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UNIFORMIZATION AND SKOLEM FUNCTIONS 
IN THE CLASS OF TREES 

SHMUEL LIFSCHES AND SAHARON SHELAH 

Abstract. The monadic second-order theory of trees allows quantification over elements and over 
arbitrary subsets. We classify the class of trees with respect to the question: does a tree T have definable 
Skolem functions (by a monadic formula with parameters)? This continues [6] where the question was 
asked only with respect to choice functions. A natural subclass is defined and proved to be the class of trees 
with definable Skolem functions. Along the way we investigate the spectrum of definable well orderings of 
well ordered chains. 

§1. Introduction. The Uniformization Problem. The uniformization problem for 
a theory ST in a language J? can be formulated as follows: Suppose !T V {VY)(3X) 
y/{X, Y) where y/ is an ^-formula and X, Y are tuples of variables. Is there another 
S£-formula if/* that uniformizes y/ i.e., such that 

V h (V?)(VJf)[v*C*> Y) => v(x> Y)] and 5T h (VY){3\X)y*(X, Y) ? 

Here 3! means "there is a unique". 
The monadic second-order logic is the fragment of the full second-order logic that 

allows quantification over elements and over monadic (unary) predicates only. The 
monadic version of a first-order language J? can be described as the augmentation 
of J? by a list of quantifiable set variables and by new atomic formulas t e X where 
t is a first order term and A' is a set variable. The monadic theory of a structure J( 
is the theory of Jl in the extended language where the set variables range over all 
subsets of \Jt\ and £ is the membership relation. (A formal definition is given in 
Section 3.) 

In [6] we dealt with the following question: for what trees (T, <) it is the case 
that there is a finite sequence P of subsets of T and a formula <p{x, X, Z) in the 
monadic language of trees such that 

T\=<p{a,A,P) => a£A,T\=(VX)(3y)[X^Q^<p(y,X,P)]imd 

T\=ip{a,A,P)htp{b,A,P) =>a=b7 

When the answer for that is positive we will say that T has a monadically definable 
choice function and that ip defines a choice function from non-empty subsets of T. 
On the other hand, a negative answer to the choice function problem for T implies a 
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104 SHMUEL LIFSCHES AND SAHARON SHELAH 

negative answer to the uniformization problem for the monadic theory of T, with the 
formula <p{x, Y) that says "if Y is not empty then x e Y" being a counter-example. 

Gurevich and Shelah ([4]) gave a negative answer to the choice function problem 
for the monadic theory of the tree (m>2, < ) and hence to the uniformization 
problem that was first raised by Rabin ([7]). In [6] the question was what trees 
do have a definable choice function (by a monadic formula with parameters). The 
class of trees (which includes the class of linear orders) was split into two natural 
subclasses, the class of wild trees and the class of tame trees and the following 
dichotomy result was proved: 

THEOREM. Let T be a tree. IfT is wild then there is no definable choice function on 
T {by a monadic formula with parameters). IfT is tame then there is even a definable 
well ordering of the elements ofT by a monadic formula {with parameters) <p(x, y, P). 

Here we are concerned with giving a complete answer to the uniformization 
problem for the monadic theory of trees. The class of tame trees is split into 
the class of strictly tame trees that have 'only' definable choice functions and the 
class of very tame trees for which we have definable Skolem functions for each 
monadic formula, hence the uniformization property (i.e., for each y/{X, YP) there 
is y/*{X, Y,P, Q) that uniformizes y/). Roughly speaking, a tree T is tame if it 
does not embed (co>2, < ) , has a uniformly bounded amount of splitting and has 
'tame' branches, that is branches that are scattered linear chains with a uniformly 
bounded Hausdorff degree. T is very tame if the branches of T are very tame in 
uniform way. By this we mean that for some k < co, each definable well ordering of 
a branch of T is of order type at most cok. 

The paper is based on the previous [6] but it can be read independently. The 
relevant definitions and results are presented in the next section and two proofs that 
are used here are given in the appendix. 

In Section 3 we cite some composition theorems that enable the computing of 
the monadic theory of a structure from the monadic theories of its substructures. 
Theorems of this sort allow us to deduce the failure of the uniformization property 
in a tree from the failure in some sub-branch. 

Section 4 investigates the spectrum of definable well orderings of definably well 
orderable linear chains. It turns out that the following dichotomy holds: for every 
definably well orderable chain (C, <) either each definable well ordering of C is of 
order type > co™ or, for some k < co, each definable well ordering of C is of order 
type in an interval [cok,cok+l). Chains with the second property are called very 
tame. We also characterize all the definable well orderings (by a monadic formula) 
of ordinals and show that each of them is definable by a first order formula, in a 
language expanded by a finite number of unary predicates (so quantification over 
unary predicates is obsolete). 

In Section 5 we show that the chain {com, <) does not have the uniformization 
property and deduce, by applying the composition theorems, that trees containing 
a branch of order type > com or that have branches of unbounded order types below 
cow do not have the uniformization property. 

Trees without this property are called very tame and in Section 6 we complete the 
proof of 
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UNIFORMIZATION AND SKOLEM FUNCTIONS IN THE CLASS OF TREES 105 

THEOREM. (T, <) has the uniformization property if and only ifT is very tame. 

§2. Tame trees. The purpose of this section is to fix the notations and present 
the relevant definitions and results from [6]. 

DEFINITION 2.1. A tree is a partially ordered set (T, <) such that for every n e T, 
{v : v < 77} is linearly ordered by < . < means < or =. 

Note, a chain (C, <) and even a pure set I is a tree. 

DEFINITIONS AND NOTATIONS 2.2. Let {T, <) be a tree 
(1) S C T is a convex subset if 77, v e S and n < a < v £ T implies a £ S. 

When S is a convex subset of T we say that (S, < ) is a subtree of(T, <). If T is a 
chain we use the term a convex segment or just a segment. 

(2) 5 C r is a sub-branch ofTifB is convex and < -linearly ordered. 
(3) 5 C T is a branch of T if B is a maximal sub-branch of T. 
(4) A C T is an initial segment of T if 4̂ is a sub-branch that is < -downward 

closed, 77 is a/3ove [strictly above] an initial segment A if v £ A =$> v <n [v £ A => 
v < 7/]. In these cases we write 4̂ ^77 L4 < 77]. 

(5) For n £ T, TV, is the sub-tree ({v e T : 77 < v}, <) . TV, is the sub-tree 
(TV, \ {77} , <) . For A C T1 an initial segment, TV^ and TV̂  are defined naturally 
(and are equal if A does not have a < -maximal element). 

(6) For 77 € T we denote by Sue (77) or Sue 7-(77) the set of < -immediate successors 
of 77 (which may be empty). 

(7) For 77, v e T we denote the common initial segment ofrj and v in T by 77 n v. 
This is defined to be the initial segment {r : T<377&T<]V}. However, when n Hv 
has a maximal element we may identify it with this element. 

(8) If there is an 77 € T that satisfies (Vv e r)[^ < v] we say that T has a root 
and denote 77 by r(T"). 

(9) 77, v € T are incomparable in T and we write 77 ± v, if neither 77 <] v nor v <] 77. 
X C T is an anti-chain of T if X consists of pairwise incomparable elements of T. 

(10) When B C r is a sub-branch and ^ C 5 is an initial segment we say that 
a £ T cuts B at A if for every 77 € 4̂ and v e £ \ J w e have 77 < a & v _L a. 

(11) A gap in T is a pair (^1,^2) where A\ C\A2 = $,A\ U ̂ 2 is a sub-branch, >4i 
is an initial segment, (so 77 6 A\, v E Ai =4> 77 < v) without a < -maximal element, 
^2 without a < -minimal element, and there is some cr £ T that cuts A\V)Ai?&.A\. 

(12) Tiffing a gap (y*i, ^2) in JHS adding a node T to r such that 77 e A\ => 77 < T, 
v e ^2 =>• T < v and for every a as above we have T < a. 

We recall now the definition of the Hausdorff degree of a chains (linearly ordered 
set) and define tame chains. 

DEFINITION 2.3. Let (C, <) be a chain. The Hausdorff degree ofC, Hdeg(C) is 
defined as follows: 

(i) if there is an embedding / : Q *-• C we stipulate Hdeg(C) = 00. 
(ii) if there is no such embedding (and in this case we say that C is a scattered 

chain we define Hdeg(C) recursively: 
Hdeg(C) = 0 iff C is finite. 
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106 SHMUEL LIFSCHES AND SAHARON SHELAH 

Hdeg(C) = a iff f\fi<a Hdeg(C) £ jS and C = £ \ £ / C, where / is well ordered 
or inversely well ordered and for every i e / , V«<Q Hdeg(C,-) = /?. 

FACT 2.4. (1) C is a scattered chain if and only if Hdeg(C) is well defined (i.e., 
there is one and only one ordinal a such that Hdeg(C) = a). 

(2) Let C be a scattered chain with Hdeg(C) = a, C the completion of C and 
D C C". Then C and D are scattered and Hdeg(D) < Hdeg(C') = a. 

PROOF. (1) By [5]. 

(2) By induction on a. H 

DEFINITION 2.5. (C, <) is a tome chain if and only if C is scattered and Hdeg(C) < 
CO. 

LEMMA 2.6. Let (C, <*) be a chain. Then the following are equivalent: 
(a) C is tame, 
(b) there is a finite sequence P = (PQ, ... , Pk-\) of subsets of C and a formula 

f(x,y, P) in the monadic language of order that defines a well ordering of the elements 
ofC. 

