

Pseudo Algebraically Closed Fields Over Rational Function Fields Author(s): Moshe Jarden and Saharon Shelah Source: *Proceedings of the American Mathematical Society*, Vol. 87, No. 2 (Feb., 1983), pp. 223-228 Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/2043693 Accessed: 10-06-2016 18:03 UTC

# REFERENCES

Linked references are available on JSTOR for this article: http://www.jstor.org/stable/2043693?seq=1&cid=pdf-reference#references\_tab\_contents You may need to log in to JSTOR to access the linked references.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.



American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society

# PSEUDO ALGEBRAICALLY CLOSED FIELDS OVER RATIONAL FUNCTION FIELDS

MOSHE JARDEN<sup>1</sup> AND SAHARON SHELAH

ABSTRACT. The following theorem is proved: Let T be an uncountable set of algebraically independent elements over a field  $K_0$ . Then  $K = K_0(T)$  is a Hilbertian field but the set of  $\sigma \in G(K)$  for which  $\tilde{K}(\sigma)$  is PAC is nonmeasurable.

**Introduction.** A field M is said to be *pseudo algebraically closed* (= PAC) if every nonempty absolutely irreducible variety V defined over M has an M-rational point.

If M is an algebraic extension of a field K and every absolutely irreducible polynomial  $f \in K[X, Y]$ , separable in Y, has infinitely many M-rational zeros, then M is PAC. This is a combination of Ax's application of "descent" [1] and the generic hyperplane intersection method as in Frey [3]. If  $\sigma_1, \ldots, \sigma_e$  are *e*-elements of the absolute Galois group G(K) of K, then  $\tilde{K}(\sigma)$  denotes the fixed field in  $\tilde{K}$  of  $\sigma_1, \ldots, \sigma_e$ . Here  $\tilde{K}$  is the algebraic closure of K. We denote by  $\mu$  the normalized Haar measure of  $G(K)^e$ . It is proved in [6, Lemma 2.4] that if K is a Hilbertian field, if  $f \in K[X, Y]$  is an absolutely irreducible polynomial and if  $A(f) = \{\sigma \in G(K)^e | f$ has a  $\tilde{K}(\sigma)$ -zero}, then  $\mu(A(f)) = 1$ . If in addition K is countable, then there are only countably many f's and therefore the intersection of all the A(f)'s is also a set of measure 1. Thus the set  $S_e(K) = \{\sigma \in G(K)^e | \tilde{K}(\sigma) \text{ is PAC}\}$  has measure 1.

This basic result, which is called the *Nullstellensatz* in [6], has been the cornerstone for several model theoretic investigations of the fields  $\tilde{K}(\sigma)$  (cf. [9, 7 and 4]).

If K is uncountable, then the above argument is not valid any more. It is our aim in this note to show that indeed the *Nullstellensatz* itself is not true in this case. More precisely, we prove

THEOREM. Let T be an uncountable set of algebraically independent elements over a field  $K_0$ . Then  $K = K_0(T)$  is a Hilbertian field but  $S_e(K)$  is a nonmeasurable subset of  $G(K)^e$  for every positive integer e.

1. The Haar measure of a profinite group. Let G be a profinite group and consider the boolean algebra of open-closed sets in G. They are finite unions of left cosets xN, where N are open normal subgroups. The  $\sigma$ -algebra generated by the open-closed sets is denoted by  $\mathfrak{B}_0$ . Every open subset of G is a union of open-closed sets. We

© 1983 American Mathematical Society 0002-9939/82/0000-0592/\$02.50

223

Received by the editors February 5, 1982 and, in revised form, May 27, 1982.

<sup>1980</sup> Mathematics Subject Classification. Primary 12F20.

Key words and phrases. PAC fields, Hilbertian fields, Haar measure.

<sup>&</sup>lt;sup>1</sup>Partially supported by the Fund for Basic Research administered by the Israel Academy of Sciences and Humanities.

