be used.
4) In Definition 3.1 wlo.g. FM)=Mor F (ﬁ Yy=M).

3) If KX is categorical in A, then the M € K, is suparlimit limit provided that K- # &

(or, what is equivalent, M has a proper K-extension).

Theorem 3.5: If M € K is S-weakly limit, § is not small (see [DSh]) and M does not
have the A- amalgamation property then I(A*,K) = 2%, and there is no universal member in

Kj+. Also there are 22" models M € K 2+ 1o one K-embeddable into another.

Remark: 1) By [DSh], and see more [Sh 7 ,Ch XIV §1]if 2* < 2% then S = A* is not

small.
2) We can define a limit family of models (i.e. the result should be in the family). But
then the family should satisfy that any member does not have the amalgamation property. But

this complicated the situation, and the gain is not clear, so we abandon this.

Remark: A subsequent work is Grossberg and Shelah [GSh1]. Now we work in a cer-

tain framework. There the framework is changed and a full proof appears.

Proof: Similar to [Sh2] 2.7, 6.3.

We can define by induction on o0 < A%, models My, forn € *2 such that:
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(i)Mn €Ky, Mo, =M,
(i) forB<o,ne *2, Mpp <M.

(iii) for i +2 < o, (F {M ;1 j < i+1)) < M; ;5 (F from Definition 3.1(5)).
(iv) if o = B+1, B non limit, n € *2, then Mg # My,

(v) if o is lmit ne 2 then: if M, fail the A-amalgamation property then
M prco> M cnpnci»> cannot be amalgamated over M, ie. for no N, M, <N € K| and M yrcos,
M yre1> can be K-embedded into N over M.

For o, = 0, o limit, we have no problem, for o+1, o-limit: if M4, fail the A-amalgamation

property - use its definition, otherwise let M pac1, = M y; for o+1, o non limit- use F.

Let for ne *'2, My =\ My. By changing names we can assume that for
[+29

N e “2(oe < A) the universe of M n is an ordinal <A™ (or even < Ax(1+£(n)) and we could

even demand equality). So (by (iv), forn € MoM n has universe At

First why is there no universal member in K3 ? if N € K, is universal, w.Lo.g. its universe
isA*. Forne MaasM n € Ky, there is a K-embedding fy of My into N. So fy, is a function
from A* to A*. Let ne »2, by the choice of F and of (M nre 1 O < AT) there is a closed
unbounded Cyy € A" such that for &€ Cyy My =M, hence M ppq fail the A-amalgamation pro-
perty. W.lo.g for 8e Cn, Mys has universe 8. Now by [DSh], if for ne M2,
fq AT =AY, CpcA' closed unbounded then for some M#ve M2, and Se Ca\Ss
NIrd=vIdn®) #v(® and fy 13=f, I3

Now as 8€ § ~ Cp, Mys =M hence fail A-amalgamation property. Also My5 has

universe 6 as 8 € Co.

SO fa T Muys=fn18=fy18=f T Mys. So fn ! Musen), fv T Myysery show that
Mayrs+1), Myr(s+1), can be amalgamated over M5 contradicting (v) of the construction.

It takes some more effort to get 2+ pairwise non isomorphic model.
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Case A: There is M* e Ky, M <M" such that for every N, M"<Ne K, there are
N',N? e K;,N <N',N <N? and N2, N? cannot be ::unalgamatedoverM’k (not just N).

In this case we do not need "M is S-weakly limit".

We redefine M, me®, a<A® if a=0 Mo=M; if o limit
ne *2; My = Mnfﬁ; ifne g2, o= + 1, use the assumption for N = M, now obviously
<0

N' %N, and N? # N, so we can define My < Myrcts € Ka, Myrcts # My, Morcos # Moy, such

that M paco> Mpacys cannot be amalgamated over M "

Now 2% <2 (this is equivalent to "there is a non small § CA*"). Obviously, the

My =\ My, for 1 e * 2 are pairwise non isomorphic over M*, and by [Sh3, VIII 1.3] we

o<t

finish.

Note also that for each n € "2 the set {v e *'2: M, can be K- embedded into M} has
power < | {f : fa K- embedding of M” into My} < 2% So if @M)* <2V, then by Hajnal free
subset theorem, there are 2 models M ne KxMme At 2) no one K-embeddable into another.

If (2")* =2 _ then repeat the proof in case B below with the M ’s we have constructed here.

Case B: Not case A.

Now we return to the first construction, but we can add

i) if ne @2, then if My <N 1 NZ poth in K3, then N, N? can be amalgamated over
Moy

As {W c At : Wis small} is a normal ideal (see [ DSh]) (and it is on a successor cardinal)
it is well known that we can find A* pairwise disjoint non small S¢ < S for { < A*. We define a

function F:

F M,v,B) is one if for some limit § < A*, n € 8y ve b2, My ,M has universe S, fisa
K-embedding of M, into M, and for some p, v’<0> < p e A'2) f can be extended to a K-
embedding of My, into M,
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F(n,v,f) is zero otherwise.

Foreach{, as § ¢ is not small, by simple coding, for every { < At there is he:S¢— {01}
such that:

(*)foreveryne ¥2,ve 2, f: A" - A", for a stationary set of 8 € Se,

F(MI8,vI3,f18) = h¢(8).

Now for every W < A* we define Ny e M2

Nw(a) is ~g(a), if { € W (note that there is at most one {) if o € St
nw () is zero if there is no such g,

Now we can show (chasing the definitions) that for W(1),W(2) cA*, W(1) 2 W (2),
My, cannot be K-embedded into My, . This clearly suffices.

Remark: We can many times (and in paraticular in 3.5) strengthen "there is not univer-
sal M € K," to "there isno M € K, into which every M € K3+ can be K-embedded”. We need
—Unif(A",S,2,1) (see [Sh 7, Ch XIV §1)).

Theorem 3.6: (1) Suppose K is PC, or has models of arbitrarily large cardinals and
I(®{,K) < 2% Then there is Ky such that

AMe K, =MeK,andM <g¢ N =M <g N and MK 1) = MK).

B) If K has models of arbitrarily large cardinality then so does K;.

C) Ky is PCy,.

D)IfKis PCg,then Ky # @ = (K1)x, 2D, Also Ky, # D = (K1)g, 2 0.

E) All models of Ky are L., g-equivalent, and M <g N =>M < o, N and if Ky, # ,

K is categorical in Xg.

2) If in (1) we added A(K) names to formulas in L.. o, we can assume each member of

K is Xy-homogeneous.
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Proof: Like [Sh1] 1.1 (using 1.12 for o = 2)
3.7 Theorem: Suppose

A) K has a super limit member M " of cardinality A, (A 2 A(K)) (if K is categorical in A
then by assumption B) there is such M; really A*-strong limit suffine).

B) K is categorical in A*.
O KisPCy,A=Rpoords,cf8=worh= Ry, Kis PCy,.

Then K has a model cardinality A**.
Remark; 1) If A = Xy we can wave hypothesis (A) by the previous theorem.

2) Hypothesis C) can be weakened to:

(*)Kis PCy, and any y € L+ , which has a model M of order-type A, IPM| =&, has a
non-well-ordered model of N cardinality A, |PM1 = A, and {M e K3 : M superlimit} is PC,
{among models in X ) and similarly {(M,F(M)) : M € K, ].

It is well known, see e.g. [Sh3] VII §5 why hypothesis C) implies this.

Proof: It is well known that the instances of (*) needed for (C) are true (see e.g. [Sh3,
VII §5].

Stage a: If suffices to find Ng <Ny, lINglll = A*, Ny = N;.

We define by induction on o < A" a model N, € K+ such that B < o implies Ng <Ny
and Ng #Ny, No, N are defined [w.lo.g. WN{I =A% as L 2A(K)], for limit &< At
U N is as required. For a = § + 1, by the A*-categoricity, N¢ is isomorphic to Ng, say by f,

a<d
and we define Ng,; such that f can be extended to an isomorphism from N onto Np,y, so

clearly N, is as required. Now y Ng € Kjr+.

a<Att
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Hence the following theorem completes the proof of 3.7 (use F = the identiy).

3.8 Theorem: Suppose

(A) K has a A*-swrongly limit member M* cardinality XA, as exemplified by
F:Ky —2K;.

(B) U (A, Kpr) <2V, oreven just I (AF, K§+ ) < 2% (see below).
(©) K and {FM),M):Me K} (and {(M, N):N <N} of course} are PCy,
L=A=Rg,orpt=A=2;5,¢8=Rgorii= g, A= Ry.

(D)If p = Rg, A = R then F and the superlimits in Ky, are PC g, .

Then we can find Ng<N;, Ng#N{ such that Ny, N;e K%, where
Kk = {UM;:M; e K,, M; i <L™) increasing  continuous M*=M; M,
F(M;11) <M.}

Remark: Theorem 3.8 is good for classes which are not exactly as required, see e.g.
39.

Proof of 3.8: (hence of 3.7). The reader may do well to read it with F = the identity in

mind.

Stage b: We now try to find N, N as mentioned above by approximations of cardinal-
ity A. A wiple will denote here (M, N,a), M, N=M * (see hypothesis A), N <M, and
ae M-N. Let < be the following order among triples: (M, N,a) < (M’',N",a") if a=a’,
N<N, M<M" , NzN  and even @ANDHIN<KN AFN")<N]
BMHM <M" AF(M")<N’]. (It is tempting to omit a and require N = M (~ N’, but this

apparently does not work).

We first note there is at least one triple (as M * has a proper elementary extension which is

isomorphic to it, because it is a limit model}.

Stage ¢: We show that if there is no maximal triple, our conclusion follows. First we

omit F. We define by induction on a a triple (M, N,a) increasing by <. For o = 0 see the end
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of Ist stage, for o = B + 1, we can define (M o, N,a) by the hypothesis of this stage. For limit
3 <AY, (M5, Ng,a) will be (\ Mg, \U N, a) (notice N5 < Mg by AX IV). Now similarly

o<d o<d

N=y No <M= M, and the element a exemplifiers M # N, so by stage a we finish.

a<At a<it
This suffice, and there is no problem to do this.

Stage d: There are M; =M" fori < o such that [i <jso :M}‘ < M?], FM)<M; 4
and IM 4,1 = ~ 1M} and each M; is superlmit.

n<o

Remark: See [Shl, 2.3A].

* . . . » ’ .
Proof: As M~ as superlimit, there is an <g- increasing continuous sequence

(M; i <A, Mi=M", M;=M" and F (M; ;) <M, ;. So wlo.g. M; has universe A,
1 L
i<At

M has universe A.

Define a model : its universe is A ™.

Relations and Functions: a) those of \y M;.
i<A*
b) R. two place: aR i if and only ifa € M.
¢) P (monadic relation) P = A
¢) g two place function such that for each i, g (i, ~) is an isomorphism from M onto M;.
d) < (two place relation - the usual ordering.

¢) relations with parameter { witnessing M; <\ M;.
<At
f) relations with parameters [ witnessing each M 5 is superlimit, F (M; 1) <M, o,

Lety € L+, describe this. So y has a non-well ordered model 4, 1P A1 =% Solet
a4 E "4, <a,” for n<o.

Letforae 4 ,A,={xe 7 : 2 ExRay}
M,=(a TLK)T A,

Easily M, < 4 T L(K) (use (e)), NIM, Il = A. In fact M, is superlimit.
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SoM, < 2 1L(K),M,, M, henceM,  <xM,. LetM,ZM, .

LetI={be 3 : A2 Eb<a,l}
n<w

Also as for bel, My< 2 I'L(K), and My, <My, for b1<"“‘ b, clearly

Mo 2 a LLE)T \ Ap satisfies M, < 4 [ L(K) hence M4 < M, for n < ®. Obviously
bel

M4 © N M, and equality holds as y guarantee

n<a
(*) foreveryy € 4 thereis aminimalx € 4" such thaty € M,.

As each M, is superlimit of cardinality A, also M, is.

Stage e: Suppose there is a maximal triple, then we shall show I (A*,K) = 2*" | and even

I(AT K {+ )= 2* | and so we shall get a contradiction.

So there is a maximal triple (M 0, NO, a). So for each super limit M € K3, there are
M,aM<M’, aeM -M, such that if M eKy,M <M, and NeKk,,
@ANYYM <NTAF(N*)<M #N AN <M )thena € N. (That is, in some sense a is algebraic
over M). On the other hand by stage d for each super limit M € K, there are M » (n < ©) such
thatM <M’, .1 <M, e K3, and m\ M, = M.

n<o

Now for each § ¢ A" we define by inductionon . < A", M $ , increasing (by <g) and con-

tinuous with universe an ordinal < A*. Let M§=M" and for limit 8 < A", M3 = U M3, by
a<d

the induction assumption M3 is limit, hence isomorphic to M *. For w= B+ 1, B successor

Mﬁ = F(Mﬁ). So we are left with the case o = & + 1, & limit (or zero).

Now if 8 € S, choose M 5,1, a3 such that (M3 ,Mg,ag) is a maximal pair (possible as by
the hypothesis of this case there is a maximal triple, and there is a unique limit model). If § = §
we choose M3$" € K3, M3 <MP"*1 <M¥" for n<w and M = M MS"; and let

n<o

Mg =M 2'0 , (again possible as M5 = M~ and an assertion above).