Moreover, there is some a such that some <p(x, y, P) defines a well ordering of C 
isomorphic to (a, <) and there is a finite sequence Q = (Qo, • • • ,Qe-i) of subsets of 
a and a monadic formula ip~l(x, y, Q) that defines an ordering of a that is isomorphic 
to (C, <*). (In fact, it is shown in Section 4 that this holds for every definable well 
order of C.) 

PROOF. See Al in the appendix. H 

The amount of splitting in a tree T is the number of cones above initial segments 
o fT . 

DEFINITION 2.7. Let {T, < ) be a tree and A C T an initial segment. 

(1) The binary relation ~^ on T \ A is defined by 

x ~° y <=*> (V? e A)[t < x = t < y]. 

(It's an equivalence relation that says "x and y cut A at the same place".) 
(2) The binary relation ~^ on T \ A is defined by 

x~\y <=> [x~°Ay]&(3zeT\A)[z<x&z<y&z ~°Ax]. 

(It's an equivalence relation that refines ~° by dividing each ~°-equivalence class 
into disjoint cones.) 

We are now able to define wild and tame trees. 

DEFINITION 2.8. (1) A tree T is called wild if either 
(i) Sup {\T>A/ ~\ | : A C T an initial segment} > % or 

(ii) There is a branch B QT and an embedding / : <Q> —> B or 
(iii) All the branches of T are scattered linear orders but Sup{Hdeg(B) : 

-B a branch of r } > co or 
(iv) There is an embedding / : c0>2 —> T. 

(2) A tree T is tame for (n*,k*) if the value in (i) is < n*, (ii) and (iv) do not 
hold and the value in (iii) is < k* 
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(3) A tree T is tame if T is tame for (n*,k*) for some n*, k* < co. 

The following is the content of [6], the proof of the part (3) => (2) which is 
relevant for our purposes is given in Theorem A2 in the Appendix. 

THEOREM 2.9. Let {T, < ) be a tree. Then the following are equivalent: 
(1) T has a definable choice function. 
(2) T has a definable well ordering. 
(3) T is tame. 

§3. Composition theorems. The monadic language of trees S? is the monadic ver­
sion of the language of partial orders { < }. Formally, we let S? = (Sing, Empty, < , 
C) where 'Sing' and 'Empty' are unary predicates, < and < are binary relations. 
(£? is a first order language.) 

Given a tree T we define the monadic theory ofT as the first order theory of the 
model JIT '•= {•&>{T); Sing, Empty, < , C) where 

JtT |= Empty(JSf) «=• X = 0, 

l r ( = Sing(A') <=> X = {x} for some x e T, 

^T\=X < Y <=> X = {x}, Y = {y} and T (= x <3 y, 

C is interpreted in JKT as the usual inclusion relation. 

We will not distinguish between T and JtV and write for example T \= Sing(X) 
and T \= X < Y. 

The definable relation ^ and e will be used freely thus we will write T \= X < Y 
and T (= JT G Y (meaning JTT\= Sing(Z) & X C F). 

When C is a chain (linearly ordered set) we replace < and < by < and < 
respectively. 

Note: everything that is defined in Definitions and Notations 2.2 is definable by 
a monadic formula. 

In fact we will never deal with the full monadic theory of a tree T, the objects that 
we will be interested in are partial theories—finite approximations of the monadic 
theory of T. Th"(T; P) is essentially the monadic theory of (T; P, < ) restricted to 
sentences of quantifier depth n. 

NOTATIONS. C, D and / denote chains. S, T and T denote trees. 
Lower case and Greek letters (x, y, a, b, rj, v) are used to denote elements, 

uppercase letters (X, Y, A, P, Q) denote subsets. 
a and P denote finite sequences of elements and subsets, their lengths are lg(«) 

and lg(P)._We will write a £ TandP C Tinsteadofa e l g ( ^ r a n d P e l g ( ^ ^ ( r ) . 
When P and Q are of the same length we will write P U Q to denote (Po U 

Qo,... , Pi_i U Qe-i). Similarly we write | J i e / P' (assuming lg(P') is constant). 
PnS means (P0 D 5",... , Pe_{ n 5"). 

P A Q is the sequence (Po,... , Qo . . . ) . 

DEFINITION 3.1. For a tree T, A c T, and a natural number n, define by induction 
t = Thn(T;A); 
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108 SHMUEL LIFSCHES AND SAHARON SHELAH 

for n = 0: 

t = {(j>(X) : cj>(X) e 3, 4>(X) quantifier free, T f= <p(A)}, 

for n = m + 1: 

t = {Thm{T;AAB) : B € 9>{T)}. 

We may regard T h " ( r ; ^ ) as the set of tp{X) that are boolean combinations of 
monadic formulas of quantifier depth < n, such that T \=<p(A). 

CONVENTION. When* e T we will usually write Th"(r;x)insteadofTh"(r;{x}). 

DEFINITION 3.2. 5r'„,* is the set of all the possibilities for Th"(T; P) where T is a 
tree and lg(P) =£. 

FACT 3.3. (A) For every formula i//(X) € S? there is an n such that from 
T h " ( r ; J ) we can effectively decide whether C \= y/{X). If n is minimal with 
this property we will say that y/ is of depth n and write dp(^) = n. 

(B) If m > n tbenTh"{T;A) can be effectively computed from Thm(T;A). 

(C) For every t e fT„ji there is a monadic formula y/t{X) with dp(y/) = n such 
that for every ACT with lgU) = I, T \= i//t (A) 4=> Th"{T;A) = t. 

(D) The set of possibilities Tn<( is effectively computable. 

PROOF. Easy. H 

The first, and strongest composition theorem applies to chains. 

DEFINITION 3.4. If C, D are chains then C + D is the chain that is obtained by 
adding a copy of D after C. 

If (Ct : i £ I) is a sequence of chains and / is a chain then 2 , < Q <̂ *s t n e c n a m 

that is obtained by the concatenation of the C,'s along / . 

THEOREM 3.5 (composition theorem for linear orders). (1) If \g(A) = \g(B) = 
lg( i ' ) = lg(P') = t, and 

T h m ( C ; i ) = T h m ( C ' ; i ' ) and Tti"{D;B) = Thm(D';B') 

then 

Thm(C + D;AUB) = T h m ( C + D';Al U B'). 

(2) / / T h m ( C , ; i ' ) = Tti"(Dt;Bl) and\g(Al) = lg(S') = t for each i 6 / , then 

Thm fe^u^') = Thm (E D-U^) • 
Vie/ /€/ / Vie/ <e/ / 

PROOF. By [8] Theorem 2.4 (where a more general theorem is proved), or directly 
by induction on m. -\ 

The above theorem allows us to define an operation of addition of partial theories 
of chains. 
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UNIFORMIZATION AND SKOLEM FUNCTIONS IN THE CLASS OF TREES 109 

NOTATION 3.6. 

(1) When, for some m,£ €N, t\,t2, h G Tm<i then t\ + t2 = t-*, means: there are 
chains C and D such that 

/ 1 = T h m ( C M o , . - . , ^ - i ) & 

t2 =Th m (£> ;5 0 ) . . . , ^ _ i ) & ^ 3 = T h m ( C +D;AUB). 

(By the composition theorem, the choice of C and D is immaterial.) 
(2) E , - 6 /Th m (C , ; ^ ) is T h w ( E , e / C , - ; U 6 / ^ ) , (assuming lgtf ' ) = l g ( ^ ) for 

i ' . ; e / ) . 
(3) If Z) is a sub-chain of C and ACC then Thm (£>; i ) abbreviates Thm (£»; i n 

D). 
(4) For C a chain, a < b G C and P C C we denote by Th" (C;P) r M ) the 

theoryTh"([>,fc);Pn[a,fc)). 

We also have a monadic version of the Feferman-Vaught theorem. 

THEOREM 3.7. For every n,£ < co there ism — m{n,t) < co, effectively computable 
from n and £, such that whenever I is a chain, for i G I C, is a chain, g, C Q and 

ig(e,-) = *. 

if(C; Q) = £(C,-; &) := ( £ C,; |J g, ) 
ie/ Vie/ /€/ / 

andiffor t G ̂ "B>< P, := {/ e / : Th"(C,-; g,) = ?} tf«JP := (P, : t & Fn/) then 
from Thm(7; P) we can effectively compute Th"(C; g) , 

PROOF. Again, by [8, Theorem 2.4]. H 

By the composition theorem, the colouring (a, /?) i—> Th" (C;P) [•[<*,/?) for a < 
P G C and P C C is an additive (even <r-additive) colouring. For such colourings 
we can prove strong Ramsey theorems. 

DEFINITION 3.8. (a) A colouring of a chain C is a function / : [C]2 —> I where 
[C]2 is the set of unordered pairs of distinct elements of C and I is a finite set (the 
set of colours). 

(b) The colouring / is additive if for every x\ < y\ < z\ and x2 < y2 < z2 in C 

If(xuyi) = f{x2,y2)&f(yuzi)=f{y2,z2)] => / ( * i , z i ) = f{x2,z2). 

