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Abstract 

Brendle, J., H. Judah and S. Shelah, Combinatorial properties of Hechler forcing, Annals of 
Pure and Applied Logic 59 (1992) 185-199. 

Using a notion of rank for Hechler forcing we show: (1) assuming c$’ = w:, there is no real in 
V[d] which is eventually different from the reals in L[d], where d is Hechler over V; (2) adding 
one Hechler real makes the invariants on the left-hand side of Cichoii’s diagram equal w, and 
those on the right-hand side equal 2” and produces a maximal almost disjoint family of subsets 
of m of size w,; (3) there is no perfect set of random reals over V in V[r][d], where r is random 
over V and d Hechler over V[r], thus answering a question of the first and second authors. 

Introduction 

In this work we use a notion of rank first introduced by Baumgartner and 
Dordal in [4, Section 21 and later developed independently by the third author in 
[8, Section 41 to show that adding a Hechler real has strong combinatorial 
consequences. Recall that the Hechler partial order ID is defined as follows: 

(s, f) e D e s E WC0 A f 15 w o h s c f h f strictly increasing, 

(s, f) s (t, g) e s 2 t A vn E fN (f(n) 2 g(n)). 

We note here that our definition differs from the usual one in that it generically 
adds a strictly increasing function from o to CO. This is, however, a minor point 
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186 .I. Brendle et al. 

making the definition of the rank in Section 1 easier. We indicate at the end of 
Section 1 how it can be changed to get the corresponding results in Sections 2 and 
4 for classical Hechler forcing. 

The theorems of Section 2 are all consequences of one technical result which is 
expounded in 2.1. We shall sketch how some changes in the latter’s argument 
prove that adding one Hechler real produces a maximal almost disjoint family of 
subsets of o of size wi (Theorem 2.2). Recall that A, B G o are said to be almost 
disjoint (ad. for short) iff IA fl BI < o; ti s [w] @ is an a.d. family iff the members 
of d are pairwise a.d .; and ti is a m.a.d. family (maximal almost disjoint family) 
iff it is a.d. and maximal with this property.-We shall then show that assuming 
gV= WL 

1 17 there is no real in V[d] which is eventually different from the reals in 
L[d], where d is Hechler over V (Theorem 2.4). Here, we say that given models 
M G N of ZFC, a real f E w” fl N is eventually different from the reals in M iff 
Vg E ow II M V”n (g(n) Zf (n)), w h ere V”n abbreviates for all but finitely many 
It. (Similarly, 3-n will stand for there are infinitely many n.)---Next we will prove 
that adding one Hechler real makes the invariants on the left-hand side of 
Cichon’s diagram equal o1 and those on the right-hand side equal 2” (Theorem 
2.5). These invariants (which describe combinatorial properties of measure and 
category on the real line, and of the eventually dominating order on ww) will be 
defined, and the shape of Cichon’s diagram explained, in the discussion preceding 
the result in Section 2. Theorem 2.5 should be seen as a continuation of research 
started by Cichon and Pawlikowski in [6] and [14]. They investigated the effect of 
adding a Cohen or a random real on the invariants in Cichon’s diagram.-We 
close Section 2 with an application concerning absoluteness in the projective 
hierarchy (Theorem 2.6); namely we show that 2:-D-absoluteness (which means 
that V and V[d], where d is Hechler over V, satisfy the same E:-sentences with 
parameters in V) implies that WY> wf[‘] for any real r; in particular WY is 
inaccessible in L. So, for projective statements, Hechler forcing is much stronger 
than Cohen or random forcing for .YA-Cohen-absoluteness (EA-random- 
absoluteness) is true in any model gotten by adding w, Cohen (random) reals 
[lo, Section 21. 

In Section 3 we leave Hechler forcing for a while to deal with perfect sets of 
random reals instead, and to continue a discussion initiated in [2] and [5]. Recall 
that given two models M c N of ZFC, we say that g E w” rl N is a dominating real 
over M iff Vf E ow fl M V”n (g(n) > f (n)); and r E 2” fl N is random over M iff r 
avoids all Bore1 null sets coded in M iff r is the real determined by some filter 
which is B-generic over M (where lEI is the algebra of Bore1 sets of 2” modulo the 
null sets (random algebra)-see [9, Section 421 for details).-A tree T 5 2’” is 
perfect iff kft~TZls~t(s-(O)~T A s-( 1) E T). For a perfect tree T we let 
[T] := {f E 2”; Vn (f r n E T)} denote the set of its branches. Then [T] is a 
perfect set (in the topology of 2”). Conversely, given a perfect set S G 2” there is 
perfect tree T G 2’” such that [T] = S. This allows us to confuse perfect sets and 
perfect trees in the sequel; in particular, we shall use the symbol T for both the 
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Combinatorial properties of Hechler forcing 187 

tree and the set of its branches.-We will show in Theorem 3.1 that given models 
M E N of ZFC such that there is a perfect set of random reals in N over M, either 
there is a dominating real in N over A4 or ~(2” n M) = 0 in N. This result is sharp 
and has some consequences concerning the relationship between cardinals related 
to measure and to the eventually dominating order on ww (cf. [5, 1.91 and the 
discussion preceding Theorem 3.2 for details). 