Sh:88

443

Now clearly it suffices to prove that if $°,51 c A+, §1 - 59, is stationary then M S 2 MS°.
Now suppose f is a K-embedding from M " into MS°. Then §% = S<Ait: MS%‘,M X has
universe 8, and for i < A*[i < & & f (i) < 8]} is a closed unbounded subset of A*, hence there
is a limit d e (SI—SO)mSz. Let us look atf(aﬁl), as de §t, a§l € M%Ll —Mgl, f(agl)
belongs to M5 -M§°, but M§° =N M§°’" (as 5 ¢ $°). Hence for some n f(azg1 )e M§o'".

n<w
But then Mgl <f 1 (Mga*") < M%l (for some large enough B), and agl g f1 (M%o’" ); contrad-
icting the choice of (M$,1,M% ,af ). If F is trivial, we finish. Otherwise

3.8A Observation: We have  been innaccurate: we should consider

{(M, N):F (M) = N} as arelation, closed under isomorphism and assume fis onto M § o.

3.9 Conclusion: 1) If MK) = K¢, Kis PCyx, and J(Xy, K) = 1 then K has a model of
cardinality X,.

2)If ye Ly, (@) (Q is the quantifier "there are uncountably many") has one and only

one model of power X up to isomorphism then y has a model in K.

Proof: 1) By 3.6 we get suitable Ky (as in the conclusion) and by 3.7 K ; has a model in
K5, hence X has a model in ¥;.

2) We can replace y by a countable theory T < L, o(Q).

Let £ be afragment of L (Q) in which T is included. W.Lo.g. T "says" that every for-

mula of £ is equivalent to a relation, and T is complete
K = {M : M an atomic L (T)-model of T ~ L o/}

M<xyNifMe K, NeKandifae M, be N-M N & R[},a], then for some P, N k Pla]
and (VX)[P (X) = OyR (v, Xx)] € T. By [Sh1] w.Lo.g. K is categorical in Xg.

Let F be such that for Me Ky, N=F(M) means: if aeM, MEP[a],
V[P (x) = QyR (y, X)] € T then for some b € N-M,N E R[b,a].



Sh:88

444

F
Note thatevery M € K is a model of y.
R,

F F

So 3.8 give that some Me K has a proper extensionin X .
], &,

The rest should be easy.
Remark: Proving 39(2), we can get Me Ky,, such that M EP[a],
Vx[P(x) = QyR(y,x)] € T then {b € M : M k R[b,d)} has cardinality ®,. This is because in

the proof of 3.8 we show that no triple is maximal.

Problem: If X is PC,, X categorical in A, and A", does it necessarily have a model in
ATT?

Remark: The problem is proving (*).
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§4 Forcing and Categoricity

The main aim in this section is, for K as in §1, what we can deduce from I (X,K) < 2“‘,

first without assuming 2% < 2%,

‘We can build a model of power & by an ®; sequence of countable approximations. There
are models which are the union of quite generic sequence (N; : i < @;) (<- increasing) of count-
able models, so it is natural to look at them (e.g. if K is cateogorical in Ry, every model in K i,

is like that). More exactly, we look at countable models and figure out properties of the quite
generic models in K i, . The main results are 4.8(a), (f).

4.1 Definition: For A and Ng € K .3, let

1 Lﬁ,K be first order logic enriched by conjunctions (and disjunctions) of length < i,
homogeneous strings of existential quantifiers or of universal quantifiers of length < x, and the
cardinality quantifiers 32* (denoted also by Q). But we apply those operations such that any for-

mula has < x free variables, and the non logical symbols are from L (K).

2) LNy, A;; A)icq 1s the language, with the logic L, and with the non-logical symbols of

L(K), the predicates x € Ng, x € A;, and the individual constants, a, a € A. (If we omit Ny, or
A, or A; it is omitted here, 50 L o( ) has the language L (K).

3)L! isasin 1), but we have also variables (and quantification) over relations of cardi-
nality < A"

4) (N, Ng, A;; A)icq is the model N expanded by monadic predicates for No, A;(i < o)

and individual constants for every ¢ € A. For Ny we use the predicate P, so we may write L(P)

instead L(N ), but writing L(N ) we fix the interpretation of P.

4.2 Definition:

1) For Ne Ko, oxg,..)€ L}LK (N) we define by induction on ¢ when
No !H—}( olag,...] (where N <Ny € K 3, ag,... are elements of N, or appropriate relations over

it, depending on the kind of x;) (thus clearly the forcing is define for weaker languages such as
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LY «(Ng,A;;A¢), when 14;1 < A
For ¢ atomic this means Ny k ¢lay,...].

For ¢ = A @; this means
H

Ny IME ¢;lag,...] foreach i.

For ¢ =3xy(x,ap,..) this means for every Nj, Ngo<Nje K there is N,
N{ <N, e K and b from N, of the appropriate kind such that N, IH-I)z\y[l;,E].

For ¢ = —y this means fornoN{,Ng <N € K and N IM& ylag,...].

For ¢(xg,...) = (@y)y(y,xg,...) this means for every N{,Ny <N € K there is N,
No <N, e K, anda € N,—N; such that Ny Whyla,ag,...].

2) The L-generic-type of a in Nis {o(x) e L : N Ilh’?(p[a_]}, where L is a language for N
(or some expansion of it). We say "a materialize p (or @) if p (or {@}) is a subset of the L-

generic type of g in N.

4.3 Definition: Let N;(i <X) be an increasing (by <) continuous sequence, N = N;,
i<h

HN; It < A, L* a fragment of the logic LL,K.

DNis L*~generic, if for any @(xg,...) € L ag,...€ N:

N E ¢lag,..] © forsome o < A, Ny lHq)z ylag,...].

2) The presentation (N; : i < A) of N is L"-generic if for any o < A with cofinality 2 ¥,

W(xg,...) € l:*(Na,N,-)iG,,I ca, It <xandag,..e N

N E ¢lag,..] & for some o < A, Ny i3 ylag,-.-]
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and for each B 2 o, with cofinality 2, Ng is almost L (N ,N;; 1N )ie j-generic (see part 4).

3) N is strongly L"-generic if it has an L"- generic presentation (in this case, if A is regu-
L L-g p

lar, then for any presentation (N; : i < &) of N there is a closed unbounded S C & such that

(N; :i € §)is an L”-generic presentation).

4) We add "almost" to all the above defined notions if for IF, the inductive definitions of
truth works except possibly for Q (e.g. N M,;} Ixp(x,...) iff for some a € N, N g ¢(a,...)).

4.3A Remark: 1) Notice we can choose N; = Ng =N, so NIl <A. In particular

almost L*-generic models of cardinality < A may well exist.

2) So we concentrate on A = X, and fragments of Lg,m (mainly Lg,bw and its countable

fragments).
3) There are obvious implications, and forcing is preserved by isomorphism.

There are obvious theorems no the existence of generic models, e.g.

4.4 Theorem:

DIENge Ko, A=pu", u®=u,LcL ,IL| <) Then there are N;(i < A) such that

oo, K

{N; : i <A)is an L-generic representation of N = {_y N;, (hence N is L-generic).
- i<h -

4.4A Remark: If L =y L, IL | <}, that we can get "(N; : j <i < A) is an L -generic
o deATE T ~j

representation of N for each j.

From time to time we add some hypothesis and prove a series of claims; such that the
hypothesis holds, at least w.l.0.g., in the case we are interested in. We are interested in the case

I(R,x) < 2% , S0 by 3.6 it is reasonable to make:

4.5 Hypothesis: X is PC,, < refine <., and K is categorical in Ry and
1<I(R,K) <25
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Claim 4.6: For each 7 € N € K y,, and 9(X) € L%, (P) (@ finite), Vo, No) k5" gla]
or (Ng, No) &' —¢[a] (i.e P is interpreted as No).

Proof: Suppose not, and for each § Cw;, we define by induction on q,

N§ € Ky, (0 < @), increasing (by <) and continuous. Ng = N, and for limit o, N§ =J Nﬁ.
B<a

For =B + 1, B limit remember (Ng,a) = (N,a) as N = Ng <Np hence Ng <. Np. So
(N, Np) does not force (Iﬂ-}é‘) ¢lal nor —¢lal. So there are M,(f = 0,1}, Nﬁ <M, e Ky,,
(Mo Np) B elal, M) hg* —¢[al. Nowif Be Slet NS = Mo, andif Be S, NS, =M. For

o = B+1, B non limit we take care to guarantee that (N5, : & < ;) will be an L-generic presen-

tation. Let NS = () N§. Now if §(0) - S (1) is stationary, (M5D,a) M5 3),, for if

o<,
FiM5O 5 M5D g an isomorphism, for a closed unbounded set of &’s f maps M5® onto
MW | 5o this holds for some o e $(0) — S(1), and we get a contradiction. By [Sh3], VIII 1.3,

wegetl (X, K) = 2% , contradiction.

4.7 Claim: For each countable L = L(P) ¢ L® (P), and N € K %, the number of com-
- ~ oy
plete L(N)-types p (with no parameters) such that N' Ik ;é’ (3x)Ap, is countable.

Proof: At first glance it seemed that Keisler {K1] will implies this. However, here we
need the parameter N, so we need to work a little. Suppose the conclusion fails. First we define

by induction N4, (00 < ) increasing by <, INy | = oo, such that

(1) Ny : O < o) is L- generic,

(ii) for each B < «, there is ag € Ng.i ~ N materializing an L{Ng)-type not realized in

Ng. (i.e.in (N, Ng)) (possible by 4.6).

Now we expand N by all relevant information: the order <, c{c € Ny), enough "set

"o

theory", "witness" for Ng <¢ N, for B < o, and F, F (B, o) = a®, and names for all formulas in

L(Ny) (with oo as a parameter). We get a model 3. By Keisler [K1] we get models
8;(< 2“‘), of power Rj, so that the set of L(Ny)-types realizes in N i (the L (K)-reduct of

3 ;) are distinct for distinct i’s. So (N*,¢)cen, are pairwise non- isomorphic. If 27° < 27" we
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finish by [Sh1] VIII 1.3.

So we can assume 2°° =2%. We can define N; e Ky, <-increasing continuous,
(N; 1 j <i < Ry) is L(N;)-generic for every j and for j < i, a;; € N;,; materializing in N;,; a
complete L(N;)-type p;,; not materializing in N;. W.Lo.g. N; has universe wx(j+1). So U N;
- i<oy
realize the types {p;;:j <i <} which are distinct complete L(N;)-type. Let 2 be an expansion
of | Nj;, coding enough set theory. We define by induction on o < 2“", No = U No,i» No,i
i< i<y
countable and increasing continuous in i. For o, we define by induction on { < @, a countable
model a,;. For i =0, it is some countable elementary submodel of 4 For i = limit

fa,i =\J Aa,j- for i = 8+1,8 limit - it is an end extension of a4, With a first new element (
J<i

used extensively in [Sh1], see [Shd]). Fori =8 + n, n < @, 3 limit or zero: there is a; 5 € aq,;
which z,,; say it realizes an L( 44,5 I L (3))- type p, and this type is not realized in Ng interpret-

ing Pas N ; forany B < a..

Remark: An alternative way is to note that choosing pairwise disjoint stationary
S;cw; for i <®; we can build N= {N; :i < wy) (<-increasing continuous sequence of
members of K, N;#N;.y) such that: if i <3e §; then (N5.1, N5) = (N5, N). So for a
complete e(P)-typc p, for every i, (N, N;) realize p if and only if {8 < w, : (N, Ng)-realize p} is

stationary.

The rest should be clear.

4.8 Lemma: There are countable L (P)cL? (P) increasing continuous in , closed
o ~ w0

under finitary operations, such that:

a) For each Ne Ky and every complete L (N)-type D,
~o

N !H-}é’ GxXyAp=>Ape L (P). Hence for every L% (P)-formula y(x) there are formulas

a+l 0,0

Pu(@ € U LO(P) such that (N, N) Ihg* (VOIYE)=Y 0, @]

osm o
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b) For every Ng <N € K, there is Ny, Ny <Ny € Ky, such that for every a € Ny,

0@ € L°  (No), N, X olalor Ny R' —olal.

®;,0

) If N<N,e Ky,(! =12), a,e Ny, and the \ ) L (N)-generic types of @, in N, are
< -

a

equal, then so are the Lo (N)-generic types. In fact there is M, N <M, and K-embeddings
f1 : Ny = M such that f, %(gps N onto itself, and f1(ay) = f2@@y).

d) For each N € Ky,, complete L?o{‘m(N)—typc p, the class {{M, N,a): M € Ky,
N <M, a materialize p in (M, N)} is a PC g, class.

e) Let L? (N) be the set of formulas in L?Dh(,,(N) in which the quantifier (Ox) does not

appear.

IfN<Me Ky, ae M, and for some complete LE(N)—type p, @ materialize p in (M, N)

then for some complete Lg,“m (N)-type qp, a materialize ¢, in (M, N).

f) The number of complete Lg)hm(N}types p which for some ae Me Ky ,N<M,ad
materialize in (M, N)is < 8.

2) If in f) we get there are X such types then /(X {,K) 2 &.

4.8A Remark: We cannot get rid of the case of ¥y types (but see 5.16, 5.17). For let
K = {(A,E,<):E an equivalence relation on A, each E-equivalence class is countable,
x <y =xEy, and on each E-equivalence class < is a l-transitive linear order, and
xEy = (WE, <, x\)=@E <y andM <NifM cN,and[xe M Aye NAxEy=>ye M].

