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 Volume 87, Number 2. February 1983

 PSEUDO ALGEBRAICALLY CLOSED FIELDS

 OVER RATIONAL FUNCTION FIELDS

 MOSHE JARDENI AND SAHARON SHELAH

 ABSTRACT. The following theorem is proved: Let T be an uncountable set of

 algebraically independent elements over a field Ko. Then K = KO(T) is a Hilbertian
 field but the set of a E G( K) for which K(a) is PAC is nonmeasurable.

 Introduction. A field M is said to be pseudo algebraically closed (= PAC) if every

 nonempty absolutely irreducible variety V defined over M has an M-rational point.

 If M is an algebraic extension of a field K and every absolutely irreducible

 polynomial f E K [ X, Y], separable in Y, has infinitely many M-rational zeros, then

 M is PAC. This is a combination of Ax's application of "descent" [1] and the generic

 hyperplane intersection method as in Frey [3]. If a,,...,ae are e-elements of the
 absolute Galois group G(K) of K, then K(a) denotes the fixed field in K of

 a1,. . . ,0e. Here K is the algebraic closure of K. We denote by 4 the normalized Haar
 measure of G(K )e. It is proved in [6, Lemma 2.4] that if K is a Hilbertian field, if

 f E K[X, Y] is an absolutely irreducible polynomial and if A(f) = (a E G(K)e If
 has a K(a)-zero), then u(A(f )) = 1. If in addition K is countable, then there are
 only countably many f 's and therefore the intersection of all the A( f )'s is also a set

 of measure 1. Thus the set Se(K) = (a E G(K )e I K(a) is PAC} has measure 1.
 This basic result, which is called the Nullstellensatz in [6], has been the cornerstone

 for several model theoretic investigations of the fields K( a) (cf. [9, 7 and 4]).

 If K is uncountable, then the above argument is not valid any more. It is our aim

 in this note to show that indeed the Nullstellensatz itself is not true in this case. More

 precisely, we prove

 THEOREM. Let T be an uncountable set of algebraically independent elements over a

 field Ko. Then K = KO T) is a Hilbertian field but Se( K) is a nonmeasurable subset of
 G( K )e for every positive integer e.

 1. The Haar measure of a profinite group. Let G be a profinite group and consider
 the boolean algebra of open-closed sets in G. They are finite unions of left cosets xN,

 where N are open normal subgroups. The a-algebra generated by the open-closed

 sets is denoted by 6J0. Every open subset of G is a union of open-closed sets. We
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 224 MOSHE JARDEN AND SAHARON SHELAH

 denote by 1 the a-algebra generated by the open sets. This is the Borel-algebra of G.
 Attached to 95 is the Haar measure i of G. We make the convention that y(G) = 1

 ensuring the uniqueness of ,u. The a-algebra generated by %hQ (resp. B) and the

 subsets of zero sets of '@, (resp. g) is denoted by %0 (resp. %3). For every B E8 0
 there exist A, C E %0 such that A C B C C and t,(C-A) = O. The sets in ; are the
 measurable sets of G.

 LEMMA 1.1. In the above notation we have ;0 =

 PROOF. It suffices to show that if U is an open set, then there exist A, B E %0 such
 that A C U C B andui(B-A) = O.

 We write U as a union U = U I x,M,, where the Mi are open normal subgroups
 and x, G G, and let

 a = sup {( U x Me) I' is a countable subset of I}.

 For every positive integer n there exists a countable subset Jn of I such that

 a-,L(U1J x1M,) < l/n. Then for J = U=1 Jn, the set A = U Jx,Mj} c U
 belongs to %0 and satisfies .t (A) = a.

 Consider the closed normal subgroup N = njEJ M. of G. The corresponding
 quotient group G/N has a countable basis for its topology. Denote by 7r: G - G/N

 the canonical homomorphism. Then the sets 1(x,M) = xiMiN/N are open in G/N
 and their union is vU. By a theorem of Lindelof, I has a countable subset K such

 that 7rU = UkEK s(xkMk). In addition '-71ffA = A and f(U - A) = ',rU - ffA, as
 one may easily check. Hence

 (I) U-A C irY7(U-A)= U (xkMkN-A).
 keK

 The right-hand side of (1), which we denote by Bo, belongs to 01. If we prove that
 tL(Bo) = 0, then B = A U Bo is a set of %0 that contains U and satisfies u(B - A) =
 0. Of course, it suffices to prove that i(xkMk N - A) = 0 for every k E K.

