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Abstract

In our previous paper (J. Combin. Theory Ser. A 103 (2) (2003) 387) we formulated a

conditional chromatic number theorem, which described a setting in which the chromatic

number of the plane takes on two different values depending upon the axioms for set

theory. We also constructed an example of a distance graph on the real line R whose

chromatic number depends upon the system of axioms we choose for set theory.

Ideas developed there are extended in the present paper to construct a distance

graph G2 on the plane R2; thus coming much closer to the setting of the chromatic

number of the plane problem. The chromatic number of G2 is 4 in the Zermelo–

Fraenkel–Choice system of axioms, and is not countable (if it exists) in a

consistent system of axioms with limited choice, studied by Solovay (Ann. Math. 92

Ser. 2 (1970) 1).
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1. Question

Define a graph U2 on the set of all points of the plane R2 as its vertex set, with two

points adjacent iff they are distance 1 apart. The graph U2 ought to be called the
unit-distance plane, and its chromatic number w is called the chromatic number of the

plane.2 Finite subgraphs of U2 are called finite unit-distance plane graphs.
In 1950, the 18-year old Edward Nelson posed the problem of finding w (see the

problem’s history in [Soi1]). A number of relevant results were obtained under
additional restrictions on monochromatic sets (see surveys in the fine problem
monographs [KW,CFG], and also in [Soi2]). Amazingly though, the problem has
withstood all assaults in the general case, leaving us with an embarrassingly wide
range for w being 4, 5, 6 or 7.

In their fundamental 1951 paper [EB], Erdös and de Bruijn have shown that the
chromatic number of the plane is attained on some finite subgraph. This result has
naturally channeled much of research in the direction of finite unit-distance graphs.
One limitation of the Erdös–de-Bruijn result, however, has been that they used quite
essentially the axiom of choice. What happens if we have no choice?

This question was addressed in our [SS]. We have formulated there a conditional

chromatic number theorem, which specifically described a setting in which the
chromatic number of the plane takes on two different values depending upon the
axioms for set theory. We have also constructed an example of a distance graph on
the real line R whose chromatic number depends upon the system of axioms we
choose for set theory.

Ideas developed there are extended in the present paper to construct a distance

graph G2 on the plane R2; thus coming much closer to the setting of the chromatic
number of the plane problem. The chromatic number of G2 is 4 in the Zermelo–
Fraenkel–Choice system of axioms, and is not countable (if it, exists) in a consistent
system of axioms with limited choice, studied by Solovay [Sol].

I. M. Gelfand once said that theories come and go, while examples live forever.
We believe this example (and its analog G3; presented here as well) may prove to be
an important illumination and inspiration in this area of research.

2. Preliminaries

Let us recall basic set theoretic definitions and notations. In 1904, Zermelo [Z]
formalized the axiom of choice that had previously been used informally.

Axiom of choice (AC): Every family F of nonempty sets has a choice function, i.e.,
there is a function f such that f ðSÞAS for every S from F:

Many results in mathematics really need just a countable version of choice.
Countable axiom of choice ðAC@0

Þ: Every countable family of nonempty sets has a

choice function.
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2The chromatic number wðGÞ of a graph G is the smallest number of colors required for coloring the

vertices, so that no two vertices of the same color are connected by an edge.
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In 1942, Bernays [B] introduced the following axiom.
Principle of dependent choices (DC): If E is a binary relation on a nonempty set A;

and for every aAA there exists bAA with aEb, then there is a sequence
a1; a2;y; an;y such that anEanþ1 for every noo:

AC implies DC (see [J, Theorem 8.2], for example), but not conversely. In turn,
DC implies AC@0

; but not conversely. DC is a weak form of AC and is sufficient for

the classical theory of Lebesgue measure. In fact, Solovay has contributed the
following important observation in reply [Sol2] to Soifer’s question ‘‘Do we need DC
to develop the usual Lebesgue Measure Theory (in the absence of choice), or does the
countable axiom of choice suffice?’’:

I thought about this in the early 60’s. The only theorem for which I needed DC
was the Radon–Nikodym theorem. But I don’t know that there isn’t a clever way
of getting by with just Countable Choice and proving Radon–Nikodym. I just
noticed that the usual proof [found in Halmos] uses DC.

We will make use of the following axiom:
(LM). Every set of real numbers is Lebesgue measurable.
As always, ZF stands for the Zermelo–Fraenkel system of axioms for sets, and

ZFC for Zermelo–Fraenkel with the addition of the axiom of choice.
Assuming the existence of an inaccessible cardinal, Solovay constructed in 1964

(and published in 1970) a model that proved the following consistency result [Sol1].

Solovay theorem. The system of axioms ZFþDCþ LM is consistent.

As Jech [J] observes, in the Solovay model, every set of reals differs from a Borel
set by a set of measure zero.