Proof: 2) We define L (P) by induction on o using 4.7. The second phrase is proved by

o

induction on the depth of the formula.

b) By iterating ® times, it suffices to prove this for each @ € N1, so again by iterating ®

times it suffices to prove this forafixa € Ny.
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If the conclusion fail we can define by induction on n < o for every | €2, model M y and

0.() e L® (V) such that:

®,0

(i) M<> = Nl

() My <Muyrgy, € Ky, for£=0,1
(ifi) (M, N) 5" 9a(@)

iv) %"<1>® = (pn"<0>®

Now for € ®2, let My = \_j Myp,. Clearly forn e ©2, My WEE0[ A @i (X)], and, after
n<o

n<w

slight work, we get contradiction to 4.7.

¢)Bya)wecanfind M, e Ky ,Ny<M,, My are L (No)-equivalent for each o, hence
~o

by (@), L% v oJ)-equivalent. As in [Sh1], extend M \ ) M, by enough set theory, (and names
To,e
toce N 11U N,) and find a non-well ordered countable model satisfying enough of the

properties of the previous model. We find countable M,, N, <M,, (M, Ng)={M,, Ng) as

required there.

d) Let Ng <My e Ky, and ag € Mg be such that (Mg, No) IH—}}‘ A @lap). clearly
o@ep

{(M, N, a):Me K g, N e Kg,,N <M, and there are M e Ky, M <M’ and K-embedding
fiMy—>M", such that f (No) = N, g (ag) = a} is a PC g, class. But by 4.8(b) (and trivialities)

it is the required class.
e) If this fails, then (by (b)) for some Ny <M, € Ky ,a, € My, and p,,q, for & = 1,2

(i) p is a complete L2(P)-type.

(ii) g, is a complete L&,m {P)-type.
(iii) a, materialize g, in (M, N,).

VIp1Sqe.P4=P1,91 %42

So there are M§ € K g,, My < M{ such that g, realize ¢, in My. W.Lo.g. the universe of
M, is a set of countable ordinals, 1M1 ~ IM! = &. We can define a model g with universe

®;, with relation < (the well ordering of ), individual constants for the elements of M and
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M 5, the relations of M and of M, etc. So as in [Sh1,] using p; = p3, (using non well ordered
models) we can find M;, M, <M} € K, and (M, N1, @;) = (M3, N2,d,). But this easily con-
tradict g1 # g3

) Suppose this fails.

The proof split to two cases.

Case A: 2% = 2%1,

We shall prove [(R{,K)2 2“", thus, (as 2% = 2“‘) contradicting Hypothesis 4.5 (this
will be the only use of the hypothesis).

Let p;(i <np) be distinct complete L&,@(P)-types materialized in some (M, N)
(N <M e Ky,) (they exist by the assumption that (f) fail). Foreachi define N; o, & alo < )
and g; such that:
() Ni o, € K g, has universe w(1+0)
(i) {N; o : @ < ) is <-increasing continuous.

(iil) @ o € Ny g1, G materialize p; in (V; as1, Nia)-

(iv) foreverya<PB<my,de N; g, @ materialize in (V; g,N; o) 2 complete Lg)hm{P}-

type.
(V) &; o < my is strictly increasing continuous in ¢.

(vi) for a. < B, N is almost L (N )-generic.
~p

(vii) if a0 < 3, abeN p materialize different Lg,h‘,, (No)- types in Ng, then a,b realize
different (L, (YL )WV a)-types in Np.

B+l
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Let z? be (H (83),€) expanded by predicates for K, <, {{N; o : & < ®1)}, {a;}, N; and {i}.

Let z; be a countable elementary submodel of a; so | gl N O is an ordinal 8(i) < ;.

It is also clear that N,ﬂ" is N; 5¢)- As g is defined for i < @, w.l.o.g. for some & < @y, for

every I < m, 8(i) = 5. Note that (V; 5, Ng) is (D;, Xo)-homogeneous for some D;, and D; is a

set of complete L (P)-types. Note that (N;3,Nig.a;0) 2N 35.Nj0.Gj0) for i#j, hence
-8

I{j :Dj =D;}1 < Rg,hencewlog. i=j=2D;#D;.

Let I'={D : D a set of complete L (P)- types, such that for some model zp of

~3 i<,

Th,,, (), with {a: ap F "a countable ordinal }= 8 (and the wusual order)
D = {{fo(x): 9(x) € l:s(P), and ap F "(N;a.No) - @lal”} :ae (YNK&J}.

i<d
So D; e T for i < (;, hence I is uncountable.

By standard descriptive set theory I has power continuoum. So let D({) € T be distinct for
£< 2% For each g, let ﬁ?)(g) be as in the definition of I'. We define by induction on ¢ < @,
a3 such that

(a) a% (© is countable.

Ma<B= ade <., B

(c) for limit B, 2By = U b ©)-
B<o

@ if de ,q%}”é) - 23w, ggfé) E "d a countable ordinal" then for a € aB.
a3t k "if ais a countable ordinal then a < a’.

(e) for @ = 0 in (d) there is no minimal such d.

(f) for every o there is dr g € ;4%‘{%) - aB > ,q?)'gé) E "dgq a countable ordinal and

for o # 0 it is minimal".
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Let M¢qo be the dgg-th member of the wi-sequence of models in ﬂ%@ /IB>a
(remember {(N; o : 00 < @)} is a relation of ,«qf, with name not depending on i). Let

Mg= 1 Mgg. It is easy to check that for O<a <P, (Mgp.Mgq) is (D (©), Rg)-

o<y

homogeneous.

So from the isomorphism type of M we can compute D({). So {#& =M M. As
My e Ky, we finish.

Case B: 2% < 2™,

By 3.5, K has the Rg-amalgamation property. So clearly if N<M e Ky ,ae M, thena

materialize in (M, N) a complete Lg),,m (P)-type. We want to use descriptive set theory.

We represent a complete L?l,hm (P)-type materialize in some (M, N) by a real, by represent-
ing the isomorphism type of some (M, N,a), N <M e Ky, a € M. The set of representatives
is Borel, and the equivalence relation is Z;. [as (M, Ny, a1), (M4, N,,a,) represent the same
type if and only if for some (M, N), N <M € Ky, there are K- embeddings f1 : M =M,
f2 : My — M suchthat fi(N) = fo(N2) = N, f1(a) = f2(@)].

By Burgess [B], (or see [Sh 8]) as there are > R equivalence classes, there is a perfect set

of representation, pairwise representing different types.

From this we easily get that w.Lo.g. their restriction to some L (P) are distinct, contradict-
~a

ing part (a).

Remark: Note that in case (A) we get many types too but it was not clear whether we

can make the N¢ to be generic enough, to get the contradiction we got in case B.
(g) Easy.

Next we prove 4.8(¢e). As g, does not exist there is a formula @) e L},Jhm (P) and
Ny<M,e Ky, a,e® IM,l such that neither (M, N;) ¥ ol@;] nor
(M4, No) % — @(@y) holds.
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So by the definition of the forcing, w.Lo.g. (possibly increasing M, M)

(M1, N) Wk - ola;]

(M2, No) Wk o0[az]
We continue with M as there (forgetting the "realizing") and get the contradiction.

It now follows that using L, (P) would make little difference.

4.8B Remark: We may want to replace L?ol_m by L(‘ol,m in 4.6,4.7,4.8 (except that, for

our benefit, in 4.8(¢); we may retain the definition of L2(NV)). We lose the ability to build L-

generic models in K, (as the number of (even unary) relationson N € Ky, is ZR", which may
be > R;). However we can say "a omaterialize in Ne Ky, the formula
() € Ll o Wu, Nut, . . . ,No3) where Ng <+ -+ <N, <N, N, countable) if for every large
enough countable M < Ky, a materialize ¢(x) in M.

This suffcies for 4.6.

4.9 Concluding Remarks for Section 4.

We can get more information on the case 1 <T(R{,K) < ¥

1) As in 3.5,there is no difficulty in getting the results for the class of models of

W e Ly (@) as (using (K, <) from the proof of 3.9(2)) in all constructions we get many non

F

isomorphic models, we can make thentobein K .
N;

2) We can continue the analysis, e.g. deal with sequences Ng <N < -+ <Ny e Ky,

such that N,.; is almost L (N,,N,.y,...,Ng)-generic. We can get that for any countable
o

L € L, (a) for some a, any strong L- generic N € K g, is L-determined.

3) We can do the same for stronger logic.

Let us define a logic L”. It has as variable

variables for elements x,x5,... and
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variables for filters E{,E»,....

The atomic formula are:
(i) the usual ones

(ii) x € Dom E.

The logical operations are:
(a) A conjunction, — negation
(b) (3x) existential quantification x individual variable.
© @n)le.D].
(d) (aaD)e

Now in E}fx[(p,D 1, x is bounded but not D and in aaD D is bounded.

The satisfaction relation is defined as usual and

M EFxD [o(x, D), D]ifandonlyif {x € Dom D : k ¢(x, D)} € D

M E aaDo(D) if and only if there is a function F from (" (S<x, (M)) —» S <5, (M) such

n<o

that:

ifA, CM, 1Al SRy, A, CAnr and F(Ag, ... Anv1) SAns2 then M E OID (4 pcas]
where D (4 .n<qy is the filteron ( Ay, generated by {{_j A, —Ap: €< .

n<w n<ow
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§5 There is a superlimit model in X;.

Here we make

5.1 Hypothesis : Like 4.5, but also 2¥° < 25!,

This section is the deepest. The main difficulties are proving the facts which are obvious
in the context of [Sh 1]. So while it was easy to show thateveryp € D™ (N) is definable over a
finite set, it was not clear to me how to prove that if you extend the p to g € D™ (M),
(N <M e Ky,) by the same definition, then ¢ + p (remember p,q are types materialize not
realize, and at this point in the paper we still do not have the tools to replace the models by
uncountable generic enough models). So we rather have to show that failure is a non-

structure property i.e. implies existence of many models.

Also in stable amalgamation symmetry becomes much more complicated. We prove
existence of stable amalgamation by four stages (5.15, 5.17(3), 5.20, 5.22). The symmetry is
proved as a consequence of uniqueness of one sided amalgamation, (so it cannot be used in its
proof). The culmination of the section is the existence of a superlimit models in K; (5.24).
This seems a natural stopping point as the next step should be phrasing the induction on n

ie. dealing with R, and P(n—1)- diagrams of models of power R,.

5.1 Definition: 1) For N € Ky let

D) ={p: a complete Lg)bm(N)- type over N such that for some ae M e Ky,
N < M and a materialize p in (M, N)}, (i.e. the members of p have the form ¢(x,a), (x finite
and fix for p)aa finite sequence fromNand ¢ & L&,Q(N n.

2)ForN € Ky, let

D’N)={p:pa complete Lg)l’(.,(N;N)-type such that for some a e M e Ky, N<M
and g materialize p in (M, N; N)}.

Explanation: (so for every beN and o(x,y) € L?ol_m(N N) if p(x) e D*(N) then
(p(f,g) € por —.(p()_c,E) e pandifp € D(N), b finite then (p(f,E) € por— <p(f,l;) € p.
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[so a formula fromp € D *(N ) may have all ¢ € N as parameters]
5.2 Lemma: 1) K has the Xg-amalgamation property.
2) If No<NoyeKy,, ANy for i<n then for every sentence

ye L%JX,CO(ND’AIH e ’AI;AO)v

NSy or NIWg —y

3)IfN <M e Ky, every a € M materialize is (M, N) one and only one type in D*(N)
(and also in D (N)). Also for every g € D*(N) for some M’, M <M’ e Ky, some beM’

materialize g in (M, N).

4) For every countable L C L(P) gL%l,m, and N € K, , the number of complete
L(N;N)-types p such that N Ii§* (%) Ap is countable.

5) There are countable L (P) Lg,hm(P) for o < y, increasing continuous in o, closed
o

under finitary operations (and subformulas) such that:

(a) foreach N € K g and complete L (N ;N) type p,
~a

INWYIxAp=>apel (P

a+l

Hence for every Lg,l,m(N) formula y(x) for some ¢,(x) € ) L (V) for every N € Ky,

<o "o

O, N) Ig* (VO = V. u(®)]

6) ForN e Kg,, ID"(N)| < K.
Proof: 1) By 3.5.
2)By 1)

3) By 2), (and (1)).
4) Like the proof of 4.7 (just easier)
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5) Like 4.8(b)
6) Like 4.8(5).

5.4 Claim: 1) Each p € D (N) does not split (see [Sh 3] Ch I Definition 2.6, p. 11 or [Sh

11) over a finite subset of N, hence is definable over it (that is: there is a function g, such that

HOEY) is Y, o3 e L’ (P) such that for each oExY)eL® (), aeN,
T@m,0 W, 0
[ox,ay e p =N E Y, 0@, c)] \lxzhere p does not split over ¢). 1

2) Every automorphism of N maps D (NV) onto itself, and each p € D () has at most Ry
possible images. If g is an isomorphism from Npe Ky, onto Njye€ Ky, then
8§D WNg) =DWVy).

Proof: Easy.

5.5 Claim: Suppose No <N; € Ky,, and Ny force that a,b (¢ N{) materialize the

same L?oh(,, (Ng)-type over N, then N force they have the same LSM, (Ng;:Ng)-type.