 Assume that there exists a k E K such that p(XkMk N - A) > 0 and let n1,. . .,nr
 be representatives of N modulo N n Mk. Then XkMk N - A = U= I(XkMknp - A)
 and therefore, there exists a 1 < p < r such that u(xkMknp - A) > O. Note that
 Anp = A, since n E M for every j E J. Hence, (xkMk-A) = 1((xkMk-A)np)
 = Xk(xkMknp - A) > 0. It follows that

 I( U xXM1 U XkMk) = 1(A) + IdxkM - A) > a,
 JGJ

 which contradicts the definition of a. O

 LEMMA 1.2. In the above notation let S be a subset of G. Suppose that for every

 B 6 0 there exists an epimorphism r: G - H such that (a) B = r-'rB and (b)

 AH(rS) = 1. Then G - S contains no subset of a positive measure. If also G - S has
 the above property, then S is not measurable.
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 PSEUDO ALGEBRAICALLY CLOSED FIELDS 225

 PROOF. Assume that G - S contains a set B E ;. By Lemma 1.1 there exists a set
 B EE 6Jo such that B C B and 1(B- B) = 0. Let r: G - H be an epimorphism such

 that (a) and (b) hold. Then ,H(r(G - B)) = 1 and G - B = r-fr(G - B). It follows

 that t.(G - B) = 1, hence t.(B) = 0. O

 2. Rational function fields of one variable. Let t be a transcendental element over

 an infinite field K and let E = K(t). Then E is a Hilbertian field. If E is also

 countable, then, as noted in the introduction, Se() = (a E G(K )e I E(a) is PAC}
 is a set of measure 1 for every e > 1. In the noncountable case we are able to prove

 only the following weaker result.

 PROPOSITION 2.1. If K is an uncountable field, then the complement of Se(E) in

 G( E)e contains no subsets of positive measure.

 The first step in the proof is a generalization of a basic result for polynomials in

 several variables. We use here both #A and I A I to denote the cardinality of a set A.

 LEMMA 2.2. Let A be an infinite subset of a field K. If F C K[ Xl 1 ... Xn I is a set of

 nonzero polynomials and I F I < I A then # ((a,,..., an) E A'l f(a1,...,a) # O for
 everyf E F) =IA I.

 PROOF. Our assertion is true for n = 1, since every polynomial f E F has only

 finitely many zeros. Suppose, by induction, that the assertion is true for n - 1,

 where n > 2. Then, since every f E F has a nonzero coefficient g E K [ XI,. . ., X

 we have ((a,,...,a"_1) E A'-'lf(al,... a"_, X") # 0 for everyf E F}=A F.
 For every (a1,... a,-,) in the above set there exists, by the case n = 1, an element
 a. e A such that f(a,,... a,) # 0 for every f E F. Therefore, our assertion is also
 true for n. D

 COROLLARY 2.3. If (U, I i E I) is a family of nonempty Zariski K-open sets in A"

 and I I I<I A I,I then I An n n,,E, UI=IA I .

 PROOF. Every U, is defined by finitely many polynomial inequalities. O
 We define the rank of an infinite algebraic extension as the cardinality of the

 family of all finite subextensions. The rank of a finite algebraic extension is merely

 said to be finite.

 A finite separable extension has only finitely many subextensions. Hence, if F is

 the compositum of m finite separable extensions of a field E and m is an infinite

 cardinal number, then rank(F/E) = m.

 LEMMA 2.4. Let F be a separable extension of E with rank( F/E) < I K I and let
 f E E [ X, Y] be an irreducible polynomial in F[ X, Y], separable in Y. Then there exists

 an x E E such that f(x, y) is separable irreducible in F[ Y].

 PROOF. Let (E, I i E I} be the family of all finite separable extensions of E which

 are contained in F. By assumption I I < I K I . By a theorem of Inaba [5, ?4], there
 exists for every i E I a nonempty Zariski K-open set U, C A2 such that if (a, b) E

 Uj(K), then f(a + bt, y) is separable irreducible in E,JY]. The intersection
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 226 MOSHE JARDEN AND SAHARON SHELAH

 n,F, U,(K) is, by Corollary 2.3, not empty. If (a, b) lies in this intersection and
 x = a + bt, then f(x, Y) is separable irreducible over every E,, hence also over F.

 D

 LEMMA 2.5. Let N be a Galois extension of E with rank(N/E) < I K . Then every
 01...0?e E q(N/E) can be extended to elements Tl,...,Te E G(E), respectively, such
 that E(T) is a PAC field.

 PROOF. We well-order the absolutely irreducible polynomials of K [ X, Y] which

 are separable in Y in a transfinite sequence {ff a <in}, where m = K , such that
 each of the polynomials appears K o times in the sequence. For every a < m we

 define a finite separable extension E< of E in which fp, has a zero and such that the

 set of fields (N) U (E. I a < mi) is linearly disjoint over E.
 Indeed let /3 < m and assume, by transfinite induction, that E. has been defined

 for every a < /. Let F be the compositum of N and all the fields E, with a < /.