In this case a partial operation + is well defined on I: 

h + h = h 

<=> (3x,y,z G C ) [ X < J < Z & / ( X , J ) = ii &/(>>, z) = i2&f(x,z) = i3], 

(compare with Notation 3.6(1)). 
(c) A sub-chain D C C is homogeneous (for / ) if there is an io G 7 such that for 

every x, y G D, f(x, y) = /0. 
(d) / is a-additive if whenever {x,},<£0 and {j,},<co are increasing in C, x — 

Sup{x,} and y = Sup{yt} if for i < co /(x,-,x,-+i) = / ( j , , 7 ,+ i ) then f(x0,x) = 
f(yo,y)-
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110 SHMUEL LIFSCHES AND SAHARON SHELAH 

(e) In the case of er-additive colourings we can define naturally infinite sums 

THEOREM 3.9 (Ramsey theorem for additive colourings). Let f: [C]2 -^ I be an 
additive colouring where C is isomorphic to a limit ordinal and I finite. Then there is 
DCC, cofinal and homogeneous for f. 

PROOF. This is Theorem 1.1 in [8]. H 

Given a tree T and a branch B C T without gaps we can consider T as being 
a sum of sub-trees !T> for n G B. Thus, we can formulate a Feferman-Vaught 
theorem. 

NOTATION 3.10. (1) Let T be a tree and B C T a branch. (B*, < *) is the chain 
that is obtained from B by filling the gaps in B (see Definition 2.2) where < * is the 
natural extension of the linear order in B. Call B* the completion ofBinT. 

(2) Let T, B and B* be as above. For n e B* let T^ be defined by v G T^ iff 
[ / 7 < V ] & ( V T G TOfa < r < v = » T £ 5 ] . For?7 € B* \ B (so 17 is a 'gap') and T G 7\ 
// <3 v has the obvious meaning. :T> C T is a sub-tree and if 77 G 5 then n G r > r 

Moreover, assuming T has a root, T = \J„&B. ^>>/ ( a n ^ t n e u n i ° n *s disjoint). 
(3) Let T, B and B* be as above and Q C r with lg(g) = £. For f e ^"„,/ let 

Pf (T; Q) C B* be the set {// e 5* : Th"(7£„; Q) = ?}. 
(4) Pft {T; Q) is the sequence (partition of B*) (Pf (T; Q) : t e 5 ^ ) . 

THEOREM 3.11 (composition theorem along a branch). Lef T be a tree, B C T a 
branch, B* its completion in T, and let T^B :— {n G T : v G B => ^ J_ v}. 

Then for every n, £ G N (Aere is w = w(n, £) G N such that ifQQT is of length £ 
then 

Th"{T; Q) can be effectively computed from 

Thm(B*;P*l(T;Q),B)!md Thm(T\B;Q). 

Moreover, ifRCB then Th"(T; Q,R) can be effectively computed from Thm(5*; 
PB"e(T; Q),B,R) andThm(T\B; Q). 

PROOF. This is Theorem 1.13 in [6]. -\ 

REMARKS. 

(1) We don't really need B as a parameter when n > 2 because n G B iff the 
unique t such that n G Pf* (T; Q) is a theory of a tree with a root. 

(2) B* is interpretable in T using monadic formulas and each T>^ is definable in 
T by a monadic formula. 

§4. Well orderings of ordinals. Tame chains have definable well orderings of their 
elements. We will define a partial function log with range N U {00} and show that 
log is well defined for every tame chain. By the moreover clause in Lemma 2.6 it 
suffices to prove that log is well defined on ordinals. 

DEFINITION 4.1. Let log: {tame chains} ->NU {00} be defined by: 
log(C) = 00 iff each ip(x, y, P) that defines a well ordering on the elements of C, 
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defines a well ordering of order type > cow, 
log(C) = k iff there each (p(x, y, P) that defines a well ordering on the elements 

of C, defines a well ordering of order type in the segment [cok, cok+x). 
If neither holds, log(C) is undefined. 

log is well defined on finite and uncountable chains. All the chains and ordinals 
are from now on infinite. 

DEFINITION 4.2. Let a, /? be ordinals, a —• /? means the following: "there is 
<p(x,y,P) (monadic, with parameters P C a) that defines a well ordering on the 
elements of a of order type /?". 

FACTS4.3. ( l ) a -^P&P~+y => a -> y. 
(2) a — + } ' & ) ' > a - c o => a —> a • co. 
(3) a > co =>• a —> a + a. 

PROOF. Straightforward. H 

NOTATION. Suppose a —»/? holds by <p(x,y,P). Define a bijection/^ = / : a —> 
/? by / ( / ) = j iff i is the y'th element in the well order defined by <p. 

LEMMA 4.4. For any ordinal a, a •/* a • co. 

PROOF. Assume that a is minimal such that a —> a • co, let y>(x, j , P) witness 
that and / = fv be as above. It follows that: 

(i) a > co, 
(ii) a is a limit ordinal (by a —• a + 1 and 4.3.), 

(hi) for P <a, {/(/) : i < /?} does not contain a final segment of a • to [suppose 
not: by the Composition Theorem 3.5, for i\, ii < /? <p(h,i2, P) depends only on 
Thdp(v) (/?; i\, h, P) so ip can be "restricted" to /? i.e., p ^ aco hence by Facts 4.3(2) 
/? —> p • co and this contradicts the minimality of a ] . 

(iv) p < a => p • co < a (by Facts 4.3(3)) 
(v) P < a &y >a => p -fr y (otherwise, by (iv) and Facts 4.3 P —> P • co). 

Let g C a b e the following subset: x 6 Q iff for some k < co, a -2k < f(x) < 
a • (2k + 1). Let E an equivalence relation on a defined by xEy iff for some £ < co, 
f(x) and f(y) belong to the segment [a • t, a • (£ + 1)). Clearly there is a monadic 
formula y/(x, y, P, Q) that defines E moreover, some monadic formula 6{X, P, Q) 
expresses the statement" V'i<m{X = g,-)" where (g, : i < co) are the E-equivalence 
classes. 

Let/i :=max{dp(v?),dp(y),dp(0)} + 5, andm := |^„i l g (p) + 2 | . 
Let d = cf(a) and X = {x,},<a be strictly increasing and cofinal in a. By 

Theorem 3.9 applied to the additive colouring h(i,j) = Th"(a;P, Q,XJ) \[XitXj) 
we get a cofinal subsequence {fij}j<s such that t := Th"(a;P, Q,y9yi) f̂  ^ 
is constant for j \ < ji < 3. Clearly t + t = t and t determines the theory 
t~ := Th" (a; P, Q) \[p.,pe)- Now for each j <Swe have 

ThB(a;P,e)r^) 
= Thn(a;P,Q) \{M+i) +Th"(a;P,Q) \Wj+ua) 

= t~+Th"(a; P,Q) r[/Jy+1,a) 
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= Th"(a;P,Q) \[M+l) + Th"(a;P,Q) \[Pj+ua) 

= Th"(a;P,Q)\[ISoia). 

— Hence (f): for every j < 3, Th"(a; P, Q) \\p]ia) is constant. 

Note that each E -equivalence class Qi is unbounded in a since if some fi < a 
contained some E-equivalence class g, it would easily follow that fi —> y for some 
y > a contradicting fact (v). 

Fix some 1 < j < 5 let x < fij and let Qt(x) be the £-equivalence class containing 
x. Since QiM is unbounded in a there is some j <£ <S such that [fij, fit) n g,(x) # 
0. This statement is expressible by Th"(a; P, Q, x, fij, fie) which is equal to 

Th"(a;P,Q,x,fij,fie) \M) + Th"(a;P,Q,x,fij,fie) \[pjM 

+ Thn(a;P,Q,x,fij, fit) \Wt<a)= Th"(a; P, Q,x,%,%) \M) 

+ Th"(a;P, Q,9,fij,9) \WjM + Th" (a; P.QM fie) \We,a) . 

But the second theory is determined by t hence equal to Th" (a;P, Q, 0, fij, 0) f[/?;,/?J+l) 
and the third theory is equal by (f) to Th"(a;P, g,0,0,)S/+i) \\jjJ+ua)- We con­
clude: 

Thn(a;P,Q,x,fij,fit) = Thn(a;P,Q,x,fij,fiJ+1). 

Therefore for every x<fij, [fij,fij+\) n Qi(x) ^ 0. 
Finally, let j < 5 be such that the segment [0,/?;) intersects m + 1 different in­

equivalence classes, say g,0,... , Qtm. By the previous argument we have [fij ,fij+\)f\ 
Qik / 0 for every k < m. By the choice of m there are different a, b G {i'o,... , im} 
such that 

(*) Th"(a;P, Q, Qa) \[Mj+,} = Th"(a; P, Q, Qh) \lMj+l) . 

Let R C a be ([0,fij) n &,) U (({fij.fij+i) n &) U ([£/+!,<*) n &,). We claim that 
Th"(«, P, g, *) = Th"(a, P, Q,Qa). Indeed: 

Th"(o,P,e,ii) 

= Th"(o,P,e,iJ) \M) + Th"(a,P,Q,R) \[Mj+l) + Thn(a,P,Q,R) \[fij+ua) 

= Th"(a, P, Q, Qa) \M) + Th"(a, P,Q,Qh) \WjiPj+i> 

+ Th"(a,p,e,ea)r[ft+1,a)=(byW) 
Th"(a, P, Q, Qa) \ m ) + Th"(a, P, Q, Qa) \Wj,Pj+l) + Th"(a, P, Q, Qa) \[p.+ua) 

= Th"(a,P,Q,Qa). 

But Qa is an £-equivalence class while R is not. Since Th" (a, P, Q, Z) determines 
the truth value of: "Z is an is-equivalence class" we get a contradiction. H 

LEMMA 4.5. If fi < a then a —> fi if and only if there are y\,yi < a such that 
7i + 72 = a and y2 + y\ = fi. 