224

denote by  $\mathfrak{B}$  the  $\sigma$ -algebra generated by the open sets. This is the *Borel*-algebra of G. Attached to  $\mathfrak{B}$  is the Haar measure  $\mu$  of G. We make the convention that  $\mu(G) = 1$ ensuring the uniqueness of  $\mu$ . The  $\sigma$ -algebra generated by  $\mathfrak{B}_0$  (resp.  $\mathfrak{B}$ ) and the subsets of zero sets of  $\mathfrak{B}_0$  (resp.  $\mathfrak{B}$ ) is denoted by  $\overline{\mathfrak{B}}_0$  (resp.  $\overline{\mathfrak{B}}$ ). For every  $B \in \overline{\mathfrak{B}}_0$ there exist  $A, C \in \mathfrak{B}_0$  such that  $A \subseteq B \subseteq C$  and  $\mu(C - A) = 0$ . The sets in  $\overline{\mathfrak{B}}$  are the *measurable* sets of G.

**LEMMA** 1.1. In the above notation we have  $\overline{\mathfrak{B}}_0 = \overline{\mathfrak{B}}$ .

**PROOF.** It suffices to show that if U is an open set, then there exist  $A, B \in \mathfrak{B}_0$  such that  $A \subseteq U \subseteq B$  and  $\mu(B - A) = 0$ .

We write U as a union  $U = \bigcup_{i \in I} x_i M_i$ , where the  $M_i$  are open normal subgroups and  $x_i \in G$ , and let

$$\alpha = \sup \left\{ \mu \left( \bigcup_{i \in I'} x_i M_i \right) \middle| I' \text{ is a countable subset of } I \right\}.$$

For every positive integer *n* there exists a countable subset  $J_n$  of *I* such that  $\alpha - \mu(\bigcup_{i \in J_n} x_i M_i) < 1/n$ . Then for  $J = \bigcup_{n=1}^{\infty} J_n$ , the set  $A = \bigcup_{j \in J} x_j M_j \subseteq U$  belongs to  $\mathfrak{B}_0$  and satisfies  $\mu(A) = \alpha$ .

Consider the closed normal subgroup  $N = \bigcap_{j \in J} M_j$  of G. The corresponding quotient group G/N has a countable basis for its topology. Denote by  $\pi: G \to G/N$ the canonical homomorphism. Then the sets  $\pi(x_iM) = x_iM_iN/N$  are open in G/Nand their union is  $\pi U$ . By a theorem of Lindelöf, I has a countable subset K such that  $\pi U = \bigcup_{k \in K} \pi(x_kM_k)$ . In addition  $\pi^{-1}\pi A = A$  and  $\pi(U - A) = \pi U - \pi A$ , as one may easily check. Hence

(1) 
$$U-A \subseteq \pi^{-1}\pi(U-A) = \bigcup_{k \in K} (x_k M_k N - A).$$

The right-hand side of (1), which we denote by  $B_0$ , belongs to  $\mathfrak{B}_0$ . If we prove that  $\mu(B_0) = 0$ , then  $B = A \cup B_0$  is a set of  $\mathfrak{B}_0$  that contains U and satisfies  $\mu(B - A) = 0$ . Of course, it suffices to prove that  $\mu(x_k M_k N - A) = 0$  for every  $k \in K$ .

Assume that there exists a  $k \in K$  such that  $\mu(x_k M_k N - A) > 0$  and let  $n_1, \ldots, n_r$ be representatives of N modulo  $N \cap M_k$ . Then  $x_k M_k N - A = \bigcup_{\rho=1}^r (x_k M_k n_\rho - A)$ and therefore, there exists a  $1 \le \rho \le r$  such that  $\mu(x_k M_k n_\rho - A) > 0$ . Note that  $An_\rho = A$ , since  $n_\rho \in M_j$  for every  $j \in J$ . Hence,  $\mu(x_k M_k - A) = \mu((x_k M_k - A)n_\rho)$  $= \mu(x_k M_k n_\rho - A) > 0$ . It follows that

$$\mu\left(\bigcup_{j\in J}x_jM_j\cup x_kM_k\right)=\mu(A)+\mu(x_kM-A)>\alpha,$$

which contradicts the definition of  $\alpha$ .  $\Box$ 

LEMMA 1.2. In the above notation let S be a subset of G. Suppose that for every  $B \in \mathfrak{B}_0$  there exists an epimorphism r:  $G \to H$  such that (a)  $B = r^{-1}rB$  and (b)  $\mu_H(rS) = 1$ . Then G - S contains no subset of a positive measure. If also G - S has the above property, then S is not measurable.