The argument for Theorem 3.1 together with the techniques of Section 1 yield 
the main result of Section 4; namely, there is no perfect set of random reals over 
M in M[r][d], where r is random over M, and d Hechler over M[r] (Corollary 
4.2). This answers Questions 2 and 2’ in [5]. 

Notation. Our notation is fairly standard. We refer the reader to [9] and [12] for 
set theory in general and forcing in particular. 

Given a finite sequence s (i.e., either s E 2’” or s E o<O), we let lb(s) := 
dam(s) denote the length of s; for 1 E lb(s), s 11 is the restriction of s to 1. - is 
used for concatenation of sequences; and () is the empty sequence. Given a 
perfect tree T E 2<” and SET, we let T,:={teT;t~sors~t}.-Given a 
partial order P E V, we shall denote P-names by symbols like t, f, f, . . . and 
their interpretation in V[G] (where G is P-generic over V) by 

r[G],f[Gl, T[Gl, . . . 

1. Prelude--a notion of rank for Hechler forcing 

1.1. Main Definition (Shelah, see [B, Section 4]-cf. also [4, Section 21). 
Given t E do strictly increasing and A c wco, we define by induction when the 
rank rk(t, A) is a. 

(a) rk(t, A) = 0 iff t E A. 

(b) rk(t, A) = cy iff for no /3 < cy we have rk(t, a) = j3, but there are m E w 

and (fk; k E w) such that Vk E o: t c fk, tk E mm, t,(lh(t)) > k, and rk(t,, A) < a. 

Clearly, the rank is either <or or undefined (in which case we say rk = ~4). We 
repeat the proof of the following result for it is the main tool for Sections 2 and 
4. 

1.2. Main Lemma (Baumgartner-Dordal [4, Section 21 and Shelah [B, Section 
41). Let I E D be dense. Set A : = {t; 3f E o w such that (t, f) E I}. Then 

rk(t*, A) < w1 for any t* E o.P”. 

Proof. Suppose rk(t*, A) = 00 for some t* E wco. Let S := {s E do strictly 
increasing; t* ss and for all s* with t*cs* and with ViEdom(s*)\ 
dom(t*) (s*(i) as(i)), we have rk(s*, A) = m}. S c w’~ is a tree with stem t*. 
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188 .I. Brendle et al. 

Suppose S has an infinite branch (s;; i E 0) (i.e., sg = t*, Ih(si) = lh(t*) + i, and 
si ES~+~). Let g be the function defined by this branch: g = UieQSi. Then 
(t*, g) E D. Choose (t, f) s (t*, g) such that (t, f) E I. Then I E A, i.e., rk(t, A) = 

0; but also t E S, i.e., rk(t, A) = m, a contradiction. 
So suppose S has no infinite branches, and let s* be a maximal point in S. 

Then we have a sequence (fk; k E W) such that lh(t,) = lh(s*) + 1, t,(lh(s*)) 3 k, 

t* E tk, Vi E dom(s*)\dom(t*) (t,Ji) *s*(i)), and rk(t,, A) < 00. Now we can find 
a subset B s o and lh(t*) s m 6 lh(s*) and t E d” such that Vk E B (tk r m = t) 

and k <I, k,l E B, implies t,(lh(t)) < t,(lh(t)). Hence the sequence (tk; k E B) 
witnesses rk(t, A) < 03. On the other hand t ES; i.e., rk(t, A) = ~0, again a 
contradiction. 0 

Usually Hechler forcing D’ is defined as follows: 

We sketch how to introduce a rank on ID’ having the same consequences as the 
one on D defined above. Let Q = {t; dam(t) c w A ItI < w A rng(t) c o}. Given 
tE!JandA~w’~ we define by induction when the rank rk(t, A) is a. 

(a) rk(t, A) = 0 iff f EA. 

(b) rk(t, A) = (Y iff for no /3 < (Y we have rk(t, A) = /3, but there are M E [w]<~ 

and (&;keco) such that dom(t)cM and Vkew: fsCk, tkecoM, rk(&,A)<cu 
and Vi E M \dom(t) Vk, # k2 (fk,(i) # t,Ji)). 

We leave it to the reader to verify that the result corresponding to 1.2 is true 
for this rank on ID’, and that the theorems of Sections 2 and 4 can be proved for 
ID’ in the same way as they are proved for ED. 

