The Journal of Symbolic Logic

http://journals.cambridge.org/JSL

Additional services for *The Journal of Symbolic Logic:*

Email alerts: <u>Click here</u> Subscriptions: <u>Click here</u> Commercial reprints: <u>Click here</u> Terms of use : <u>Click here</u>

On the standard part of nonstandard models of set theory

Menachem Magidor, Saharon Shelah and Jonathan Stavi

The Journal of Symbolic Logic / Volume 48 / Issue 01 / March 1983, pp 33 - 38 DOI: 10.2307/2273317, Published online: 12 March 2014

Link to this article: http://journals.cambridge.org/abstract_S0022481200043310

How to cite this article:

Menachem Magidor, Saharon Shelah and Jonathan Stavi (1983). On the standard part of nonstandard models of set theory . The Journal of Symbolic Logic, 48, pp 33-38 doi:10.2307/2273317

Request Permissions : Click here

THE JOURNAL OF SYMBOLIC LOGIC Volume 48, Number 1. March 1983

ON THE STANDARD PART OF NONSTANDARD MODELS OF SET THEORY

MENACHEM MAGIDOR, SAHARON SHELAH AND JONATHAN STAVI

Abstract. We characterize the ordinals α of uncountable cofinality such that α is the standard part of a nonstandard model of ZFC (or equivalently *KP*).

§0. Introduction. Let $\langle M, E \rangle$ be a model of ZF. The ordinals of M have a largest initial segment isomorphic to some ordinal α , which is usually called "the standard part of M". Without loss of generality we shall assume $\alpha \subseteq M$, and that for $\beta < \alpha$, $E|R^{M}(\beta) = \varepsilon |R^{M}(\beta)$, where $R^{M}(\beta)$ is the set of all elements of M whose M rank is less than β .

Which ordinals α can be the standard part of nonstandard models of ZF? It is easily verified that a necessary condition is that α is admissible. A well-known theorem of Friedman [2] implies that for countable α 's the admissibility is also sufficient (provided there are enough countable standard models of ZF). Friedman's theorem can be generalized to other ordinals, and the proof imitated, using some decomposition of α into small sets. (See [4].) All these generalizations handle just α 's of cofinality ω .

In this paper we handle the problem for α 's which are of cofinality larger than ω , and we are able to give in this case a necessary and sufficient condition for an ordinal α to be the standard part of a nonstandard model of ZF (or equivalently *KP*). The condition involves the tree property. Let $\langle A, \in \rangle$ be a transitive set, $\alpha \in A$. An α tree in A is a tree $\langle T, \prec \rangle$, $T \subseteq \alpha$, $\langle T, \prec \rangle \in A$ having α levels, such that each level has A cardinality $< \alpha$ uniformly in the level (where uniformly in the level means that we have $g \in A$, $g: T \times \alpha \to \alpha$, such that for fixed γ , $g(x, \gamma)$ maps the γ th level of T onto some ordinal $< \alpha$ in a one-to-one way) and such that the function mapping every element of T to its level is in A. α has the tree property in A if every α tree in A has a branch of length α , which is a member of A.

We say that α is a model of ZF if $\langle L_{\alpha}, \in \rangle \models$ ZF.

THEOREM. For α such that $cf(\alpha) > \omega$, the following are equivalent.

(A) α is the standard part of a nonstandard model of ZF.

(B) α is the standard part of a nonstandard model of KP.

(C) $\exists \gamma > \alpha$ such that γ is a limit of ordinals which are models of ZF, and α has the tree property in L_{γ} .

(D) $\exists \gamma > \alpha$ such that γ is a limit of admissible ordinals and α has the tree property in L_{γ} .

Received October 22, 1980.

© 1983, Association for Symbolic Logic 0022-4812/83/4801-0003/\$01.60 MENACHEM MAGIDOR, SAHARON SHELAH AND JONATHAN STAVI

Note that if α is weakly compact in L, (D) is trivially satisfied by α . Note that it is much more "difficult" for an ordinal of cofinality $>\omega$ to be a standard part than for an ordinal of cofinality ω , since (as will become clear in §3) (D) implies that α is a model of ZF and actually of rather strong large cardinal axioms, whereas for α of cofinality ω , α can be a successor or admissible ordinal.