3. Example on the plane

Let Q denote the set of all rational numbers, so that Q2 is the ‘‘rational plane’’. Let

Z denote the set of all integers. We define a graph G2 as follows: the set R2 of points
on the plane serves as the vertex set, and the set of edges is the union of the four sets

fðs; tÞ : s; tAR; s � t � eAQ2g for e ¼ ð
ffiffiffi
2

p
; 0Þ; e ¼ ð0;

ffiffiffi
2

p
Þ; e ¼ ð

ffiffiffi
2

p
;

ffiffiffi
2

p
Þ; and e ¼

ð�
ffiffiffi
2

p
;

ffiffiffi
2

p
Þ; respectively.

Claim 1. In ZFC the chromatic number of G2 is equal to 4.

Proof. Let S ¼ fðq1 þ n1

ffiffiffi
2

p
; q2 þ n2

ffiffiffi
2

p
Þ : qiAQ; niAZg: We define an equivalence

relation E on R as follows: sEt3s � tAS:

Let Y be a set of representatives for E: For tAR2 let yðtÞAY be such that tEyðtÞ:
We define a 4-coloring cðtÞ as follows: cðtÞ ¼ ðl1; l2Þ; liAf0; 1g iff there is a pair

ðn1; n2ÞAZ2 such that t � yðtÞ � 2
ffiffiffi
2

p
ðn1; n2Þ �

ffiffiffi
2

p
ðl1; l2ÞAQ2: &
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Without AC the chromatic situation changes dramatically.

Claim 2. In ZFþAC@0
þ LM the chromatic number of the graph G2 cannot be equal

to any positive integer n nor even to @0 .

The proof of Claim 2 immediately follows from the first of the following two
statements:

Statement 1: If A1;y;An;y are measurable subsets of R2 and
S

noo An ¼ ½0; 1Þ2;
then at least one set An contains two adjacent vertices of the graph G2:

Statement 2: If AD½0; 1Þ2 and A contains no pair of adjacent vertices of G2; then A

is null (of Lebesgue measure zero).

Proof. We start with the proof of statement 2. Assume to the contrary that

AD½0; 1Þ2 contains no pair of adjacent vertices of G2; yet A has positive measure.
Then there is a rectangle I ; with a side parallel to the coordinate axis x of length, say,
a; such that

mðA-IÞ
mðIÞ 4

9

10
: ð1Þ

Choose qAQ such that
ffiffiffi
2

p
oqo

ffiffiffi
2

p
þ a

10
: Define a translate B of A as follows:

B ¼ A � ðq �
ffiffiffi
2

p
; 0Þ ¼ fðx � q þ

ffiffiffi
2

p
; yÞ : ðx; yÞAAg:

Then

mðB-IÞ
mðIÞ 4

8

10
: ð2Þ

Inequalities (1) and (2) imply that there is v ¼ ðx; yÞAI-A-B: Since ðx; yÞAB; we

have w ¼ ðx þ ðq �
ffiffiffi
2

p
Þ; yÞAA: So, we have v; wAA and v � w � ð

ffiffiffi
2

p
; 0Þ ¼

ð�q; 0ÞAQ2: Thus, fv;wg is an edge of the graph G with both endpoints in A;
which is the desired contradiction.

The proof of the statement 1 is now obvious. Since
S

noo An ¼ ½0; 1Þ2 and

Lebesgue measure is a countably additive function in AC@0
; there is a positive integer

n such that An is a nonnull set. By statement 2, An contains a pair of adjacent vertices
of G2 as required. &

4. Another example on the plane

We can define a graph G3 slightly differently from G2: the set R2 of points
on the plane serves as the vertex set, and the set of edges is the union

of the two sets fðs; tÞ : s; tAR; s � t � eAQ2g for e ¼ ð
ffiffiffi
2

p
; 0Þ and e ¼ ð0;

ffiffiffi
2

p
Þ;

respectively.
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Claim 1. In ZFC the chromatic number of G2 is equal to 2.

Proof. Let S ¼ fðq1 þ n1

ffiffiffi
2

p
; q2 þ n2

ffiffiffi
2

p
Þ : qiAQ; niAZg: We define an equivalence

relation E on R as follows: sEt3s � tAS

Let Y be a set of representatives for E: For tAR2 let yðtÞAY be such that tEYðtÞ:
We define a 2-coloring cðtÞ as follows: cðtÞ ¼ ðe1 þ e2Þmod 2 iff there is a pair

ðe1; e2ÞAZ2 such that t � yðtÞ �
ffiffiffi
2

p
ðe1; e2ÞAQ2: &

Claim 2. In ZFþAC@0
þ LM the chromatic number of the graph G2 cannot be equal

to any positive integer n nor even to @0:

The proof closely repeats the one presented for G2 in Section 3.

5. Remark

1. One may wonder what is so special about
ffiffiffi
2

p
in our constructions. Well,

ffiffiffi
2

p
is

the oldest known irrational number: a proof of its irrationality, apparently, comes
from the Pythagoras School. Our reasoning and results would not change if we were

to replace
ffiffiffi
2

p
everywhere with another irrational number.

2. Constructions presented here can be generalized to produce examples of
distance G with all points of n-dimensional Euclidean space Rn as their vertex sets,
and whose chromatic number wðGÞ depends upon the system of axioms we choose
for set theory.

3. See [Soi3] for more results and history related to this problem and early
Ramsey Theory.
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