PROOF. The 'if' part is trivial. For the 'only if part let's prove first: 

SUBCLAIM, CD + OJ -fc CD. 
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PROOF OF THE SUBCLAIM. Assume that ip(x, y, P) well orders co + co of order type 
co and that dp(tp) = n, lg(P) = £. Let x <* y mean (co + co,<) (= <p(x,y,P). 

Find, using Ramsey theorem for additive colourings, {x,},<£0 increasing and 
unbounded in [0, co) satisfying, for i < j < co and for some so G £Fn<l+2 and 
t0 G 5 ^ + 2 

Th"(co + co;x,,0,P) \[XlJCj)= so, Th"(co + co;0,0,P) \[XI>XJ}= t0, 

similarly, let {yj }7 < t o be increasing and unbounded in [co, co + co) satisfying for 
j < k < co and for some s\ G ̂ n,i+i and f i e ^„,i+2 

Thn(co + co;%,y},P) 1^^)= su Thn(co + co;0,0,P) \bl>yk)= h. 

We may also assume that i\ < i2 => x,-, <* x,-2 and j \ < j 2 => JVi <* jF/2- Note also 
that by homogeneity t0 + to = to and t\ +t\ = t\. 

We will show now that for 0 < i < co and 0 < j < co, Th" (co + co; x,-,yj, P) is 
constant. Indeed: 

t* •.= 7hn(co + co;xi,yj,P) 

= Th" (co + co;0,0,P) \[0iXo) + Th" (co + co;0,0,P) \[X0iXi) 

+ Th"(co + co;x;,0,P) \[xi>Xl+l) + Th" (co+eo;0,0,P) \[Xi+um) 

+ Th"(co + co;0,0,P) r[<a>w) + Th" (co + co;x,-,0,P) \[yi,yj} 

+ Th"(co+co;<D,yj,P) \[y.ty.+l) +Th"(co + co;0,0,P) \[yj+uo)+co) . 

Call the sum t* = r\ + r2 + • • • + rg. Now r\ is constant, r2 = t0 • i = to (by 
;0 + to = fo), 3̂ is SQ, r4 = to • CO hence is constant, r$ is constant, ^ = t\ • j — t\, 
r1 = s\ and r% — t0 • co hence is constant. Therefore t* does not depend on i and j . 

Now as {yj}j<oj is unbounded with respect to <*, there is some / < co such that 
x\ <* yj. This is expressed by Th"(co + co; x\,yj, P) which we have just seen to be 
independent of / and j hence 

(V0 < i < co)(V0 <j<co) [(co + co, <) |= <p(xj,yj,P)] 

it follows that otp(co + co, <*) > co + 1, a contradiction. This proves co + co •/+ co. 
Returning to the proof of the claim, let /? be the minimal ordinal such that there 

exists some a > P with a —> p but there aren't any y\, y2 < a with (71 + y2 = 
a) & (y2 + y\ = P). Call such a p weird and let a > p the first ordinal witnessing the 
weirdness of p. By transitivity of —> /? is a limit ordinal. Moreover, y < p => p -fr y 
(otherwise, by transitivity a —• 7 and 7 is weird) hence if/? = 71 +y2 then 72+71 > /?• 
By looking at the first y such that y • ko > P for some ko < co it follows that 
there are two possible cases: either (*) for all y y < p =4> (7 + 7 < /?), hence 
y < P =$• (y • co < ft) and y < P =$• (otp([7, /?)) = /?)> or (**) /? = 7 • ko for some 
1 < £0 < to. 

First case: (*) holds. Let a = p + y what can 7 be? If 7 < P then by (*) 7+/? = /? 
and a does not witness the weirdness of p. Therefore a > P + p. 

Let <p(x,y,P) demonstrate a —> /? and assume dp(y>) = « and lg(P) = £. As 
above x <* y means (a, <) (= y>(x, j , P) and finally let 8 = cf (/?). 
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Now otp(a, <*) = p but what is otp([0, /?), <*)? (that is, of <* restricted to 
P C a). Clearly, as for yuy2 < P we haveTh"(a,P,yuy2) = Th"(a,P,yuyi) t[o,/?) 
+ Th"(a, P, 0,0) f[jga) we can compute <* |"[0^) in the segment [0, /?) and so p —> 
otp([0,/9), <*). Therefore p = otp([0,jff), <*)' (otherwise, by (*), otp([0,/J), <*) is 
weird and < P). 

Similarly we can show that otp([yS, p + p), <*) = p. 
Now proceed as before: choose {*,•},•«>• C [0,p) and {yj}j<s Q [P,P + P) that 

are increasing homogeneous and unbounded with respect to <* and use them to 
show that otp(a, <*) > p + 1. 

Second case: (**) holds i.e., /? = y • k<$. 
Let e be the first ordinal such that for some k < co e • k is weird. Look at 

y: if y = y\ + y2 and 72 + 71 < 7 we would have a —» /? = 7 • (k(, - 1) + 7 —> 
7 • (ko — 1) + 72 + 71 < yS and by transitivity this is a contradiction to the minimality 
of /?. Hence as before, we have either 71 < 7 => (71 + 71 < 7) and in this case 
7 = E or 7 = 71 • &i for some k\ < co. Repeat the same argument to get 71 = e or 
7i — 72 • k2. After finitely many steps we are bound to get p = £ • k for some k <co 
and £1 < £ =>• £1 • co < e and of course £1 < e => e /> £1. 

Let (p(x,y,P) demonstrate a —> p and <* be as usual. Assume 8 := cf(/?) = 
cf(fi). Let a = p + £*. If £* < £ then e* + p = p and a doesn't witness weirdness, 
therefore £* > s. 

Proceed as before: as a > e • (k +1) we can choose {xf },<(5, {xj }i<$,... , {xf },<(S 

with {xf},<d- C [£ • (.,e(£ + 1)), unbounded with respect to <*, increasing and 
homogeneous. 

By the Composition Theorem it will follow that otp([e • (., e(£ + 1)), <*) > e and 
by homogeneity we can assume that for 0 < i,j < co and £ < k, xf <* xj+i. It 
follows that otp(a, <*)>(£-fc) + l = / ? + l and a contradiction. H 

The previous lemmas yield a characterization of the definable well orderings of 
ordinals: they are exactly the well orderings that are definable in expansions of the 
first order language of order by a finite number of unary predicates. 

THEOREM 4.6. For every ordinal a, every definable (by a monadic formula) well 
ordering <* of a is obtained by the following process: 

let (Po, Pi,... , Pn-\) be a partition of a and 

i <* j <=> [{3k < n){i GPk&j €Pk&i< j)] 

v[iePkl&j ePkl&kx <k2]. 

PROPOSITION 4.7. Log(C) is well defined for every tame chain C. 

PROOF. Let (C, <*) be tame and let (a, <) and (/?, <) be results of a definable 
well orderings of (C, <*) where in addition (by Lemma 2.6) there is i//(x, y, Q) that 
defines C ma. So a —> p and by Lemmas 4.4 and 4.5 a < cow •<==> P <cow and 
ae[cok,cok+l) <=> P e[cok,cok+l). H 

§5. [com, <) and longer chains. The purpose of this section is to show that the 
chain (cow, <) does not have the uniformization property. From this we will be able 
to deduce that the same is true for every tame chain C with log(C) — 00. 
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The following lemma is a part of Theorem 3.5(B) in [8]: 

LEMMA 5.1. Let I be a well ordered chain of order type > cok. Let j ' : I2 —> 
{t0, t\... , te_\} be a a-additive colouring and assume that for a < ft £ I, f(a,fi) 
depends only on the order type in I of the segment [a, /?). 

Then there is i < I such that for some p < £, for every r > p, z/otp([a, /?)) — cor 

then f{a,p) = tj. Moreover, /, + tt = tt. 

PROOF. To avoid triviality assume k > I. For a < ft in / with otp([a, /?)) = S, 
denote f(a, p) by t(S) (makes sense by the assumptions). 

By the pigeon-hole principle there are p < £, p < s < k and some tt with 
t (mP) = t(cos) = th Now O>P+1 = £\<m(c«/ '+1 + cop) and by the <r-additivity of / : 

t (coP+2) = t (]T>'+1 +coP)\=J2t K + 1 + Q,/') 
\i<co / i«o 

= £ (t(co'+1) + t(coP)) = £ ( ' K + ' ) + *(<»')) = E ' K + ' +C°S) 
i<u> i<a> i<m 

= E ' (°>') = E < ("') =' ( E "A = * K+1) • 
Km i<m \i<co / 

Hence 
t (coP+2) = t (coP+]) . 

(This is false only if A: = £ + 1 and t(coe) = t{cot+l) but then the lemma holds 
trivially.) 

Assuming p + 3 < s, as a>p+3 = ^2i<(0(cop+2 + cop+l) we have 

\ i<m / i<co 

P+2 4- mP+1 + coP+i) 

= J2 (t(™p+2)+'K+1)) = E ('(<°'+1)+'fa'*1)) 
i<a> i<co 

i<(0 \ i«Q J 

Hence 
/ {a>P+3) = / (coP+2). 

So for every j > 0, t(cop+l) = t(a>P+J) and in particular t(cop+l) = t(cos) = 
t{coP) = th 

This proves the first part of the lemma. As for the moreover clause, since cop+1 = 
ojp + cop+l we have 

ti = t (a>P+l) =t(a>P+ a)P+i) = t (CQP) + t (a>P+l) = U + tt. H 

PROPOSITION 5.2. The formula <p(X, Y) saying "if Y is without a last element then 
X C Y is an co-sequence unbounded in Y (and if not then X = 0)" cannot be 
uniformized in {com, <). 
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Moreover, ify/m{X, Y,Pm) uniformize <p oncom then one of the sets {dp{tf/m) : m < 
co} or {lg(Pm) : m < co} is unbounded. 