2. Application I-the effect of adding one Hechler real on the invariants in 

Cicholi’s diagram 

Before being able to state the main result of this section (the consequences of 
which will be (1) and (2) in the abstract) we have to set up some notation. 

Let SB c [o]O be an a.d. family. We will produce a set of D-names {tA;A E zd} 

for functions in o” as follows. For each A E d fix fA :A + w onto with 
Vn 3”m E A (fA(m) = n). Now, if r E o” is a real having the property that 
{n E w; r(n) EA} is infinite, let g,: w+ w be an enumeration of this set (i.e., 
g,(O) : = the least n such that r(n) E A; g,(l) : = the least n > g,(O) such that 
r(n) E A; etc.). In this case we let zA(r): co+ o be defined as follows: 

%(r)(n) :=fA(&+)))* 

As A is infinite, we have ItD”lrng(& II AJ = w”, where d is the name for the 
Hechler real; in particular tA(d) will be defined in the generic extension. Thus we 
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Combinatorial properties of Hechler forcing 189 

can think of ( rA(d); A E a) as a sequence of names in Hechler forcing for 

objects in 0”. 

2.1. Main Theorem. Whenever & c [w]O is an a.d. family in the ground model 
V, d is Hechler over V, and f E coo is any real in V[d], then {A E a; V”n (f(n) # 

z,(d)(n))} is at most countable (in V[d]). 

Remark. Slight changes in the proof show that, in fact, {r,; A E a} is a Luzin set 

in V[d] for uncountable SQ. (Recall that an uncountable set of reals is called 

Luzin iff for all meager sets M, M n S is at most countable.) 

Proof. The proof uses the Main Lemma 1.2 as principal tool. Let f be a D-name 

for a real (for an element of w”). Let Z, be the set of conditions deciding 

f 1 (n + 1) (n E 0). All I,, are dense. Let D,, := {t; Elf E ww such that (t, f) E I,} 
(cf. the Main Lemma). We want to define when a set A E & is n-bad. 

For each t E mew \D, strictly increasing we can find (according to the Main 

Lemma for 0,) an m E o and (tk; k E w) such that for all k E w: tk is strictly 

increasing, t G tk, tk E corn, t,(lh(t)) 2 k, and rk(t,, Dn) < rk(t, 0,). Let m, := 
m - lb(t). We define by induction on i < m, when A E i$ is t-i-n-bad. Along the 

way we also construct sets Bi (i Cm,). 
i = 0. Let B,, = w. If there is A E ~4 such that A fl {&(lh(t)); k E B,} is infinite, 

choose such an A0 and let A0 be t-o-n-bad. Now let B, = {k E o; t,(lh(t)) E Ao}. 
If there is no such A, let B1 = B. = o. 

i-i + 1 (i + 1 cm,). We assume that Bi+, is defined and infinite. If there is 

A E s& such that A n {t,(lh(t) + i + 1); k E Bj+,} is infinite, choose such an Ai+l 
and let A,+, be t-(i + 1)-n-bad. Now let Bi+* = {k E B,+,; t,(lh(t) + i + 1) E 

Ai+,}. If there is no such A, let Bi+z= B,+,. 
In the end, we set B, := B,,. We say that A E & is n-bad iff it is t-i-n-bad for 

some strictly increasing t E oiw\ D,, and i < m,. Finally A E ti is bad iff it is n-bad 

forsomenEm. LetAj={AE&;Abad}.SincefornEw, t~~<“andi<m,at 

most one A E .PZ is t-i-n-bad, Ai is countable. 

Claim. Zf A E a\.&~, then IF, 3”n v(n) = t,(d)(n)). 

Remark. Clearly this Claim finishes the proof of the Main Theorem. 

Proof. Suppose not, and choose (s, g) E D, k E o, and A E d \ s4j such that 

(s, g) ltDVn 2 k (f(n) f z,(d)(n)). 

Let 12 k be such that Irng(s) n A 1 s 1; i.e., s does not decide the value of rA(d)(l). 

By increasing s, if necessary, we can assume that (rng(s) n Al = I. Let Y := 

{t E ocw; t strictly increasing, s it, Vi E dom(t)\dom(s) (t(i) 2 g(i)), and 

(rng(t) fl Al = I}. Choose t E Y such that rk(t, DI) is minimal. 

Subclaim. rk(t, 4) = 0. 
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190 _I. Brendle et al. 