So there is no essential difference between D (N) and D * (V).

Remark: Note that in a formula of Lﬁ)l,m(N 0,.Ng) all ¢ € Ny may appear as individual

constants.

Proof: We can assume Ny is (D o(Ng), Xo)-homogeneous for some o, (see 5.6 below)

such that ¢« is "big enough" (see the demand in the proof).

Now we shall prove there is an automorphism of Ny over Ny taking a to b, and we do it, of
course, by hence and forth argument. So by renaming and symmetry, it suffices to prove that for
every ¢ € Ny, there is d € N such that a”<c>, b<c> have the same L?%,Q(N 0)-generic-type
over Ng. By the choice of « it suffices to find d in any N,, N < N,. However by the previous
claim this is easy. [as w.l.o.g. the Lg,ba,(N 0)- type over Ny that @ ~<c¢ > materialize in (¥ 1,Ng)
does not split over @ ~ Ng; so if a”<c>, b <a > materialize the same L?,hm (Ng)- type over

Ny then they materialize the same Lg)hm (Ng)-type over Ngl.

5.6 Fact: There are D o,Dy (& < @;) such that
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(@) for N € K y,, D o(N)[Do (N)] is a countable subset of D (N)[Dy (V)]

(b) foreach N €K g, (D o(N) : 0.<;) as well as (D5 (N) : o < o ) are increasing con-

tinuous.

@©D*N)=  D*WN),DN) = U DuN).

o<y a<m,

(d)if Ny, Ny € Ky, fan isomorphic from Ny to N then fmaps D (N ) onto Do (N2),
and D (V) onto D, (N ).

(e) for every 0. and N € Ky, there is a (D o(N), Rg)-*homogeneous model (see below

5.7) (obviously it is unique up to isomorphism over N.)
(Hif Ng <Ny <Ng € Kyg,, Ny is (Dg(Vy), 8p)-*homogeneous (see 5.7 below) and N4
is (D (N g), Rg)-*homogeneous or just every a € N; materialize in N some pz € D o(Ng) then

Nq is (D4 (Ng), Rg)-*homogeneous.

(g) Ny is (Dg(Np), Rg)-*homogeneous, if and only if Ny is (D(;(No)momogencous
where Ng <N € Ky,.

Proof: Easy.
5.7 Definition: 1) We say that (N, Ng), or just Ny is (D o(Ng), Xg)-*homogeneous if:

a) every a € Ny materialize in (N, Ng) over Ny some p € Dy(Ng) and every

g € Dy(Ny) is materialized by some be Ny.

b)If3,b e Ny, a,b materialize in (N1, Ng) the same type over Ny and ¢ € Ny then for

somed € Ny, a’<c¢ >,b"<d > materialize in (N1, Ny) the same type over Ng.
2) Similarly for (D; (Ng), Rg)-*homogeneity

5.7A Remark : 1) Now this is meaningful only for N <M € K g, but later it becomes

meaningful any N <M e K.
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2) Uniqueness for countable models hold in this context too. The two notions

are equivalent.
Now by 5.5, 5.6

5.8 Conclusion: 1) If No <N <N € Ky, and a,b € N,, (remember N, determines
the complete Lg)hm(N 1)-generic type of @,b) then from the Lg,hm(N 1 y-forcing-type of a over Ny
we can compute the L&,w (Ng)-forcing type of a over Ng (hence if the L?%m (N 1)-forcing-types

of @,b over N are equal, then so are the Lg,l_m(N o)-forcing types of @,b over Ng.

2) If (N1, No) is (Do(Ng), Ro)-*homogeneous then (N1, No,¢)cen, is (Do (No), Ro)-

homogeneous.

5.9 Lemma: There is N* € K x, such that N .=  No, Ny € Ky, is increasing con-
o<,

tinuous and N g1 i8 (D g1 (N o), Kp)-*homogeneous.

5.10 Theorem: The N* € K x, from 5.9, is unique, (even not depending on the choice

of D o (N)’s) universal and model-homogeneous.

Proof:

Uniqueness: For ¢ = 0,1 let N, DY (o < o) be as in 5.6, 5.9, and we should prove

w Ny = Ni. As Di(a<w) is increasing and continuous, ID§&!<Rg and
<oy A<y

U D =D, clearly there is a closed unbounded S < @y, such that e § = D{ = Dg. Let
o<y

S = {oli) 1 i < &y}, aff) increasing and continuous. Now we define by induction on i < @, an
isomorphism f: from Ng(i) on N}x(‘-), increasing with i. For { = 0 use the Ry-categoricity of X,
and for limit 4, f; =  f;. Suppose f; is defined, then by 5.4(2) f; maps D31y =D& +1) Vag))

Jj<i
onto DY; 1y (Vi) and by the choice of S, D341y = Di+1y - By the assumption on the N,
N&(Ml) is (D&(i+1)(Nf,(,~)), R-*homogeneous. Summing up those facts and 5.6(e) we see that

we can extend £ to an isomorphism from Ng(,- +1) onto Nf,(i 1)

Now 1 f; is the required isomorphism.
i<oy
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Universality. Let M e Kg,, so M=y My, M, increasing, continuous and
o<,

Mgl € Xg. We now define by induction Ng(o < wy) increasing and continuous,
HNNG I = Ry, and for B< o, Ny is (D o(Ng), Ro)-*homogeneous, and My <Ng. The only
novelity over 5.9 is the use of the Rg-amalgamation property (which holds by 3.5, 0.2, 4.5). So

the universality follows from the uniqueness.

Model-Homogeneity. So let Ny, Dy, N* be as in 5.6, 5.9, and M, <N" (£ =0,1) are
countable, f an isomorphism from M onto M ;. For some Y < o1, Mo,M | <N,. Every type in
D (Ny) is realized in N *and N g is D g(Ny)-*homogeneous for B > v. For some « > v, every
type from D (M) realized in N, is from D, (for £ = 0,1) so by 5.6(f), Ny is (D (M), Ro)-
*homogeneous for £ = 1,2, so f can be extended to an automorphism of N, hence, as is the

. . *
uniqueness part, to an automorphism of N .

5.11 Definition: 1) 1) If Ng<N;e Ky, for £ =12, pye D(N,), and they are
definable in the same way (see 5.4, so both does not split over the same finite subset of Ng).

Then we call p the stationarization of py over Ny.

2) If No<NjeKy,, aeNi, gp'(@No,Ny) is the pe D' (Ng) such that
N,y IH—}é‘ Aplal. So a materialize (but not necessarily realize) gtp(a, Ng, N1). We omit Ny

when clear from context.

3) We say p=gp (b,Ng,N;) is definable over aeNg if
gtp(l;, No, N)=p~ ¥p L  (Np) is definable over a (note that p — p~ is a one-to-one

©;,0

mapping fromD*(N o) onto D (Ng) by 5.5). So stationarization is defined for p = D*(N o) too.
5.11A Remark: 1) It is easy to justify the uniqueness implied by "the stationarization”.
2} Note:if Ng <Ny <N, € Ky,,ae Ny then gip(a, Ng, Ny) = gip(a, Ng, Na).

5.12 Lemma: Suppose Ng <Nj € Ky, ,pe € D*(N,), and py is a stationarization of

po over Ny, thenpy F pg ie. every sequences materializing p1 materialize py.

Remark: 1) In [Sh1], [Sh2], [Sh3] the parallel proof of the claims were totally trivial,

but here we need to invoke 7 (R,K) < 2%
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2) A particular case can be proved in the context of §4.

Proof: So suppose No,Ni,pg.p contradict the claim. By 5.6(f) there is Ny € Ky,
and 8, Ny < N such that N, is (D5 (Ng), X)-*homogeneous. We can find p, € D*(N,) which
is the stationarization of pg,p1. So w.l.o.g. for some 8, Ny is (D3 (Ng), Rg)-*homogeneous J,
and w.L.o.g. p does not split over @ (by [Sh 3, VIII 1.3]). Sofor N € Ky, No <N, let py be the
stationarization of p over N and it can be defined really for any N € K x,. Now we define by
induction on o a model Ny € Ky, (< @), INg| = a(1+), [B <o =Ng<Ngy]; wlo.g.
Ny, Ny are the ones mentioned in the claim, and ay € Ny, materialize the stationarization
Po € D5(Ny) of pg over Ny, and for o0 <B, Np is (D5 (N ), Ro)-homogeneous (see 5.6(f). As
for a>B (Ng, Ng)= (N, Ng) clearly ay do not materialize pp. Let 3 be (H(Xj),€)
expanded by N, K ~ H(R;) <x I H(X;) and anything else which is necessary. For any
S c oy, let gg be a model, satisfying some y e L (@) which 3 satisfies and which "say”

everything necessary, such that "the set of ordinals” of &g is I, I = \ Iq, even I not well
o<

ordered, each /, a countable initial segment of /, a < B =7 g Alg #Ip, and [ — [y has a
first element if and only if o € §, and then it is s (). In particular o and finite sets are standard

in gs. Fors € I, Nf = qugs is defined naturally, and so is NS=N%._ Let N(Sx =y Nf (see

s€l,

[Sh4], [ Sh1]). Let s +1 be the successor of s in /.

W.l.o.g. there is a countable 3~ < gsuch that 3~ < gg, and there is no first s, a5 F "sisa
countable ordinal, o < s” for every e ;  Issl. Let =y ~ IsB  51. Soif g5 E "s <t

are countable ordinals > a" for ot < a(*), then (N5, N?) is Dj (N5)-*homogeneous.

Sowlo.g. Nyis D35 (Ng)-*homogeneous.

If o € § then clearly the type p = pys satisfies

(a) p is materialized in NS (i.e. in N§ for a club of B’s,)
but

(b) for a closed unbounded C c w; for no Be C,B > o« does a sequence from NS

materialize both p and its stationarization over Nf; [remember Nﬁ = Nfa because v € S 1),

[Proof: As below or weaken (B) by restircting Btofe C — S]
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and (¢) for a closed unbound set of B > «, Nﬁ is (D%(Nﬁ), ¥y)-*homogeneous.

We shall prove that every o < @y, if o ¢ § then o cannot satisfy the statements (a)-(c)
above.

This is sufficient for if £: N5W - N5@ (for §(1),5 (2) € ®;) is an isomorphism, then for
a closed unbounded set $* of a < @; f maps NSD onto N3@, hence the property above is
preserved, hence S(1) $T=5Q2) Ia) S*. But there are 2™ . 8; < Wy such that for i # j, §;—S;

is stationary.

So suppose o & S, p are such that for even an unbounded set of B’s Nﬁ is (Dg(Ng ), Xog)-

homogeneous, p € D (NS,) is materialized byde NSin Nﬁ, and we shall get a contradiciton.

There are elements 0 = 1(1) < 1(1)< - - - < £(k) of I, and @py1 € (N5 (y+1-Ni(y) U Nie-y
[stipulating N}g(a) as N§. such that @ C @, @y © 41, and g (@ p41, Nioy» Nres1y) is definable
over a, [why they exist? because of the sentence saying that for every a we can find such
kt(®)(2 <k) a,(¢ <k) as above is satisfied by 3 so we could have made gy to inherit it by the

choice of y above ] It follows that grp(a, N‘f«), Ni)) is definable over a,.

Forsome &, t() e Iy, t(#+1) & I4. As ot # S we can choose 1(*) € I, t(*) <s({+1).
As o,p satisfies (c), for some Be S, s >t(k) and Nﬁ is (DE(N& ), Rg)-*homogeneous. Now
Nﬁ, N;g(“l) are isomorphic over N,y (being (DE(N;S(.)), R )-*homogeneous by the choice of
ss as in proving (c). So N;S(HD is  (D3(NS), Rg)-*homogeneous too hence
(Niea1y» N3) = (N1, No).

As clearly NS, N‘f(*) are (Dg(Nf(,)H)), Rg)-*homogeneous there is an isomorphism fp
from N3 onto N;V(*) over Nyp+1- As N,S(,+1) is (D%(N,S(*)), Xg)-*homogeneous and
D5, Ro)-*homogeneous we can extend f to an automorphism f; of N}S(Hl). Let v satisfy
s(h2tky+1. As gmp(ag, N,S(,+1)) is definable over a,, and a, = fo(a,) = fi(a,) (as
ae Nf(e),,l ), and N§+1 is (DE(Nf(Hl)), R)-*homogeneous, we can extend f) to an automor-
phism f7 of Ny.1, f2@k) = &k

So there is in NS a sequence materializing both gip(a, N3y = pns and its stationarization

over N;g(,ﬂ): just a(c ay) (so use f3).
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This contradicts the assumption, as (N, Ng) = (N,S(,+1), Nﬁ).
Remark: 1) In (2),(b), (¢) instead "pns " we could use: forpe D (Nﬂ).
2) Imitating the proof, we can show that (¢) holds for any o < @;; and we can waive (b).

5.13 Claim: 1) fa e Ng <N; <Ny e Ky, b € Ny, py = gip(h, Ny, N7) is definable

over g, then pg = gtp(E, Ny, N3) is definable in the same way over a, hence gip (b, N 1, Ny is

its stationarization.

2) For a fixed countable M € Ky, to have a common stationarization is an equivalence

relation over {p : forsome N<M,pe D *(N)}, (and we can choose the common stationariza-
tion in D *(M)).