The implications (A) \rightarrow (B) and (C) \rightarrow (D) are trivial, so we are left with proving (B) \rightarrow (C) (which will be done in §1) and (D) \rightarrow (A) (which will be done in §2).

Our notation and terminology are standard. When we relativize a set-theoretical notation to a particular model we use superscript. Thus λ^{+M} is the successor cardinal of λ is the sense of M. When $\langle M, E \rangle$ is a nonstandard model of ZFC and $x \in M$, we shall systematically confuse x and $\{y | y E x\}$. Thus, for instance, if $f \in M$, $M \models f$ is a function from x to y, we may consider f to be a function from $\{z | z E x\}$ to $\{z | z E y\}$, etc. Similarly we shall use < for the order on M ordinals.

§1. In this section we prove that (B) of our main theorem implies (C). So let $\langle M, E \rangle$ be a nonstandard model of KP, whose standard part is α (cofinality (α) > ω). Without loss of generality we may assume $M \models V = L$, since $\langle L^M, E \rangle$ is easily verified to be a model of KP and it has the same ordinals as M. As usual we assume $L_{\alpha} \subseteq M$.

Our first observation is

LEMMA 1. There is no last M cardinal in the standard part of M.

PROOF. Assume (hoping for a contradiction) that $\lambda < \alpha$ is an *M* cardinal, whereas every γ with $\lambda < \gamma < \alpha$ is not an *M* cardinal. Since λ^{+M} (if it exists) cannot be the minimal nonstandard *M* ordinal (There is no first nonstandard ordinal!), we can find a nonstandard *M* ordinal *x* such that

 $M \models x$ has cardinality λ' .

(If λ^{+M} does not exist then every ordinal in the nonstandard part of M has M cardinality λ , and can be picked as x.) Hence let $f \in M$ satisfy

 $M \models f$ is a function from λ onto x.

We now distinguish two cases:

(I) The cofinality of $\lambda > \omega$, $\langle x, E \rangle$ is the direct limit of the structures $\langle f'' \delta, E \rangle$ for $\delta < \lambda$. Since λ is an M cardinal, the order type (in M) of $\langle f'' \delta, E \rangle$ is some ordinal less than λ . Hence it is really well founded since λ is in the standard part of M. Therefore $\langle x, E \rangle$ is a direct limit of well-founded structures such that every countable subset of the directed system has an upper bound (using $cf(\lambda) > \omega$). Therefore $\langle x, E \rangle$ is well founded, which contradicts the definition of x, as belonging to the nonstandard part of M.

(II) $\operatorname{cf}(\lambda) = \omega$. Since $\alpha \subseteq \{z | z \in x\}$, $\alpha \subseteq f''\lambda$. Now $\operatorname{cf}(\lambda) = \omega$ and $\operatorname{cf}(\alpha) > \omega$; hence for some $\delta < \lambda$, $f''\delta \cap \alpha$ is cofinal in α . $f''\delta$ has (in M) order type less than λ , hence it is really well founded. Therefore we can find in $f''\delta - \alpha$ a minimal element y. Let z be the M sup of $f''\delta \cap y$. Since $f''\delta \cap y \subseteq \alpha$ and $f''\delta \cap \alpha$ is cofinal in α , z is a supremum of the M ordinals in the standard part of M; hence it is the minimal nonstandard M ordinal, which is an obvious contradiction. \Box

Sh:121

34

Let x be an M ordinal which is nonstandard. (Note $\alpha \subseteq x$.) Let p be a finite subset of L_x^M . We denote by z(p, x) the set of elements of L_x^M , first order definable from $p \cup \alpha$ in $\langle L_x^M, E \rangle$.

LEMMA 2. For p and x as above, $\langle z(p, x), E \rangle$ is well founded.

PROOF. Fix p and x. For $\beta < \alpha$ let z_{β} be the set of all elements of L_x^M which are first order definable in $\langle L_x, E \rangle$ from $p \cup \beta$. Note that $z = \bigcup_{\beta < \alpha} z_{\beta}$, and that z_{β} is essentially a member of M (since $\beta \cup \{\beta\} \in M$). Hence, in M, $\langle z_{\beta}, E \rangle$ is isomorphic to some $\langle L_y^M, E \rangle$ for some M ordinal y such that $M \models |y| \leq \beta$. (One can use here the result by Boolos [1], where there exists a first order sentence σ , such that it follows from KP that a transitive set satisfies σ iff it is of the form $\langle L_T, G \rangle$. Hence an elementary substructure of L_x^M , which is in M, is isomorphic in M to a structure of the form L_y^M .)