Proof. Suppose not. Then choose by the Main Lemma 1.2 m E o and (tk; k E w) 
(i.e., all tk are strictly increasing, t E tk, tk E corn, t,(lh(t)) > k, and rk(t,, D1) < 
rk(t, D,)). In fact, we require that m and ( tk; k E o) are the same as the ones 
chosen for 1, t in the definition of l-badness. Let m, = m - lb(t) as above, and 
look at B,. By construction (as A is not t-i-l-bad for any i cm,) and 
almost-disjointness, A fl {t,(lh(t) + i); k E B,,,} is finite for all i < m,. So there is 
k E B, such that rng(t,J n A = rng(t) n A, i.e., Irng(&) fl A( = I, and tk(i) S&i) 
for all i E dom(tk)\dom(s). Hence tk E Y and rk(tk, DJ < rk(t, D,), contradicting 
the minimality of rk(t, 4). This proves the Subclaim. 0 

Continuation of the Proof of the Claim. As rk(t, Q) = 0 we have an h E o” such 
that (t, h) E Z,. Then (t, max(h, g)) s (s, g), and this condition decides the value 
of f at 1 without deciding the value of rA(d) at 1. Suppose that (t, max(h, g)) 
Ikb “f(l) = j”. Now choose i 2 max(h, g)(lh(t)) such that i EA and fA(i) = j (this 
exists by the choice of the function fA). Then 

(t-(i), max(h, g>) h_?(l) =i =fA(i) =f,(&ga(l))) = tA(d)(l). 
This final contradiction ends the proof of the Claim and of the Main 
Theorem. 0 

We will sketch how a modification of this argument gives the following result. 

2.2. Theorem. After adding one Hechler real d to V, there is a maximal almost 
disjoint family of subsets of w of size o, in V[d]. 

Sketch of Proof. We start with an observation which will relate Luzin sets and 
maximal almost disjoint families. 

Observation. Let (N,; o G a< o,), (ha; w s cy< wI) and (rw; w s a< wI) be 
sequences such that N, < H(K) is countable and N, < NP for a < p, h, E a0 n N, 
is one-to-one and onto, r, E w” is Cohen over N, and (r,; a < p) E Na. Define 
recursively sets C, for a < w,. (C,,; n E w ) is a partition of w into countable pieces 
lying in N,. For a 2 w, C, := {r,(n); n E w A Vm <n (r,(n) $ Ch,(mI)}. Then 
{C,; a E wl} is an a.d. family. 

Proof. The construction gives almost-disjointness. So it suffices to show that each 
C, is infinite. But this follows from the fact that each r, is Cohen over N, and 
that the union of finitely many CB’s (for p < (u) is coinfinite. q 

Now let ti = (Aa; (Y < ml) E V be an a.d. family. As (r&d); (Y < 0,) is Luzin 
in V[d] (see the remark following the statement of Theorem 2.1) we can find a 
strictly increasing function #J : to1 \ o - w, and sequences (N,; w =G (Y < ml), 

(hai o~a<w,) such that for r,:=t, ,,*)(d) the requirements of the above 
observation are satisfied. By ccc-ness of D, we may assume that # E V; and 
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Combinatorial properties of Hechler forcing 191 

hence, that @ = id, thinning & out if necessary. We want to show that the 
resulting family (C,; a < wl) is a m.a.d. family. 

For suppose not. Then there is a D-name c such that 

ItD Va, < 01 (I& r-l Cl < 0). 

Let f be the D-name for the strictly increasing enumeration of c. As in the 
proof of Theorem 2.1 we let Z,, be the set of conditions deciding f r (n + l), 

D,:={~;~~EoO((~,~)EZ,)), and we define when a set A E .d is n-bad (so that 
at most countably many sets will be n-bad). 

Furthermore, for each (Y < o1 we let a, be the D-name for a natural number 
such that 

We let I& be the set of conditions deciding a,, Db;:= {t; 3f E w” ((t,f) EZ~)}; 
analogously to the proof of Theorem 2.1 we define when a set A E d is a-bad (so 
that at most countably many sets will be o-bad). 

Next choose a < w1 such that 
(1) if A, is n-bad for some n, then 6 < cu; 
(2) if j3 < a and A, is P-bad, then y < (Y. 

Proof. Suppose not, and choose (s, g) E D and k E w such that 

Let la k be such that lrng(s) n A,) =S 1; without loss of generality Irng(s) rl A,1 = 
1. Let Y := {t E 03~; t strictly increasing, s E t, Vi E dom(t)\dom(s) (t(i) 3 g(i)), 

and Irng(t) n A,/ = I}. By the argument of the Subclaim in the proof of 2.1 there 
is a t E Y such that Vm < I (rk(t, DAec,,) = 0). Hence there is an h E ww such that 

(4 h) e n,,, cecrnj. Without loss of generality h 3g. Then (t, h) G (s, g), and this 
condition decides the values of uh,(,,,) (m <I); suppose that (t, h) ItD “Vm < 
1 (ah*(,) = s,)“. Choose 1’ larger than the maximum of the s, (m < 1) and k. 

Again using the argument of the Subclaim (proof of 2.1) find t’ 2 t such that 
Vi E dom(t’)\dom(t) (t’(i) 2 h(i)), Irng(t’) rl A,1 = 1, and rk(t’, D,,) = 0. Thus 
there exists an h’ E coo such that 

(t’, h’) IF0 “‘f(l’) = j” for some j. 