PROOF. Suppose the second statement fails, then: 

there is a formula y/{X, Y, Z) such that for an unbounded set I C co, 
(j.-) for every m e I there is Pm C com such that y/(X, Y,Pm) uniformizes 

<f on com (i.e., y/ chooses a cofinal w-sequence X in every unbounded 
Y). 

Let« = dp(y/)+landM := \^ „,\%(z)+i\- Letw G 7 be large enough (w > 2M+3 
will do), denote Pm = P and let's show that y/(X, Y,P) does not work for com and 
some subset Y\ C com that will be defined below. 

When a < com we have a = com~xkm_\ + com~2km~2 + • • • + cok\ + k®. Let 
k{a) := min{/ : kt ^ 0} and let Ak := {a < com : fc(a) = k}. Note that 
OtpUfc) = COm~k. 

For A: e {1,2, . . . , w — 1} we will choose Yk C ^ with otp( 7^) = otp(y4^) = 
com-fc such that for a < fi in Yk\ 

(*) Th" (com; P, 7*) r[Q,/j) depends only on otp ([a, A) n Yk) 

we will start with k = m — I and proceed by inverse induction: 
Le t^ m _i = (aj : j < co). Let for £ < p<co, h(£,p) := Th"(fflm;P,a^) r[a<>a;>). 

Let 7 C co be homogeneous with respect to this colouring namely, for some fixed 
theory tm-\, for every £ < p in J, 

Thn(com;P,ae) \[a^p)= tm_x. 

By the Composition Theorem, for every £ < p in J, 

Th"(com;P, Fm_0 r[a,,a,)= 'm-i • | r m - i n [a* ,a„) | 

and this proves (*) for Ym-\. 
Rename 7m_i by (a, : i < co). In each segment [a,-,a,-+i) choose (fi'e : 0 < 

£ < co) C Am-2 increasing and cofinal such that for every £ < p < co the theory 
Th"{com; P,Pl) \{p, pl) is constant. 

Returning to 7m_i, for i < j < co let 

hdij) := (lh"(com;P) \[aiJir),Thn(com;P,firi) ^ - . ^ - l ) ) 

w.l.o.g. (by thinning out and re-renaming and noting that we don't harm (*)) Fm_i 
is homogeneous with respect to this colouring. 

Hence, for some theories t* and *m_2, for every / < j < co we have 

h\{ij) = (t*,tm-2). 

Let 7m_2 := {fi'e : 0 < £ < co, i < co), clearly otp(7m_2) = co2. Let's check (*) for 
Ym-2'-

Firstly, note that for £ < p < co, 

Th"{com;P, 7m_2) \[m>)= tm_2 • (p - I). 
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Secondly, for i < j < co Th"(com; P, 7m_2) t ^ ^ j 

= Th"(com;P, 7m_2) \w,tai+l) +Th"(com;P, 7m_2) \[ai+1,al+2) 

+ ••• + Th"(com;P, Ym_2) rK_„a;. ) + Th"(com;P, 7m_2) ^ 

where the first theory is equal to fm_2 • co, the last theory is t* + tm_2 • (p - I), and 
the middle theories are /* + tm-2 • co. These observations prove (*) for Ym-2. 

For defining Fm_3 let's restrict ourselves to a segment [a,-, ai+\) where a,-, a,-+i e 
Fm_i. In this segment we have defined (fy : 0 < £ < co) C Ym-2. Now choose 
in each [Pl

t,P
l
l+x) an increasing cofinal sequence {y'f : 0 < j < co) such that for 

j < p <co, Th"(com; P, yf) l̂ wy,*) is constant. 
For 0 < £ < p < co let 

h\{£,p) := (Th"(com;P) r w i > ^- . ) , Th^co" 1 ; / 5 , ^ " 1 ) r ^ - ' , ^ - ' ) > 

and again w.l.o.g. we may assume that {fi\ : 0 < £ < co) is homogeneous with 
respect to / ; j . 

Next, for i < j < co define 

h2(i,j) := (Th 'V ' " ; / 5 ) ^ - u ) , Th"^™; A y / _ U ) ^ - u ^ - U ) > 

by thinning out and renaming we may assume that FOT_i is homogeneous with 
respect to h2, now Fm_2 is also thined out but each new (fi'e : 0 < £ < co) which is 
some old (fif : 0 < £ < co) is still homogeneous. 

As a result we will have, for some theories t**,t***,tm_y. 

(V« <j< co)(V0 < £ < / > < co) [*{(*,/>) = (*", fm_3) & A2(i,7') = ('***> 'm-3>] • 

Let 7m_3 := {y'-̂  : i < co, 0 < ^ < co, 0 < y < co}, as before (*) holds by noting 
that if for example i\ < i2 < co and £\ < £2 then 

Th" (com;P,y^) U S W ) = rm_3-fl> 

+ (t** + tm-3 • co) • co + [t*** + (t** + tm_i -co)-co]- {i2 - ii - 1) 

+ t*** + ? m _ 3 • CO + (t** + ?m_3 • C0)(£2 -£i) + t** + ? m _ 3 • (j2 - 1) 

and similarly for the other possibilities. 
ym_4, Fm_5, . . . ,Y\ are defined by using the same prescription i.e., Ym-e is 

defined by taking a homogeneous sequence between two successive elements of 
Fm_^_i then homogeneous sequences between two successive elements of Fm_^_2 

by using colouring of the form h\,h2, The thinning out and w.l.o.g. 's for already 
defined Ym_k's are not necessary (as we are interested only in (*) for Y\) but they 
ease notations considerably. 

We will show now that y/ doesn't choose an unbounded co-sequence in Y\ that 
is, for every co-sequence X C Y\ there is a different co-sequence X' C Y\ such that 
Th"-l(com;P, Y],X)=Th"-\com;P, YUX'). 

By (*), fore* < ySin Yx the w-additivecolouring f(a,/?) := Th"(com;P, Yx) \[o,tP) 

depends only on otp([a,yS) n Y\) hence we can apply Lemma 5.1 and conclude 
that for some p < m/2, for every r > p, Th"(com;P, Y\) f[a^) is equal to some 
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fixed theory t whenever otp([a, /?) n Y\) = cor. (Remember that / has at most M 
possibilities and that m > 2M). Moreover, we know that t + t = t. 

Assume now that for some X C Y\, y/(X, Y\,P) holds, so I is a cofinal co-
sequence. Let X = {S,• : i < co}. As otp (Y\) = com ~1 for unboundedly many i 's we 
have otp(\dhSM) n Yx) > co"1'2 > OJP. 

Let Pi := otp([Si,di+i) n Yx) and when otp ([a, p) n Yx) = e denote Th"{com;P, 
Yi) \[a,p) by t(e) (by (*) it doesn't matter which a and /? we use). We are interested 
in Th""1 (com; P, Y\,X) which is 

Ttf-\co"<;P, y,,0) \[0A) +Th"~l(com;P, YUS0) r[<Wl) 

+ Th"-l(com;P,Yu5l) \lSlM+---. 

Now Th""1 (com;P, YUS,) \[SlA+l) is determined by TW{com;P, Yx) \[SlA+l)= KA) 
(as 5i is the first element in [<$,-,<?,•+1) HY\), and abusing notations we will say 

(**) Th"-l(com;P,YuX) ~ t(So)+ ^2t{pt). 
i<co 

Let i < co be such that # > com~2 and let j > i be the first with /?, > com_2. 
First case: j — i + 1. 
Let A = otp([c5,-,<5,+i)n 7i) = mm-2-kx + ex and #+i = otp([Si+x,di+2)nYx) = 

com~2 -ki + Ei where k\,ki > 1 andfii,£2 < com~2. 
Define y := the com~2 • k\ + com~3 + c\ 'th successor of St in Y\. So <5,+i < y < <S,+2 

but otp([y,<5,+2) n Yx) — pi+i hence 

Th" (a>m;,P, FO \M+l)= Th"{com;P, Yx) \[Sl+l,si+2)= t(fiM) 

hence 

TW-\wm;P, Yuy) \M+l)= Th"~l(com;P, YuSi+l) r [ W i + 2 ) . 

On the other hand, 

Th"(a/";JP, Yx) \[Sl,y)= t(com~2 • h) + t(com-') + r(e i) 

but m - 3 > p hence ;(£om~3) = t{com"2) = t moreover t + t = t and it follows that 

t{mm-2 • kx) + t{com-i) = t{com-2) • ki + t(com"3) 

= t(com-2) • {ki + 1) = t(com-2) • ki = t{com-2 • Jki) 

hence 

Th" (a>m;P, Yx) r[(J,>y)= f (« m - 2 • fci) + r(e,) - Thn(com;P, Yx) \plA+i)= *(/?,) 

hence 
Th""1 (com;P, YxA) \v„y)= Thn-l(com;P, Yx,St) \[susi+l) • 

Now all other relevant theories are left unchanged therefore, letting X' := X \ 
{Si+x} U {y} we get X ^ X' but 

Th"_1(ca'";P, YX,X) = Th"'i(com;P, YltX'). 

General case: j = i +£. 
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Look at 3i+l,3i+2,... ,5i+e-\,8i+e = Sj. We'll define yu y2,. •. , ye with 8i+k < 
yk < 8i+k+\ for 0 < k < £ and ye = 8i+e = 8j. This will be done by 'shifting' the 
5i+k's by com-3 (remember that pi+k < com-2 for 0 < k < I). 