Now use Lemma 1. β is in the standard part of M, hence $|\beta|$ is not the last M cardinal there. Therefore $|\beta|^{+M} < \alpha$, but since $y < |\beta|^{+M}$, we get that y is in the standard part of M, hence y, and consequently $\langle L_y^M, E \rangle$, is well founded. Therefore z_β is well founded. We proved that $\langle z(p, x), E \rangle$ is an increasing union of well-founded structures, where the union has cofinality = $cf(\alpha) > \omega$. We get that $\langle z, E \rangle$ is well founded. \Box

By Lemma 2 z(p, x) is isomorphic to a unique structure of the form $\langle L_{\delta}, \in \rangle$. (Again one can use Boolos [1].) For some $\delta \leq \alpha$, let $\pi(p, x)$ be the unique isomorphism of z(p, x) onto L_{δ} , and denote the unique δ by $\delta(p, x)$. Note that if p contains some nonstandard element of L_x^M then $\delta(p, x) > \alpha$. We shall confine our attention to such p, so from now on when we from z(p, x), $\pi(p, x)$, $\delta(p, x)$ we assume that p contains a nonstandard element of L_x^M .

LEMMA 3. Let p, x, z(p, x), $\delta(p, x)$ be as above. Then there exist $q \supseteq p$ and an elementary embedding $j: L_{\delta(p,x)} \to L_{\delta(q,x)}$ such that the first ordinal moved by j is α . (Note that $p \subseteq q$ implies $\delta(p, x) \leq \delta(q, x)$.)

PROOF. $\langle z(p, x), E \rangle$ is well founded. By our assumption z(p, x) contains a nonstandard ordinal t. Hence let t be the minimal nonstandard M ordinal in z(p, x). Let t' be a nonstandard ordinal such that t' < t. Let $q = p \cup \{t'\}$. Clearly $\langle z(p, x), E \rangle$ is an elementary substructure of $\langle z(q, x), E \rangle$ (since both are elementary substructures of $\langle L_x^M, E \rangle$). Since $\pi(p, x)$ is an isomorphism of $\langle z(p, x), E \rangle$ onto $\langle L_{\delta(p,x)}, \in \rangle$ and $\pi(q, x)$ is an isomorphism of $\langle z(q, x), E \rangle$ onto $\langle L_{\delta(q,x)}, \in \rangle$, $j = \pi(q, x) \circ \pi(p, x)^{-1}$ is an elementary embedding of $\langle L_{\delta(p,x)}, \in \rangle$ into $\langle L_{\delta(q,x)}, \in \rangle$. $\varepsilon > z(p, x)$ and z(q, x) both contain α , hence $\pi(p, x)$ and $\pi(q, x)$ are both the identity on α . Hence j is the identity on α . By definition of $t, \pi(p, x)(t) = \alpha$, but since $t' < t, t' \in q, \alpha \leq \pi(q, x)(t') < \pi(q, x)(t)$. Hence

$$j(\alpha) = \pi(q, x) \circ \pi(p, x)^{-1}(\alpha) = \pi(q, x)(t) > \alpha.$$

LEMMA 4. α is a model of ZF.

PROOF. Take any p containing a nonstandard element of M. (Hence $\delta(p, x) > \alpha$.) By Lemma 3 $\langle L_{\delta(p,x)}, \in \rangle$ can be elementary embedded by an embedding j satisfying $j(\gamma) = \gamma$ for $\gamma < \alpha$, $j(\alpha) > \alpha$. It follows that $\langle L_{\alpha}, \in \rangle$ is an elementary substructure of $\langle L_{j(\alpha)}, \in \rangle$. Standard argument now implies that $\langle L_{\alpha}, \in \rangle$ is a model of ZF. (The argument for the replacement axiom is that a definition of

function in L_{α} on a set $X \in L_{\alpha}$ yields the same function in $L_{j(\alpha)}$, because *j* is elementary and *j* is the identity on L_{α} . Hence in $L_{j(\alpha)}$ there exists a set, namely L_{α} , containing the range of *f*. The same must hold in L_{α} by *j* being elementary.) But