Without loss of generality h’ 2 h. Then (t’, h’) s (t, h). As Ito “f is strictly 
increasing”, j 2 1’ 2 k; by construction we have in particular that (t’, h’) 
Il-lIp “Vm < 1 (j 4 C?hmc,,)“. Choose i 2 h’(lh(t’)) such that i E A, and &(i) = j. 

Then 

(t’-(i), h’) ItDf(l’) = j =fA,(i) = z&d)(l) = fa(I) E cm. 

This final contradiction proves the Claim, and Theorem 2.2 as well. q 
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In our proof we constructed a m.a.d. family of size o1 from a Luzin set in 
V[d]. We do not know whether this can be done in ZFC. 

2.3. Question (Fleissner, see [13, 4.7.1). Does the existence of a Luzin set imply 
the existence of a m.a.d. family of size w,? 

Remark. It is consistent that there is a m.a.d. family of size wI, but no Luzin 
set. This is known to be true in the model obtained by adding at least w2 random 
reals to a model ZFC + CH. 

We next turn to consequences of Theorem 2.1. 

2.4. Theorem. Let V s W be universes of set theory, WY= WY. Then no real in 
W[d] is eventually diflerent from the reals in V[d], where d is Hechler over W. 

Remark. Remember that Hechler forcing has an absolute definition. So d will be 
Hechler over V as well. 

Proof. Let i?e G [w]” be an almost disjoint family in V of size wl. Assume that 
the functions fA for A E ti (defined at the beginning of this section) are also in V. 
Then each real in W[d] can only be eventually different from countably many of 
the reals in { rA(d); A E &!} E V[d], by the Main Theorem. q 

To be able to explain our next corollary to the Main Theorem, we need to 
introduce a few cardinals. Given a a-ideal 4 E P(2”), we let 

add($) := the least K such that 39 E [91K (U 5 $9); 
cov(9) := the least K such that 39 E [.91K (IJ 4 = 2”); 
unif (9) := the least K such that [2”]“\4 #0; 
cof (9) : = the least K such that 39 E [91K tlA E 4 3B E .9 (A c B). 

We also define 

b := the least K such that 396 [o”]” kIf E ow 3g E 9 3”n (g(n) > f (n)); 

d := the least K such that 39 E [mUIK k/f E ow 3g E 9V”n (g(n) > f (n)). 

If & is the ideal of meager sets, and X is the ideal of null sets, then we can 
arrange these cardinals in the following Diagram 1 (called Cicholi’s diagram). 
(Here, the invariants grow larger, as one moves up and to the right in Diagram 
1.) The dotted line says that add(&) = min{b, cov(Jdc)} and cof (A) = 
max{d, unif (A)}. For the results which determine the shape of this diagram, we 
refer the reader to [7]. A survey on independence proofs showing that no other 
relations can be proved between these cardinals can be found in [3]. We shall 
need the following characterizations of the cardinals unif (Jt) and cov(&), which 
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. . -.. . _ . . _ . - . . _ . . . . . . _ . . . . . . ._ . . . 
c4w ---+zif(M) ---cof(M) A----cof(N) - 2” 

..__ ,.....* ., 
,I . . _.._ 

. . . _...__ I 
b 

. . . . ._ 

I 

. . . . . . . d i 
. . .._ . . 

‘.. . .._ -..._. .: 

w1 ---.-add(N) 2 
I 

. 

. . . . . . 
: add(M) - cov(M)‘& 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . un;f(N) 

Diagram 1. 

are due to Bartoszyfiski [l]: 

unif(&) = the least K such that 39 E [o”]” Vg E ow 3f E 9 3”n (f(n) = g(n)); 

cov(~) = the least K such that 39 E [o~]~ Vg E ww Zlf E 9V”n (f(n) #g(n)). 

We are ready to give our next result, which says essentially that after adding one 
Hechler real, the invariants on the left-hand side of Diagram 1 all equal ol, 
whereas those on the right-hand side are all equal to 2”‘. 

2.5. Theorem. After adding one Hechler real d to V, unif (4) = o, and 

cov(.&) = 2” in V[d]. 

Proof. (i) Let a E [o]~ be an a.d. family of size ol in V. Then by the main 
theorem no real is eventually different from { tA(d); A E &}, giving unif (.4) = o, 

(by BartoszyAski’s characterization). 
(ii) Let &E [o]” be an a.d. family of size 2” in V (such a family exists, 

see e.g. [12, Chapter II, Theorem 1.31). Suppose K = cov(A) <2”, and let 
{go; (Y < K} be a family of functions such that Vg E V[d] n oW 3cx < K V”n (g(n) # 

g,(n)), using Bartoszydski’s characterization. As I.&l = 2” > K, there is &’ s &, 
I&‘1 2 ol, and LY < K such that VA E &’ V”n (z,(d)(n) #g=(n)). This contradicts 
the Main Theorem. 0 

Remark. Instead of Bartoszyriski’s characterization we could have used the fact 
that {tA(d); A E a} is a Luzin set (see the remark after 2.1). We leave it to the 
reader to verify that the existence of a Luzin set implies unif (A) = 0,; and that 
the existence of a Luzin set of size 2” implies cov(Jbl) = 2”. 