Assume as before that /?, = otp([<S,,c5;+i) n Y\) = com~2 • k\ + £\ where k\ > 1 
andfii < com~2. 

Define y\ := the com~2 • k\ + com~3 + e\ 'th successor of <S, in Y\, y2 :— the /?,+i 'th 
successor of y\ in Y\, y3 ;— the /?,+2'th successor of 72 in Y\ and so on, ye will clearly 
be equal to Sj. 

As before we have for 1 < k < £, (by preserving the order types) 

Th»-l(a>m;P, Yuyk) \ln,rk+l)= T\?~\co>»;P, Yu5i+k) \[6l+kMk+i) . 

and (using t + t = t) 

lhn~\wm;P, YuSi) \[S„yi)=Thn-1(com;P, YUS,) \VlA+l) . 

Letting X':=X\ {Si+uSi+2,... ,<5;_i} U {yu y2,... , ye-i} we get X ^ X' but 

Thn-\com;P,Yl,X)=Th"-l(com;P,YuX'). 

Since dp(y/) = n — 1, X is not the unique co-sequence chosen by y/ from Y\. 
Therefore, y/ does not uniformize <p on com, a contradiction. This proves the second 
part of the claim. 

Now the first part follows from the second: if there was a formula y/{X, Y, P) with 
dp(y/) = n uniformizing (f(X, Y) in (com, <), then "X is the chosen co-sequence" 
would be expressed by Th" (cow; X, Y,P). Now for every m < co and X C Y c com 

we have 

Th"(co";X, Y.P) = Th"(co-JT, Y,P) \[0>co.} +Th"(coM;X, Y,P) t [ „ ) 

= Th"(CoM;X, Y,P) \[0^} +Th"(coM;0,0)JP) r[oi->0>-) . 

The second theory does not depend on the choice of X and Y, hence for X C 
Y C com, y/{X, Y,P) depends only on Tb"{com;X, Y,P) \^mm). Therefore we can 
have, for each m < co some y/m{X, Y,Pm) that uniformizes ip, with depth n and 
parameters P n [0, com) and this contradicts what we have just proved. H 

THEOREM 5.3. If C has the uniformizationproperty then C is tame and log(C) ^ 
00. 

PROOF. By [6] chains that are not tame do not have even a definable choice 
function. 

If a > cow then the ip{X, Y) saying "if Y has a cofinal co-sequence then X is 
one" cannot be uniformized in (a, <). (Choose a suitable Y C co™ C a and 
apply the composition theorem as in the end of the previous proof.) If (C, < c ) is 
tame, has the uniformization property and log(C) = 00 then by Lemma 2.6 <c is 
definable in some a > co10 and < a is definable in (C, < c ) . To uniformize tp{X, Y) 
in {a, <) just translate it to a formula about the definable <Q in (C, < c ) and use 
the uniformization property in C. But <c is definable in a and (a, <c) = (C, <c ) 
so we can uniformize <p in a. This is a contradiction. H 
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§6. Very tame trees. In this section we define very tame trees and prove that these 
are exactly the trees that have the uniformization property. We start with proving 
that very tame chains (scattered with log < oo) have the uniformization property. 
Call y/(X, Y,P) uniformizable in C if C f= {\/Y)(3X)[y/(X, Y,P)]. 

PROPOSITION 6.1. If the ordinals a and ft have the uniformization property then so 
do a + P and aft. 

PROOF, a + /? is similar to a + a = a • 2 and we concentrate on multiplication. 
Let <p(X, YQ) be uniformizable in aft with dp(^) = « and lg(Q) = (.. afi is 

J2y<play>a(y + 1)) where each segment [ay,a{y + 1)) is isomorphic to a hence 
has the uniformization property. Let K C afi be {ay : y < fi}, K is isomorphic 
to fi hence also has the uniformization property. To choose a unique X we first 
choose X n [ay, a(y + l)), then we partition K where for each ay € K describe the 
instructions for choosing X n [ay, a(y + 1)). Using the uniformization property of 
K we choose a unique set of instruction and obey them to choose X. 

Let (to,--- , ta-\) be an enumeration of the the theories in J~n,i+2- For i < a and 
X, Y C afi define Pt(X, Y, Q) C K := {ay : y < p} by 

Pt(X, YQ) := {ay : T\Yn(aP;X, YQ) \[ay,ay+a)= tt} 

it follows that, for every X,Y Ca(i,P = P(X, Y,Q) = (P0(X, YQ),... , Pa-\(X, 
Y Q)) is a partition of K that is definable from X, Y, Q and K. 

afi=J2y<p[a7' a7 + a) a n d by the Feferman-Vaught Theorem 3.7 there is m — 

m(n,l) suchthatThm(A:;P(X, Y,Q)) determinesTh"(a/?;X, Y,Q). 
Let 91 = {ro,... , rc-{\ C 9~m, ^ be the set of theories that satisfy, for every 

X,Y C afi: 

7hm(K;P(.X, Y,Q))£X^ap\= <p(X, YQ). 

Now let (so, • • • ,Sb-i) be an enumeration of the theories in 3~n+\ji+\- For i < b 
and Y Cap define /??(^ Q) C ^ by 

i? f ( i : e ) := {ay : Th"+1(a/?; ^ g ) \[ay,ay+a)= st) 

as before, for every Y C ay?, .R0 = R°(Y,Q) = (R°0(Y, Q),... .R^iY.Q)) is a 

partition of AT that is definable from Y, Q and K. 

Now let ^ ' = (R\,... , Rl^) be any partition of K. We will say that R°( Y, Q) 
and R1 are coherent if 

(1) ay £ (R? n i?j) implies that for every chain C, fi C C and Z) C C of length 
£: 

ifThn+l(C;B,D) = sf then (3A C C ) [ T h " ( C U , f i , 5 ) = / , ] , 
( 2 ) T h ' " ( ^ ; J R 1 ) e ^ . 
Since a,Z> and c are finite, there is a formula 9\{U, W) (with lg(t/) = b and 

lg( WT) = a) such that for any R°,Rl C K, 
K |= 0i (.R0, ^ ' ) iff ^ ° and .R1 are coherent partitions of K. 
Moreover, as K = P and p has the uniformization property, there exists S C K 

and a formula 62(U, W, S) such that for every R° C K 
i{(3W)9l(R

o,W)then(3\W)[02(R
o,W,S)&9i(Ro,W)]. Let 9(0, W,S) := 

01 A 02. 
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Now let Y C a/?, let R° = R°(Y,Q) and suppose that ^ ° and some Rl are 
coherent partitions of K. When ay e (Rf D Rlj), we know by the first clause in the 
definition of coherence that 

(3X C ap)[lhr(ap;X, Y,Q) \[ay,ay+a) = tj]. 

Now as [ay, ay + a) = a and a has the uniformization property, there is fy C 
[ay, ay + a) and a formula yf]{X, Y,fy) (of depth k(n,£) that depends only on n 
and £) that uniformizes the formula that says "Th"(a/?; X, Y, Q) \[ay,ay+a) = ' / ' • It 
follows that when y/yj{X, Y,fy) holds, X n [ay, ay + a) is unique. 

W.l.o.g. all fy have the same length (as we have a finite number of possibilities 
for tj) and even, by taking prudent disjunctions, i//yj(X, Y,fy) = y/j{X, Y, fy) (i.e., 
y/ does not depend on y—only on tj). Let f = Uy</? fy (the union is disjoint). We 
are ready to define U(X, Y, Q, f, S) that uniformizes ip(X, Y, Q): 

U(X, Y, Q, f, S) says: "for every partition R° ofK that is equal to [the definable] 
R°(Y,Q) every Rl that is a [in fact the only] partition that satisfies 6(R°, Rl,S),if 
ay £ R* and D = [ay, ay + a) [ay and ay + a are two successive elements of K] 
then D \= y}(X C\D,Y_ C\_D, QDD,fn D)". 

Check that U(X, Y, Q, f, S) does the job: clause (1) in the definition of coherence 
and the y/j's guarantee that X is unique, clause (2) guarantees that U(X, Y, Q, f, S) 
=><p(X,Y,Q). H 

FACT 6.2. Every finite chain has the uniformization property. 

PROOF. Order the subsets of a finite chain C lexicographically. H 

THEOREM 6.3. (co, <) has the uniformization property. 

PROOF. By [1]. H 

COROLLARY 6.4. An ordinal a has the uniformization property iff a < com. A chain 
(C, <) has the uniformization property iff log(C) ^ oo. 

PROOF. By Theorem 5.3 if C has the uniformization property then log(C) ^ oo. 
By Proposition 6.1, Fact 6.2 and Theorem 6.3 if a < ww then a has uniformization 
property. Use the interdefinability from Lemma 2.6 to conclude for a general C. H 

DEFINITION 6.5. (T, <) is very tame if 
(1) T is tame. 
(2) Sup{Log(5) : B C T, B a. branch} < co. 

LEMMA 6.6. If(T, < ) is not very tame then (T, <) doesnot have theuniformization 
property. 

PROOF. If T is not tame then by Theorem 2.9 it doesn't have even a definable 
choice function. 

If T is tame but not very tame then either there is a a branch B C T with log(i?) = 
oo or it has branches of unbounded log. Again by Theorem 2.9 there is a definable 
well ordering of T that, when restricted to branches, can be used to formulate the 
statement "X is a cofinal co-sequence in Y". If T has the uniformization property 
this is uniformized but by the Composition Theorem 3.11 we can do that inside 
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the branch without using the full structure of T. This contradicts Proposition 

5.2. H 

We are now ready to prove the main theorem. 