3D IfNg € Ky, (<0 + 1) is <-increasing and continuous and @ € N, then for some
n< for every k, n<k<a<o implies gw{a, Ny, Ne,1) is the stationarization of
gtp(a, Ni, N+1).

4) If N<MeK, NeKy,, acM, then for all M e Ky, satisfying ae M,

N <M’ <M, gip(a,N,M") is the same, we call it grp(a,N, M) (the new point is that M is not
necessarily countable).

5) Suppose Ng <N (in K), @ € Ny, then there is a countable M <Ny , such that for
every countable M’, M <M’ <Ny, gtp (@, M’, N ) is the stationarization of gip(a, M, N1).

6) Part 3) holds for Ny € K too and any limit ordinal instead of .

Proof: 1) W.lo.g. for some &, N; is (Do (Ng), ®o)-*homogeneous, and Da V1), Ro)-
*homogeneous. Letpy e D *(N4) be the stationarization of p | for Nj.

By 5.5 we can use 5.10 for py,p2.

So by 5.12 p5 b p1. On the other hand, clearly there is an isomorphism fo from N onto
N1, fo(@) = @, and by the assumption above on N, fo can be extended to an automorphism f}
of N 2.
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Note that f; maps gp(b.No) to gp(fi(B).fi(Ng) but gip(b, No) =po,
gto(F1(B),F1(Ng)) = gtp(b, N1) = p1. So f1 maps pg to p1 and p, to itself. So as p is the sta-

tionarization of p, p, is a stationarization of pg, so by 2) we shall finish.

2) Trivial

3HBy D)

4) Easy

5)By 3)and 4)
6) Easy by now.

5.14 Definition: By 5.13 we can define D ( N), gtp(a, N, M) and stationarization for not
necessarily countable N e K. Everything still holds, except that maybe some p’s are not materi-
alized.

More formally,

a)if NeKy,Me K, N<M,pe D" (N) then the stationarization of p over M is
defined as in 5.11.

b) D*(N)} ={q: forsome N<M,Ne Ky andpe D*(N), g is the stationarization of
p over N}.

¢) gip(a, N, M) (where ae€ M, N < M both is K) is the stationarization over N of
gip{a, N’, M) for every large enough countable N' <N.

5.15 Claim: Suppose No < N1, N,, Ny € Ky,, Ny € Ky,, a€ Nj. Then we can
find M; Ny <M, and K-embeddings f, of N, into M over Ng (¢=12) such that
2tp(F1(@), f2(N3), M) is a stationarization of pg = gip(a, Ng, N{) (so fi{@) & Nj).

Remark: This strengthens 3.5.

Proof: Let p, € D(N,) be the stationarization of pg. Clearly we can find an o < @ (in
fact, a closed unbounded set of 0’s) and N’j, N, from K i, which are (D o( Np), Xg)- homo-
geneous N, < Np(¢=1,2) and some b &€ N’, materialize p,. But by 5.10 b materialize pg

hence there is an isomorphism f from N’y onto N, over Ny, fl(a) = b. Now let M = N'5,
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fi=f1 Ny, fr=id

5.16 Claim : Suppose Ng< Ny < N,e Ky, g€ N;, (i=01,2) apca; cay,
gtp(@ay, Ng, N,) is definable over ag, and gip(a,, Ny, No) is definable over a;. Then

gtp(asy, N, N3) is definable over ag, ~Moreover the definition depends only on the definitions
mentioned previously.

Proof: Suppose for ¢ = 0,1, Nf,Ef(i = 0,1,2) are as above, and the corresponding

" . . . 0 -1
definitions are the same and fj is an isomorphism from N3 onto N}, folag) = @g. We shall
show that for some N, N§ < N4, f can be extended to an isomorphism fi from N? onto Ni,

0 -1 R P .
fr(ay) = a;. It is easy to check that this is sufficient.

We can find an o < B, and for ¢ = 0,1, N§, N} € Ky,, such that N4 < N} < N§ and N}
is (Dg(N;), Rg)-*homogeneous for i =0,1,2 and NS, is (Dg( Nf),NO)—*homogeneous for
i=0,1,2,3. Now there is a_i € N}§ materializing the stationarization of gtp(Zi;,N{) over N§.
So by 5.12, a¥ materialize gtp(E;, N}) hence there is an automorphism ftof N, f‘ t M =id
and ﬂ(ﬁ;) = Ei. There is also an isomorphism £ extending /o from N3 onto N} f (Zi(l)) = E},
and then there is an isomorphism f, extending f; from N onto N}, fg(Zig) = a}. Now
Y f,f° is an isomorphism from N§ onto N} extending fo and ﬁ(?ig) = Zfé, SO we
finish.

5.17 Conclusion : 1) Forany Ng < Ny € Ky, ,thereis Ny, Ny < Ny e Ky, and N,

is (D ( Nyp), ®y)-*homogeneous.
2) Also 5.15 holds for N, € Kgl (but still Ny € Kg,).

3) In fact we can demand (in 5.17(2) hence in 5.15 too) gp(f1(c), f2(N3),M) is a sta-
tionarization of gtp(c, Ng, Ny) foreveryc € N;.

4)K;§2¢®.

Proof: 1) It is enough to prove that: if p(x,y) € D(Ny), a € N; materialize p(x,y) f X
in (Ny, Ng) then for some N, e Kg,, Ny < Nj and for some be Ny, @ b materialize
p &) in (N3, Ng). Let My < Ny be countable and ¢ € D (M) be such that p (x,y) is a sta-
tionarization of ¢. Define M;(0 <i < @) such that M; < Ny, Ny = M;, {(M;:i<w)is

i<oy
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increasing continuous sequence of countable models, be M 1- Mi Ny < Ng, M; and

(*) forevery c € M;, gip(C, Ng, Ny) is a stationarization of gip(c, No ( M;. M)).

We can find M] € Ky, M; <M], (and | Mj1 ~ IN;I = IM]1),and @ e Mj] such
that q = gip(@%, Mg, M1) doe My No, @y My, aye M}, bca, aca,
gip(@qy, M1, M1), gip(@y, M, M No, M) are definable over @;,ap respectively. Now we
define M}, 1<i <y by induction on i such that:

()¢ M}‘ : 1< j £i)is <- increasing continuous.

(i) M; is countable.

e *

i) | MjI ~ TNy =1 M.

(v) gtp(@a, M;, M) is a stationarization of gip(b, My, M1).

For j = 1 we have it.

For j > 1 successor: use 5.15.

For jlimit: let M} = j M;, condition (v) holds by 5.13(3).

igi<j
By 5.16 (and (*)) for every j, gip(@z, No Mj M;) is a stationarization of

gip(az, No My, M7). Hence easily gtp(b""g, No Mj,M;) is a stationarization of
gp@%, No M My, MY).

So by 5.14 and the first sentence in the proof, we finish.
2) Similar proof (or use the proof of part (3)).

3) W.lo.g. Ny =N" from 5.9 (as we can replace N, by an extension so use 5.10).
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Also (by 5.17(1)) thereis M, Ny < M € Ky, such that M is (D(N3), 8¢)-*homogeneous.
Let o < ; be such that for every a € Ny, gip(a, Ng,N1) € Do(Ng). Let M =y M;, M;

i<y

<-increasing continuous, countable. So for some i, & <i < @, M; .~ Ny <M and for every
ce M;, gw(, Ny, M) is statonarization of gip(C,No M M) and M; is
(Di( Ny ~ M;), ®g)-*homogeneous. Now we can find an isomorphism fy from Njp onto
Ny M; (as K is Ry-categorical) and extend is to an automorphism f; of N (by 5.10-
model homogeneity). Also w.lo.g. there is N’;, Ny < N’y e Ky,, N’ is (Di(Ny), 8o)-
*homogeneous, hence is (D;{( Ng), Rg)-*homogeneous (see 5.6(f)), hence there is an isomor-

phism f; from N’; onto M; extending fo. Now fo,f’y I Ny, f2, M show that amalgamation as
required exists (we just change names).

4) Immediate - use 1) or 2) or 3) w, times.
Definition 5.18: For any D« = D 4, & < @ (or just any reasonable such D«) we define:

)M <p, Nif M <g N and for every a € N,

gtp(a, M, N) € D«x(M)

2) Kp, is the class of M € K which are the union of a family of countable submodels,

which is directed by <p, .

5.19 Claim : 1) Kp,, <p, satisfies all the axioms from section 1 if the transitivity axiom
(Ax TI) is satisfied. Which means that D« is closed under the operation implicit in 5.16. In this
case Kp, satisfies the conclusion of part 1 and Kpp_ is PCy,.

Proof: 1) By checking.

2} Easy, as in the proof of 5.12.

5.20 Claim : Suppose Ng< Nye Ky, (£ = 1,2), C€ N, then there is M, Ng <M,
and K-embeddings f; of N, into M, such that

(i) foreverya € Ny, gtp(f1@),f2(N3),M) is a stationarization of gip(a, Np, N1).
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(1) gip(f2(€).f1(N1),M) is a stationarization of gip (¢, Ng, N7).

Remark: This is one more step toward stable amalgamation: in 5.15 we get it for one

ae Ny,in5.17(3) foreveryae Nj.

Proof: W.lo.g. gp(c, Ng, Nj) is definable over ¢. Clearly we can replace N, by any
Ny, Ny< Ny € Ky, and wlo.g. No= N, (" N2. So we an assume that for some D as
in 5.19; N, is (D o(Np), Kg)-homogeneous. Like the proof of 5.12, we can find a countable
order I, such that every element s € [ has an immediate successor s+ 1, 0 is first element, and
Q < (Q-the rational order), and models M € Ky, (s € I) such that s <7 = M; < M, etc.
So by 5.13(6) for every initial segment J of I, and ¢ € I such thatJ < ¢, if J has no last element,
and I-J has no first element then M, is (Dg(M)),Ry)-*homogeneous, where

My=\y Mg= ~ M, We let Ny=M;, N =M, and N} be a (Do (N}),Ro)-
seJ tel-J

homogeneous model, N} < N} and wlog N M N} = Ni. Clearly the triples
(No, Ny, N3, (Nﬂ, M, Nﬁ) are isomorphic, and let fo,f1.f2 be appropriate isomorphisms
such that fo < f1,f2. Now by 5.17( 3), by a proper choice of N%, there is M7 e Ky, Ny <M’

(£ = 0,1, 2) such that for every a € N{, gip(a, Nﬂ,M]) is the stationarization of gip(a, Né, N{ ).

Suppose our conclusion fails, then gip(f2(c), Ny, M), is not the stationarization of
gip(f2(0), Nﬁ, MJ), moreover we can replace N{ by N, for any tel-J. Let
py = gip(c, N, MJ) = gip(c, My, M7), then it is easy to check that J| #.J, = p; #py,, but as
0 c I, we have continuoum such p;. Moreover, we can ensure that for J; # J, as above there is

an automorphism of M, taking p;, to py,, contradiction (alternatively, repeat the proof of 5.12).

5.21 Definition : 1) K has the symmetry property, when the following holds. If
No< Ny< N3 (¢=12) and for every de N,, gip(a, Ny, N3) is a stationarization of
gtp(a, Ny, N3), then for every be N, gty{a, Ny, N1) is a stationarization of gtp(l;, Ng).

2) If Ng, N1, Ny < Nj satisfies the assumption and conclusion of (1) we say N{,N,
are in stable amalgamation over N. If only the hypothesis of (1) hold we say they are in a one

sided stable amalgamation (then the order of Nq, N) is important.

3) We say Ny, N; can be uniquely [one sidedly] amalgamated stably over Ng provided
that: if Ng < M f‘l,f‘g are K- embeddings of Ni, Ny (resp.) into M} over Ny,
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MM < MN QU+ TN, M+ AKK)

such that f‘i(N 1).f5(N5) are in [ one side] stable amalgamation over Ny, for i = 1,2, then
there is M, No < M; and K-embeddings gl,g2 of M!, M? resp. into M over Ny, such that
g'fl =¢%A. 2'f =55

We note
5.22 Claim: For any Ng < Ny, Ny, all from K x_, we can find M, Ng <M € K g, and
K-embeddings fy,f2 of Ny, N, resp. over Ny into N such that Ng,f1(Ny), fo(Ny) are in
stable amalgamation.
Proof: We define by induction on { < ; (M5 : & < o) and c¢ such that:
®H<¢ Mé 0L < 1) is <-increasing continuous and MS ek

(i) foroo < {, M = M% and for§ < {, o < oy, M§ < M§.

(iif) for § limit, M§ = M5,
E<g

(v) for { < @y, M5,1 is (D a+1 (M%), Rg)-*homogeneous.

(v For every ce MG,, gip@ M5!, M$Y) is a stationarization of
gip ©, MG, M§.1).

(iv) cr e ME++11, and for {+1 < o<y, gp(ce, M§, M§) is a stationarization of
gip @, Me,y, MEH).

(v) for every p € D(M%,) for some {, & < { < ®;, and gp(Cy, ME+1, MEI{} is a sta-

tionariation of p.

There is no problem doing this (by 5.20).
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Now easily, for a closed unbounded set of { < 4,
(Mg (@ M E is (D (M 2 ), Xg)-*homogeneous.

(b) for every ce ME, gip(c, U Mg, ) ME) is a stationarization of

A<, E<a

gip(c, M§, M¢).
So as in the proof of 5.17(3) we can finish.