We close with an application concerning absoluteness in the projective 
hierarchy. We first recall a notion due to the second author [lo, Section 21. Given 
a universe of set theory V and a forcing notion P E V we say that V is 
ZA-P-absolute iff for every ZA-sentence $ with parameters in V we have V k @ iff 
V” k #. So this is equivalent to saying that [WV<,; RvP. Note that Schoenfield’s 
absoluteness Lemma [9, Theorem 981 says that V is always Z&P-absolute. 
Furthermore, E&D-Absoluteness is equivalent to all Z&sets have the property of 

Baire [lo, Section 21. This is a consequence of Solovay’s classical characterization 
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of the latter statement which says that it is equivalent to: for all reals a, the set of 
reals Cohen over L[a] is comeager. 

2.6. Theorem. E.&D-absoluteness implies that o1 > ufrrl for any real r. 

Proof. Suppose there is an a E IF3 such that &tnl = o$“. By ,X:-D-absoluteness we 
have that all &sets have the property of Baire (see above); i.e., Vb E 
R (Co(L[b]) is corneager) (Co(M) denotes the set of reals Cohen over some 
model It4 of ZFC). Note that x E Co(L[b]) is equivalent to 

Vc (c $ L[b] II BC v E is not meager v x $ Q, 

where BC is the set of Bore1 codes which is II: [9, Lemma 42.11, and for c E BC, 
e is the set coded by c. As L[b] is 2: [9, Lemma 41.11, Co(L[b]) is a @-set. 
Hence Vb E R (Co(L[b]) is corneager) which is equivalent to 

Vb 3 (c E BC A c^ is meager A Vx (x E 2 v x E Co(L[b]))) 

is a II&sentence. So it is true in V” by E&D-absoluteness; in particular 
Co(L[a][d]) is comeager in V[d] which implies that there is a dominating real in 
V[d] over L[a][d], contradicting Theorem 2.4. q 

2.7. Question. Are there results similar to Theorems 2.4, 2.5, and 2.6, for 
Amoeba forcing or Amoeba-meager forcing? 

We conjecture that the answer is yes because both the Amoeba algebra and the 
Amoeba-meager algebra contain D as a complete subalgebra (see [15, Section 61; 
a definition of the algebras can also be found there). But there doesn’t seem to be 
a way to introduce a rank on these algebras (as in Section 1). 

3. Interlude-perfect sets of random reals 

3.1. Theorem. Let V c W be models of ZFC. Suppose there is a perfect set of 
random reals in W over V. Then either 

(1) there is a dominating real in W over V; or 
(2) ~(2” fl V) = 0 in W. 

Proof. Suppose not, and let T E W be a perfect set of random reals. Define 
f E w” rl W as follows: 

f(i)=min{k;VaE T n2i((T,f12k( >4’)}. 

Let g E ww fl V be such that 3”i (g(i) sf (i)). Let II be the family of all 
U E rIIiso P(2g”‘) such that u(i) ,g2(i) and lu(i)l/2g’i’ = 2-‘. U can be thought of as 
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a measure space (namely, for u E 2g(i) with [~[/2g(~) = 2-’ let 

and let ~1 be the product measure of the ,uJ. 

Let N < (Hi, . . . ) be countable with g, T E N. As ~(2” fl V) # 0 in W, we 
cannot have that 2” II V G U {B; p(B) = 0, B E N, B Borel}; i.e., there are reals 

in V which are random over N. Let u * E U be such a real. Using u * we can define 

a measure zero set B in V as follows: 

B = {h E 2”; 3”i (h r g(i) E u*(i))}. 

Let (for k E w) Bk = {h E 2”; Vi 2 k (h 1 g(i) 4 u*(i))}. Clearly 2”\B = lJkeo B,; 
and the Bk form an increasing chain of perfect sets of positive measure. 

As all reals in T are random over V we must have T G Ukew Bk. This gives us 

o E T and k E o such that T, E Bk (otherwise choose o. E T such that a0 $ B,,, 
o1 E T,,, such that O, 4 B,, etc. This way we construct a branch in T which does 

not lie in lJkcw Bk, a contradiction). 