THEOREM 6.7. (T, <) has the uniformization property iff (T, <) is very tame. 
PROOF. Assume T is (n*,k*) tame and for every branch B C I w e have log(2?) < 

r*. Let <p{X, Y, Q) be uniformizable in T with dp(y>) = n and lg(2) = £• 
By the proof of Theorem 2.9 (see the Appendix) T can be well ordered in the 

following way: using a set KQ C T we can, in a definable way, partition T into a 
disjoint union of sub-branches {A,, : n G Y) where T is a well founded tree. We let 
K C T be a set of representatives {un : ^ e T} and denote: 

(a) ?/+ := {v G T : v is an immediate successor of 77 in T} 
(/?) ^ + c r i s { « , : v e 7+} 
(y) ^ : = U { ^ v : v < v i n r } . 

The following holds: 

(i) The tree relation on T, < r, is definable in T as a relation between the 
members of A\ 

(ii) An, Tn and Kn+ are definable from a branch of TL. 
(iii) {Tv : v G n+} are the equivalence classes with respect to the equivalence 

r e l a t i o n ^ onT , . (SeeDefinition2.7.) 

(iv) Kn+ = {«, : v e ^ + } is a set of representatives of the ~^ -equivalence classes 
hence has a definable linear ordering which is isomorphic to the completion of An 

in Tn (up to taking < n* many copies of each point in this completion). 
(v) By very-tameness, log(^+) < r*. 

To ease the notations we assume that KQ and K belong to the parameters Qirnp. 
To uniformize <p(X, Y,Q) (i.e., define a unique X* C T) we do the following: 

given Y C r we will use the decomposition T = [J„er An and the fact that each 
An has the uniformization property, to define a unique Xn C An. As in the proof of 
Proposition 6.1, for each un G K we describe the instructions for choosing X C\An 

and 1(17", and then, using the fact that T is well founded we choose a unique set 
of instructions that will yield a unique X* C T when they are followed. 

So let Y C T and we want to define some X* = X*(Y,Q) C T. Let T = A{)D 
yjne(}+ Tn- K()+ has a natural structure of a chain and log(K^+), log(A^) < r*. 
Denoting the completion of A^ in T by B* we see by (i)—(iv) above that B* is 
interpretable in K^+ therefore, by Theorem 3.11, there is some m — m{n,t) such 
that when X C T is given, from Thm{A{);X, Y,Q) and (Thm(r„;X, Y,Q) : 77 G 
()+) we can compute Th"(T; X,Y,Q). 

Let (SQ, ... , Sb-\) be an enumeration of the theories in 3~n+\£+\. 
Define P1(^e)<> = ( ^ ( i ; e ) ( ) , - - - , ^ - i ( i ; e ) < ) ) a p a r t i t i o n of/:< > +by 

r,e&}(YQ){) <s=» 7hn+l(Tf,;Y,Q) = si. 

By the previous remarks Pl{YQ)^ is definable from U(), Y and Q. 
DenneP2(Y,Q){) = (P2(Y,Q){),...,P

2^(Y,Q){))apeLVtitiono{K{),by 

l£P){r,Q){) «=> Thn+i(An;Y,Q) = Si. 

Sh:573



UNIFORMIZATION AND SKOLEM FUNCTIONS IN THE CLASS OF TREES 123 

Again, P 2 (7 Q)Q is definable from w<), 7 and g. 
Let (?o,... , ta-\) be an enumeration of the theories in Tn,i+i-
A partition of K{)+,Rl = {Rl

0,... , Rl_x} is coherent with P1 (Y, Q){ > ifP/( 7 2)<> 
n Pj ^ 0 implies 

"for every tree S a n d 5 , C C S with lg(C) = I, if Th"+1 (S;5, C) = Si 

then there is ̂  C 5" such that Th"(S; .4, 5, C) = / / ' . 
Similarly a partition of K(y, R2 = (PQ, . . . , P2_i) ' s coherent with P2( 7 2)() if 
P,2(Y, Q){)nR2^(D implies 

"for every chain S and P, C C S with lg(C) = I, if Th"+1 (5; P, C) = s,-
then there is ACS such that Th"(S; .4, P, C) = */'. 

Finally, a pair of partitions of A"^+, (P', P2) is t*-coherent with the pair (P' (7 2) < >, 

p2(72)<>>if 

( l )P 1 is coherent with P'( 7 2)(), 
(2) P2 is coherent with P2(7, Q){), and 
(3) For every X C T, if Th"U 0 ; JT, 7 2 ) = t* and if for every tj G ()+ 

[Th"(r,; JT, 7 2 ) = '; « = • « „ € P/] , then T \= <p(X, Y,Q). 

As T \= (3JJf)y>(*, 7<2) there are f* (that will be fixed from now on), P1 and P2 

such that (P1, P2) is ̂ -coherent with the pair (P1 ( 7 2)(), -P2(7 2)( ))• 
Moreover, "(Rl,R2) is ?*-coherent with the pair {Pl(Y,Q){),P

2{Y,Q){))" is 
determined by Thk{K{ >+; P

1, P2, P1 (7 2)<>> P 2 (7 2)< >) where k depends only on 
n and /. 

The first two clauses are clear (since a and b are finite) and for the third clause 
use Theorem 3.11 as above. So the statement is expressed by a uniformizable 
formula t//l(Rl,R2,Pl{Y,Q){),P

2{Y,Q){)) of depths. As by a previous remark 
Log{A()+) < r* there is S^ C K^+ and a formula y/^{U\, U2, W\, W2,S^) that 
uniformizes y1. 

To conclude the first step use Log(,4<)) < r* to define, by a formula 6{) (X, 7 n 
yl(), g n ^4(), 0 Q ) and a sequence of parameters O^ C ^ , aunique X^ Q A^ 
that will satisfy Th"(An; X{),Y,Q) = t*. 

The result of the first step is the following: 

(a) We have defined X^ C A^ using O^ £ ^( > a nd #{ >• -^ > is t n e intersection 
of the eventual X* with ,4(). 

(b) We have chosen P| ) + ,P2
> + C A()+ using ^ and5\). 

(c) P | ) + and P|>+ tell us what are (for tj G ()+) the theories Th"(P,;X*, Y,Q) 
and Th"U,; Xn, 7 2 ) respectively: if H, G P/ then the eventual I * fl T, C r„ 
will satisfy Th"{Tn\ X* n r , , 7 2) = '< and if w, € P2 then the soon to be defined 
Xn C A,, will satisfy Th"U,,; Xn, 7 2) = 0-

We will proceed by induction on the level of rj in T (remember, all the levels are 
< co) to define S„ O, C ^4, and Rl+,R2

+ C A,+ and A", C r7. 
The induction step: 
We are at v G T where v e rj+ and we want to define Sv, Ov C Av, P '+ , Pj+ C Av+ 

and Xv C Tv. Now as P̂ + and P2+ are defined, MV belongs to one member of P̂ + 
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say the j'l'th and to one member of R2+ say the /2'th. This implies that there is some 

X'v C Tv_ suchthat Th"(_Tv; X[_, Y,Q) = th and Th"(^v; X'v nAv,Y,Q) = th. 
Let Pl(Y,Q)v and P2(Y,Q)V be partitions of Kv+ that are defined as in the 

first step by saying, for x e v+, what are 7h"+l{TT; Y,Q) and Th"+ 1UT; Y,Q). 
(Rl

v+,R2
V+} C Kv+ will be a pair that is th, th-coherent with (PX{Y,Q)V,P2{Y,Q)V) 

that is: 

(1) R\+ is coherent with Px {Y,Q)V, 
(2) R2

V+ is coherent with P2{ Y, Q)v, and 
(3) For every X C TvifTh"(Av; X, Y,Q) = th and for every r s v+ [Th"{Tz;X, Y, 

Q) = ?,. <=> MT e the /'th member of R\+], then Th"{Tv; X,Y,Q) = th. 

Using Log(A:v+) < r* choose Sv+ C Kv+ and y/iiti2{R\R2,Pl(Y,Q)v+,P2(Y,Q)v:, 
Sv+) that uniformizes the formula that says "(R],R2) is tit, /,2-coherent with (P1 

(Y, Q)v, P2{ Y, Q)v)"- We may assume that i//ilih depends only on i\ and h and that 
lg(Sv+) is constant. 

Use Log(^v) < r* to define, by a formula 6h{X, Y n Av, Q n ^4V, Ov) and a se­
quence of parameters Ov C yiv,auniqueXv C 4̂V that will satisfy Th"(^v;Zv, Y,Q) 
= ti2. Again, we may assume that 0,2 depends only on i2 and that lg( 6V) is constant. 

So Sv, Ov, RJ+, /J 1+ and Xv are defined and we have concluded the inductive step. 
(Note that nothing will really go wrong if v doesn't have any successors in Y.) 

Let 6 = U , e r °i' $ = U , 6 r "V The uniformizing formula U{X, Y, Q, 6, S) 
says: 

"X fl A() is defined as in the first step, and for every pair of partitions (Pl,P2) of 
is: that agrees on each Kn+ with [the definable] (P^(Y,Q),P2

+{Y,Q)), (and agrees 
with (Pl,yP2>) on K()+), and for every (Rl,R2) that is a [in fact the only] pair of 
partitions that satisfies for every un e K: if un e .P,1, n P? then 1 / / , , ^ ( f i ' f l ^ . ^ n 
Kn+,Pl n Kn+, P2 n Kn+, S nKn+) holds, (and agrees with (Rl

{),R
2
{)) onA:()+),for 

every un&K\tune R2 then Bt{X r\An,YD An, Q n ^ , , O n 4 , ) holds." 