Theorem 5.23: 1) Suppose in addition to the hypothesis of this section that 2! < 2%
and I (R,K) < pg(X5) (usually this is 252, always > 25', see [Sh2] 6.3).

Then K has the symmetry property, and stable amalgamation in K g, is unique and always

exists (and really one sided amalgamation is unique).

Proof: The main point will be to prove that if one sided stable amalgamation in Ky is
not unique (with the stable side fixed, of course) then I (X,,K) is big, as then 5.22 stable amal-

gamation exists, hence by the uniqueness, also the symmetry property follows.

The proof of the main point is by imitating [Sh 2] 6.3. The problem is that we still have not
proven the existence of a superlimit model of K of cardinality X; though we have a candidate
N" from 5.9. So we use N, but to ensure we get it at limit ordinals, we have to take a stationary

So € o, with ®; — S not small, and devote it to ensure this, using 5.22.

The point of using S is as follows:

5.23A Definition : On K <X, = {N:N=(Ny:0o<a)is <-increasing continuous,
No € Ky,, Ng+1is Do(Ng)-*homogeneous] we define a two place relation <$ (for § cwy),
N! <¢N 2 if and only if for some closed unbounded C cw; for every ae S ~C,

N%Hl N U N} =NL,; and NL, N(11+1a N2 are in (one sided) stable amalgamation inside
o<

2
Na+1-
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Now N' <2 N? is defined similarly except that we ask Ni, N2, N1, are in (one sided)
stable amalgamation.

Now in the construction we define NV (e ® 2) such that for v<n N' < N",

NY <b, N™ and we use:

5.23B Fact: 1) If N* <, N"*! and let C, exemplify this (as in the definition) and let
Co= Cn Clo={o,0+l:ae Cgyl, and let N§ =\ N§ when § = Min[C’g, — a]. Then

n<®w n<®

UNE = U UND), UNE <UNS, and N” <g3 (NG s o < o).
o n 23 a o

2) The similar statement for s§ .
[Proof: Like 5.24.]

5.24 Theorem: Suppose the conclusions of 5.23 hold. Then K has a superlimit model in

Proof: We have a candidate N* from 5.9. So let { N; : i < 8) be <-increasing, N; =N".

If 8 = ; this is very easy. If 8=, let Ny, = N;, and we can find N{'(i £ 0,0 < @)

i<o
increasing (by <) countable and continuous, for i < j<®, N{ = N; ~ N}, and for any
ae N3, i<, gip@ N, Ny) is a stationarization of gip(d@, N¥, N). Hence by 5.22 for
be N;, gtp(l;, N&, N,) is a stationarization of gtp(E, N, Ny). The rest is easy as N; = N for

i<8,wlog ifa<B<a, i<a NP isD;(N)-*homogeneous).



Sh:88

474

§6 Counterexamples.

In [Sh1] the statement of Conclusion 3.5 was proved for the first time where K is the

class of atomic models of a first order theory assuming Jensen’s diamond ¢, (taking A = Rp).

2
In [Sh2] the same theorem was proved using YAIPI A only (in its form @ see [DSh]).
X;

Let us now concentrate on the case A= Rg. We asked whether the assumption
27° <27 necessary to get Conclusion 3.5. In this section we construct three classes of models
K 1,K 2,K 3 such that K! satisfy all the axioms needed in the proof of Conclusion 3.5 (but it is

not an abstract elementary class - fails to satisfy Ax.IV).
K?%is PC %, and is axiomatizable in L ¢ (Q).
K3 is PC g, and is axiomatizable in L (Q).

Now the common phenomena to K 1, K 2, K3 is that all of them satisfy the hypothesis of Con-
clusion 3.5, ie. for £ =1,2,3, I(Rg, K% =1 and the Xy-A.P. fails in K¢, but assuming
8y < 2% and MA o for = 12,3, (R, K% = 1.

Definition 6.1. Let P an infinite set. A family F of infinite subsets of P is called sto-
chastically independent (s.i.) if for every n e ®>2 ( notation: for X € F denote X = X and

X! = P-X) the following set (~ X}*! is infinite.
k<d(n)

Definition 6.2. (1) The class of models K is defined by
K'={M:M=(IM,P,Q, €), IMl| =P _Q,e CPxQ,IPl =8;,P Q0 =0.

{Notationlet A, = {x € P:xei y} for everyy € Q).

the family f{A,:ye O} is si. and for every disjoint a,be S x,(P)),
MU = l{yeQ : (Vg e a)lg e y] n(Vqeb)lgeb]}i]
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(2) The notation of substructure <g is defined by: For M ,Mye K 1
My <My =¥ 1M1 cIMyl, PM=pM and for all disjoint ab e Scx,(P),
M M
l{ye Q7% Q"' : (Ypea)lpey] A (Vqeb)lgey} | 2 Ro.

Lemma 6.3: The class (K !, < 1) satisfy

(0) Ax 0.

(1) Ax. L

(2) Ax. 1L

(3) Ax. IIL.

(4) Ax. IV fails even for A = ¥.

(5) Ax. V fails for countable models.
(6) Ax. VI holds with A( K1) = Ry.
(7 forevery M e K1, liM Il <270,

Proof: (0), (1), (2), follows trivially from the definition.

(3) Toprove that M =y M; K,

i<A

it is  enough to verify that for every disjoint a,be Sy, (PMy  that

Iy e oM . (Vpea)(Vqgeb)peyagey)! = lIMII. By the assumption that {M;:i <A} is

increasing from the definition of <g1 it follows that M;,; has a new y as above, ie.
y € M; 1—M; at least A many; Also for each i there are at least lllM; il many y’s. Together
there are at least M 11, y’s.

1 1
4 Let {M,;n<®}c K be an increasing chain, let M=y M, by 3y Me K

Rg n<® )

Since QM| =R, by Claim 65(a) below there existt A c PM infinite such that

{Ay:ye QM]U{A} is si. Now define Ne K! by PN=PM Jet yge oM,

OV =M (yo) and finally lete =€ \{p.yo):pe PN ape A}, QY = 0M L fyo)
~N M

Clearly for every n < ®, M, <g* M butN is not an <g1- extension of M = ) M, because
n<o
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the second part in Definition 6.2(2) is violated.

(5)LetNg <gr M € K1 be given, assume HIM Il = Rg; as in (4) define Ng € N, INg! C IN|
by adding a single element to QN° (from the elements of QM) it is obvious that
Nog<pt N, My < NbutMg ¥ Ny

(6) By closing the set under the second requirement in Definition 6.2(1).

(D lety#yq e QM we show that4, #A4,;if4, CA, then 4,, M (PM —Ay )= & con-

tradiction to the requirement that {A, : y € Q} is s.i. hence oM <2!? 12 g®e,

Theorem 6.4. (K!, <x1) satisfy the hypothesis of Conclusion 3.5. Namely

(D I(Rg, K =1.

1 1

Q) Every M € Kx has a proper < g1 -extension in Kx .
0 [

3K 1 is closed under chains of length < .

(4) K violates the Ro-AP.

1
Proof: (1) Let M;M,e K , pick the following enumerations
R

1
Myl ={a, : n<®},and IM;1 ={b, :n <. It is enough to define an increasing chain of
finite partial isomorphisms from M to My{f, : n < @} such that foreveryk <o let nk) < @
satisfy @, € Dom f,) and by € Rang f, ) (finally take f= {j f, and this will be an iso-

n<w

morphism from M onto M5).

Define the sequence {f, :n < ®} by induction on n<: let fo =4, if n=2m denote

k = minfk < ®: q, ¢ Dom f,}. Distinguish between the following two alternatives:

If aqye P¥ let{ap ..., aj_1} = Q™" ~ Dom f,. W.lo.g. there exists i <j -1 such that

forall <ia; M a', and for alli<f{<j~1,a,¢ a,,. By the first requirement in Definition
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62(1) there exists ye PM> such that yeMz ful@y) for all £<i and for all

i<t <j-lye " fy(ap). Finally fy01 = fo U YV

If g e QM‘ let {ay, . .. ,a}..l} = pM yDom f, and as before we may assume that there

exists § <j—1 such that for all £ <i ape™ g, and for all i <¢ < j~1(ap) €™ a;. By the
second requirement in Definition 6.2(2) there exists y € QM2 such that (V¢ < i)[fn(a}) esz]

and (V4,i < ¢ < j-1)[fala, )%sz]. Now define f, .1 = f, U {{@w-y))-

When n =2m+1 act similarly on bmin{k<0):b,teRang £
(2) First we prove the following:
Claim 6.5. (a) Let P be countable. For every countable family F of infinite subsets of P
IfFis s.i. then there exists A ¢ P infinite such that F ) {A} s.i.

(b) If A, F are as in (a) then for every infinite B < P satisfying 1A AB! < Ry
also F (y {B} is s.i.

(c) Moreover in (a) we can require in addition that: for every a,b € Sy (P) disjoint

there exists A < P as in (a) satisfyinga cAandA ~b = @.

Proof of Claim 6.5.

@LetF* ={XcP:@En<)@Xg e F): - @Xpg € F)EGk <X = ~ XIfi<ky,

i<n

Cleatly |F *1 = R hence we may assume {S, :n< W} =F * such that for every k < @ there
exists n > k such that §, = 5;. Denote P = {p, : n < @}.
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Now define by induction i : ® —
Let i(0) = 0.

Itn=2k+1,1leti(n)=Min{t <w:Gj < )itn-1)<jArj<A

Pe€ Si—piys - - s Pin-1)}) ADj € Si ™\ P={Pioy> - - - »Pi(n-1)1}.

If n =2k+2,leti(n) = Min}¢ < :(3j < o)[i(n—1)<j Aj<EA

Pe € {P=S)~{piys - - - Pin-1IAR; € P=SONNP—{Piwys - - - »Pin-1)1}-

It is easy to verify that the construction is possible (use of Definition 6.2(1)). Directly from the

construction it follows that A = {p;(n) : n < @} is a set as required.
(b) Easy.
(c) Let a,b € §y,(P)disjoint, and F a countable family of s.i. sets.

Let A"C P as proved by (A). According to (b) also A = (A" a)— b satisfies: the family
F (U {A} issi.

Return to the proof of Theorem 6.4(2): Let F ={A, cPM. ye QM }. Let
{s, :n <®} an enumeration of S RG(PM) with repetitions such that for ever disjoint
a,b e SRO(PM) there exists n <@ such that s,,=a, S, =b and for all

k< O,5 2k (MY S 2k +1 = .

It is enough to define {F, : n < ®} increasing chain of s.i. families such that F = F and for
all k < w and every disjoint a,b € S, (P) An<w) 3A € F,—Fpla cAMAD = D), U Fn

n<w
1
enables us to define Ne K satisfying N> M as required. Assume F, define; Define
Ro # gl

F,.1; apply Claim 6.5(c) on F, when substituting @ = 525, = 53,41 let A ¢ P be supplied
by the Claim and define F,,4 = F, U {A}. Itis easy to check that {F,:n < @} satisfies

our requirements.
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(3) This is Ax III which we checked in Lemma 6.3(3).

1 1
4) Let M e Kx we shall find M, € Kx (¢ =0,1), M, >x1 M, which cannot be amal-
4]

0

gamated over M. Choose by Claim 6.5(1) A ¢ P infinite such that {A, C PM. ye O} (A}
is s.i.; define Mg > M as the definition of N in part (2) choosing Fo = F\_{A} and M define
as N and was constructed in (2) choosing Fg = F ( {P~A}. Clearly My,M | cannot be amal-

gamated over M (since the amalgam must contain a set and its complement.)

Theorem 6.6. Assume MA glx\28° > X;. Theclass (K 1 < 1) is categorical in Ry.

1
Proof: LetM, Ne K . By repeated use of the idea in the proof of Lemma 6.3(6)
X

[+
1
for Ax. VI we get increasingly continuous chains {My:o <}, (Ng:oa<ojc K
Ry

suchthat M = ) My and N = N such that for o < B, Mo <g' M, Ny <g Ng.

o<y o<y

Now define a forcing notion which supplies an isomorphism g : M — N.

R = {f|fis a partial finite isomorphism from M into N satisfying
(Vo < o }(VoaeDom filae My < f(a) € N/,

the order is inclusion. It is easy to check that if G ¢ R is a generic then g = G is a par-
tial isomorphisms from M to N, we show that Dom g = IM1: For every a.e IMi define
Do={fe P:ae Dom f], itis easy to show that for all xe IM! the set D, is dense.
Forae IM! letafa) = Minfo. <y : e Mg}. Let fe P be agiven condition, it is enough
to find A € D, such that fch and ae Dom b. Let A = Dom f, assume B,C c A disjoint
such that B\ yC = A and B = Dom f ~PM,C =Dom f~ QM. Wlog be B C. If
ae PM et p,C) =1p(a,C). From the definition of K ! there exists b e PV such that

N Eplb,flC)]. If ae QM we can find be QN““”- \ Ngp, realizing f (pla, BY),
B<o(0)

be f(C). Finally, let h=fy{{a,b)}.If ae OM act as earlier but take the types of a over
B (see the proof of Theorem 6.4(1)).
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The proof that Rang (g) = INI is analogous to the proof that Dom g = M|
Namely it suffices to prove existence of a directed subset G (in the universe) of R which is gen-
eric enough. This is the place we use MA x . In order to use MA we just have to show that R
has the c.c.c. Let {fo:0 < @1} SR be given. itis enough to find @,B < @; such that f,fp
has common extension. Without loss of generality we may assume IM| ~ IN| =@. By
the finitary A-systerm lemma there exists Sco, IS =18, such  that
{Dom fy s Range fo:0te S} is a A-system with kernel A. Let B ¢ IMI, C ¢ INI such
that A = B (_; C, namely forall o € § fo1B — C but the number of possible functions from
Bt Cis ICI'Bl < Ro. Hence there exists T ¢S, 17! = 8y such that for all o,fe 7,
faiB = fg T B but we by the choice of A-system for every o € T we have rM N Dom f, B,
Py M Rang f, < C, therefore for all a,Be T, fo\fpe R and in particular then there
exists a# B < o; such that f, \ fp € R.