**PROOF.** Assume that G - S contains a set  $\overline{B} \in \overline{\mathfrak{B}}$ . By Lemma 1.1 there exists a set  $B \in \mathfrak{B}_0$  such that  $B \subseteq \overline{B}$  and  $\mu(\overline{B} - B) = 0$ . Let  $r: G \to H$  be an epimorphism such that (a) and (b) hold. Then  $\mu_H(r(G - B)) = 1$  and  $G - B = r^{-1}r(G - B)$ . It follows that  $\mu(G - B) = 1$ , hence  $\mu(\overline{B}) = 0$ .  $\Box$ 

2. Rational function fields of one variable. Let t be a transcendental element over an infinite field K and let E = K(t). Then E is a Hilbertian field. If E is also countable, then, as noted in the introduction,  $S_e(E) = \{\sigma \in G(K)^e | \tilde{E}(\sigma) \text{ is PAC}\}$ is a set of measure 1 for every  $e \ge 1$ . In the noncountable case we are able to prove only the following weaker result.

**PROPOSITION 2.1.** If K is an uncountable field, then the complement of  $S_e(E)$  in  $G(E)^e$  contains no subsets of positive measure.

The first step in the proof is a generalization of a basic result for polynomials in several variables. We use here both #A and |A| to denote the cardinality of a set A.

LEMMA 2.2. Let A be an infinite subset of a field K. If  $F \subseteq K[X_1, \ldots, X_n]$  is a set of nonzero polynomials and |F| < |A|, then  $\#\{(a_1, \ldots, a_n) \in A^n | f(a_1, \ldots, a_n) \neq 0 \text{ for every } f \in F\} = |A|$ .

PROOF. Our assertion is true for n = 1, since every polynomial  $f \in F$  has only finitely many zeros. Suppose, by induction, that the assertion is true for n - 1, where  $n \ge 2$ . Then, since every  $f \in F$  has a nonzero coefficient  $g \in K[X_1, \ldots, X_{n-1}]$ , we have  $\#\{(a_1, \ldots, a_{n-1}) \in A^{n-1} | f(a_1, \ldots, a_{n-1}, X_n) \ne 0$  for every  $f \in F\} = |A|$ . For every  $(a_1, \ldots, a_{n-1})$  in the above set there exists, by the case n = 1, an element  $a_n \in A$  such that  $f(a_1, \ldots, a_n) \ne 0$  for every  $f \in F$ . Therefore, our assertion is also true for n.  $\Box$ 

COROLLARY 2.3. If  $\{U_i | i \in I\}$  is a family of nonempty Zariski K-open sets in  $A^n$ and |I| < |A|, then  $|A^n \cap \bigcap_{i \in I} U_i| = |A|$ .

**PROOF.** Every  $U_i$  is defined by finitely many polynomial inequalities.  $\Box$ 

We define the *rank* of an infinite algebraic extension as the cardinality of the family of all finite subextensions. The *rank* of a finite algebraic extension is merely said to be *finite*.

A finite separable extension has only finitely many subextensions. Hence, if F is the compositum of m finite separable extensions of a field E and m is an infinite cardinal number, then rank(F/E) = m.

LEMMA 2.4. Let F be a separable extension of E with  $rank(F/E) \le |K|$  and let  $f \in E[X, Y]$  be an irreducible polynomial in F[X, Y], separable in Y. Then there exists an  $x \in E$  such that f(x, y) is separable irreducible in F[Y].

**PROOF.** Let  $\{E_i | i \in I\}$  be the family of all finite separable extensions of E which are contained in F. By assumption |I| < |K|. By a theorem of Inaba [5, §4], there exists for every  $i \in I$  a nonempty Zariski K-open set  $U_i \subseteq A^2$  such that if  $(a, b) \in U_i(K)$ , then f(a + bt, y) is separable irreducible in  $E_i[Y]$ . The intersection

 $\bigcap_{i \in I} U_i(K)$  is, by Corollary 2.3, not empty. If (a, b) lies in this intersection and x = a + bt, then f(x, Y) is separable irreducible over every  $E_i$ , hence also over F.

LEMMA 2.5. Let N be a Galois extension of E with  $\operatorname{rank}(N/E) \leq |K|$ . Then every  $\sigma_1, \ldots, \sigma_e \in \mathcal{G}(N/E)$  can be extended to elements  $\tau_1, \ldots, \tau_e \in G(E)$ , respectively, such that  $\tilde{E}(\tau)$  is a PAC field.