By construction, we know that for infinitely many i, we have 1 T, fl 2fi(‘)I > 4’ and 

u*(i) fl (T, n Zg”‘) = 0. For each such i and u c 2B(i) with lul/2”(‘) = 2~‘, the 

probability that u fl (T, fl 29(‘)) = 0 (in the sense of the measure yi defined above) 

is 

So the probability that this happens infinitely often is zero. But u* is random 

over N, a contradiction. 0 

Corollary (Cichon [2, Section 21). Zf r is random over V, then there is no perfect 
set of random reals in V[r] over V. 0 

Remark. Theorem 3.1 is best possible in the following sense. 

(1) It is consistent that there are V G W and a perfect tree T of random reals in 

W over V and ~*(2~ n V) > 0 in W (p* denotes outer measure). To see this add a 

Laver real 1 to V and then a random real r to V[l]; set W = V[l][r]. By [2, 

Theorem 2.71 there is a perfect tree of random reals in W over V; and by [ll, 

Section l] @*(2” fl V) > 0 in V[l] and hence in W. 
(2) It is consistent that there are V c W and a perfect tree T of random reals in 

W over V and no dominating real in W over V (see [5, Theorem 11). 

Before being able to state some consequences of this result, we need to 

introduce two further cardinals. 

wcov(.M) := the least K such that 39 E [Xl” 

(2”\lJ 9 does not contain a perfect set); 

wunif(.K) := the least K such that there is a family 9 E [[2<“]“‘]” 

of perfect sets with VN E X 3T E 9 (N n T = 0). 
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Diagram 2. 

We can arrange these cardinals and some of those of the preceding section in the 
following Diagram 2. (Here the invariants get larger as one moves up in Diagram 
2.) The dotted line says that wcov(.N)~min{cov(.N), b} (and dually, 
wunif(N) < max{unif(N), d}) (see [2, Section 21 or [5, 1.91). Using the above 
result we get 

3.2. Theorem. (i) wcov(N) 6 max{b, unif(N)}. 
(ii) wunif(.N) 3 min{d, cov(X)}.--ln fact, given V G W models of ZFC such 

that in W there is a real which is random over a real which is unbounded over V, 
there exists a null set N E W such that for all perfect sets T E V, T II N # 0. 

Proof. (i) follows immediately from Theorem 3.1; and the first sentence of (ii) 
follows from the last sentence of (ii). The latter is proved by an argument which 
closely follows the lines of the proof of Theorem 3.1, and is therefore left to the 
reader. 0 

The most interesting question concerning the relationship of the cardinals in 
the above diagram is the following (Question 3’ of [5]). 

3.3. Question. Is it consistent that wcov(.N) > d? Dually, is it consistent that 
wunif (J) > b? 

4. Application II-adding a Hechler real over a random real does not produce 

a perfect set of random reals 

4.1. Theorem. Let V G W be models of ZFC such that 
(1) there is no dominating real in W over V; 
(2) 2”’ fl V is non-measurable in W. 

Then there is no perfect set of random reals in W[d], where d is Hechler over W. 
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Remark. This result clearly contains Theorem 3.1 as a special case; still we 
decided to bring the latter as a separate result because it has consequences for the 
cardinals involved (see above, Theorem 3.2). Also, the proof of Theorem 4.1 can 
be seen as a combination of the argument for 3.1 and the techniques developed in 
Section 1. 

4.2. Corollary. There 13 no perfect set of random reals in V[r][d], where r is 
random over V, and d is Hechler over W = V[r]. Cl 

Proof of Theorem 4.1. We work in W. Let F be a D-name for a perfect tree. We 
want to show that T = T[G] (G D-generic over W) contains reals which are not 
random over V. We say that A E uiw is large iff V(s, f) E D 3s’ E A with 

(s’,f)s(s,f) (BY (s’jf) we mean here and in the sequel the condition (s’, f ‘) 
where f’ 1 dom(s’) = s’ and f’(n) = f (n) for n 5 dom(s’)). 

Claim. The following set A is large: s E A @ for some k < w and (t[, f :, f:; 
IEO) we have sst,, trek, t,(lh(s))>I, f:#f:E2°, f: rl=f: rl, and 
VfE~0(withtlcf)VmEuViE{1,2}((tl,f)ULfjrm$~). 

Proof. Let sp i: be the D-name for the subset of w which describes the levels at 
which there is a splitting node in F. By thinning out T (in the generic extension) if 

necessary, we may assume that 

11~ the jth member of sp p (denoted by rj) is >d(j), 

where d is (as always) the D-name for the Hechler real. Let (s*, f *) E D, 
Ih(s*) =j*. So (s*, f*) forces no bound on rj*+ven no (s*, f’) does (*). We 
assume there is no s E A with (s, f *) s (s*, f *) and reach a contradiction. 