£/(X, }^g, 0 , S ) does the job because it defines X D An uniquely on each An 

and because, (by the conditions of coherence) the union of the parts, X, satis­
fies <p{X, Y, Q). Note also that U does not depend on Y. H 

The concluding remark shows that we can't hope to generalize the results to the 
class of partial orders. 

FACT 6.8. Every partial order P can be embedded in a partial order (P*,<*) in 
which P is well orderable in a definable way. 

PROOF. Given a partial order {P, <p) let (/?, : i < X) an enumeration of the 
elements of P (X an ordinal). Let Q := (#, : i < X) and R := (r, : i < X) be lists of 
copies of the elements of P. P* will be P U Q U R and the partial order <* on P* 
will be the transitive closure of the following rules: 

(1) the partial order <P between the elements off , 
(2) i < j < X =* qi <* qj, 
(3) i < X => n <* qit 

(4) i<X^> qi <* ph 
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Now, R is definable (the elements without a predecessor), Q is definable (the imme­
diate successors of the elements of R) and the correspondence />, H-> qt is defined 
by "pi is the immediate successor of qt that does not belong to Q". 

This defines a well ordering of the elements of P. -\ 

Appendix. 

LEMMA A. 1. Let C be a scattered chain withHdeg{C) = n. Then there are P C C, 
\g{P) — n — \, and a formula {depending on n only) <p„(x,y,P) that defines a well 
ordering of C. 

PROOF. By induction on n we will prove the existence of a formula <pn (x, y, Z) 
such that for every scattered C with Hdeg(C) = n there is P C C such that 
<p„(x, y, P) well orders the elements of C: 

n < 1: Hdeg(C) < 1 implies (C,<c) is well ordered or inversely well ordered. 
A well ordering of C is easily definable from <c-

Hdeg(C) = n + 1: Suppose C = X^6/ Q an (* each C, is of Hausdorff degree 
n. By the induction hypothesis there are a formula tp„(x,y,Z) and a sequence 
(P* :i el) with P ' C C,, P ' = (P\',... , P'n_,) such that y>„ (x, j , P ') defines a well 
ordering of C,. 

Let for 0 < k < n, Pk '•= \JieI P'k (disjoint union) and Pn := \J{Cj : i even} (if 
/ is well ordered then / € / is even means / is a limit ordinal or i = a + 2k where 
a is limit and k < co. When / is inversely well ordered invert it). 

We will define an equivalence relation ~ by x ~ y iff/\((x e Q ^ y e Q ) . 
~ and [x], (the equivalence class of an element x), are easily definable from Pn 

and <c • We can also decide from Pn if/ is well or inversely well ordered (by looking 
at subsets of C consisting of non equivalent elements) and define <! to be <c if/ is 
well ordered and the inverse of < c if not. ipn+\{x,y,P\,... ,P„) will be defined by: 

<p„+i(x,y,P)& [x^y&x<' y] V [x ~ y & <pn(x, y,P\ D [x],.,. ,/>„_! D [x])]. 

<pn+\ (x, y, P) well orders C. 
Now if <w is the well order of C definable by <p„ then there is a sequence of 

parameters Q C C and a formula <p~l (x, y, Z) such that 

(C,<vl)\=<p-1{x,y,Q) ^ x<cy 

the proof is similar by induction on n (noting that when C = Y^iei (~'i t n e n e a c n ^' 
is a convex set with respect to <w). H 

THEOREM A.2. LetTbe a tame tree. Then there are QCT and a monadic formula 
<p(x, y, Q) that defines a well ordering ofT. 

PROOF. Assume T is (n*,k*) tame. Since m>2 is not embeddable in T for every 
x G T, rk(x) is well defined. 

(rk is defined by rk(^) > a + 1 «=> there are vi, v2 € T with n < v\ and n <3 v2 

such that vi _L v2, rk(vi) > a and rk(v2) > a.) 
We will partition T into a disjoint union of sub-branches, indexed by the nodes of 

a well founded tree T and reduce the problem of a well ordering of T to a problem 
of a well ordering of T. 
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Step 1. Define by induction on a a set Ta C a Ord (this is a our set of indices), 
for every r\ G Ta define a tree T^ C T and a branch Av C T , . 

a = 0: To is {()}, T^ is 71 and AQ is a branch (i.e., a maximal linearly ordered 
subset) of T. 

a = 1: Look at (T \ AQ)/ ~^ , it's a disjoint union of trees and name it 

(T^ : i < ?'*), let Ti := {(/) : i < i*} and for every (/) G T\ let v4(,-} be a branch of 

a = p + \: For // e T^ denote ( r , \ A , ) / ~ ^ by { T ^ A ^ : i < in}, let 

r<* = {>/A (») : 1 £ r^j, / < /,} and choose An A ^ to be a branch of Tn A (,•). 

a limit: Let r „ = { , £ » Ord : /\p<a rj foe Tp, A , < a 7 ^ , 7̂  0}, let for rj G Ta 

r , = ri/?<a ^ U an<* ^ a branch of r , . (T, may be empty.) 
Now, at some stage a < \T\+ we have Ta = 0 and let T — U/?«* ̂ . Clearly 

{An : ̂  € T} is a partition of T into disjoint sub-branches. 
Notation: having two trees T and T, to avoid confusion, we use x, y, s, t for nodes 

of T and tj, v, a for nodes of T. 
Step 2. We want to show that Tm = 0 hence T is a well founded tree. Note that 

we made no restrictions on the choice of the An's and we add one now in order 
to make the above statement true. Let t] A(i) € T define Bni = {t e An : (Vs € 
Tv*(i))[t <s]}, let yVj be min{rk(f) : t e Bnj} {if B^j = 0 then yn>i = oo) and 
finally let An>i := {t G r,A( l ) : rk(f) = y^}. 

Proviso: For every // G r and i < /,, ^ C An A (,•). 
Following this we claim: ' T does not contain an infinite, strictly increasing 

sequence". Otherwise let {//,},<ro be one, and choose s„ G -4,„,,„+1(„) (so J„ G v4,J. 
Clearly rk(s„) > rk(j„+i) and by the proviso we get 

rk(j„) = rk(5„+i) => rk(s„+l) > rk{sn+2) 

therefore {rk(s„)}n<co contains an infinite, strictly decreasing sequence of ordinals 
which is absurd. 

Step 3. Next we want to make "x and y belong to the same Aq" definable. 
For each rj G T choose sn G An, and let Q C T be the set of representatives. 

Let h: T —» {do,... , </„«_i} be a colouring that satisfies: h \A{)= do and for every 
rjA(i) G T, h \A A{I) is constant and, when j < i and s,,*^ ~° s<7A<./> w e n a v e 

A [ ^ A ^ h \A A This can be done as T is (n*, d*) tame. 
Using the parameters Do,--- ,Ai>-i {x G £>, ifi°/!(x) = rf,-), we can define 

V„[x>y e -̂ 17] by "x,y are comparable and the sub-branch [x,y] (or [y, x]) has a 
constant colour". 

Step 4. As every A,, has HausdorrT degree at most k*, we can define a well 
ordering of it using parameters P\,... , P\, and by taking P to be the (disjoint) 
union of the pi's we can define a partial ordering on T which well orders every An. 

By our construction tj < v if and only if there is an element in Av that cuts An 

i.e., is above a proper initial segment of An. (Caution, if T does not have a root this 
may not be the case for () and a < n* number of (i)'s and we may need parameters 
for expressing that). Therefore, as by step 3 "being in the same An" is definable, 
we can define a partial order on the sub-branches An (or the representatives sn) by 
rj < v =>• An < Av. 
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Next, note that "v is an immediate successor of rj in T" is definable as a relation 
between sv and sn hence the set A+ := An U {sn^(i)} is definable from sn. Now the 
order on An induces an order on { ^ A ^ / ~° } which is can be embedded in the 
completion of An hence has Hdeg< k*. Using additional parameters Q\,... , Q\,, 
we have a definable well ordering on {S^A^/ ~° }. As for the ordering on each 

~^ equivalence class (finite with < n* elements), define it by their colours (i.e., the 
element with the smaller colour is the smaller according to the order). 

Using D, P, Q and Q = yJnQ.n we can define a partial ordering which well orders 
each A+ in such a way that every x £ An is smaller then every sn A <,-). 

Summing up we can define (using the above parameters) a partial order on 
subsets of T that well orders each An, orders sub-branches An,Av when the indices 
are comparable in r and well orders all the "immediate successors" sub-branches 
of a sub-branch An. 

Step 5. The well ordering of T will be defined by x < y <*=> 

(a) x and y belong to the same An and x < y by the well order on A^; or 
(b) x £ An, y £ Av and r\ < v; or 
(c) x £ An,y £ Av,a — tj A v in T (defined as a relation between sub-branches), 

a A (/') < r],aA(j) < v and s„ A ^ < sa Ay^ in the order of A+. 

Note that < is a linear order on T and every An is a convex and well ordered sub-
chain. Moreover < is a linear order on Y and the order on the sn\ is isomorphic to 
a lexicographic order on T. 

Why is the above (which is clearly definable with our parameters) a well order? 
Because of the above note and because a lexicographic ordering of a well founded 
tree is a well order, provided that immediate successors are well ordered. H 
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