In the terminology of {GSh1] Theorems 6.4 and 6.6 gives us together.

Conclusion 6.7. Assuming 2% s R; and MA y, there exists a nice category which

has a universal object in Ry, moreover it is categorical in X;.

Definition 6.8.
(1) K2 = {M:M =(IM\,P,Q &) 1Pl = Ro,IMI = PUQ.ecPXQ,P N0 =D
(VxeQ)Va €S x,(P)FyeQ)[A; AAy = a] and
(Vk <@(¥Y0, .. yea € O A 1Ay, Ay 12 Ko
the set {Ay, ¢ < k} is s.i.] and
QOIAQ (IN(VxeP)lxey<oxez] 5y =2,

andfork < wforsomeyg -y € G, A |4y, AA; | 2 Ro}.
t<msk
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(3)ForMy,M, ¢ K2

My <g2 M, @dfMl (_.:]Wz,PMx =PM2.

Theorem 6.9. (K2, <g2) is an abstract elementary class which is categorical in X
and the Xg-AP. fails. Assuming 2% s Ry + MA g, wehave I(Ry, KH=1.

It is defined by a sentence of L, o, <is Lr,, and <, wheneverLy o S L C Lo, 0-

Proof: Similar to Theorem 6.4 and 6.5.

Definition 6.10.

(K2 = (M:M ={IM\, P, Q,e,E),{IM\, P, Q,e)e K Eis

an equivalence relation on Q, every equivalence class countable and

VxeQ)(Va,bes§ .y, (P)Hlamb = O—>@3z)[zExnra CAADNA; = D).

QM < My¥MicM, and VxVyxEyaxeM, -y e M;).

1
Theorem 6.11. (1) K  has an axiomatization in L(Q) and <1 is <" from [Sh2].

1

(2) K? has an axiomatization in Lg,oand <g2is <:,1,m from [Sh2].
(3) K has an axiomatization in L(Q) and <3 is <" from [Sh2].
(4 (Vee{1,2,3D[ K is PCy ).

(5) If MA i, thenK tis categorical in X;.
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Proof: Easy.

6.12 Conclusion: Assuming MA  there exists an abstract elementary class, which is

PCy,, categorical in Ry, & but without the R-amalgamated property.
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Appendix; On stationary set

We represent the relevant facts from [Sh 6] (hopefully in a better way) and add slightly.

This was written essentially by accident.

1. Definition: 1) For A regular, a set § A is called good if there is a sequence

a ={a; : i <), a; a subset of X, such that for some closed unbounded C ¢ A:
C S c5¥al = {y: Ga cy)ly=sup a A otp(a)<y A (Va<p@i<Pa~o = ;] or v=cf Y}

We say {g; : i < A) witness the goodness of S, and C exemplify this (p stands for positive, ¢ for

a variant n for negative.)
2) I[A] is the family of good subsets of a.
2. Lemma: 1) We canin 1.1 replace q; by P;, | P;l <A, P; < {a:a <X is bounded,

and "ao = a;" by "a y e P;" (and get an equivalent definition). [see 4) and 5) below]

2) we can demand in 1(1) that a has order type cf (y)and a; C i.

Le. if for A, a as in Definition 1(1) we let §3? [@] = {y < A: there is @ < 7y of order type ¢f ¥
such that otp{a) = ¢f(y), supa =7 and (Vo <VEi <Pla o« =g} we can use S;‘? [a]
instead of S;f’ [a] in defining "a good set" (and hence I{A]).

3) if {g; : i <A) witness the goodness of S CA and {a;:i <A c{b:i<Mc PQR)
then (b; : i < \) witness the goodness of S. In fact S;7((b; : i < AY) < 53 (a;zi< ) mod D,

4){a; 1 i < A) witness that § < A is good iff ({a;} : i < A) witness that § is good.

I PP =(Pl:i<Aareasin2(l) for ¢ =12 and P} <y P? and P! witness
; i

that § ¢ A is good then also P* witnesses it.

6) For A uncountable regular, {8 < A : 8 a (weakly) inaccessible cardinal} belongs to
ITA].

Proof: Trivial, e.g.

2) Let{a; : i < A) witness S ¢ A is good.
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For every limit & < A choose a closed unbounded subset Cg of & of order type ¢f d; let for
i<A,8<A a;5={j €a;: theorder type of g; ~ j belongs to C}.

Let fa;5:i <AS<AMUffizi<o} o<} ={b;:i <3}, let C exemplify {(a;:i < 1)
witness the goodness of S.

Let Co = {ae C: for every i < o and limit 8 < o there is { < 8 such that by = a; 5 (if
defined and « is a limit ordinal)}.

Clearly Cy ¢ C is closed unbounded in A. Now for any ye Cy S we know there is a
set a ¢ ¥ such that sup(a) = v, otp(@) < ¥, & N @ = @j() for @ € a and i(x) is an ordinal <.
Leta" ={ica: omp(a) € Cop(ay}. Now a” is as required.

3. Lemma: 1) /{A] is a normal ideal, which include all non-stationary subsets of A.

2) IfA = A<}, then for some Stk
IMy ={S < A:S ~ Saisnot stationary} = {§ CA:{a; :i <A) witness S is good}

forany{g; : i < A)enumerating fa < A: lal <A}

3)  Always  there is S cTh¥/S<A:AY®=2}  such that
SellMASCTy,eSChAS (\S;" not stationary.

Proof: Easy.

4. Lemma: 1) If A is regular, k <A, (Vo < A) Il <* < A (e.g., A = p*, p = pu<¥) then
S<h:cf(B) <k} e I[A]

2) Suppose A=p*, ¢f() <k <p and (VO < K)(Vy < WIx® <pl. Then there is
S e I{A] such that:

(*) if §<AB <k, and ¢f 8 = (2%)* or even just (Vo < ¢f (8) [1al® < ¢f(8)] then for
some closed unbounded C5 ¢ 6, (Voo e Csacfla) €8> ae S
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3) For A, 1, as in (2), there is a 2-place function ¢ from A to ¢f [ such that:
(a) for a < B <y, c(a,y) < Max{c (o, B),c (B, )}
(b) lfa < B:e(o,B) =7} < .

©S ;f’ [c12/(8 <): & has cofinality < x and there is an unbounded a < & such that
clais bounded incfpu (ie. @y < of W(Va,Pe a) [ < B —c(,B) <y} belongs to I[A].

Proof: Note that 4(1), is easy, and 4(2) follows from 8(1), 4(3). It is easy to satisfies
(@), (b) of (4) and (c) follows [choose an increasing sequence (J;:i < ¢f ) such that
W= Z{W; : i < ¢f W}, and then define by induction on B, {c(ct,B) : & < B)such that (a) holds and

®* Ho<B:c@B)=7!=pn,.

Why (c) follows from (a) + (b)? Clearly for a <A, i <cf(l), R,;={a:a as asubset

of {B:PB <o and c(B,0) < i} of cardinality < x} has cardinality <y, s0 Py = J Po, has
i<f p
cardinality <. Now S¥? [{ Py : & < A)] is a subset of Sy [¢].

There are no problems].

5, Remark: 1) In 4(2), 4(3) we can replace A = u* by A = u*™%, as o increases we get
less information. See [Sh 6] xx.

2) In (3) really (a) + (b) implies (c) and note (7) below.

6. Definition: 1) A two place function ¢ from an ordinal { to an ordinal § is called
subadditive if:

fora<P<y<{ c(o,y) <Maxfc (a,B),c(B,1)}
and ¢ (a,B) = c(B,), c(a,0)=0

2)A —)p(S )4 mean: (for A,0 regular cardinals, § < A.)

Suppose
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(*) ¢ is a two place function from A 1o 0, ¢ subadditive.
Then for some closed unbounded C C A, for every 8 € § ~ C of cofinality > 8,

(**) there is A < 8, such that sup A = 8, and supfc(o,B): o < B,ae A,Pe A} <0.

3) We say A is B-sawc (sub-additively weakly compact} if: for every subadditive two
place function d from A to 8, there is an unbounded subset A of A such that
supfc(a,B) o< B, e A, Be A} < 6.

7. Fact: In Definition 6(2) the following demand on 8 € § ~ C is equivalent to (¥*)5
when ¢f(d) > 6:

(%) there are o;,B; <8 for i < ¢f(d), d=yo= b and

supfc(ay,B)) 1 i < j <cf(d)} <8.

Proof: If A is as in (**); choose o,B;e A st d=\yfo:i<cf8}

sup{B; : j < i} <oy < Py, they are as required.

If o, Bi (i < ¢f(B)) are as in (*¥)5, w.lo.g [j <i = < B; <o, < B, soas ¢f(8) > 6 for
some y; <O

B{i:cBi,o) =1}

is unbounded below ¢f (). Let

Yo = sup{c(oy,B;) 1 i < j < cf(B)} < 6.

NowA = {B; :i € B} isasrequired: for j <iin B
c(B;.B) < Max{c (B}, 0 41),¢ (0 1.8} <

Max {Y1,Yo/

8. Lemma: 1) Suppose ALk are as in 4(2) (so 4(3)) and x—>p(5)3f(u),
Scid<h:¢fd<x}thenS e I[A].

DI Voo <u—2°<AlL Sc{d<r:¢fd<u}, S e I[A] and A, are regular then
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A —)p(S)%.

3) Suppose A, LK are as in 4(2), ¢ as in 4(3) (a),(b). Then for any 8 < A and § < ¢f §,
there is an increasing contiruous function & : ¢f(8) — 6, & = supfh (i) : i < ¢f(8)}, and a club

¢ C 6 such that

[cf & — p@ﬁn Sk () cSPcl]

9. Remark: Particularly assuming G.C.H. 4(3), 8(1), 8(2), 8(3) fits nicely.

Proof of 8: 1) Let ¢ be a two place function satisfying 4(3) ( a) + (b). By Definition 6,
there is a closed unbounded C C A such that for e C S of cofinality > ¢f(), (*¥)5 hold.
Now {S<A:¢f8<¢f}cTr [by 42 as p9'< ¥ 4°< ¥ x¥ hence

x<H A<H
O<cf

ATH = ()Y H = pt = )] so we can assume ¢f(8) > ¢f(i). Now (**)s implies 8 & 537 [c]
(see 4(3)(c)), so by 4(3) we finish.

2) Let ¢ be a two place function from A to 0, subadditive. Let ¢ be regular large enough,
and w.lo.g. let {g; :i <A) exemplify § e I[A] witnessed by Cy with otp(a;) < |1 (see 2(2)
above). Let (V; : i < A) be increasing continuous such that N; < (H(3).€), {g; : i <L) e Ng,
Ni (A is an ordinal, HN;lll <A, and (N;:j<i}e Niyy. Let C={i <A:N;~\A=1iand
i€ Co} (it is closed unbounded). Suppose & C S, ¢f(8) > 6, then there is a £ & = sup 3
such that Vo e a)la ~ o e {aj:j< 0}] hence (Vo€ a) [a ~ &€ Nsl, and we also know
otp(a) = ¢f (8); and let {o; : i < ¢f(8)} be an increasing enumeration of a. So there are o; < §,
<i=o<ol, 8= foy:i<cfd and for i < cf(8), {o; : j < i} € Np, for some B; < 8.
Asfori<cf 8, l{fa;:j<ifl <cfd<p, 50 2% 7 <¥1 <3 hence {§:§<2E{a":j<i}!};N5,
so every subset of {o;:j<i} belongs to Np A <Ns. As ¢f(8) >0 for some y<®6,
A = {i < ¢f(8): ¢(o;,8) <7} is unbounded below ¢f(3), so by the previous sentence w.lo.g.
A =cf(8). So Ngyy E@0)(Vye {o;:j<i}]) e, x)SyYAe; <x] (as & witness the 3x) so

there is such x in N ,; call is B;. So a;,B; are as required in (**) of Fact 7, so by 7 we finish.
3) Follows.

10. Lemma: 1) If § € ITA] is stationary, and (Ve S)[cf(8) <ul, and P is a y-
complete forcing notion (L > Rg) then "I#p"S is a stationary subset of the ordinal A"
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2) If S < {8 < A: ¢f(8) <y is stationary but included in S3" (see 3(3)), W regular and
A = A<M then for some p-complete forcing notion P, Ih-p”S is not stationary” (in fact P = Levi
(L ,\) is O.K)

Remark: As for 10(2), it repeats Theorem 21, p. 366 of [Sh 6], Donder and Ben David

note a defect: in the case A =A<* (really A =A<*) in the definition of the forcing P

(= floy :i <) o increasing continuous B, , = {a; : j <i}) we forget to demand { < .