 $L_{\alpha} \models$ there is no last cardinal;

otherwise we get a contradiction to Lemma 1. Hence, again a standard argument, using basic properties of the L_{α} hierarchy, can be invoked to get that $\langle L_{\alpha}, \epsilon \rangle$ is also a model of the power set axiom. (Recall that any subsets of L_{β} in L_{α} are constructed before the next L_{α} cardinal.) Thus $\langle L_{\alpha}, \epsilon \rangle \models \mathbb{ZF}$. \Box

If x and p are as above, using Lemma 4 we get

$$\langle z(p, x), E \rangle \models \pi(p, x)^{-1}(\alpha)$$
 is a model of ZF',

but using the fact that $\pi(p, x)^{-1}(\alpha)$ is a nonstandard M ordinal, and that $\langle z(p, x), E \rangle$ is an elementary substructure of $\langle L_x^M, E \rangle$, we get

COROLLARY 5. Some nonstandard ordinal in M, y, satisfies $\langle L_v^M, E \rangle \models ZF$.

The following lemma is rather commonly known.

LEMMA 6. Let j be an elementary embedding of $\langle L_{\delta}, \in \rangle$ into $\langle L_{\rho}, \in \rangle$ where $\delta > \alpha$ and such that the first ordinal moved by j is α . Then every α tree in L_{δ} has a branch of length α in L_{ρ} .

PROOF. Let $\langle T, \prec \rangle$ be an α tree in L_{δ} . $j(\langle T, \prec \rangle)$ is clearly a $j(\alpha)$ tree in L_{ρ} . Using the fact that j is the identity on α , one can show that the tree made up of the first α levels of $j(\langle T, \prec \rangle)$ is exactly $\langle T, \prec \rangle$. Use $T \subseteq \alpha$, and the fact that the first α levels have uniform cardinality $< \alpha$, hence in j(T) the β th level (for $\beta < \alpha$) contains no new members. Let z be any member of j(T) of level α . (It exists since $j(\alpha) > \alpha$.) $\{y|y \prec z\}$ is a branch in j(T) of length α , but the first α levels of j(T) are T, hence we get a branch of length α in T which lies in L_{ρ} . (A structure of the form $\langle L_{\rho}, \in \rangle$ always satisfies Δ_0 separation!)

LEMMA 7. Let j be an elementary embedding of $\langle L_{\delta}, \in \rangle$ into itself such that α is the first ordinal moved by j. Then (C) holds for α .

PROOF. Since $\langle L_{\alpha}, \epsilon \rangle$ is a model of ZFC, $\langle L_{j^n(\alpha)}, \epsilon \rangle$ is a model of ZFC, where $j^n(\alpha)$ is the *n*th iterate of *j*. Also the restriction of *j* is an elementary embedding of $\langle L_{j^n(\alpha)}, \epsilon \rangle$ into $\langle L_{j^{n+1}(\alpha)}, \epsilon \rangle$ for every $n < \omega$.

By Lemma 6, every α tree which lies in $L_{jn(\alpha)}$ has a branch of length α in $L_{jn+1(\alpha)}$. Define $\gamma = \sup_{n < \omega} j^n(\alpha)$; then α has the tree property in L_{γ} because every α tree in γ is an α tree in some $L_{jn(\alpha)}$, hence it has a branch in $L_{jn+1(\alpha)}$ which in included in L_{γ} . Since γ is a limit of ordinals which are models of ZFC, γ is a witness to (C).

PROOF OF (B) \rightarrow (C). By Corollary 5 pick a nonstandard $x \in M$ such that $\langle L_x^M, E \rangle$ is a model of ZFC. Define a sequence of finite subsets of L_x^M , p_n , by induction on $n < \omega$.

 $p_0 = \{t\}$ where t is any nonstandard element of L_x^M . p_{n+1} is any finite subset of L_x^M , $p_n \subseteq p_{n+1}$ such that p_{n+1} satisfies Lemma 3, with respect to x and p_n . Hence we get an elementary embedding $j_n: \langle L_{\delta(p_n,x)}, \in \rangle \to \langle L_{\delta(p_{n+1},x)}, \in \rangle$ such that j_n is the identity on α and $j_n(\alpha) > \alpha$.

Without loss of generality we assume $\delta(p_{n+1}, x) > \delta(p_n, x)$ for all $n < \omega$. Otherwise $\delta(p_{n+1}, x) = \delta(p_n, x) = \delta$ and we get a δ and j for which Lemma 7 holds, and

we have that (C) holds for α . Therefore we are finished. So assume that for all $n < \omega$, $\delta(p_n, x) < \delta(p_{n+1}, x)$.