**PROOF.** We well-order the absolutely irreducible polynomials of K[X, Y] which are separable in Y in a transfinite sequence  $\{f_{\alpha} \mid \alpha < m\}$ , where m = |K|, such that each of the polynomials appears  $\aleph_0$  times in the sequence. For every  $\alpha < m$  we define a finite separable extension  $E_{\alpha}$  of E in which  $f_{\alpha}$  has a zero and such that the set of fields  $\{N\} \cup \{E_{\alpha} \mid \alpha < m\}$  is linearly disjoint over E.

Indeed let  $\beta < m$  and assume, by transfinite induction, that  $E_{\alpha}$  has been defined for every  $\alpha < \beta$ . Let F be the compositum of N and all the fields  $E_{\alpha}$  with  $\alpha < \beta$ . Then F is a separable extension of E with rank(F/E) < m. By Lemma 2.4 there exists an  $x \in E$  such that f(x, y) is separable irreducible in F[Y]. If  $y \in \tilde{E}$  satisfies f(x, y) = 0, then we may define  $E_{\beta} = E(y)$  and  $E_{\beta}$  is linearly disjoint from F over E.

The compositum M of all the fields  $E_{\alpha}$  is a separable algebraic extension of E which is linearly disjoint from N and which is PAC. The automorphisms  $\sigma_1, \ldots, \sigma_e$  may be extended to automorphisms  $\tau_1, \ldots, \tau_e \in G(M)$ . Their fixed field  $\tilde{K}(\tau)$  is an algebraic extension of M and hence is a PAC field itself.  $\Box$ 

**PROOF OF PROPOSITION 2.1.** We follow the pattern of Lemma 1.2 and note first that every open-closed set of  $G(E)^e$  is determined by a finite Galois extension of E. It follows that if B is a set belonging to the  $\sigma$ -algebra  $\mathfrak{B}_0$  of  $G(E)^e$  generated by the open-closed sets, then there exists a Galois extension N of E with  $\operatorname{rank}(N/E) \leq \aleph_0$  such that  $r^{-1}rB = B$ , where  $r: G(E)^e \to \mathfrak{S}(N/E)^e$  is the restriction map.

By Lemma 2.5,  $rS_e = \mathcal{G}(N/E)^e$ . Hence, by Lemma 2.1,  $G(E)^e - S_e(E)$  contains no sets of a positive measure.

3. Rational function fields of many variables. There is one case where we have enough information about the set  $G(E)^e - S_e(E)$ , which allows us to reach a decisive conclusion about the nonmeasurability of the set  $S_e(E)$ . This is the case where K itself is a rational function field of uncountably many variables over a field  $K_0$ .

LEMMA 3.1. Let T be a nonempty set of algebraically independent elements over a field L and let M = L(T). Then every e elements  $\sigma_1, \ldots, \sigma_e$  of G(L) can be extended to e elements  $\rho_1, \ldots, \rho_e$  of G(M) such that  $\tilde{M}(\rho)$  is not a PAC field.

**PROOF.** We single out an element  $t \in T$  and denote  $L' = L(T - \{t\})$ . Then  $\sigma_1, \ldots, \sigma_e$  can be extended to elements  $\sigma'_1, \ldots, \sigma'_e$  of G(L'). We may therefore assume without loss that T consists of one element t.

Consider first the case where one of the  $\sigma_i$ 's is not the identity automorphism and note that L is algebraically closed in the field F = L((t)) of formal power series in t. Therefore,  $\sigma_1, \ldots, \sigma_e$  may be extended to elements  $\hat{\rho}_1, \ldots, \hat{\rho}_e$  of G(F). The restrictions

Sh:164

 $\rho_1, \ldots, \rho_e$  of  $\hat{\rho}_1, \ldots, \hat{\rho}_e$  to  $\tilde{M}$  are elements of G(M) that extend  $\sigma_1, \ldots, \sigma_e$  and  $\tilde{M}(\rho)$  is not a PAC field. Indeed,  $\tilde{M}(\rho) = \tilde{M} \cap \tilde{F}(\hat{\rho})$  and  $\tilde{F}(\hat{\rho})$  is a Henselian field with respect to a real-valued valuation defined by the specialization  $t \to 0$ . Therefore,  $\tilde{M}(\rho)$  itself is Henselian (cf. Ax [2, Proposition 12]) and it is not separably closed. Theorem 2 of Frey [3] implies that  $\tilde{M}(\rho)$  is not a PAC field.