[Note however that automatically { < as each B; has cardinality < p, so we should just omit
the maximal elements of P which make P totally trivial].

For the general case (A < A"*) note that if some weak form of it fails, our definition of the
set §3" make it empty. Le. by Definition 8, p. 36 of [Sh 6], S;f' make it empty. Le. by Definition
2(1),2(1), p. 359 of [Sh 6] relaying on Definition 1, p. 358 of [Sh 6]. This demand
"S i" C gcf(x)" is reasonable, as otherwise we cannot prove there is such a set. See here later.
[18,19]

Proof; 1) Use (Vs)(s € I[A] = 5 € I[A]) from 16(2) (see Definition 15)

2) Let {a@; : i < A) list the subsets of A of cardinality < u, each appearing A times. If
P = Levi (W,A), in V¥ A has cofinality [, so let {o; : i < p) be increasing, o; < A, \ o; = A

i<k
But forcing with P add no sequences of ordinals of length <, so we can find inductively
JA <A ji) > Uli€og 1§ <i}, ajy = {og 1§ <i}. Now {8 < A: the set {j(#) :i <p} S

is unbounded in 8} is a club of A in V7, included in a good subset of A from V.,

10A Remark: It is natural to force with
Oai i<\ =fig:{<&): ¢ <x, i <h, [E(D) < &2) = igyy < igpyls and
a, =(ig:£< Q.
* * *

In [Sh 6] we define S3" inside a larger set than {8 < A: AT B =2 (see 3(3)). We will
present this addition, improved, i.e. G¢f [A], g¢f(A) are bigger sets here than in [Sh 6, Definition
21

11 Definition: 1) For a family F of subsets of 6 let
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rFy={A~a:AeF,a<b}

2) For 9 regular uncountable let club, (6) = Min{1tr(F)| : F is a family of closed
unbounded subsets of 8 such that: every closed unbounded subset of 6 contains some members
of F}.

Let club, [Rp] = Ry and let Fg exemplify club, (8) = | Fgl.
3) GefIA] = {0 : 6 is regular > Ry and, A = A<° or club, (8) < A}

4) gcfTA] = {8 < x: ¢f 8 € gefTA], ¢f(8) < 8} \ {8 <X : 8 a (weakly) inaccessible car-

dinal} y{o <A : o= 0,, or o successor ordinal}
4) gcfocfh] = {8 € gcfTM] i ¢f & <B)
12 Fact: 1) If GCH, A > Rg regular then GefTA] = {0 : B regular < A}, g¢fTA]l = A
2) For regular uncountable 8, © < club,, (6) < 2<% <29,

3) If 2<% <A, (8, regular) then © e Gof(A) [as this implies either A = 2<% hence
A =A<® or A > 2<9 hence A > club,, (6)].

13 Definition: 1) We call @ an enumeration for A if @ = {(a; : i < A}, each ¢; a bounded
subset of A.

2) We call a a rich enumeration for A if:

(i) g is an enumeration for A

(i) if A = A®, (hence O < ) then every subset of A of cardinality < 8 appears in a

(iii) if O is an uncountable regular cardinal, and club,,(8) S A then letting F ¢ exem-
plify club, (8) < A, for every limit ordinal 8 < A of cofinality 8, there is a closed unbounded sub-
set {| B? 1i<@yof d ([3,5 increasing continuous) such that

(*)foreveryA € Foand{ <8, ({B¥:ie A ~ {} appearina.
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3) In (1) (and (2)) we replace "enumeration”" by (< p)-enumeration if we restrict our-

selves to subsets of A of cardinality <pie.in (i) 9 <y, in ({0 <.
4) For an unbounded subset S of A, we say a is a rich enumeration for (S, 6)’ if:

(i) a is an enumeration for A
()ife=1, A=A andeveryb <), 1bl <@appearina

(iil) if £ =2 club, (0) <A, then for every 6 € S of cofinality 6 the condition in (2)
(iii) above holds.

14 Fact: 1) For every regular uncountable A there is a rich enumeration;
2) For every A = ¢f A > |, A has a rich g-enumeration.

15 Definition: For A regular uncountable

I*[A] = {§ < \: for every cardinal 3 > A and x € H (), for some closed C < A, for every
de C NS there are a limit y<§, and N;<H),e,x,A), for i<y, such that
(Nj:j<i)e N;j, N;~M\isanordinal o; < 3 and 8 = o).

i<y

16 Fact: 1) I*[A] is a normal ideal on A and in its definition w.Lo.g. ¥ = ¢f 8,

2) I} cTH M

DNIS cgeffilthen: S e I[Al © S e IT[A]

4) There is S3* < gcfTAl, such that for every rich enumeration a for A and § < Gef[Al:
S e I[\] if and only if SeI*[\] if and only if S ~Si* =@ mod Dy, if and only if
S c Sy [@l mod Dy. Welet $57% = (8 <A : cf(8) =0, §e S5} (this replace 3(3)) and

S E5<hicf5<0,8e S

5) for every rich enumeration a for A, ged([\] — $3*[@1 = 537 mod D,

6) for any 8 < A, suppose (A)A =A<8 /b c A : 1bl <8} c{a; :i <} (like 11(2)Gi) or
(B) club,(®) <A, Fg exemplify it and a satisfies 11Q2)(iii) for every
8e Scd<h:cfS >cf0).ThenS ~ Si% = S — S [a).
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Proof: 1) The normality is easy, the "w.l.o.g. ¥ = ¢f &" is proved as in 2(2).

2) Let § € I[A], so for some enumeration @ = {a; :i < A) for A, C S c $391a) for
some closed unbounded C C A. Let  >A, x € H(x). We can find (N¢ : { < &) increasing con-
tinuous, Ny < (H(x),€, x), such that Ng XA is an ordinal HINgIl <A, (N;:j< {ye Ngy
andC,ae Ny.SoC' Z8<A:8e CandN; A = 8} is a closed unbounded subset of A.

Now for every € C' S, there is @; from &, ofp{a;) <sup(e;) =9 and for o€ g,

aa€faj:j<bd. Asae Ngclearly {a; : i <8} c 1 N Leta; = (Y. 1 € < otp a;}. Now
€21

we try to define by induction on € < otp(a;) an ordinal {; < &:
fore=0:0.=0

for e limit: G =y (g,

B<e

for € successor: L is the first ordinal { satisfying { is bigger than v and (N, : B < €) belongs

toNe,.

The only reason for stopping is: € limit \_y {g = &; once this occurs at &g, (N¢, 1€ <€) is
B<e

as required [otherwise for limit and for zero there is no problem, and for € successor, {g; is
defined and < 8, so for some B, {e1 <7yp <& [where a; = {y3 : B < otp a;}) now (g : p < &)
is definable inside the model (H(x),€) from the parameters (N; : j < v), {Y; : / < B only; as

both are in \_y N;, is ({p : B < o), and similarly so is {e].
j<&

3) Fix § < gcf[Al; by 16(2) it is enough to assume S e /*{A] and prove § € I[&], we

prove more in 16A below.
4) §37 is gefIA] - S” [a] for any rich enumeration @ for A.
5), 6) Should be clear.

16A Subfact: If S < gcfIAl, (A regular uncountable) S belongs to I'[A] and

a ={a; : i < A)is arich enumeration for A, then § < S (@] mod Dy,
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Proof of 16A: Let x = @, % = (2*)*, so as S € I*[A] (see Definition 15), there is a
closed unbounded C < A such that (see 16(1)):

(*) for every 8 € C ~ b there is N = (N; : i < ¢f(8)) as in Definition 15.

Fix 8eCS, and N and let 6=c¢f8 o;=N; A Remember that
Ni{a;:j <M ={a;:j < o). We shall show that § & S3” [a], thus finishing.

Case 1: A% =L (e.g. ¢f 8< Ro).

In this case for each i(*) < 8, {o; : i < i(*)] belongs to {@; : j <A} (as & is rich) and to
Ni(*)+1 (as (N;:i <i(®))e Ni(*)H’ and A e Ni(*)+1); hence fo; :i < i(*)} belongs to their

intersection which is {a; : j < 0}, So{a; : i <i(*)) exemplify d ¢ § 3P (@), as required.

Case 2: ¢f 6 <, club,(8) < A where 8 = ¢f & > Ng).

Let Fr 5 exemplify club, (8) = 11r(Fg)!, and let { B? 1 i < 6} be as in Definition 13(1) (ii).
SoAy={i<6: B? = q;} is a club of 8, hence for some club A € Fg, A © Ay. By 13(1) (ii)
for every i(*) < 8, {[315 tie A, i <i(*)} belongs to {a; 1i <A}, but A ~i(*)e N [as

i<
0 <0, hence wlog Fge \yN;, hence wr(Fg)e (YN; but lr(Fg)l <A hence
i< i<@
tr(Fg) < N;]. Hence {o; 1 i € A ~i(*)} € \ Ni, so we finish.
i<® i<

Case3:8=¢f 6.
Trivial.

17 Lemma: Suppose in V, A > Ry is regular, 0 € G¢f[A], so § ;fe is defined.

Suppose further V! is an extension of the universe V (say same ordinals}, vie"A> R is

regular”, and

(*); V! E “every subset of A of cardinality < 8 belongs to V", V k "A = A8 or
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(*), V! E "F¥ satisfies for every club C of 8, there is A € F§, A < C" (but maybe
V! E "0 notacardinal”) and V E "1F¥ | = club,(8) < A"

Then
@O V! Ecf8e GeffAlorcf 8 = Rg"; and
() V! E"Si%e N{8:V Ecf8=0}=(Ss) mod D" or equivalently: in VI,
(S3%)V D 4 is disjoint to every S/D 3, § e I[A].

Proof: Let a be a rich enumeration for A in V.

By (*), a4 is still a rich enumeration in V! for S ={8<A:V Ecf8=8}. By 16(6) we
finish,

18 Lemma: If A > Xgisregular, S € I*[A], S {8 <A:¢f8 <y, P isap-complete

forcing notion then

Ikp"S is a stationary subset of A (as an ordinal, A may or may not be a cardinal)"

Complementary to 18 is
19 Lemma: Suppose 0 € G¢f(A), Rg <O <pu=¢fL<Aso S'{f‘g is well defined.

DIfp=6, A=21%, Wereviquny ”(S;fg )V is not stationary (as a subset of the ordinal A,
(remember Levi(8,)) = {f : fa function from some o < 8 to A}, it is 6-complete).

2)If S;f‘e =@, A=2A%8, IHLeviun) "(S3% )Y is not staticnary”.

3) In (1) and (2) we can replace Levi (8,A), by any forcing notion P which adds to A no
new subset of power < pand lp "¢f A ="

4) In (1),(2) we can replace "\ = A<®" by club,(8) < A, if we replace Levi (1,1) by
Levi(h,A<®) * Levi(u,A).

Remark: A more general forcing is as follows: Let 8 <k, x £ 6, b ={b;:i <A) exem-
plify that Sge I[0] and [§<BA8e Sg=>¢f8<x] or just for some C=cfO<K,
Se={8<0:cfd=0}, Sc{d<h:¢fd=0} and 0% =((ig:{<{):¢ <8, ig<h,
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B <8@) =iy <igp) @, ={ig:§e by}

20 Claim: Suppose 0 = ¢f 8 > Rq for the regular cardinals A and p, A >p and
club, (8) < u.

1) Given 53", § ;”, there is a club C ¢ A such that: for every 8 € C of cofinality W, there

is an increasing continuous sequence {o; :i <), U o; =08 and a club ¢ of y satisfying
: i<y

. . . * . *

icecacfi=0nie S =ie 5]

2) If a is a rich enumeration for (A,0), then {8 < A :¢f & = u implies that for some
o;,B; (<) {oy:i<u is increasing continuous with limit 8, [; < and defining for

i<W, b;={j:ajeag}, (b;:i <) isarichenumeration for (1,0)} € Dj.

21. Lemma: 1) If x is supercompact and e.g. A > k > ¢f A, then I[A"] is a proper ideal:
AT e IIAT]

3) After suitable collapses, e.g. ¢f A = Ry < A butstill A" & I[AY].

22, Problem: D IsG.CH. + {0 < Ry,q 1 ¢f 8> Ry} & [[Ry,1] consistent with ZFC.

2 1s
(*)ZX" > R 41+ "there is no stationary S € /[ R l”

consistent with ZFC?

3 Is

) 2% X o+1+ for no ultrafilter D on o, ¢f((X,,, <)/D) = Re+1
n

consistent with ZFC.

Remark: "X, is a Jonson cardinal” implies (*) of (3) (see [Sh 9] which implies (*) of
(2) (see [Sh)).
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Having F cause slight inconvenience.

We define by induction on o < A*, (M4, Ny.a), and N;, N;, M;,fy,gy: for suitable ¥'s
such that

(AYMy,No, My Ng are isomorphic to M.

(ByM B(B <) is <g- increasing continuous and similarly Ng,M E, N E

©F Mi1) = Misn

(D) F(N;+1) = Niny

(E) Mp.Ng,a) < (My.Ng,a)for B <o

(F) for vy limit or zero fy is an isomorphism from M; onto M., g is an isomorphism
from N; onto Ny.

(G) for vy limit or zero, n > 0: fy is an isomorphism from N;M onto Ny,2p, gy is an iso-

morphism from M ;H, onto Myy2,-1.
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