Remember that $\langle z(p_n, x), E \rangle$ is an elementary submodel of $\langle L_x^M, E \rangle$, hence $\langle z(p_n, x), E \rangle$, and consequently, $\langle L_{\delta(p_n, x)}, \epsilon \rangle$, are models of ZF.

So if we define $\gamma = \sup_{n < \omega} \delta(p_n, x)$ we get that γ is a limit of ordinals which are models of ZF. Now if T is an α tree in L_{γ} , T is an α tree in $L_{\delta(p_n,x)}$ for some $n < \omega$. Hence we can use j_n and Lemma 6 to get that T has a branch of length α in $L_{\delta(p_{n+1},x)} \subseteq L_{\gamma}$. Thus we verified that γ is a witness that α satisfies (C). \Box

§2. In this section we assume that for some γ which is a limit of admissible ordinals, α has the tree property in L_{γ} . We shall prove that α is the standard part of a nonstandard model of ZF.

Clearly $L_r \models \alpha$ is regular, because from a cofinal sequence in α of order type $< \alpha$ one could easily define an α tree with no branches of length α . In particular, we get $L_r \models \alpha$ is a cardinal.

LEMMA 8. $L_{\gamma} \models \alpha$ is a limit cardinal.

PROOF. Assume $\alpha = (\delta^+)^{L_r}$. Using the fact that $L_r \models \alpha$ is a cardinal, one can reproduce the proof of the existence of Souslin tree on successor cardinals in L [3, pp. 292–295] in L_r to get an α tree such that it has no branches of length α in L_{α} . (The definitions and the proofs of the combinatorial principles \diamond and \Box pass verbatim to α and δ , respectively.) \Box

It follows from Lemma 8 that $\langle L_{\alpha}, \in \rangle$ is a model of ZF.

LEMMA 9. Let $\alpha \leq \delta < \gamma$ such that $L_{\gamma} \models |\delta| = \alpha$. Then there exist $\rho, \delta \leq \rho < \gamma$, $\alpha < \rho, L_{\gamma} \models |\rho| = \alpha$ and an elementary embedding $j: \langle L_{\delta}, \in \rangle \rightarrow \langle L_{\rho}, \in \rangle$ such that $j(\mu) = \mu$ for $\mu < \alpha$ and $j(\alpha) > \alpha$ (if $\alpha < \delta$).

PROOF. The proof will be easily recognized by anybody familiar with weakly compact cardinals. Consider the Boolean Algebra *B* of all subsets of α , definable (with parameters) in $\langle L_{\delta}, \in \rangle$. Using the tree property of α and the fact that α is a limit cardinal in L_{γ} , one can find a nonprincipal ultrafilter *U* in *B* with $U \in L_{\gamma}$ such that $L_{\gamma} \models U$ is α complete. Namely if $\langle A_{\eta} | \eta < \mu \rangle \subseteq U \langle A_{\eta} | \eta < \mu \rangle \in L_{\gamma}$ ($\mu < \alpha$) then $\bigcap_{\beta < \mu} A_{\rho} \neq \emptyset$. (See Silver [5] for this type of argument.) One gets *U* by enumerating the elements of the Boolean Algebra *B* in a sequence of length α . (It is possible since $L_{\gamma} \models |L| = \alpha$) $\langle B_{\eta} | \eta < \alpha \rangle$, and one considers the tree of all functions $f: \mu \to 2$ ($\mu < \alpha$), $f \in L_{\alpha}$, such that $\bigcap_{f(\eta)=1} B_{\eta} \cap \bigcap_{f(\eta)=0} (\alpha - B_{\eta})$ has order type α . Using the fact that α is a regular limit cardinal in L_{γ} one can get that this tree is essentially an α tree in L_{γ} , hence has a branch. Such a branch is a function $f: \alpha \rightarrow 2$ and one can easily verify that $U = \{A_{\mu} | f(\mu) = 1\}$ is the required ultrafilter.