If  $\sigma_1 = \cdots = \sigma_e = 1$ , then noting that the separable closure  $M_s$  of M is not contained in  $L_s((t))$ , we may choose  $\hat{\rho}_1, \ldots, \hat{\rho}_e$  in  $G(L_s((t)))$  that do not fix  $M_s$ . Then we proceed as before.  $\Box$ 

We are now in a position to prove our main result.

THEOREM 3.2. Let T be an uncountable set of algebraically independent elements over a field  $K_0$  and let  $E = K_0(T)$ . Then for every positive integer e, both  $S_e(E)$  and  $G(E)^e - S_e(E)$  contain no sets of positive measure. In particular  $S_e(E)$  is nonmeasurable.

**PROOF.** By Proposition 2.1 we have only to prove that  $S_e(E)$  contains no sets of positive measure. Indeed, if  $B \subseteq G(E)^e$  is open-closed, then there exists a finite subset  $T_0$  of T and there exists a finite Galois extension  $F_0$  of  $K_0(T_0)$  such that B is the listing to  $G(E)^e$  of a certain subset of  $\mathcal{G}(F_0/K_0(T_0))^e$ . It follows that if  $B \in \mathfrak{B}_0$ , then there exists a countable subset  $T_1$  of T such that with  $L = K_0(T_1)$  and r:  $G(E)^e \to G(L)^e$  the restriction map, we have  $B = r^{-1}rB$ .

Note now that  $E = L(T - T_1)$  and that  $T - T_1$  is a nonempty set of algebraically independent elements over L. Hence, by Lemma 3.1,  $r(G(E)^e - S_e(E)) = G(L)^e$ . It follows by Lemma 1.2, that  $S_e(E)$  contains no sets of positive measure.  $\Box$ 

COROLLARY 3.3. If F is a finite extension of E, then  $S_e(F)$  is a nonmeasurable set.

**PROOF.** If  $S_e(F)$  were measurable, then either  $S_e(F)$  or its complement would have a positive measure in  $G(E)^e$ , a contradiction.  $\Box$ 

Note that there exist Hilbertian fields  $E_0$  which are PAC (see [8, Theorem 3.3]). Every nonprincipal ultrapower E of  $E_0$  is an uncountable Hilbertian PAC field. As already noted before every algebraic extension of E is again a PAC field. Hence,  $S_e(E) = G(E)^e$  for every positive integer e. Thus Theorem 3.2 cannot be extended to arbitrarily uncountable Hilbertian fields.

The most interesting case which remains open is that of E = C(t).

**PROBLEM.** Are the sets  $S_e((t))$  measurable?

Note that in case of a positive answer, we have  $\mu(S_e(\mathbf{C}(t))) = 1$ , by Proposition 2.1.

#### References

1. J. Ax, The elementary theory of finite fields, Ann. of Math. 88 (1968), 239-271.

<sup>2.</sup> \_\_\_\_\_, A mathematical approach to some problems in number theory, 1969 Number Theory Institute, Proc. Sympos. Pure Math., vol. 20, Amer. Math. Soc., Providence, R.I., 1971, pp. 161–190.

<sup>3.</sup> G. Frey, Pseudo-algebraically closed fields with nonarchimedean real valuations, J. Algebra 26 (1973), 202-207.

<sup>4.</sup> M. Fried, D. Haran and M. Jarden, *Galois stratification over Frobenius fields*, Advances in Math. (to appear).

<sup>5.</sup> E. Inaba, Über den Hilbertschen Irreduzibilitässatz, Japan. J. Math. 19 (1944), 1-25.

## 228

## MOSHE JARDEN AND SAHARON SHELAH

6. M. Jarden, Elementary statements over large algebraic fields, Trans. Amer. Math. Soc. 164 (1972), 67-97.

7. \_\_\_\_\_, The elementary theory of  $\omega$ -free ak-fields, Invent. Math. 38 (1976), 187-206.

8. \_\_\_\_, An analogue of Čebotarev density theorem for fields of finite corank, J. Math. Kyoto Univ. 20 (1980), 141-147.

9. M. Jarden and U. Kiehne, The elementary theory of algebraic fields of finite corank, Invent. Math. 30 (1975), 275-294.

SCHOOL OF MATHEMATICAL SCIENCES, TEL-AVIV UNIVERSITY, RAMAT-AVIV, TEL-AVIV, ISRAEL

INSTITUTE OF MATHEMATICS, THE HEBREW UNIVERSITY, JERUSALEM, ISAREL