 Then F is a separable extension of E with rank(F/E) < m. By Lemma 2.4 there

 exists an x E E such that f(x, y) is separable irreducible in F[ Y]. If y E E satisfies

 f(x, y) = 0, then we may define E, = E(y) and E,3 is linearly disjoint from F over
 E.

 The compositum M of all the fields E. is a separable algebraic extension of E
 which is linearly disjoint from N and which is PAC. The automorphisms a,,1...,
 may be extended to automorphisms Tr,...,Te E G(M). Their fixed field K(T) is an

 algebraic extension of M and hence is a PAC field itself. O

 PROOF OF PROPOSITION 2.1. We follow the pattern of Lemma 1.2 and note first

 that every open-closed set of G(F)e is determined by a finite Galois extension of E.

 It follows that if B is a set belonging to the a-algebra @0 of G(E)' generated by the

 open-closed sets, then there exists a Galois extension N of E with rank(N/E) < No
 such that r-'rB = B, where r: G(E)' - q(N/E)' is the restriction map.

 By Lemma 2.5, rSe = /6(N/E)e. Hence, by Lemma 2.1, G(E)' - Se(E) contains
 no sets of a positive measure.

 3. Rational function fields of many variables. There is one case where we have

 enough information about the set G(E)e - Se(), which allows us to reach a

 decisive conclusion about the nonmeasurability of the set Se(E). This is the case

 where K itself is a rational function field of uncountably many variables over a field

 Ko.

 LEMMA 3.1. Let T be a nonempty set of algebraically independent elements over a

 field L and let M = L(T). Then every e elements al,. ... ,Ge of G( L) can be extended to

 e elements PI. - Pe of G(M) such that M(p) is not a PAC field.

 PROOF. We single out an element t E T and denote L' = L(T - (t)). Then

 o,,...,ae can be extended to elements a,.a of G(L'). We may therefore assume
 without loss that T consists of one element t.

 Consider first the case where one of the a, 's is not the identity automorphism and

 note that L is algebraically closed in the field F = L((t)) of formal power series in t.

 Therefore, a1. e may be extended to elements oii.jPe of G(F). The restrictions
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 *Pe of k1,- ,Pe to M are elements of G(M) that extend al,.. a,o and M(p) is
 not a PAC field. Indeed, Mfp) = M n F(p) and F(p) is a Henselian field with

 respect to a real-valued valuation defined by the specialization t -O 0. Therefore,
 M(p) itself is Henselian (cf. Ax [2, Proposition 12]) and it is not separably closed.

 Theorem 2 of Frey [31 implies that M( p) is not a PAC field.
 If al = = ae = 1, then noting that the separable closure Ms of M is not

 contained in L ((t)), we may choose Pi- --e in G(Ls((t))) that do not fix Ms. Then
 we proceed as before. O

 We are now in a position to prove our main result.

 THEOREM 3.2. Let T be an uncountable set of algebraically independent elements over

 a field Ko and let E = KO(T). Then for every positive integer e, both Se(E) and
 G( E )e - Se( E) contain no sets of positive measure. In particular Se( E) is nonmea-

 surable.

 PROOF. By Proposition 2.1 we have only to prove that Se(E) contains no sets of
 positive measure. Indeed, if B C G(E)e is open-closed, then there exists a finite

 subset To of T and there exists a finite Galois extension Fo of KO(TO) such that B is
 the listing to G(E)e of a certain subset of q(FO/KO(To))e. It follows that if B E Ai3,
 then there exists a countable subset T, of T such that with L = KO(T1) and r:
 G(E) e- G(L)e the restriction map, we have B = r'IrB.

 Note now that E = L(T - T,) and that T - T, is a nonempty set of algebraically
 independent elements over L. Hence, by Lemma 3.1, r(G(E )e - Se(E)) = G(L )e. It
 follows by Lemma 1.2, that Se(E) contains no sets of positive measure. O

 COROLLARY 3.3. If F is a finite extension of E, then Se(F) is a nonmeasurable set.

 PROOF. If Se( F) were measurable, then either Se( F) or its complement would have

 a positive measure in G( E )e a contradiction. O

 Note that there exist Hilbertian fields Eo which are PAC (see [8, Theorem 3.3]).
 Every nonprincipal ultrapower E of Eo is an uncountable Hilbertian PAC field. As
 already noted before every algebraic extension of E is again a PAC field. Hence,

 Se(E) = G(E )e for every positive integer e. Thus Theorem 3.2 cannot be extended

 to arbitrarily uncountable Hilbertian fields.

 The most interesting case which remains open is that of E = C(t).

 PROBLEM. Are the sets Se((t)) measurable?

 Note that in case of a positive answer, we have Mu(Se(C(t))) = 1, by Proposition

 2.1.
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