Using U one can consider the "ultrapower" of $\langle L_{\delta}, \in \rangle$ reduced by U, i.e., consider all functions from α into L_{δ} , definable over L_{δ} (using parameters) where we identify f and g if $A = \{\rho | f(\rho) = g(\rho)\} \in U$. (Note that if f and g are definable then A is definable.) Let $\langle M, E \rangle$ be the resulting structure. As usual we get an elementary embedding $j': \langle L_{\delta}, \in \rangle \to \langle M, E \rangle$.

 $\langle M, E \rangle \in L_r$, and since $L_r \models U$ is α complete, we get, as usual, that $L_r \models \langle M, E \rangle$ is well founded. Note $L_r \models |M| = \alpha$, since the cardinality of the L_r definable functions is α . Since γ is a limit of admissible ordinals, $\langle M, E \rangle$ is isomorphic

to a structure of the form $\langle L_{\rho}, \in \rangle$ by a collapsing map π . $j = \pi \circ j'$ is the required j since one can easily verify, using the α completeness of U, that $j(\mu) = \mu$ for $\mu < \alpha$ and $j(\alpha) > \mu \alpha$. $L_{\gamma} \models |\rho| = \alpha$ since $L_{\gamma} \models |M| = \alpha$. \Box

PROOF OF (A) \rightarrow (D). By induction we construct α_n and $j_n (\alpha_0 = \alpha, \alpha_n > \alpha$ for n > 0 such that:

(a) α_n is a model of ZFC;

(b) $L_r \models |\alpha_n| = \alpha$;

(c) j_n is an elementary embedding of $\langle L_{\alpha_n}, \epsilon \rangle$ into $\langle L_{\alpha_{n+1}}, \epsilon \rangle$, where α is the first ordinal moved by j_n if n > 0.

 α_0 is α . α_{n+1} and j_n are defined from α_n . Using Lemma 9 α_{n+1} is clearly a model of ZF by j_n being an elementary embedding. Therefore we get a directed system

$$\langle L_{\alpha_0}, \epsilon \rangle \xrightarrow{j_0} \langle L_{\alpha_1}, \epsilon \rangle \xrightarrow{j_1} \langle L_{\alpha_2}, \epsilon \rangle \to \ldots$$

Let $\langle M, E \rangle$ be the directed limit of this system. Note the elements of M are equivalence classes of pairs of the form $\langle x, n \rangle$ where $x \in L_{\alpha_n}$, under an appropriate equivalence relation \sim . Denote this equivalence class by $[\langle x, n \rangle]$.

 $\langle M, E \rangle$ is a model of ZFC since it is the directed limit of an elementary chain of models of ZFC. The standard part of M contains α since all of the embeddings j_n are the identity on α , so for every $n, \mu < \alpha, \langle \mu, n \rangle \sim \langle \mu, n + 1 \rangle$ and the equivalence classes of the pairs $\langle \mu, n \rangle$ form na initial segment of the ordinals of M, isomorphic to α . The standard part of M cannot be greater than α , because if $[\langle \rho, n \rangle]$ is the α th ordinal of M, we must have $\rho \ge \alpha$, but then

$$\alpha < j_n(\alpha) \le j_n(\rho)$$
 and $[\langle \alpha, n+1 \rangle] < [\langle \rho, n \rangle].$

But $[\langle \alpha, n + 1 \rangle]$ has a copy of α below it (namely $[\langle \mu, n + 1 \rangle]$ for $\mu < \alpha$). Hence $[\langle \rho, n \rangle]$ cannot be the α th ordinal of $\langle M, E \rangle$ and we have proved that α is exactly the standard part of $\langle M, E \rangle$. \Box

REFERENCES

[1] G. BOOLOS, On the semantics of the constructible levels, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 16 (1970).

[2] H. FRIEDMAN, Countable models of set theory, Cambridge Summer School in Math Logic Springer, Berlin-New York, 1973, pp. 539–573.

[3] R. JENSEN, The fine structure of the constructible hierarchy, Annals of Mathematical Logic, vol. 4 (1972), pp. 229–308.

[4] M. MAGIDOR, S. SHELAH and J. STAVI, Countably decomposable admissible sets, announced in *Abstracts of Papers Presented to the American Mathematical Society*, 1980, pp. 392–393 (in preparation).

[5] J. H. SILVER, Some applications of model theory in set theory, Annals of Mathematical Logic, vol. 3 (1971), pp. 45-110.

HEBREW UNIVERSITY JERUSALEM, ISRAEL

BAR ILAN UNIVERSITY RAMAT GAN, ISRAEL