Let I be the dense set of conditions forcing a value to Zj*; and let 
B={sE0<@; 3f E o o ((s, f) E I)}. By the Main Lemma 1.2 we have rk(s *, B) < 

q. We prove by induction on the ordinal p < o, 

(**) ifSEW co is such that (s, f *) c (s*, f *) and rk(s, B) = /3, then 
Zim<oVf ~m~(with~~f)((~,f)F~~*fm). 

If we succeed for s = s* then we get a contradiction to ( * ). 
/l = 0. So s E B. Thus for some f' sf *, (s, f ‘) forces a value to rj*: 

(s, f ‘) II tie = m, for some m E w, giving ( * * ). 
/3 >O. By the definition of rank there are k E o, tr E o/‘ (I E o) such that 

s c tr, t,(lh(s)) 21, and rk(t,, B) = j3, c/3. (We consider only 1 with 13 
max(rng(f * 1 k)).) By induction hypothesis there are ml E o such that Vf E ww 
(with tr s f) (tl, f) !Y tj* #ml). We consider two subcases. 

Case 1. For some m we have infinitely many I such that m, = m. Then we can 
use this m for s and get (* * ). 

Case 2. (m,; I E w) converges to ~(1. Replacing it by a subsequence, if 
necessary, we may assume that it is strictly increasing. We show that (t,; I E o) 
witnesses s E A, contradicting our initial assumption. 
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For each 1 let TI = {p E 2’“; for no f E o” does (tl, f) II-p 4 T}. Clearly 
T,G~‘“, ()Eq, and T , is closed under initial segments. Also we have that p E T 
implies either p-(O) E T or p-( 1) E T (otherwise we can find fO, fi E o” such 
that (t!, fO) It p-(O) $ F and (t!, fi) 11 p-( 1) $ F; let f = max{fO, fr}; choose p 6 

(tl, f) such that p It p E F (by assumption on p); but then there exists q 6p such 
that either q Ii- p-(O) E f or q IF p-( 1) E ‘i; a contradiction). 

Finally, z has a splitting node at level ml; i.e., for some p = pI E t, fl2”1, we 
have p-(O) E T and p-( 1) E T (if not, for each p E 2’5 If, E w” such that 
(tl, f,) II “p-(O) $ T or p-( 1) $ P’; let f=max{f,;p ~2~1). We know that 
(tl, f) UL ml # Zj*; SO there is p c (t,, f) such that p II ml = tj*; i.e., p It ml E sp f’; we 

now get a contradiction as before). 
Hence we can find f:, f: E [T,] such that f: r (ml + 1) = p,-(O) and f: r (ml + 

l)=p,-(1). Thus (&;~Eo), (f:,f:;I E w ) witness s E A. This final contradic- 
tion proves the Claim. 0 

Continuation of the Proof of Theorem 4.1. We assume that ItD T = {~~;j E o}; 

i.e., Zj[G] (j E w) will enumerate the tree T = F[G] in the generic extension. We 
also let $ be the name for the tree Ts,,Gj; i.e., 11~ Tj = {Y E Fi;; Y E rj or rj G Y}. 
For each j E w there is-according to the Claim for $ instead of F-a large set 
Aj E w(O; and for s E Aj there is a sequence ( Qi, fi*“‘j, fy*“zj; I E w ) that witnesses 
s E Aj. For every j E w, s E Aj and m E o we define S,,,,, = {ffs”vj ] k; k E co, i E 

(1, 2), m c I E w}. By construction the function J,,,, defined by A,,,,(k) = 
IS,,,,, n 2kl converges to 00. By assumption (1) we can choose g E w” fl M such 
that Vj, S, m 3”i (IS,,,,, fl 2g(i)I > 4’). 

Now let ZJ be as in the proof of Theorem 3.1; and choose u* E U as there (i.e., 
U* is random over a countable model N containing g and all Sj,,,,-using 
assumption (2)). We also define B and Bk (k E w) as in the proof of Theorem 3.1. 

We assume that ItD “If is a perfect set of reals random over V”; in particular 

IkO T c Ukeo Bk. So there are (s*,f*) E ID, j E w and k E o such that 

(S*, f*) ItD c & Bk 

(cf. the corresponding argument in the proof of Theorem 3.1). Without loss of 
generality s* l Ai (otherwise increase the condition using the Claim). Let 
m > max(rng(f* 1 kj.,*)) where kj,,* is such that for all 1 E o, e*” E o~J*. Then 
VI am, (c*,j, f*) is an extension of (s*,f*). So we must have S,,,*,, c Bk 
(because for any element of the former set we have extension of (s*, f*) forcing 
this element into i). 

The rest of the proof is again as in the proof of Theorem 3.1. For infinitely 
many i we have IS,,,.,, n 2g(i)l >4’; for each such i, the probability that 
u*(i) n (S,,,*,, n 2g(i9 = 0 is <em2’; the probability that this happens infinitely 
often is zero, contradicting the fact that U* is random over N. 0 
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